LP8758A2E3YFFR [TI]

四路、单相、4A 输出直流/直流降压转换器 | YFF | 35 | -40 to 85;
LP8758A2E3YFFR
型号: LP8758A2E3YFFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

四路、单相、4A 输出直流/直流降压转换器 | YFF | 35 | -40 to 85

转换器
文件: 总56页 (文件大小:963K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
LP8758-E3 Four 4-A Output Synchronous Step-Down DCDC Converters  
Check for Samples: LP8758-E3  
1 Features  
3 Description  
The LP8758-E3 device is designed to meet power  
management requirements for low-power processors  
in mobile phones, network cards, and similar  
applications. The device contains four step-down DC-  
DC converter cores, providing four output voltage  
rails. The device is controlled by an I2C-compatible  
serial interface.  
1
Fully Integrated Quad Buck, up to 4-A  
Programmable Maximum Output Current Per  
Buck  
Auto PWM-PFM and Forced-PWM Operations  
Programmable Output Voltage Slew Rate  
From 30 mV/µs to 0.5 mV/µs  
Input Voltage Range: 2.5 V to 5.5 V  
VOUT Range: 0.5 V to 3.36 V with DVS  
The automatic PWM-PFM (AUTO mode) operation  
maximizes efficiency over a wide output-current  
range.  
Programmable Start-Up and Shutdown  
Sequencing With Enable Signal  
I2C-Compatible Interface That Supports Standard  
(100 kHz), Fast (400 kHz),  
The LP8758-E3 supports programmable start-up and  
shutdown sequencing synchronized to hardware  
Enable input signal.  
The protection features include short-circuit  
protection, current limits, input supply UVLO, and  
temperature warning and shutdown functions.  
Several error flags are provided for status information  
of the device. In addition, the LP8758-E3 device  
supports load current measurement without the  
addition of external current sense resistors. During  
start-up and voltage change, the device controls the  
output slew rate to minimize output voltage overshoot  
and the inrush current.  
Fast+ (1 MHz), and High-Speed (3.4 MHz) Modes  
Interrupt Function with Programmable Masking  
Load Current Measurement  
Output Short-Circuit and Overload Protection  
Spread-Spectrum Mode for EMI Reduction  
The Four Buck Cores Operate 90° out of Phase  
Thereby Reducing Input Ripple Current  
Overtemperature Warning and Protection  
Undervoltage Lockout (UVLO)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
2 Applications  
Optical Modules  
Drone Systems  
Smart Phones, eBooks, and Tablets  
Solid State Drives  
Simplified Schematic  
Efficiency vs Output Current  
100  
LP8758  
VIN  
VOUT0  
VOUT1  
VOUT2  
VOUT3  
VIN_B0  
VIN_B1  
VIN_B2  
VIN_B3  
VANA  
SW_B0  
FB_B0  
95  
90  
85  
80  
SW_B1  
FB_B1  
NRST  
SDA  
SCL  
nINT  
EN1  
EN2  
SW_B2  
FB_B2  
VIN = 3.3 V  
2.5 V  
1.8 V  
75  
SW_B3  
FB_B3  
70  
0.001  
0.01  
0.1  
Output Current (A)  
1
5
GNDs  
D038  
VOUT settings = 1.8 V and 2.5 V  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
Table of Contents  
7.5 Programming........................................................... 23  
7.6 Register Maps......................................................... 26  
Application and Implementation ........................ 43  
8.1 Application Information............................................ 43  
8.2 Typical Application .................................................. 43  
Power Supply Recommendations...................... 50  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 I2C Serial Bus Timing Requirements ........................ 8  
6.7 Switching Characteristics........................................ 10  
6.8 Typical Characteristics............................................ 11  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 13  
7.3 Feature Description................................................. 13  
7.4 Device Functional Modes........................................ 22  
8
9
10 Layout................................................................... 51  
10.1 Layout Guidelines ................................................. 51  
10.2 Layout Example .................................................... 52  
11 Device and Documentation Support ................. 53  
11.1 Device Support...................................................... 53  
11.2 Documentation Support ........................................ 53  
11.3 Receiving Notification of Documentation Updates 53  
11.4 Community Resources.......................................... 53  
11.5 Trademarks........................................................... 53  
11.6 Electrostatic Discharge Caution............................ 53  
11.7 Glossary................................................................ 53  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 53  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DATE  
REVISION  
NOTES  
February 2020  
*
Initial Release  
2
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
 
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
5 Pin Configuration and Functions  
YFF Package  
35-Pin DSBGA  
Top View  
YFF Package  
35-Pin DSBGA  
Bottom View  
VIN  
_B2  
SW  
_B2  
PGND  
_B23  
SW  
_B3  
VIN  
_B3  
G
F
VIN  
_B3  
SW  
_B3  
PGND  
_B23  
SW  
_B2  
VIN  
_B2  
G
F
VIN  
_B2  
SW  
_B2  
PGND  
_B23  
SW  
_B3  
VIN  
_B3  
VIN  
_B3  
SW  
_B3  
PGND  
_B23  
SW  
_B2  
VIN  
_B2  
FB  
_B2  
PGND  
_B23  
FB  
_B3  
SCL  
SDA  
EN1  
VANA  
E
D
C
B
A
FB  
_B3  
PGND  
_B23  
FB  
_B2  
VANA  
SCL  
SDA  
EN1  
E
D
C
B
A
AGN  
D
NRST  
EN2  
nINT  
AGN  
D
nINT  
EN2  
NRST  
FB  
_B0  
PGND  
_B01  
FB  
_B1  
SGND  
FB  
_B1  
PGND  
_B01  
FB  
_B0  
SGND  
VIN  
_B0  
SW  
_B0  
PGND  
_B01  
SW  
_B1  
VIN  
_B1  
VIN  
_B1  
SW  
_B1  
PGND  
_B01  
SW  
_B0  
VIN  
_B0  
VIN  
_B0  
SW  
_B0  
PGND  
_B01  
SW  
_B1  
VIN  
_B1  
VIN  
_B1  
SW  
_B1  
PGND  
_B01  
SW  
_B0  
VIN  
_B0  
5
4
3
2
1
1
2
3
4
5
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LP8758-E3  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NUMBER  
NAME  
Input for Buck1. The separate power pins VIN_Bx are not connected together internally – VIN_Bx  
pins must be connected together in the application and be locally bypassed.  
A1, B1  
VIN_B1  
P
A2, B2  
SW_B1  
PGND_B01  
SW_B0  
A
G
A
Buck1 switch node.  
A3, B3, C3  
A4, B4  
Power Ground for Buck0 and Buck1.  
Buck0 switch node.  
Input for Buck0. The separate power pins VIN_Bx are not connected together internally – VIN_Bx  
pins must be connected together in the application and be locally bypassed.  
A5, B5  
VIN_B0  
P
C1  
C2  
C4  
SGND  
FB_B1  
FB_B0  
G
A
A
Substrate Ground.  
Output voltage feedback for Buck1.  
Output voltage feedback for Buck0.  
Programmable Enable signal for Buck converter core or cores. Can be also configured to switch  
between two output voltage levels.  
C5  
EN1  
D/I  
D1  
D2  
AGND  
nINT  
G
Ground.  
D/O  
Open-drain interrupt output. Active LOW.  
Programmable Enable signal for Buck converter one or more cores. Can be also configured to  
switch between two output voltage levels.  
D3  
EN2  
D/I  
D4  
D5  
E1  
E2  
E4  
E5  
NRST  
SDA  
D/I  
Reset signal for the device. Can be also used to enable the regulator.  
D/I/O Serial interface data input and output for system access. Connect a pullup resistor.  
VANA  
FB_B3  
FB_B2  
SCL  
P
A
Supply voltage for Analog and Digital blocks.  
Output voltage feedback for Buck3.  
A
Output voltage feedback for Buck2.  
D/I  
Serial interface clock input for system access. Connect a pullup resistor.  
Input for Buck3. The separate power pins VIN_Bx are not connected together internally – VIN_Bx  
pins must be connected together in the application and be locally bypassed.  
F1, G1  
VIN_B3  
P
F2, G2  
SW_B3  
PGND_B23  
SW_B2  
A
G
A
Buck3 switch node.  
E3, F3, G3  
F4, G4  
Power Ground for Buck2 and Buck3.  
Buck2 switch node.  
Input for Buck2. The separate power pins VIN_Bx are not connected together internally - VIN_Bx  
pins must be connected together in the application and be locally bypassed.  
F5, G5  
VIN_B2  
P
A: Analog Pin, D: Digital Pin, G: Ground Pin, P: Power Pin, I: Input Pin, O: Output Pin  
4
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted).(1)(2)  
MIN  
MAX  
UNIT  
INPUT VOLTAGE  
VIN_Bx, VANA  
Voltage on power connections  
Voltage on buck switch nodes  
–0.3  
–0.3  
6
V
V
(VIN_Bx + 0.3 V) with  
6 V maximum  
SW_Bx  
(VANA + 0.3 V) with  
6 V maximum  
FB_Bx  
Voltage on buck voltage sense nodes  
–0.3  
V
V
NRST  
Voltage on NRST input  
–0.3  
–0.3  
3.6  
3.6  
ENx, SDA, SCL, nINT  
CURRENT  
Voltage on logic pins (input or output pins)  
VIN_Bx, SW_Bx,  
PGND_Bx  
Current on power pins (average current over 100k  
hour lifetime, TJ = 125°C)  
0.62  
A/pin  
TEMPERATURE  
TJ-MAX  
Junction temperature  
40  
150  
260  
150  
°C  
°C  
°C  
Maximum lead temperature (soldering, 10 seconds)(3)  
Tstg Storage temperature  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground.  
(3) For detailed soldering specifications and information, please refer to DSBGA Wafer Level Chip Scale Package.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted).  
MIN  
MAX  
UNIT  
INPUT VOLTAGE  
VIN_Bx, VANA  
Voltage on power connections  
Voltage on NRST  
2.5  
0
5.5  
V
V
VANA with 3.6 V  
maximum  
NRST  
Voltage on logic pins (input or output pins)  
VANA with 3.6 V  
maximum  
ENx, nINT  
SCL, SDA  
0
0
0
V
V
V
Voltage on I2C interface, standard (100 kHz), fast (400 khz),  
fast+ (1 MHz), and high-speed (3.4 MHz) modes  
Voltage on I2C interface, standard (100 kHz), fast (400 kHz), and  
fast+ (1 MHz) modes  
1.95  
VANA with 3.6 V  
maximum  
TEMPERATURE  
TJ  
Junction temperature  
Ambient temperature  
–40  
–40  
125  
85  
°C  
°C  
TA  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LP8758-E3  
 
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
6.4 Thermal Information  
LP8758  
THERMAL METRIC(1)  
YFF (DSBGA)  
UNIT  
35 PINS  
56.1  
0.2  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
8.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.9  
ψJB  
8.4  
RθJCbot  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Limits apply over the junction temperature range –40°C TJ +125°C, specified V(VANA), VIN , V(NRST), VOUT and IOUT range,  
unless otherwise noted. Typical values are at TJ = 25°C, ƒSW = 3 MHz, V(VANA) = VIN = 3.7 V and VOUT = 1 V, unless otherwise  
noted.(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EXTERNAL COMPONENTS  
CIN  
Input filtering capacitance  
Connected from VIN_Bx to PGND_Bx  
Capacitance per output voltage rail  
1.9  
10  
10  
22  
µF  
µF  
Output filtering capacitance,  
local  
COUT  
COUT-  
TOTAL  
Output capacitance, total  
(local and remote)  
Total output capacitance  
[1-10] MHz  
50  
10  
µF  
Input and output capacitor  
ESR  
ESRC  
2
mΩ  
0.47  
µH  
L
Inductor  
Inductance of the inductor  
–30%  
30%  
DCRL  
Inductor DCR  
TDK, VLS252010HBX-R47M  
29  
mΩ  
BUCK REGULATORS  
Voltage between VIN_Bx and ground  
terminals. VANA must be connected to the  
same supply as VIN_Bx.  
VIN  
Input voltage range  
2.5  
0.5  
3.7  
5.5  
V
V
Programmable voltage range  
Step size, 0.5 V VOUT < 0.73 V  
Step size, 0.73 V VOUT < 1.4 V  
Step size, 1.4 V VOUT 3.36 V  
1
10  
5
3.36  
VOUT  
Output voltage  
mV  
20  
Output current, VIN 3 V  
ILIM FWD programmed to 5 A per phase.  
3(3)  
4(3)  
Output current, VIN > 3 V, VOUT 2 V  
ILIM FWD programmed to 5 A per phase.  
IOUT  
Output current  
A
V
Output current, VIN > 3 V, VOUT > 2 V  
ILIM FWD programmed to 5 A per phase.  
3.5(3)  
Dropout voltage  
VIN – VOUT  
0.7  
min (–2%,  
–20 mV)  
max (2%,  
20 mV)  
DC output voltage  
Force PWM mode  
accuracy, includes voltage  
reference, DC load and line  
regulations, process and  
temperature  
max ( 2%,  
20 mV) + 20  
mV  
PFM mode, the average output voltage  
level is increased by a maximum of 20 mV.  
min (–2%,  
–20 mV)  
(1) All voltage values are with respect to network ground.  
(2) Minimum (MIN) and maximum (MAX) limits are specified by design, test, or statistical analysis. Typical (TYP) numbers are not verified,  
but do represent the most likely norm.  
(3) The maximum output current can be limited by the forward current limit, ILIM FWD. The maximum output current is available with 5-A  
forward current limit setting.  
6
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
Electrical Characteristics (continued)  
Limits apply over the junction temperature range –40°C TJ +125°C, specified V(VANA), VIN , V(NRST), VOUT and IOUT range,  
unless otherwise noted. Typical values are at TJ = 25°C, ƒSW = 3 MHz, V(VANA) = VIN = 3.7 V and VOUT = 1 V, unless otherwise  
noted.(1)(2)  
PARAMETER  
TEST CONDITIONS  
PWM mode, L = 0.47 µH  
MIN  
TYP  
10  
MAX  
UNIT  
mVp-p  
%/V  
Ripple  
PFM mode, L = 0.47 µH  
IOUT = 1 A  
20  
DCLNR  
DCLDR  
DC line regulation  
±0.05  
DC load regulation in PWM  
mode  
IOUT from 0 to IOUT(max)  
0.3%  
±55  
Transient load step  
response  
IOUT = 0 A to 2 A, TR = TF = 400 ns, PWM  
mode, COUT = 44 µF, L = 0.47 µH  
TLDSR  
TLNSR  
mV  
mV  
VIN stepping 3.3 V 3.8 V, TR = TF = 10  
µs, IOUT = IOUT(max)  
Transient line response  
±15  
Programmable range  
2.5  
5
A
Forward current limit (peak  
for every switching cycle),  
per phase  
Step size  
0.5  
7.5%  
7.5%  
2
ILIM FWD  
Accuracy, 3 V VIN 5.5 V, ILIM FWD = 5 A  
Accuracy, 2.5 V VIN 3 V, ILIM FWD = 5 A  
-5%  
-20%  
1.6  
20%  
20%  
2.4  
ILIM NEG  
Negative current limit  
A
RDS(ON) HS On-resistance, high-side  
Between VIN_Bx and SW_Bx pins (I = 1 A)  
40  
90  
50  
mΩ  
FET  
FET  
Between SW_Bx and PGND_Bx pins  
(I = 1 A)  
RDS(ON) LS On-resistance, low-side  
33  
< 50  
600  
mΩ  
mV  
mA  
FET  
FET  
Overshoot during start-up  
Slew-rate = 10 mV/µs  
PFM-to-PWM switch -  
IPFM-PWM  
current threshold(4)  
PWM-to-PFM switch -  
IPWM-PFM  
240  
250  
–17  
mA  
current threshold(4)  
Output pulldown resistance Regulator disabled  
150  
–23  
350  
–10  
Ω
Powergood threshold for  
interrupt  
Rising ramp voltage, enable or voltage  
change  
BUCKx_INT(BUCKx_SC_I  
NT), difference from final  
voltage  
mV  
mV  
Falling ramp, voltage change  
10  
17  
23  
Powergood threshold for  
status signal  
BUCKx_STAT(BUCKx_PG 0 during voltage change.  
During operation, status signal is forced to  
–23  
–17  
–10  
_STAT)  
PROTECTION FEATURES  
Temperature rising,  
CONFIG(TDIE_WARN_LEVEL) = 0  
125  
105  
Thermal warning  
Temperature rising,  
CONFIG(TDIE_WARN_LEVEL) = 1  
°C  
°C  
Hysteresis  
15  
150  
15  
Temperature rising  
Hysteresis  
Thermal shutdown  
Voltage falling  
Hysteresis  
2.3  
2.4  
50  
2.5  
V
VANAUVLO VANA undervoltage lockout  
mV  
LOAD CURRENT MEASUREMENT  
Current measurement  
range  
Maximum code  
LSB  
20.46  
A
Resolution  
20  
mA  
Measurement accuracy  
IOUT 1 A  
< 10%  
(4) The final PFM-to-PWM and PWM-to-PFM switchover current varies slightly and is dependant on the output voltage, input voltage and  
the magnitude of inductor's ripple current.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LP8758-E3  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
Electrical Characteristics (continued)  
Limits apply over the junction temperature range –40°C TJ +125°C, specified V(VANA), VIN , V(NRST), VOUT and IOUT range,  
unless otherwise noted. Typical values are at TJ = 25°C, ƒSW = 3 MHz, V(VANA) = VIN = 3.7 V and VOUT = 1 V, unless otherwise  
noted.(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT CONSUMPTION  
Shutdown current  
consumption  
V(NRST) = 0 V  
1
6
µA  
µA  
Standby current  
consumption, converter  
cores disabled  
V(NRST) = 1.8 V  
Active current consumption  
during PFM operation, one V(NRST) = 1.8 V, IOUT = 0 mA, not switching  
converter core enabled  
55  
µA  
Active current consumption  
during PWM operation, per V(NRST) = 1.8 V, IOUT = 0 mA, L = 0.47 µH  
converter core  
14.5  
mA  
DIGITAL INPUT SIGNALS NRST, ENx, SCL, SDA  
VIL  
VIH  
Input low level  
Input high level  
0.4  
V
V
1.2  
10  
Hysteresis of Schmitt  
trigger inputs (SCL, SDA)  
VHYS  
80  
160  
mV  
ENx pulldown resistance  
ENx_PD = 1  
350  
800  
500  
720  
kΩ  
kΩ  
NRST pulldown resistance Always present  
DIGITAL OUTPUT SIGNALS nINT, SDA  
1200  
1700  
VOL  
Output low level  
ISOURCE = 2 mA,  
0.4  
1
V
External pullup resistor for  
nINT  
RP  
To VIO supply  
10  
kΩ  
ALL DIGITAL INPUTS  
ILEAK Input current  
All logic inputs over pin voltage range  
1  
µA  
6.6 I2C Serial Bus Timing Requirements  
See table notes.(1)(2)  
MIN  
MAX  
UNIT  
kHz  
Standard mode  
Fast mode  
100  
400  
1
kHz  
ƒSCL  
tLOW  
tHIGH  
Serial clock frequency  
Fast mode +  
MHz  
MHz  
MHz  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
3.4  
1.7  
4.7  
1.3  
0.5  
160  
320  
4
Fast mode  
µs  
ns  
µs  
ns  
SCL low time  
Fast mode +  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
Fast mode  
0.6  
0.26  
60  
SCL high time  
Fast mode +  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
120  
(1) See Figure 1 for timing diagram.  
(2) Cb refers to the capacitance of one bus line. Cb is expressed in pF units.  
8
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
 
 
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
I2C Serial Bus Timing Requirements (continued)  
See table notes.(1)(2)  
MIN  
250  
100  
50  
MAX  
UNIT  
Standard mode  
Fast mode  
tSU;DAT  
tHD;DAT  
tSU;STA  
Data setup time  
Data hold time  
ns  
Fast mode +  
High-speed mode  
Standard mode  
10  
0
3.45  
0.9  
Fast mode  
0
µs  
ns  
Fast mode +  
0
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
0
70  
0
150  
4.7  
0.6  
0.26  
160  
4
Fast mode  
µs  
ns  
µs  
ns  
µs  
Setup time for a start or a  
repeated start condition  
Fast mode +  
High-speed mode  
Standard mode  
Fast mode  
0.6  
0.26  
160  
4.7  
1.3  
0.5  
4
Hold time for a start or a  
repeated start condition  
tHD;STA  
Fast mode +  
High-speed mode  
Standard mode  
Bus free time between a stop  
and start condition  
tBUF  
Fast mode  
Fast mode +  
Standard mode  
Fast mode  
0.6  
0.26  
160  
µs  
ns  
tSU;STO  
Setup time for a stop condition  
Rise time of SDA signal  
Fast mode +  
High-speed mode  
Standard mode  
1000  
300  
120  
80  
Fast mode  
trDA  
tfDA  
trCL  
trCL1  
Fast mode +  
ns  
ns  
ns  
ns  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
160  
250  
250  
120  
80  
Fast mode  
Fall time of SDA signal  
Rise time of SCL signal  
Fast mode +  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
160  
1000  
300  
120  
40  
Fast mode  
Fast mode +  
High-speed Mode, Cb = 100 pF  
High-speed Mode, Cb = 400 pF  
Standard mode  
80  
1000  
300  
120  
80  
Fast mode  
Rise time of SCL signal after a  
repeated start condition and  
after an acknowledge bit  
Fast mode +  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
160  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LP8758-E3  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
I2C Serial Bus Timing Requirements (continued)  
See table notes.(1)(2)  
MIN  
MAX  
300  
300  
120  
40  
UNIT  
Standard mode  
Fast mode  
tfCL  
Fall time of a SCL signal  
Fast mode +  
ns  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
80  
Capacitive load for each bus  
line (SCL and SDA)  
Cb  
400  
50  
pF  
ns  
Pulse width of spike  
Fast mode, fast mode +  
High-speed mode  
suppressed in SCL and SDA  
lines (spikes that are less than  
the indicated width are  
suppressed)  
tSP  
10  
6.7 Switching Characteristics  
Limits apply over the junction temperature range –40°C TJ +125°C, specified V(VANA), VIN , V(NRST), VOUT and IOUT range,  
unless otherwise noted. Typical values are at TJ = 25°C, ƒSW = 3 MHz, V(VANA) = VIN = 3.7 V and VOUT = 1 V, unless otherwise  
noted.(1)  
PARAMETER  
TEST CONDITIONS  
OUT 0.6 V  
MIN  
2.7  
TYP  
3
MAX  
3.3  
UNIT  
V
Switching frequency, PWM  
mode  
ƒSW  
MHz  
VOUT < 0.6 V  
1.8  
2
2.2  
From ENx to VOUT = 0.225 V (slew-rate  
control begins), COUT-TOTAL = 44 µF, no  
load  
Start-up time (soft start)  
140  
µs  
SLEW_RATEx[2:0] = 000, VOUT 0.5 V  
SLEW_RATEx[2:0] = 001, VOUT 0.5 V  
SLEW_RATEx[2:0] = 010, VOUT 0.5 V  
SLEW_RATEx[2:0] = 011, VOUT 0.5 V  
SLEW_RATEx[2:0] = 100, VOUT 0.5 V  
SLEW_RATEx[2:0] = 101, VOUT 0.5 V  
SLEW_RATEx[2:0] = 110, VOUT 0.5 V  
SLEW_RATEx[2:0] = 111, VOUT 0.5 V  
–15%  
–15%  
–15%  
–15%  
–15%  
–15%  
–15%  
–15%  
30  
15  
15%  
15%  
15%  
15%  
15%  
15%  
15%  
15%  
10  
7.5  
Output voltage slew-rate(2)  
mV/µs  
3.8  
1.9  
0.94  
0.40.4  
PFM mode (automatically changing to  
PWM mode for the measurement)  
50  
4
Load current measurement  
time  
µs  
PWM mode  
(1) Minimum (MIN) and maximum (MAX) limits are specified by design, test, or statistical analysis. Typical (TYP) numbers are not verified,  
but do represent the most likely normal.  
(2) Specified by design without testing. The slew-rate can be limited by the current limit (forward or negative current limit), output  
capacitance, and load current.  
10  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
 
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
tBUF  
SDA  
tHD;STA  
trCL  
tfDA  
trDA  
tSP  
tLOW  
tfCL  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHIGH  
tHD;DAT  
S
tSU;DAT  
S
START  
RS  
P
START  
REPEATED  
START  
STOP  
Figure 1. I2C Timing  
6.8 Typical Characteristics  
Unless otherwise specified: TA = 25°C, VIN = 3.7 V, ƒSW = 3 MHz, L = 470 nH.  
2
1.8  
1.6  
1.4  
1.2  
1
8
7.6  
7.2  
6.8  
6.4  
6
0.8  
0.6  
0.4  
0.2  
0
5.6  
5.2  
4.8  
4.4  
4
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
D011  
D010  
V(NRST) = 0 V  
V(NRST) = 1.8 V  
All converter cores disabled  
Figure 2. Shutdown Current Consumption vs Input Voltage  
Figure 3. Standby Current Consumption vs Input Voltage  
60  
18  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
17  
16  
15  
14  
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
D012  
D039  
V(NRST) = 1.8 V  
Load = 0 mA  
VOUT setting = 1000 mV  
V(NRST) = 1.8 V  
Load = 0 mA  
VOUT setting = 1000 mV  
Figure 4. PFM Mode Current Consumption vs Input  
Voltage —One Output Enabled  
Figure 5. PWM Mode Current Consumption vs Input  
Voltage — One Output Enable  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LP8758-E3  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The LP8758-xx devices are a family of configurable step-down DC-DC converters with four converter cores. The  
LP8758-xx devices are ideally suited for systems powered from 2.5-V to 5.5-V supply voltage. In LP8758-E3 the  
cores are configured for a four single-phase configuration. The LP8758-E3 is well suited for space-constrained  
applications where high efficiency is required at low output voltages. Typical applications include network  
interface cards, modem cards, smart phones and mobile devices, solid-state drives (SSDs), systems-on-a-chip  
(SoCs), ASICs, and low power processors.  
There are two modes of operation for the converter cores, depending on the output current required: pulse-width  
modulation (PWM) and pulse-frequency modulation (PFM). The cores operate in PWM mode at high load  
currents of approximately 600 mA or higher. Lighter output current loads cause the converter cores to  
automatically switch into PFM mode for reduced current consumption and a longer battery life when forced PWM  
mode is disabled. Additional features include soft-start, undervoltage lockout, overload protection, thermal  
warning, and thermal shutdown.  
7.1.1 Buck Information  
The LP8758-E3 has four integrated high-efficiency buck converter cores. The cores are designed for flexibility;  
most of the functions are programmable, thus giving a possibility to optimize the regulator operation for each  
application.  
7.1.1.1 Operating Modes  
OFF: Output is isolated from the input voltage rail in this mode. Output has an optional pulldown resistor.  
PWM: Converter operates in buck configuration with fixed switching frequency.  
PFM: Converter switches only when output voltage decreases below programmed threshold. Inductor current  
is discontinuous.  
7.1.1.2 Programmability  
The following parameters can be programmed through registers:  
Output voltage  
Forced PWM operation  
Switch current limit  
Output voltage slew rate  
Enable and disable delays  
7.1.1.3 Features  
Dynamic voltage scaling (DVS) support with programmable slew-rate  
Automatic mode control based on the loading  
Synchronous rectification  
Current mode loop with PI compensator  
Optional spread spectrum technique to reduce EMI  
Soft start  
Power-good flag with maskable interrupt  
Phase control for optimized EMI: The four cores operate 90° out of phase thereby reducing input ripple  
current  
Average output current sensing (for PFM entry and load current measurement)  
Voltage sensing from point of the load  
12  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
7.2 Functional Block Diagram  
VANA  
BUCK0  
ILIM Detection  
nINT  
Power-Good Detection  
Overload and SC Detection  
ILOAD ADC  
Interrupts  
EN1  
EN2  
Enable,  
Roof/Floor,  
Slew-Rate  
Control  
BUCK1  
ILIM Detection  
Power-Good Detection  
SDA  
SCL  
I2C  
Overload and SC Detection  
ILOAD ADC  
BUCK2  
Registers  
OTP EPROM  
ILIM Detection  
Power-Good Detection  
Digital  
Logic  
Overload and SC Detection  
ILOAD ADC  
UVLO  
Oscillator  
NRST  
BUCK3  
ILIM Detection  
Power-Good Detection  
Reference  
and Bias  
Thermal  
Monitor  
SW  
Reset  
Overload and SC Detection  
ILOAD ADC  
7.3 Feature Description  
7.3.1 Overview  
A block diagram of a single core is shown in Figure 6.  
Interleaving switching action of the converters is illustrated in Figure 7. The LP8758-E3 regulator switches each  
core 90° apart, reducing input ripple current.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LP8758-E3  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
Feature Description (continued)  
High-Side FET  
Current Sense  
VIN  
FB  
Positive  
Current  
Limit  
Ramp  
Generator  
VOUT  
œ
SW  
Gate  
Control  
Error  
Amp  
+
Loop  
Comparator  
+
Negative  
Current  
Limit  
Power  
good  
Voltage  
Setting Slew  
Rate Control  
VDAC  
œ
Zero  
Cross  
detect  
Low-Side FET  
Current Sense  
Programmable  
Parameters  
Master  
Interface  
Control  
Block  
GND  
Slave  
Interface  
IADC  
Figure 6. Detailed Block Diagram Showing One Core  
IL0  
IL1  
IL2  
IL3  
0
90  
180  
270  
360  
450  
540  
630  
720  
PWM0  
PWM1  
PWM2  
PWM3  
SWITCHING CYCLE 360º  
0
90  
180  
270  
360 450  
Phase (Degrees)  
540  
630  
720  
(1)  
Figure 7. PWM Timings and Inductor Current Waveforms  
(1) Graph is not in scale and is for illustrative purposes only.  
14 Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
Feature Description (continued)  
7.3.1.1 Transition between PWM and PFM Modes  
The LP8758-E3 converter cores operate in PWM mode at load current of about 600 mA or higher. At lighter load  
current levels the cores automatically switches into PFM mode for reduced current consumption when Forced  
PWM mode is disabled (AUTO mode operation). By combining the PFM and the PWM modes a high efficiency is  
achieved over a wide output-load current range.  
7.3.1.2 Buck Converter Load Current Measurement  
Buck load current can be monitored via I2C registers. The monitored buck converter core is selected with the  
SEL_I_LOAD.LOAD_CURRENT_BUCK_SELECT[1:0] register bits. A write to this selection register starts a  
current measurement sequence. The measurement sequence is typically 50 µs long. The LP8758-E3 device can  
be configured to give out an interrupt INT_TOP.I_LOAD_READY after the load current measurement sequence  
is finished. Load current measurement interrupt can be masked with TOP_MASK.I_LOAD_READY_MASK bit.  
The measurement result can be read from registers I_LOAD_1 and I_LOAD_2. Register I_LOAD_1 bits  
BUCK_LOAD_CURRENT[7:0] give out the LSB bits and register I_LOAD_2 bits BUCK_LOAD_CURRENT[9:8]  
the MSB bits. The measurement result BUCK_LOAD_CURRENT[9:0] LSB is 20 mA, and maximum value of the  
measurement is 20.46 A.  
7.3.1.3 Spread-Spectrum Mode  
Systems with periodic switching signals may generate a large amount of switching noise in a set of narrowband  
frequencies (the switching frequency and its harmonics). The usual solution to reduce noise coupling is to add  
EMI-filters and shields to the boards. The register-selectable spread-spectrum mode of the device minimizes the  
need for output filters, ferrite beads, or chokes. In spread-spectrum mode, the switching frequency varies  
randomly by ±5% about the center frequency, reducing the EMI emissions radiated by the converter and  
associated passive components and PCB traces (see Figure 8). This feature is enabled with the  
CONFIG.EN_SPREAD_SPEC bit, and it affects all the buck converter cores.  
Frequency  
Where a fixed frequency converter exhibits large amounts of spectral energy at the switching frequency, the spread  
spectrum architecture of the v spreads that energy over a large bandwidth.  
Figure 8. Spread-Spectrum Modulation  
7.3.2 Power-Up  
The power-up sequence for the LP8758-E3 is as follows:  
VANA (and VIN_Bx) reach minimum recommended levels (V(VANA) > VANAUVLO).  
NRST is set to high level. This initiates power-on-reset (POR), OTP reading and enables the system I/O  
interface. The I2C host must allow at least 1.2 ms before writing or reading data to the LP8758-E3.  
The device enters STANDBY mode.  
The host can change the default register setting by I2C if needed.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LP8758-E3  
 
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
Feature Description (continued)  
One or more of the converter cores can be enabled or disabled by one or more of the ENx pins and by the  
I2C interface.  
7.3.3 Regulator Control  
7.3.3.1 Enabling and Disabling  
The buck converter cores can be enabled when the device is in STANDBY or ACTIVE state. There are two ways  
to enable and disable the buck converter cores:  
Using BUCKx_CTRL1.EN_BUCKx register bit (when BUCKx_CTRL1.EN_PIN_CTRLx register bit is 0).  
Using EN1/2 control pins (BUCKx_CTRL1.EN_BUCKx register bit is 1 and BUCKx_CTRL1.EN_PIN_CTRLx  
register bit is 1).  
If the EN1/2 control pins are used for enable and disable, the delay from the control signal rising edge to start-up  
is set by BUCKx_DELAY.BUCKx_STARTUP_DELAY[3:0] bits and the delay from control signal falling edge to  
shutdown is set by BUCKx_DELAY.BUCKx_SHUTDOWN_DELAY[3:0] bits. The delays are valid only for EN1/2  
signal and not for control with BUCKx_CTRL1.EN_BUCKx bit. The delay time implemented by EN1/2 has overall  
±10% timing accuracy.  
The control of the converter cores (with 0 ms delays) is shown in Table 1.  
Table 1. Regulator Control  
CONTROL  
METHOD  
BUCKx_CTRL1  
EN_PIN_CTRLx  
BUCKx_CTRL1  
EN_PIN_SELECTx  
BUCKx_CTRL1  
EN_ROOF_FLOORx  
BUCKx  
OUTPUT VOLTAGE  
ROW  
EN_BUCKx  
EN1 PIN  
EN2 PIN  
Enable or  
1
2
0
1
Don't Care  
0
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Don't Care Disabled  
disable control  
with EN_BUCKx  
bit  
Don't Care BUCKx_VOUT.BUCKx_VSET[7:0]  
Enable or  
disable control  
with EN1 pin  
3
4
1
1
1
1
0
0
0
0
Low  
Don't Care Disabled  
High  
Don't Care BUCKx_VOUT.BUCKx_VSET[7:0]  
Enable or  
disable control  
with EN2 pin  
5
6
1
1
1
1
1
1
0
0
Don't Care  
Don't Care  
Low  
Disabled  
High  
BUCKx_VOUT.BUCKx_VSET[7:0]  
Roof or floor  
control with EN1  
pin  
7
1
1
0
1
Low  
Don't Care BUCKx_FLOOR_VOUT.BUCKx_F  
LOOR_VSET[7:0]  
8
9
1
1
1
1
0
1
1
1
High  
Don't Care BUCKx_VOUT.BUCKx_VSET[7:0]  
Roof or floor  
control with EN2  
pin  
Don't Care  
Low  
BUCKx_FLOOR_VOUT.BUCKx_F  
LOOR_VSET[7:0]  
10  
1
1
1
1
Don't Care  
High  
BUCKx_VOUT.BUCKx_VSET[7:0]  
The following buck configuration bit settings allows the device to enable or disable the corresponding buck using  
the ENx pin:  
BUCKx_CTRL1.EN_BUCKx = 1  
BUCKx_CTRL1.EN_PIN_CTRLx = 1  
BUCKx_CTRL1.EN_ROOF_FLOORx = 0  
BUCKx_VOUT.BUCKx_VSET[7:0] = Required voltage when the ENx pin is high  
The enable pin for control is selected with BUCKx_CTRL1.EN_PIN_SELECTx  
When the ENx pin is low, Table 1 row 3 (or 5) is valid, and the converter core is disabled. By setting ENx pin  
high, Table 1 row 4 (or 6) is valid, and the converter core is enabled with required voltage.  
If a converter core is enabled all the time, and the ENx pin controls selection between the two voltage levels,  
then the following configuration is used:  
BUCKx_CTRL1.EN_BUCKx = 1  
BUCKx_CTRL1.EN_PIN_CTRLx = 1  
BUCKx_CTRL1.EN_ROOF_FLOORx = 1  
BUCKx_VOUT.BUCKx_VSET[7:0] = Required voltage when the ENx pin is high  
The enable pin for control is selected with BUCKx_CTRL1.EN_PIN_SELECTx  
16  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
 
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
When the ENx pin is low, Table 1 row 7 (or 9) is valid, and the core is enabled with a voltage defined by  
BUCKx_FLOOR_VOUT.BUCKx_FLOOR_VSET[7:0] bits. Setting the ENx pin high, Table 1 row 8 (or 10) is valid,  
and the core is enabled with a voltage defined by BUCKx_VOUT.BUCKx_VSET[7:0] bits.  
If the core is controlled by I2C writings, the BUCKx_CTRL1.EN_PIN_CTRLx bit is set to 0. The enable or disable  
is controlled by the BUCKx_CTRL1.EN_BUCKx bit, and when the regulator is enabled, the output voltage is  
defined by the BUCKx_VOUT.BUCKx_VSET[7:0] bits. The Table 1 rows 1 and 2 are valid for I2C controlled  
operation (ENx pins are ignored).  
The buck converter core is enabled by the ENx pin or by I2C writing as shown in Figure 9. The soft-start circuit  
limits the in-rush current during start-up. Output voltage increase rate is around 5 mV/μsec during soft-start.  
When the output voltage rises to approximately 0.3 V, the output voltage becomes slew-rate controlled. If there is  
a short circuit at the output, and the output voltage does not increase above a 0.35-V level in 1 ms, the converter  
core is disabled, and interrupt is set. When the output voltage reaches the powergood threshold level the  
INT_BUCK_x.BUCKx_PG_INT interrupt flag is set. The powergood interrupt flag can be masked using  
BUCK_x_MASK.BUCKx_PG_MASK bit.  
The ENx input pins have integrated pull-down resistors. The pull-down resistors are enabled by default and host  
can disable those with CONFIG.ENx_PD bits.  
Voltage decrease because of load  
No new Power-good interrupt  
Voltage  
BUCKx_VSET[7:0]  
Power good  
Ramp  
SLEW_RATEx[2:0] bit in  
BUCKx_CTRL2 register  
0.6 V  
0.35 V  
Time  
Resistive pulldown  
(if enabled)  
Soft start  
Enable  
BUCKx_STAT bit  
(BUCK_x_STAT register)  
0
0
0
1
0
0
BUCKx_PG_STAT bit  
(BUCK_x_STAT register)  
1
1
0
1
BUCKx_PG_INT bit  
(INT_BUCK_x register)  
0
nINT  
Power-good  
interrupt  
Host clears  
interrupt  
Figure 9. Converter Core Enable and Disable  
7.3.3.2 Changing Output Voltage  
The converter core's output voltage can be changed by the ENx pin (voltage levels defined by the BUCKx_VOUT  
and BUCKx_FLOOR_VOUT registers) or by writing to the BUCKx_VOUT and BUCKx_FLOOR_VOUT registers.  
The voltage change is always slew-rate controlled, and the slew-rate is defined by the  
BUCKx_CTRL2.SLEW_RATEx[2:0] bits. During voltage change the Forced PWM mode is used automatically.  
When the programmed output voltage is achieved, the mode becomes the one defined by load current, and the  
BUCKx_CTRL1.BUCKx_FPWM bit.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LP8758-E3  
 
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
Voltage  
BUCKx_VSET  
Power-good  
Ramp  
SLEW_RATEx[2:0] bit  
in BUCKx_CTRL2 register  
Power-good  
BUCKx_FLOOR_VSET  
Time  
ENx  
BUCKx_STAT bit  
(BUCKx_STAT register)  
1
1
0
BUCKx_PG_STAT bit  
(BUCKx_STAT register)  
0
1
1
0
1
1
BUCKx_PG_INT bit  
(INT_BUCKx register)  
0
nINT  
Power-good  
interrupt  
Host clears  
interrupt  
Power-good  
interrupt  
Host clears  
interrupt  
Figure 10. Output Voltage Change  
7.3.4 Device Reset Scenarios  
There are three reset methods implemented on the LP8758-E3:  
Software reset with RESET.SW_RESET register bit;  
Reset from low logic level of NRST signal; and  
Undervoltage lockout (UVLO) reset from VANA supply.  
A SW-reset occurs when RESET.SW_RESET bit is written 1. The bit is automatically cleared after writing. This  
event disables all the buck converter cores immediately, resets all the register bits to the default values and OTP  
bits are loaded (see Figure 12). I2C interface is not reset during software reset.  
If VANA supply voltage falls below UVLO threshold level or NRST signal is set low, then all the converter cores  
are disabled immediately, and all the register bits are reset to the default values. When the VANA supply voltage  
is above UVLO threshold level and NRST signal rises above threshold level an internal power-on reset (POR)  
occurs. OTP bits are loaded to the registers, and a start-up is initiated according to the register settings.  
7.3.5 Diagnosis and Protection Features  
The LP8758-E3 is capable of providing three levels of protection features:  
Warnings for diagnosis which sets interrupt;  
Protection events which are disabling one or more converter cores; and  
Faults which are causing the device to shutdown.  
When the device detects one or more warning or protection conditions, the LP8758-E3 sets the flag bits  
indicating what protection or warning conditions have occurred, and the nINT pin is pulled low. nINT is released  
again after a clear of flags is complete. The nINT signal stays low until all the pending interrupts are cleared.  
When a fault is detected, it is indicated by a INT_TOP.RESET_REG interrupt flag after next start-up.  
18  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
LP8758-E3  
www.ti.com  
EVENT  
SNVSBP2 FEBRUARY 2020  
Table 2. Summary of Interrupt Signals  
RESULT  
No effect  
INTERRUPT REGISTER  
AND BIT  
INTERRUPT MASK  
STATUS BIT  
RECOVERY /  
INTERRUPT CLEAR  
Current limit  
triggered (20 µs  
debounce)  
INT_TOP.INT_BUCKx = 1  
INT_BUCKx.BUCKx_ILIM_I  
NT = 1  
BUCKx_MASK.BUCKx_ILI BUCKx_STAT.BUCKx_IL Write 1 to  
M_MASK  
N/A  
IM_STAT  
INT_BUCKx.BUCKx_ILI  
M_INT bit  
Interrupt is not cleared if  
current limit is active  
Short circuit (VOUT  
<
Converter core  
INT_TOP.INT_BUCKx = 1  
INT_BUCK_0_1.BUCKx_SC  
_INT = 1  
N/A  
Write 1 to  
INT_BUCK_0_1.BUCKx_  
SC_INT or  
0.35 V at 1 ms after disable  
enable) or overload  
(VOUT decreasing  
below 0.35 V during  
operation, 1 ms  
or  
to  
INT_BUCK_2_3.BUCKx_SC  
_INT = 1  
INT_BUCK_2_3.BUCKx_  
SC_INTbit  
debounce)  
Thermal Warning  
No effect  
INT_TOP.TDIE_WARN = 1 TOP_MASK.TDIE_WARN TOP_STAT.TDIE_WARN Write 1 to  
_MASK  
_STAT  
INT_TOP.TDIE_WARN  
bit  
Interrupt is not cleared if  
temperature is above  
thermal warning level  
Thermal Shutdown  
All converter cores  
disabled  
INT_TOP.TDIE_SD = 1  
N/A  
TOP_STAT.TDIE_SD_S Write 1 to  
TAT INT_TOP.TDIE_SD bit  
Interrupt is not cleared if  
temperature is above  
thermal shutdown level  
Powergood, output  
voltage reaches the  
programmed value  
No effect  
No effect  
INT_TOP.INT_BUCKx = 1  
INT_BUCK_0_1.BUCKx_PG  
_INT = 1  
BUCK_0_1_MASK.BUCKx BUCK_0_1_STAT.BUCK Write 1 to  
_PG_MASK x_PG_STAT INT_BUCK_0_1.BUCKx_  
BUCK_2_3_MASK.BUCKx BUCK_2_3_STAT.BUCK PG_INT bit  
or  
_PG_MASK  
x_PG_STAT  
or to  
INT_BUCK_2_3.BUCKx_PG  
_INT = 1  
INT_BUCK_2_3.BUCKx_  
PG_INT bit  
Load current  
measurement ready  
INT_TOP.I_LOAD_READY TOP_MASK.I_LOAD_REA  
= 1 DY_MASK  
N/A  
Write 1 to  
INT_TOP.I_LOAD_REA  
DY bit  
Start-up (NRST  
rising edge)  
Device ready for  
operation, registers  
reset to default values  
INT_TOP.RESET_REG = 1 TOP_MASK.RESET_REG  
_MASK  
N/A  
Write 1 to  
INT_TOP.RESET_REG  
bit  
Glitch on supply  
voltage and UVLO  
triggered (VANA  
falling and rising)  
Immediate shutdown  
followed by powerup,  
registers reset to  
default values  
INT_TOP.RESET_REG = 1 TOP_MASK.RESET_REG  
_MASK  
N/A  
Write 1 to  
INT_TOP.RESET_REG  
bit  
Software requested Immediate shutdown  
INT_TOP.RESET_REG = 1 TOP_MASK.RESET_REG  
_MASK  
N/A  
Write 1 to  
INT_TOP.RESET_REG  
bit  
reset  
followed by powerup,  
registers reset to  
default values  
7.3.5.1 Warnings for Diagnosis (Interrupt)  
7.3.5.1.1 Output Current Limit  
The converter cores have programmable output peak current limits. The limits are individually programmed for all  
buck converter cores with BUCKx_CTRL2.ILIMx[2:0] bits. If the load current is increased so that the current limit  
is triggered, the regulator continues to regulate to the limit current level (current peak regulation). The voltage  
may decrease if the load current is higher than limit current. If the current regulation continues for 20 µs, the  
LP8758-E3 device sets the INT_BUCKx.BUCKx_ILIM_INT bit and pulls the nINT pin low. The host processor can  
read BUCKx_STAT.BUCKx_ILIM_STAT bits to see if the converter cores is still in peak current regulation mode.  
For example, if the load on Buck0 output is so high that the output voltage VOUT decreases below a 350-mV  
level, the LP8758-E3 device disables the converter core Buck0 and sets the INT_BUCK_0_1.BUCK0_SC_INT  
bit. In addition the BUCK_0_1_STAT.BUCK0_STAT bit is set to 0. The interrupt is cleared when the host  
processor writes 1 to INT_BUCK_0_1.BUCK0_SC_INT bit. The overload situation is shown in Figure 11.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LP8758-E3  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
Regulator disabled  
by digital  
New startup if  
enable is valid  
Voltage  
VOUTx  
350 mV  
Resistive  
pulldown  
1 ms  
Time  
Current  
ILIMx  
Time  
25 ms  
BUCKx_ILIM_INT bit  
(INT_BUCKx register)  
0
0
1
1
0
BUCKx_SC_INT bit  
(INT_BUCKx register)  
1
0
0
1
BUCKx_STAT bit  
(BUCKx_STAT register)  
nINT  
Host clearing the interrupt by writing to flags  
Figure 11. Overload Situation  
7.3.5.1.2 Thermal Warning  
The LP8758-E3 device includes protection features against overtemperature by setting an interrupt for host  
processor. The threshold level of the thermal warning is selected with CONFIG.TDIE_WARN_LEVEL bit.  
If the LP8758-E3 device temperature increases above the thermal warning level, the device sets  
INT_TOP.TDIE_WARN bit and pulls nINT pin low. The status of the thermal warning can be read from  
TOP_STAT.TDIE_WARN_STAT bit, and the interrupt is cleared by writing 1 to INT_TOP.TDIE_WARN bit.  
7.3.5.2 Protection (Regulator Disable)  
If the regulator is disabled because of protection or fault (short-circuit protection, overload protection, thermal  
shutdown, or undervoltage lockout), the output power FETs are set to high-impedance mode, and the output  
pulldown resistor is enabled (if enabled with the BUCKx_CTRL1.EN_RDISx bits). The turnoff time of the output  
voltage is defined by the output capacitance, load current, and the resistance of the integrated pulldown resistor.  
7.3.5.2.1 Short-Circuit and Overload Protection  
A short-circuit protection feature allows the LP8758-E3 to protect itself and external components against short  
circuit at the output or against overload during start-up. The fault threshold is 350 mV, and the protection is  
triggered and the converter core is disabled if the output voltage is still below the threshold level 1 ms after the  
converter core was enabled.  
In a similar way the overload situation is protected during normal operation. If a feedback-pin voltage falls below  
0.35 V, and remains below the threshold level for 1 ms, the respective converter core is disabled.  
20  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
For example, if the Buck core 0 output is overloaded, then the INT_BUCK_0_1.BUCK0_SC_INT and the  
INT_TOP.INT_BUCK0 bits are set to 1, the BUCK_0_1_STAT.BUCK0_STAT bit is set to 0, and the nINT signal  
is pulled low. The host processor clears the interrupt by writing 1 to the INT_BUCK_0_1.BUCK0_SC_INT bit. The  
regulator makes a new start-up attempt (upon clearing the interrupt) if the enable register bits, ENx control signal,  
or both are valid.  
7.3.5.2.2 Thermal Shutdown  
The LP8758-E3 has an over-temperature protection function that operates to protect itself from short-term  
misuse and overload conditions. When the junction temperature exceeds around 150°C, the cores are disabled,  
the INT_TOP.TDIE_SD bit is set to 1, the nINT signal is pulled low, and the device enters STANDBY. The nINT  
is cleared by writing 1 to the INT_TOP.TDIE_SD bit. If the temperature is above the thermal shutdown level, then  
the interrupt is not cleared. The host can read the status of the thermal shutdown from the  
TOP_STAT.TDIE_SD_STAT bit. Converter cores cannot be enabled as long as the junction temperature is  
above the thermal shutdown level or the thermal shutdown interrupt is pending.  
7.3.5.3 Fault (Power Down)  
7.3.5.3.1 Undervoltage Lockout  
When the input voltage falls below VANAUVLO at the VANA pin, the converter cores are disabled immediately,  
and the output capacitors are discharged using the pulldown resistors and the LP8758-E3 device enters  
SHUTDOWN. When VANA voltage is above the UVLO threshold level and NRST signal is high, the device  
powers up to STANDBY state.  
If the reset interrupt is unmasked by default (TOP_MASK.RESET_REG_MASK = 0) the INT_TOP.RESET_REG  
interrupt indicates that the device has been in SHUTDOWN. The host processor must clear the interrupt by  
writing 1 to the INT_TOP.RESET_REG bit. If the host processor reads the INT_TOP.RESET_REG flag after  
detecting an nINT low signal, it knows that the input supply voltage has been below UVLO level (or the host has  
requested reset), and the registers are reset to default values.  
7.3.6 Digital Signal Filtering  
The digital signals have debounce filtering. The signal or supply is sampled with a clock signal and a counter.  
This results as an accuracy of one clock period for the debounce window.  
Table 3. Digital Signal Filtering  
EVENT  
SIGNAL / SUPPLY  
RISING EDGE LENGTH  
FALLING EDGE LENGTH  
Enable, disable, or voltage select for  
BUCKx  
ENx  
3 µs(1)  
3 µs(1)  
VANA undervoltage lockout  
Thermal warning  
Thermal shutdown  
Current limit  
VANA  
TDIE_WARN  
Immediate  
20 µs  
Immediate  
20 µs  
TDIE_SD  
20 µs  
20 µs  
VOUTx_ILIM  
20 µs  
20 µs  
Overload  
FB_B0, FB_B1, FB_B2, FB_F3  
FB_B0, FB_B1, FB_B2, FB_F3  
1 ms  
1 ms  
Power-good  
20 µs  
20 µs  
(1) No glitch filtering, only synchronization.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LP8758-E3  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
7.4 Device Functional Modes  
7.4.1 Modes of Operation  
SHUTDOWN: The V(NRST) voltage is below threshold level. All switch, reference, control and bias circuitry of the  
LP8758-E3 device are turned off.  
WAIT-ON: The V(NRST) voltage is above threshold level. The reference and bias circuitry are enabled. The  
converter cores of the LP8758-E3 device are turned off.  
READ OTP: The main supply voltage V(VANA) is above VANAUVLO level and V(NRST) voltage is above threshold  
level. The converter cores are disabled and the reference and bias circuitry of the LP8758-E3 are  
enabled. The OTP bits are loaded to registers.  
STANDBY: The main supply voltage V(VANA) is above VANAUVLO level and V(NRST) voltage is above threshold  
level. The converter cores are disabled and the reference, control and bias circuitry of the LP8758-  
E3 are enabled. All registers can be read or written by the host processor through the system serial  
interface. The converter cores can be enabled if needed.  
ACTIVE:  
The main supply voltage V(VANA) is above VANAUVLO level and V(NRST) voltage is above threshold  
level. At least one converter core is enabled. All registers can be read or written by the host  
processor through the system serial interface.  
The operating modes and transitions between the modes are shown in Figure 12.  
SHUTDOWN  
NRST high  
NRST low  
From any state except  
SHUTDOWN  
WAIT-ON  
V(VANA) > VANAUVLO  
V(VANA) < VANAUVLO  
READ  
OTP  
From any state except  
SHUTDOWN  
REGISTER  
RESET  
STANDBY  
I2C RESET  
REGULATOR  
ENABLED  
REGULATORS  
DISABLED  
ACTIVE  
Figure 12. Device Operation Modes  
22  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
 
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
7.5 Programming  
7.5.1 I2C-Compatible Interface  
The I2C-compatible synchronous serial interface provides access to the programmable functions and registers on  
the device. This protocol uses a two-wire interface for bidirectional communications between the devices  
connected to the bus. The two interface lines are the Serial Data Line (SDA), and the Serial Clock Line (SCL).  
Every device on the bus is assigned a unique address and acts as either a master or a slave depending on  
whether it generates or receives the serial clock SCL. The SCL and SDA lines must each have a pullup resistor  
placed somewhere on the line and remain HIGH even when the bus is idle. The LP8758-E3 supports standard  
mode (100 kHz), fast mode (400 kHz), fast mode plus (1 MHz), and high-speed mode (3.4 MHz).  
7.5.1.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, the  
state of the data line can only be changed when clock signal is LOW.  
SCL  
SDA  
data  
change  
allowed  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
valid  
Figure 13. Data Validity Diagram  
7.5.1.2 Start and Stop Conditions  
The LP8758-E3 is controlled through an I2C-compatible interface. START and STOP conditions classify the  
beginning and end of the I2C session. A START condition is defined as SDA transitions from HIGH to LOW while  
SCL is HIGH. A STOP condition is defined as SDA transition from LOW to HIGH while SCL is HIGH. The I2C  
master always generates the START and STOP conditions.  
SDA  
SCL  
S
P
START  
STOP  
Condition  
Condition  
Figure 14. Start and Stop Sequences  
The I2C bus is considered busy after a START condition and free after a STOP condition. During data  
transmission the I2C master can generate repeated START conditions. A START and a repeated START  
condition are equivalent function-wise. The data on SDA must be stable during the HIGH period of the clock  
signal (SCL). In other words, the state of SDA can only be changed when SCL is LOW. Figure 15 shows the  
SDA and SCL signal timing for the I2C-Compatible Bus. See the I2C Serial Bus Timing Requirements for timing  
values.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LP8758-E3  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
Programming (continued)  
tBUF  
SDA  
tHD;STA  
trCL  
tfDA  
trDA  
tSP  
tLOW  
tfCL  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHIGH  
tHD;DAT  
S
tSU;DAT  
S
RS  
P
START  
REPEATED  
START  
STOP  
START  
Figure 15. I2C-Compatible Timing  
7.5.1.3 Transferring Data  
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first.  
Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated  
by the master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The LP8758-E3  
pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The LP8758-E3 generates an  
acknowledge after each byte has been received.  
There is one exception to the acknowledge after every byte rule. When the master is the receiver, it must  
indicate to the transmitter an end of data by not-acknowledging (negative acknowledge) the last byte clocked out  
of the slave. This negative acknowledge still includes the acknowledge clock pulse (generated by the master),  
but the SDA line is not pulled down.  
NOTE  
If the NRST signal is low during I2C communication the LP8758-E3 device does not  
drive SDA line. The ACK signal and data transfer to the master is disabled at that  
time.  
After the START condition, the bus master sends a chip address. This address is seven bits long followed by an  
eighth bit which is a data direction bit (READ or WRITE). For the eighth bit, a 0 indicates a WRITE, and a 1  
indicates a READ. The second byte selects the register to which the data is written. The third byte contains data  
to write to the selected register.  
ACK from slave  
ACK from slave  
ACK from slave  
START MSB Chip Address LSB  
W
ACK MSB Register Address LSB ACK  
MSB Data LSB  
ACK STOP  
SCL  
SDA  
START  
id = 0x60  
W
ACK  
address = 0x40  
ACK  
address 0x40 data  
ACK STOP  
Figure 16. Write Cycle (w = write; SDA = 0), id = Device Address = 60Hex for LP8758-E3  
24  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
Programming (continued)  
ACK from slave  
ACK from slave REPEATED START  
ACK from slave Data from slave NACK from master  
START MSB Chip Address LSB  
W
MSB Register Address LSB  
RS  
MSB Chip Address LSB  
R
MSB Data LSB  
STOP  
SCL  
SDA  
START  
ACK  
ACK  
ACK  
NACK  
STOP  
id = 0x60  
W
address = 0x3F  
RS  
id = 0x60  
R
address 0x3F data  
When READ function is to be accomplished, a WRITE function must precede the READ function as shown above.  
Figure 17. Read Cycle ( r = read; SDA = 1), id = Device Address = 60Hex for LP8758-E3  
7.5.1.4 I2C-Compatible Chip Address  
The device address for the LP8758-E3 is 0x60. After the START condition, the I2C master sends the 7-bit  
address followed by an eighth bit, read or write (R/W). R/W = 0 indicates a WRITE and R/W = 1 indicates a  
READ. The second byte following the device address selects the register address to which the data will be  
written. The third byte contains the data for the selected register.  
MSB  
LSB  
1
Bit 7  
1
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
R/W  
Bit 0  
2
I C Slave Address (chip address)  
Here device address is 110 0000Bin = .  
Figure 18. Device Address  
7.5.1.5 Auto Increment Feature  
The auto-increment feature allows writing several consecutive registers within one transmission. Every time an 8-  
bit word is sent to the LP8758-E3, the internal address index counter is incremented by one and the next register  
is written. Table 4 below shows writing sequence to two consecutive registers. Note: the auto-increment feature  
does not work for read.  
Table 4. Auto-Increment Example  
Master  
Action  
Start  
Device  
Address  
= 60H  
Write  
Register  
Address  
Data  
Data  
Stop  
LP8758-  
E3  
ACK  
ACK  
ACK  
ACK  
Action  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LP8758-E3  
 
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
7.6 Register Maps  
7.6.1 Register Descriptions  
The LP8758-E3 is controlled by a set of registers through the serial interface port. The device registers, their  
addresses and their abbreviations are listed in Table 5. A more detailed description is given in sections  
OTP_REV to I_LOAD_1.  
The asterisk (*) marking indicates register bits which are updated from OTP memory during READ OTP state.  
Table 5. Summary of LP8758-E3 Control Registers  
Read /  
Write  
Addr  
0x01  
0x02  
Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OTP_REV  
R
OTP_ID[7:0]  
BUCK0_  
CTRL1  
EN_PIN_  
CTRL0  
EN_PIN_  
SELECT0  
EN_ROOF  
_FLOOR0  
BUCK0_  
FPWM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
EN_BUCK0  
EN_RDIS0  
Reserved  
Reserved  
BUCK0_  
CTRL2  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
Reserved  
ILIM0[2:0]  
SLEW_RATE0[2:0]  
BUCK1_  
CTRL1  
EN_PIN_  
CTRL1  
EN_PIN_  
SELECT1  
EN_ROOF  
_FLOOR1  
BUCK1_  
FPWM  
EN_BUCK1  
EN_BUCK2  
EN_BUCK3  
EN_RDIS1  
EN_RDIS2  
EN_RDIS3  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BUCK1_  
CTRL2  
Reserved  
ILIM1[2:0]  
SLEW_RATE1[2:0]  
BUCK2_  
CTRL1  
EN_PIN_  
CTRL2  
EN_PIN_  
SELECT2  
EN_ROOF  
_FLOOR2  
BUCK2_  
FPWM  
BUCK2_  
CTRL2  
Reserved  
ILIM2[2:0]  
SLEW_RATE2[2:0]  
BUCK3_  
CTRL1  
EN_PIN_  
CTRL3  
EN_PIN_  
SELECT3  
EN_ROOF  
_FLOOR3  
BUCK3_  
FPWM  
BUCK3_  
CTRL2  
Reserved  
ILIM3[2:0]  
SLEW_RATE3[2:0]  
BUCK0_  
VOUT  
BUCK0_VSET[7:0]  
BUCK0_  
FLOOR_  
VOUT  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
BUCK0_FLOOR_VSET[7:0]  
BUCK1_VSET[7:0]  
BUCK1_  
VOUT  
BUCK1_  
FLOOR_  
VOUT  
BUCK1_FLOOR_VSET[7:0]  
BUCK2_VSET[7:0]  
BUCK2_  
VOUT  
BUCK2_  
FLOOR_  
VOUT  
BUCK2_FLOOR_VSET[7:0]  
BUCK3_VSET[7:0]  
BUCK3_  
VOUT  
BUCK3_  
FLOOR_  
VOUT  
BUCK3_FLOOR_VSET[7:0]  
BUCK0_  
DELAY  
0x12  
0x13  
0x14  
0x15  
0x16  
R/W  
R/W  
R/W  
R/W  
R/W  
BUCK0_SHUTDOWN_DELAY[3:0]  
BUCK1_SHUTDOWN_DELAY[3:0]  
BUCK2_SHUTDOWN_DELAY[3:0]  
BUCK3_SHUTDOWN_DELAY[3:0]  
BUCK0_STARTUP_DELAY[3:0]  
BUCK1_STARTUP_DELAY[3:0]  
BUCK2_STARTUP_DELAY[3:0]  
BUCK3_STARTUP_DELAY[3:0]  
BUCK1_  
DELAY  
BUCK2_  
DELAY  
BUCK3_  
DELAY  
SW_  
RESET  
RESET  
CONFIG  
INT_TOP  
Reserved  
TDIE  
_WARN  
_LEVEL  
EN_  
SPREAD  
_SPEC  
0x17  
0x18  
R/W  
R/W  
Reserved  
EN2_PD  
EN1_PD  
INT_  
BUCK3  
INT_  
INT_  
INT_  
BUCK0  
TDIE_  
WARN  
RESET_  
REG  
I_LOAD_  
READY  
TDIE_SD  
BUCK2  
BUCK1  
26  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
 
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
Register Maps (continued)  
Table 5. Summary of LP8758-E3 Control Registers (continued)  
Read /  
Write  
Addr  
0x19  
0x1A  
Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
INT_BUCK_  
0_1  
BUCK1_  
PG_INT  
BUCK1_  
SC_INT  
BUCK1_  
ILIM_INT  
BUCK0_  
PG_INT  
BUCK0_  
SC_INT  
BUCK0_  
ILIM_INT  
R/W  
R/W  
Reserved  
Reserved  
Reserved  
Reserved  
INT_BUCK_  
2_3  
BUCK3_  
PG_INT  
BUCK3_  
SC_INT  
BUCK3_  
ILIM_INT  
BUCK2_  
PG_INT  
BUCK2_  
SC_INT  
BUCK2_  
ILIM_INT  
TDIE_  
WARN_  
STAT  
TOP_  
STAT  
TDIE_SD  
_STAT  
0x1B  
R
Reserved  
Reserved  
BUCK1_  
ILIM_  
STAT  
BUCK0_  
ILIM_  
STAT  
BUCK_0_1_  
STAT  
BUCK1_  
STAT  
BUCK1_  
PG_STAT  
BUCK0_  
STAT  
BUCK0_  
PG_STAT  
0x1C  
0x1D  
0x1E  
R
R
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BUCK_2_3_  
STAT  
BUCK3_  
STAT  
BUCK3_  
PG_STAT  
BUCK3_  
ILIM_STAT  
BUCK2_  
STAT  
BUCK2_  
PG_STAT  
BUCK2_  
ILIM_STAT  
I_LOAD_  
READY_  
MASK  
TOP_  
MASK  
TDIE_WAR  
N_MASK  
RESET_  
REG_MASK  
R/W  
BUCK1_  
ILIM_  
MASK  
BUCK0_  
ILIM_  
MASK  
BUCK_0_1_  
MASK  
BUCK1_  
PG_MASK  
BUCK0_  
PG_MASK  
0x1F  
R/W  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BUCK3_  
ILIM_  
MASK  
BUCK2_  
ILIM_  
MASK  
BUCK_2_3_  
MASK  
BUCK3_  
PG_MASK  
BUCK2_  
PG_MASK  
0x20  
0x21  
R/W  
R/W  
SEL_I_  
LOAD  
LOAD_CURRENT_  
BUCK_SELECT[1:0]  
Reserved  
Reserved  
BUCK_LOAD_CURRENT[7:0]  
BUCK_LOAD_CURRENT[  
9:8]  
0x22  
0x23  
I_LOAD_2  
I_LOAD_1  
R/W  
R/W  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LP8758-E3  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
7.6.1.1 OTP_REV  
Address: 0x01  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OTP_ID[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0  
OTP_ID[7:0]  
R
0xE3 *  
Identification code of the OTP EPROM version.  
7.6.1.2 BUCK0_CTRL1  
Address: 0x02  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_BUCK0  
EN_PIN_  
CTRL0  
EN_PIN_  
SELECT0  
EN_ROOF_  
FLOOR0  
EN_RDIS0  
Reserved  
BUCK0_FPWM  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7
6
5
4
3
EN_BUCK0  
EN_PIN_CTRL0  
EN_PIN_SELECT0  
R/W  
1 *  
Enable BUCK0 converter core:  
0 - BUCK0 converter core is disabled.  
1 - BUCK0 converter core is enabled.  
R/W  
R/W  
R/W  
R/W  
1 *  
0 *  
0
Enable EN1/2 pin control for BUCK0:  
0 - only EN_BUCK0 bit controls BUCK0.  
1 - EN_BUCK0 bit AND EN1/2 pin control BUCK0.  
Select which ENx pin controls BUCK0 if EN_PIN_CTRL0 = 1:  
0 - EN1 pin.  
1 - EN2 pin.  
EN_ROOF_  
FLOOR0  
Enable Roof/Floor control of EN1/2 pin if EN_PIN_CTRL0 = 1:  
0 - Enable/Disable (1/0) control.  
1 - Roof/Floor (1/0) control.  
EN_RDIS0  
1
Enable output discharge resistor when BUCK0 is disabled:  
0 - Discharge resistor disabled.  
1 - Discharge resistor enabled.  
2
1
Reserved  
R/W  
R/W  
0
BUCK0_FPWM  
1 *  
Forces the BUCK0 converter core to operate in PWM mode:  
0 - Automatic transitions between PFM and PWM modes (AUTO mode).  
1 - Forced to PWM operation.  
0
Reserved  
R/W  
0
7.6.1.3 BUCK0_CTRL2  
Address: 0x03  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
ILIM0[2:0]  
SLEW_RATE0[2:0]  
Bits  
7:6  
Field  
Type  
R/W  
R/W  
Default  
00  
Description  
Reserved  
ILIM0[2:0]  
5:3  
0x6 *  
Sets the switch current limit of BUCK0. Can be programmed at any time during  
operation:  
0x2 - 2.5 A  
0x3 - 3.0 A  
0x4 - 3.5 A  
0x5 - 4.0 A  
0x6 - 4.5 A  
0x7 - 5.0 A  
28  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
LP8758-E3  
www.ti.com  
Bits  
SNVSBP2 FEBRUARY 2020  
Field  
Type  
Default  
Description  
2:0 SLEW_RATE0[2:0]  
R/W  
0x2 *  
Sets the output voltage slew rate for BUCK0 converter core (rising and falling edges):  
0x0 - 30 mV/µs  
0x1 - 15 mV/µs  
0x2 - 10 mV/µs  
0x3 - 7.5 mV/µs  
0x4 - 3.8 mV/µs  
0x5 - 1.9 mV/µs  
0x6 - 0.94 mV/µs  
0x7 - 0.4 mV/µs  
7.6.1.4 BUCK1_CTRL1  
Address: 0x04  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_BUCK1  
EN_PIN_  
CTRL1  
EN_PIN_  
SELECT1  
EN_ROOF_  
FLOOR1  
EN_RDIS1  
Reserved  
BUCK1_FPWM  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7
6
5
4
3
EN_BUCK1  
EN_PIN_CTRL1  
EN_PIN_SELECT1  
R/W  
1 *  
Enable BUCK1 converter core:  
0 - BUCK1 converter core is disabled.  
1 - BUCK1 converter core is enabled.  
R/W  
R/W  
R/W  
R/W  
1 *  
0 *  
0
Enable EN1/2 pin control for BUCK1:  
0 - only EN_BUCK1 bit controls BUCK1.  
1 - EN_BUCK1 bit AND EN1/2 pin control BUCK1.  
Select which ENx pin controls BUCK1 if EN_PIN_CTRL1 = 1:  
0 - EN1 pin  
1 - EN2 pin.  
EN_ROOF_  
FLOOR1  
Enable Roof/Floor control of EN1/2 pin if EN_PIN_CTRL1 = 1:  
0 - Enable/Disable (1/0) control.  
1 - Roof/Floor (1/0) control.  
EN_RDIS1  
1
Enable output discharge resistor when BUCK1 is disabled:  
0 - Discharge resistor is disabled.  
1 - Discharge resistor is enabled.  
2
1
Reserved  
R/W  
R/W  
0
BUCK1_FPWM  
1 *  
Forces the BUCK1 converter core to operate in PWM mode:  
0 - Automatic transitions between PFM and PWM modes (AUTO mode).  
1 - Forced to PWM operation.  
0
Reserved  
R/W  
0
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LP8758-E3  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
7.6.1.5 BUCK1_CTRL2  
Address: 0x05  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
ILIM1[2:0]  
SLEW_RATE1[2:0]  
Bits  
7:6  
Field  
Type  
R/W  
R/W  
Default  
00  
Description  
Reserved  
ILIM1[2:0]  
5:3  
0x3 *  
Sets the switch current limit of BUCK1. Can be programmed at any time during  
operation:  
0x2 - 2.5 A  
0x3 - 3.0 A  
0x4 - 3.5 A  
0x5 - 4.0 A  
0x6 - 4.5 A  
0x7 - 5.0 A  
2:0 SLEW_RATE1[2:0]  
R/W  
0x2 *  
Sets the output voltage slew rate for BUCK1 converter core (rising and falling edges):  
0x0 - 30 mV/µs  
0x1 - 15 mV/µs  
0x2 - 10 mV/µs  
0x3 - 7.5 mV/µs  
0x4 - 3.8 mV/µs  
0x5 - 1.9 mV/µs  
0x6 - 0.94 mV/µs  
0x7 - 0.4 mV/µs  
7.6.1.6 BUCK2_CTRL1  
Address: 0x06  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_BUCK2  
EN_PIN_  
CTRL2  
EN_PIN_  
SELECT2  
EN_ROOF_  
FLOOR2  
EN_RDIS2  
Reserved  
BUCK2_FPWM  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7
6
5
4
3
EN_BUCK2  
EN_PIN_CTRL2  
EN_PIN_SELECT2  
R/W  
1 *  
Enable BUCK2 converter core:  
0 - BUCK2 converter core is disabled.  
1 - BUCK2 converter core is enabled.  
R/W  
R/W  
R/W  
R/W  
1 *  
0 *  
0
Enable EN1/2 pin control for BUCK2:  
0 - only EN_BUCK2 bit controls BUCK2.  
1 - EN_BUCK2 bit AND EN1/2 pin control BUCK2.  
Select which ENx pin controls BUCK2 if EN_PIN_CTRL2 = 1:  
0 - EN1 pin  
1 - EN2 pin.  
EN_ROOF_  
FLOOR2  
Enable Roof/Floor control of EN1/2 pin if EN_PIN_CTRL2 = 1:  
0 - Enable/Disable (1/0) control.  
1 - Roof/Floor (1/0) control.  
EN_RDIS2  
1
Enable output discharge resistor when BUCK2 is disabled:  
0 - Discharge resistor is disabled.  
1 - Discharge resistor is enabled.  
2
1
Reserved  
R/W  
R/W  
0
BUCK2_FPWM  
1 *  
Forces the BUCK2 converter core to operate in PWM mode:  
0 - Automatic transitions between PFM and PWM modes (AUTO mode).  
1 - Forced to PWM operation.  
0
Reserved  
R/W  
0
30  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
7.6.1.7 BUCK2_CTRL2  
Address: 0x07  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
SLEW_RATE2[2:0]  
D0  
Reserved  
ILIM2[2:0]  
Bits  
7:6  
Field  
Type  
R/W  
R/W  
Default  
00  
Description  
Reserved  
ILIM2[2:0]  
5:3  
0x3 *  
Sets the switch current limit of BUCK2. Can be programmed at any time during  
operation:  
0x2 - 2.5 A  
0x3 - 3.0 A  
0x4 - 3.5 A  
0x5 - 4.0 A  
0x6 - 4.5 A  
0x7 - 5.0 A  
2:0 SLEW_RATE2[2:0]  
R/W  
0x2 *  
Sets the output voltage slew rate for BUCK2 converter core (rising and falling edges):  
0x0 - 30 mV/µs  
0x1 - 15 mV/µs  
0x2 - 10 mV/µs  
0x3 - 7.5 mV/µs  
0x4 - 3.8 mV/µs  
0x5 - 1.9 mV/µs  
0x6 - 0.94 mV/µs  
0x7 - 0.4 mV/µs  
7.6.1.8 BUCK3_CTRL1  
Address: 0x08  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_BUCK3  
EN_PIN_  
CTRL3  
EN_PIN_  
SELECT3  
EN_ROOF_  
FLOOR3  
EN_RDIS3  
Reserved  
BUCK3_FPWM  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7
6
5
4
3
EN_BUCK3  
EN_PIN_CTRL3  
EN_PIN_SELECT3  
R/W  
1 *  
Enable BUCK3 converter core:  
0 - BUCK3 converter core is disabled.  
1 - BUCK3 converter core is enabled.  
R/W  
R/W  
R/W  
R/W  
1 *  
0 *  
0
Enable EN1/2 pin control for BUCK3:  
0 - only EN_BUCK3 bit controls BUCK3  
1 - EN_BUCK3 bit AND EN1/2 pin control BUCK3.  
Select which ENx pin controls BUCK3 if EN_PIN_CTRL3 = 1:  
0 - EN1 pin  
1 - EN2 pin.  
EN_ROOF_  
FLOOR3  
Enable Roof/Floor control of EN1/2 pin if EN_PIN_CTRL3 = 1:  
0 - Enable/Disable (1/0) control  
1 - Roof/Floor (1/0) control.  
EN_RDIS3  
1
Enable output discharge resistor when BUCK3 is disabled:  
0 - Discharge resistor is disabled.  
1 - Discharge resistor is enabled.  
2
1
Reserved  
R/W  
R/W  
0
BUCK3_FPWM  
1 *  
Forces the BUCK3 converter core to operate in PWM mode:  
0 - Automatic transitions between PFM and PWM modes (AUTO mode).  
1 - Forced to PWM operation.  
0
Reserved  
R/W  
0
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LP8758-E3  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
7.6.1.9 BUCK3_CTRL2  
Address: 0x09  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
ILIM3[2:0]  
SLEW_RATE3[2:0]  
Bits  
7:6  
Field  
Type  
R/W  
R/W  
Default  
00  
Description  
Reserved  
ILIM3[2:0]  
5:3  
0x5 *  
Sets the switch current limit of BUCK3. Can be programmed at any time during  
operation:  
0x2 - 2.5 A  
0x3 - 3.0 A  
0x4 - 3.5 A  
0x5 - 4.0 A  
0x6 - 4.5 A  
0x7 - 5.0 A  
2:0 SLEW_RATE3[2:0]  
R/W  
0x2 *  
Sets the output voltage slew rate for BUCK3 converter core (rising and falling edges):  
0x0 - 30 mV/µs  
0x1 - 15 mV/µs  
0x2 - 10 mV/µs  
0x3 - 7.5 mV/µs  
0x4 - 3.8 mV/µs  
0x5 - 1.9 mV/µs  
0x6 - 0.94 mV/µs  
0x7 - 0.4 mV/µs  
7.6.1.10 BUCK0_VOUT  
Address: 0x0A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK0_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK0_VSET[7:0]  
R/W  
0x39 *  
Sets the output voltage of BUCK0 converter core (Default 900 mV)  
0.5 V - 0.73 V, 10 mV steps  
0x00 - 0.5 V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
32  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
7.6.1.11 BUCK0_FLOOR_VOUT  
Address: 0x0B  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK0_FLOOR_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK0_FLOOR_VSET[  
7:0]  
R/W  
0x00  
Sets the output voltage of BUCK0 converter core when Floor state is used:  
0.5 V - 0.73 V, 10 mV steps  
0x00 - 0.5 V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
7.6.1.12 BUCK1_VOUT  
Address: 0x0C  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_VSET[7:0]  
Bits  
Field  
BUCK1_VSET[7:0]  
Type  
R/W  
Default  
0x75 *  
Description  
7:0  
Sets the output voltage of BUCK1 converter core (Default 1200 mV):  
0.5 V - 0.73 V, 10 mV steps  
0x00 - 0.5 V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
7.6.1.13 BUCK1_FLOOR_VOUT  
Address: 0x0D  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_FLOOR_VSET[7:0]  
Bits  
Field  
Type  
R/W  
Default  
0x00  
Description  
7:0 BUCK1_FLOOR_VSET[7:0]  
Sets the output voltage of BUCK1 converter core when the Floor state is  
used:  
0.5 V - 0.73 V, 10 mV steps  
0x00 - 0.5V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LP8758-E3  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
7.6.1.14 BUCK2_VOUT  
Address: 0x0E  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK2_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK2_VSET[7:0]  
R/W  
0xB1 *  
Sets the output voltage of BUCK2 converter core (Default 1800 mV):  
0.5 V - 0.73 V, 10 mV steps  
0x00 - 0.5V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
7.6.1.15 BUCK2_FLOOR_VOUT  
Address: 0x0F  
D7  
D6  
D5  
D4  
BUCK2_FLOOR  
_VSET[7:0]  
D3  
D2  
D1  
D0  
Bits  
Field  
Type  
Default  
Description  
7:0  
BUCK2_FLOOR  
_VSET[7:0]  
R/W  
0x00  
Sets the output voltage of BUCK2 converter core when the Floor state is used:  
0.5 V - 0.73 V, 10 mV steps  
0x00 - 0.5 V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
7.6.1.16 BUCK3_VOUT  
Address: 0x10  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK3_VSET[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0 BUCK3_VSET[7:0]  
R/W  
0xDE *  
Sets the output voltage of BUCK3 converter core (Default 2700 mV)  
0.5 V - 0.73 V, 10 mV steps  
0x00 - 0.5 V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
34  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
7.6.1.17 BUCK3_FLOOR_VOUT  
Address: 0x11  
D7  
D6  
D5  
D4  
BUCK3_FLOOR  
_VSET[7:0]  
D3  
D2  
D1  
D0  
Bits  
Field  
Type  
Default  
Description  
7:0  
BUCK3_FLOOR  
_VSET[7:0]  
R/W  
0x00  
Sets the output voltage of BUCK3 converter core when Floor state is used:  
0.5 V - 0.73 V, 10 mV steps  
0x00 - 0.5 V  
...  
0x17 - 0.73 V  
0.73 V - 1.4 V, 5 mV steps  
0x18 - 0.735 V  
...  
0x9D - 1.4 V  
1.4 V - 3.36 V, 20 mV steps  
0x9E - 1.42 V  
...  
0xFF - 3.36 V  
7.6.1.18 BUCK0_DELAY  
Address: 0x12  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK0_SHUTDOWN_DELAY[3:0]  
BUCK0_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK0_  
SHUTDOWN_  
DELAY[3:0]  
R/W  
0x0 *  
Shutdown delay of BUCK0 from falling edge of the ENx signal:  
0x0 - 0 ms  
0x1 - 1 ms  
...  
0xF - 15 ms  
3:0  
BUCK0_  
STARTUP_  
DELAY[3:0]  
R/W  
0x2 *  
Startup delay of BUCK0 from rising edge of the ENx signal:  
0x0 - 0 ms  
0x1 - 1 ms  
...  
0xF - 15 ms  
7.6.1.19 BUCK1_DELAY  
Address: 0x13  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_SHUTDOWN_DELAY[3:0]  
BUCK1_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK1_  
SHUTDOWN_  
DELAY[3:0]  
R/W  
0x0 *  
Shutdown delay of BUCK1 from falling edge of the ENx signal:  
0x0 - 0 ms  
0x1 - 1 ms  
...  
0xF - 15 ms  
3:0  
BUCK1_  
STARTUP_  
DELAY[3:0]  
R/W  
0x3 *  
Startup delay of BUCK1 from rising edge of the ENx signal:  
0x0 - 0 ms  
0x1 - 1 ms  
...  
0xF - 15 ms  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: LP8758-E3  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
7.6.1.20 BUCK2_DELAY  
Address: 0x14  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK2_SHUTDOWN_DELAY[3:0]  
BUCK2_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK2_  
SHUTDOWN_  
DELAY[3:0]  
R/W  
0x0 *  
Shutdown delay of BUCK2 from falling edge of the ENx signal:  
0x0 - 0 ms  
0x1 - 1 ms  
...  
0xF - 15 ms  
3:0  
BUCK2_  
STARTUP_  
DELAY[3:0]  
R/W  
0x3 *  
Start-up delay of BUCK2 from rising edge of the ENx signal:  
0x0 - 0 ms  
0x1 - 1 ms  
...  
0xF - 15 ms  
7.6.1.21 BUCK3_DELAY  
Address: 0x15  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK3_SHUTDOWN_DELAY[3:0]  
BUCK3_STARTUP_DELAY[3:0]  
Bits  
Field  
Type  
Default  
Description  
7:4  
BUCK3_  
SHUTDOWN_  
DELAY[3:0]  
R/W  
0x0 *  
Shutdown delay of BUCK3 from falling edge of the ENx signal:  
0x0 - 0 ms  
0x1 - 1 ms  
...  
0xF - 15 ms  
3:0  
BUCK3_  
STARTUP_  
DELAY[3:0]  
R/W  
0x4 *  
Start-up delay of BUCK3 from rising edge of the ENx signal:  
0x0 - 0 ms  
0x1 - 1 ms  
...  
0xF - 15 ms  
7.6.1.22 RESET  
Address: 0x16  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
SW_RESET  
Bits  
7:1  
0
Field  
Type  
R/W  
R/W  
Default  
0000 000  
0
Description  
Reserved  
SW_RESET  
Software commanded reset. When written to 1, the registers are reset to default  
values, OTP memory is read, and the I2C interface is reset.  
The bit is automatically cleared.  
36  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
7.6.1.23 CONFIG  
Address: 0x17  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
EN1_PD  
D0  
Reserved  
TDIE_WARN_  
LEVEL  
EN2_PD  
EN_SPREAD  
_SPEC  
Bits  
Field  
Type  
R/W  
R/W  
Default  
0000  
0
Description  
7:4  
3
Reserved  
TDIE_WARN_LEVEL  
Thermal warning threshold level.  
0 - 125°C  
1 - 105°C  
2
1
0
EN2_PD  
R/W  
R/W  
R/W  
1
1
0
Selects the pulldown resistor on the EN2 input pin.  
0 - Pulldown resistor is disabled.  
1 - Pulldown resistor is enabled.  
EN1_PD  
Selects the pull down resistor on the EN1 input pin.  
0 - Pulldown resistor is disabled.  
1 - Pulldown resistor is enabled.  
EN_SPREAD_SPEC  
Enable spread-spectrum feature:  
0 - Disabled  
1 - Enabled  
7.6.1.24 INT_TOP  
Address: 0x18  
D7  
D6  
INT_BUCK2  
D5  
D4  
D3  
D2  
D1  
D0  
INT_BUCK3  
INT_BUCK1  
INT_BUCK0  
TDIE_SD  
TDIE_WARN  
RESET_REG  
I_LOAD_  
READY  
Bits  
Field  
Type  
Default  
Description  
7
6
5
4
3
INT_BUCK3  
INT_BUCK2  
INT_BUCK1  
INT_BUCK0  
TDIE_SD  
R
0
Interrupt indicating that output BUCK3 has a pending interrupt. The reason for the  
interrupt is indicated in INT_BUCK3 register.  
This bit is cleared automatically when INT_BUCK3 register is cleared to 0x00.  
R
R
0
0
0
0
Interrupt indicating that output BUCK2 has a pending interrupt. The reason for the  
interrupt is indicated in INT_BUCK2 register.  
This bit is cleared automatically when INT_BUCK2 register is cleared to 0x00.  
Interrupt indicating that output BUCK1 has a pending interrupt. The reason for the  
interrupt is indicated in INT_BUCK1 register.  
This bit is cleared automatically when INT_BUCK1 register is cleared to 0x00.  
R
Interrupt indicating that output BUCK0 has a pending interrupt. The reason for the  
interrupt is indicated in INT_BUCK0 register.  
This bit is cleared automatically when INT_BUCK0 register is cleared to 0x00.  
R/W  
Latched status bit indicating that the die junction temperature has exceeded the  
thermal shutdown level. The converter cores have been disabled if they were enabled.  
The converter cores cannot be enabled if this bit is active. The actual status of the  
thermal warning is indicated by the TOP_STAT.TDIE_SD_STAT bit.  
Write 1 to clear interrupt.  
2
1
TDIE_WARN  
RESET_REG  
R/W  
R/W  
0
0
Latched status bit indicating that the die junction temperature has exceeded the  
thermal warning level. The actual status of the thermal warning is indicated by  
TOP_STAT.TDIE_WARN_STAT bit.  
Write 1 to clear interrupt.  
Latched status bit indicating that either startup (NRST rising edge) has done, VANA  
supply voltage has been below undervoltage threshold level or the host has requested  
a reset (RESET.SW_RESET). The converter cores have been disabled, and registers  
are reset to default values and the normal startup procedure is done.  
Write 1 to clear interrupt.  
0
I_LOAD_READY  
R/W  
0
Latched status bit indicating that the load current measurement result is available in  
I_LOAD_1 and I_LOAD_2 registers.  
Write 1 to clear interrupt.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: LP8758-E3  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
7.6.1.25 INT_BUCK_0_1  
Address: 0x19  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK1_PG  
_INT  
BUCK1_SC  
_INT  
BUCK1_ILIM  
_INT  
Reserved  
BUCK0_PG  
_INT  
BUCK0_SC  
_INT  
BUCK0_ILIM  
_INT  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
0
0
BUCK1_PG_INT  
Latched status bit indicating that BUCK1 output voltage has reached power-good  
threshold level.  
Write 1 to clear.  
5
4
BUCK1_SC_INT  
BUCK1_ILIM_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the BUCK1 output voltage has fallen below 0.35-V  
level during operation or BUCK1 output didn't reach 0.35-V level in 1 ms from enable.  
Write 1 to clear.  
Latched status bit indicating that output current limit has been active.  
Write 1 to clear.  
3
2
Reserved  
R/W  
R/W  
0
0
BUCK0_PG_INT  
Latched status bit indicating that BUCK0 output voltage has reached powergood  
threshold level.  
Write 1 to clear.  
1
0
BUCK0_SC_INT  
BUCK0_ILIM_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the BUCK0 output voltage has fallen below 0.35-V  
level during operation or BUCK0 output didn't reach 0.35-V level in 1 ms from enable.  
Write 1 to clear.  
Latched status bit indicating that output current limit has been active.  
Write 1 to clear.  
7.6.1.26 INT_BUCK_2_3  
Address: 0x1A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK3_PG  
_INT  
BUCK3_SC  
_INT  
BUCK3_ILIM  
_INT  
Reserved  
BUCK2_PG  
_INT  
BUCK2_SC  
_INT  
BUCK2_ILIM  
_INT  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
0
0
BUCK3_PG_INT  
Latched status bit indicating that BUCK3 output voltage has reached power-good  
threshold level.  
Write 1 to clear.  
5
4
BUCK3_SC_INT  
BUCK3_ILIM_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the BUCK3 output voltage has fallen below 0.35-V  
level during operation or BUCK3 output didn't reach 0.35-V level in 1 ms from enable.  
Write 1 to clear.  
Latched status bit indicating that output current limit has been active.  
Write 1 to clear.  
3
2
Reserved  
R/W  
R/W  
0
0
BUCK2_PG_INT  
Latched status bit indicating that BUCK2 output voltage has reached powergood  
threshold level.  
Write 1 to clear.  
1
0
BUCK2_SC_INT  
BUCK2_ILIM_INT  
R/W  
R/W  
0
0
Latched status bit indicating that the BUCK2 output voltage has fallen below 0.35 V  
level during operation or BUCK2 output didn't reach 0.35-V level in 1 ms from enable.  
Write 1 to clear.  
Latched status bit indicating that output current limit has been active.  
Write 1 to clear.  
38  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
7.6.1.27 TOP_STAT  
Address: 0x1B  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
TDIE_SD  
_STAT  
TDIE_WARN  
_STAT  
Reserved  
Bits  
7:4  
3
Field  
Type  
R
Default  
0000  
0
Description  
Reserved  
TDIE_SD_STAT  
R
Status bit indicating the status of thermal shutdown:  
0 - Die temperature below the thermal shutdown level.  
1 - Die temperature above the thermal shutdown level.  
2
TDIE_WARN  
_STAT  
R
R
0
Status bit indicating the status of thermal warning:  
0 - Die temperature below the thermal warning level.  
1 - Die temperature above the thermal warning level.  
1:0  
Reserved  
00  
7.6.1.28 BUCK_0_1_STAT  
Address: 0x1C  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK1_STAT  
BUCK1_PG  
_STAT  
Reserved  
BUCK1_ILIM  
_STAT  
BUCK0_STAT  
BUCK0_PG  
_STAT  
Reserved  
BUCK0_ILIM  
_STAT  
Bits  
Field  
Type  
Default  
Description  
7
BUCK1_STAT  
BUCK1_PG_STAT  
Reserved  
R
0
Status bit indicating the enable or disable status of BUCK1:  
0 - BUCK1 converter core is disabled.  
1 - BUCK1 converter core is enabled.  
6
R
0
Status bit indicating BUCK1 output voltage validity (raw status):  
0 - BUCK1 output is above power-good threshold level  
1 - BUCK1 output is below power-good threshold level.  
5
4
R
R
0
0
BUCK1_ILIM  
_STAT  
Status bit indicating BUCK1 current limit status (raw status):  
0 - BUCK1 output current is below current limit level.  
1 - BUCK1 output current limit is active.  
3
2
BUCK0_STAT  
BUCK0_PG_STAT  
Reserved  
R
R
0
0
Status bit indicating the enable or disable status of BUCK0:  
0 - BUCK0 converter core is disabled.  
1 - BUCK0 converter core is enabled.  
Status bit indicating BUCK0 output voltage validity (raw status):  
0 - BUCK0 output is above the power-good threshold level.  
1 - BUCK0 output is below the power-good threshold level.  
1
0
R
R
0
0
BUCK0_ILIM  
_STAT  
Status bit indicating BUCK0 current limit status (raw status):  
0 - BUCK0 output current is below the current limit level.  
1 - BUCK0 output current limit is active.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: LP8758-E3  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
7.6.1.29 BUCK_2_3_STAT  
Address: 0x1D  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK3_STAT  
BUCK3_PG  
_STAT  
Reserved  
BUCK3_ILIM  
_STAT  
BUCK2_STAT  
BUCK2_PG  
_STAT  
Reserved  
BUCK2_ILIM  
_STAT  
Bits  
Field  
Type  
Default  
Description  
7
BUCK3_STAT  
BUCK3_PG_STAT  
Reserved  
R
0
Status bit indicating the enable or disable status of BUCK3:  
0 - BUCK3 converter core is disabled.  
1 - BUCK3 converter core is enabled.  
6
R
0
Status bit indicating BUCK3 output voltage validity (raw status):  
0 - BUCK3 output is above power-good threshold level.  
1 - BUCK3 output is below power-good threshold level.  
5
4
R
R
0
0
BUCK3_ILIM  
_STAT  
Status bit indicating BUCK3 current limit status (raw status):  
0 - BUCK3 output current is below current limit level.  
1 - BUCK3 output current limit is active.  
3
2
BUCK2_STAT  
BUCK2_PG_STAT  
Reserved  
R
R
0
0
Status bit indicating the enable or disable status of BUCK2:  
0 - BUCK2 converter core is disabled.  
1 - BUCK2 converter core is enabled.  
Status bit indicating BUCK2 output voltage validity (raw status):  
0 - BUCK2 output is above power-good threshold level.  
1 - BUCK2 output is below power-good threshold level.  
1
0
R
R
0
0
BUCK2_ILIM  
_STAT  
Status bit indicating BUCK2 current limit status (raw status):  
0 - BUCK2 output current is below current limit level.  
1 - BUCK2 output current limit is active.  
7.6.1.30 TOP_MASK  
Address: 0x1E  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
TDIE_WARN  
_MASK  
RESET_REG  
_MASK  
I_LOAD_  
READY_MASK  
Bits  
7:3  
2
Field  
Type  
R/W  
R/W  
Default  
0000 0  
0 *  
Description  
Reserved  
TDIE_WARN  
_MASK  
Masking for thermal warning interrupt INT_TOP.TDIE_WARN:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
This bit does not affect TOP_STAT.TDIE_WARN_STAT status bit.  
1
0
RESET_REG  
_MASK  
R/W  
R/W  
1 *  
0 *  
Masking for register reset interrupt INT_TOP.RESET_REG:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
I_LOAD_  
READY_MASK  
Masking for load current measurement ready interrupt INT_TOP.I_LOAD_READY:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
40  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
7.6.1.31 BUCK_0_1_MASK  
Address: 0x1F  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Reserved  
D0  
Reserved  
BUCK1_PG  
_MASK  
Reserved  
BUCK1_ILIM  
_MASK  
Reserved  
BUCK0_PG  
_MASK  
BUCK0_ILIM  
_MASK  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
0
BUCK1_PG_MASK  
1 *  
Masking for BUCK1 power-good interrupt INT_BUCK_0_1.BUCK1_PG_INT:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
This bit does not affect the BUCK_0_1_STAT.BUCK1_PG_STAT status bit.  
5
4
Reserved  
R
0
BUCK1_ILIM  
_MASK  
R/W  
0 *  
Masking for BUCK1 current limit detection interrupt INT_BUCK_0_1.BUCK1_ILIM_INT:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
This bit does not affect the BUCK_0_1_STAT.BUCK1_ILIM_STAT status bit.  
3
2
Reserved  
R/W  
R/W  
0
BUCK0_PG_MASK  
1 *  
Masking for BUCK0 power-good interrupt INT_BUCK_0_1.BUCK0_PG_INT:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
This bit does not affect the BUCK_0_1_STAT.BUCK1_PG_STAT status bit.  
1
0
Reserved  
R
0
BUCK0_ILIM  
_MASK  
R/W  
0 *  
Masking for BUCK0 current limit detection interrupt INT_BUCK_0_1.BUCK0_ILIM_INT:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
This bit does not affect the BUCK_0_1_STAT.BUCK1_ILIM_STAT status bit.  
7.6.1.32 BUCK_2_3_MASK  
Address: 0x20  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK3_PG  
_MASK  
Reserved  
BUCK3_ILIM  
_MASK  
Reserved  
BUCK2_PG  
_MASK  
Reserved  
BUCK2_ILIM  
_MASK  
Bits  
Field  
Type  
R/W  
R/W  
Default  
Description  
7
6
Reserved  
0
BUCK3_PG_MASK  
1 *  
Masking for BUCK3 power-good interrupt INT_BUCK_2_3.BUCK3_PG_INT:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
This bit does not affect the BUCK_2_3_STAT.BUCK3_PG_STAT status bit.  
5
4
Reserved  
R
0
BUCK3_ILIM  
_MASK  
R/W  
0 *  
Masking for BUCK3 current limit detection interrupt INT_BUCK_2_3.BUCK3_ILIM_INT:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
This bit does not affect the BUCK_2_3_STAT.BUCK3_ILIM_STAT status bit.  
3
2
Reserved  
R/W  
R/W  
0
BUCK2_PG_MASK  
1 *  
Masking for BUCK2 power-good interrupt INT_BUCK_2_3.BUCK2_PG_INT:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
This bit does not affect the BUCK_2_3_STAT.BUCK1_PG_STAT status bit.  
1
0
Reserved  
R
0
BUCK2_ILIM  
_MASK  
R/W  
0 *  
Masking for BUCK2 current limit detection interrupt INT_BUCK_2_3.BUCK2_ILIM_INT:  
0 - Interrupt is generated.  
1 - Interrupt is not generated.  
This bit does not affect the BUCK_2_3_STAT.BUCK1_ILIM_STAT status bit.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: LP8758-E3  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
7.6.1.33 SEL_I_LOAD  
Address: 0x21  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
LOAD_CURRENT_BUCK  
_SELECT[1:0]  
Bits  
Field  
Type  
R/W  
R/W  
Default  
00 0000  
0x0  
Description  
7:2  
Reserved  
1:0 LOAD_CURRENT_  
BUCK_SELECT  
[1:0]  
Start the current measurement on the selected converter core:  
0x0 - BUCK0  
0x1 - BUCK1  
0x2 - BUCK2  
0x3 - BUCK3  
The measurement is started when this register is written.  
7.6.1.34 I_LOAD_2  
Address: 0x22  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK_LOAD_CURRENT[9:8]  
Bits  
7:2  
Field  
Type  
R
Default  
00 0000  
0x0  
Description  
Reserved  
1:0  
BUCK_LOAD_  
CURRENT[9:8]  
R
This register describes 2 MSB bits of the average load current on the selected  
converter core with a resolution of 20 mA per LSB and a maximum 20 A current.  
7.6.1.35 I_LOAD_1  
Address: 0x23  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK_LOAD_CURRENT[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0  
BUCK_LOAD_  
CURRENT[7:0]  
R
0x0  
This register describes 8 LSB bits of the average load current on selected converter  
core with a resolution of 20 mA per LSB and maximum 20-A current.  
42  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LP8758-E3 is designed for applications powered from a 2.5-V to 5.5-V input supply that require multiple  
power rails. The device provides four step-down converters. All the step-down converters support dynamic  
voltage scaling through I2C interface to provide optimum power savings. The power sequencing of the four output  
voltage rails is programmable.  
8.2 Typical Application  
L0  
VIN  
SW_B0  
Load  
Load  
VIN_B0  
VIN_B1  
VIN_B2  
VIN_B3  
CIN5  
CIN4  
470 nH  
COUT0  
22 µF  
CPOL0  
22 µF  
CIN0  
CIN1  
CIN2  
CIN3  
10 µF  
10 µF  
10 µF  
10 µF  
22 µF  
22 µF  
FB_B0  
L1  
SW_B1  
470 nH  
COUT1  
22 µF  
CPOL1  
22 µF  
FB_B1  
L2  
SW_B2  
Load  
Load  
470 nH  
COUT2  
22 µF  
CPOL2  
22 µF  
VIO  
VANA  
AGND  
CVANA  
100 nF  
FB_B2  
SDA  
SCL  
nINT  
NRST  
EN1  
EN2  
L3  
SW_B3  
470 nH  
COUT3  
22 µF  
CPOL3  
22 µF  
Host  
Processor  
FB_B3  
Figure 19. LP8758-E3 Typical Application Circuit  
Table 6. Design Parameters  
8.2.1 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
Input voltage  
Output voltages  
3.3 V  
1000 mV, 1200 mV, 1800 mV, and 2500 mV  
Auto mode (PWM-PFM)  
Converter operation mode  
Maximum load currents  
Inductor current limits  
1.5 A, 2.25 A, 3 A, and 3 A  
2.5 A, 3.5 A, 4.5 A, and 4.5 A  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: LP8758-E3  
 
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
8.2.2 Detailed Design Procedure  
The performance of the LP8758-E3 device depends greatly on the care taken in designing the printed circuit  
board (PCB). The use of low-inductance and low serial-resistance ceramic capacitors is strongly recommended,  
while proper grounding is crucial. Attention must be given to decoupling the power supplies. Decoupling  
capacitors must be connected close to the device and between the power and ground pins to support high peak  
currents being drawn from system power rail during turnon of the switching MOSFETs. Keep input and output  
traces as short as possible, because trace inductance, resistance, and capacitance can easily become the  
performance limiting items. The separate power pins VIN_Bx are not connected together internally. The VIN_Bx  
power connections must be connected together outside the package using power plane construction.  
8.2.2.1 Application Components  
8.2.2.1.1 Inductor Selection  
DC bias current characteristics of inductors must be considered. Different manufacturers follow different  
saturation current rating specifications, so attention must be given to details. DC bias curves should be requested  
from manufacturers as part of the inductor selection process. Minimum effective value of inductance to ensure  
good performance is 0.33 μH at maximum load current over the operating temperature range of the inductor. The  
DC resistance of the inductor must be less than 0.05 for good efficiency at high-current condition. The inductor  
AC loss (resistance) also affects conversion efficiency. Higher Q factor at switching frequency usually gives  
better efficiency at light load to middle load. See Table 7. Shielded inductors are preferred as they radiate less  
noise.  
Table 7. Recommended Inductors  
MANUFACTURER  
MURATA  
TDK  
PART NUMBER  
DFE201610E-R47M=P2  
VLS252010HBX-R47M  
TFM2016GHM-0R47M  
DFE322512C R47  
VALUE (µH)  
0.47  
DIMENSIONS L × W × H (mm)  
2 × 1.6 × 1  
DCR (m)  
26 (typical), 32 (maximum)  
29 (typical), 35 (maximum)  
46 (maximum)  
0.47  
2.5 × 2 × 1  
TDK  
0.47  
2 × 1.6 × 1  
TOKO  
0.47  
3.2 × 2.5 × 1.2  
21 (typical), 31 (maximum)  
8.2.2.1.2 Input Capacitor Selection  
A ceramic input capacitor of 10 μF, 6.3 V is sufficient for most applications. Place the power input capacitor as  
close as possible to the VIN_Bx pin and PGND_Bx pin of the device. A larger value or higher voltage rating may  
be used to improve input voltage filtering. Use X7R or X5R types; do not use Y5V or F. DC bias characteristics of  
ceramic capacitors must be considered when selecting case sizes like 0402. Minimum effective input  
capacitance to ensure good performance is 1.9 μF per buck input at maximum input voltage DC bias including  
tolerances and over ambient temp range, assuming that there are at least 22 μF of additional capacitance  
common for all the power input pins on the system power rail. See Table 8.  
The input filter capacitor supplies current to the high-side FET switch in the first half of each cycle and reduces  
voltage ripple imposed on the input power source. A ceramic capacitor's low equivalent series resistance (ESR)  
provides the best noise filtering of the input voltage spikes due to this rapidly changing current. Select an input  
filter capacitor with sufficient ripple current rating.  
The VANA input is used to supply analog and digital circuits in the device. See recommended components from  
Table 9 for VANA input supply filtering.  
Table 8. Recommended Power Input Capacitors (X5R Dielectric)  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
DIMENSIONS L × W × H (mm) VOLTAGE RATING (V)  
Murata  
GRM188R60J106ME47 10 µF (20%)  
0603  
1.6 × 0.8 × 0.8  
6.3  
Table 9. Recommended VANA Supply Filtering Components  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
DIMENSIONS L × W × H (mm)  
VOLTAGE RATING  
(V)  
Samsung  
Murata  
CL03A104KP3NNNC 100 nF (10%)  
0201  
0201  
0.6 × 0.3 × 0.3  
0.6 × 0.3 × 0.3  
10  
GRM033R61A104KE8 100 nF (10%)  
4
6.3  
44  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
 
 
 
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
8.2.2.1.3 Output Capacitor Selection  
Use ceramic capacitors, X7R or X5R types; do not use Y5V or F. DC bias voltage characteristics of ceramic  
capacitors must be considered. DC bias characteristics vary from manufacturer to manufacturer, and DC bias  
curves should be requested from them as part of the capacitor selection process. The output filter capacitor  
smooths out current flow from the inductor to the load, helps maintain a steady output voltage during transient  
load changes and reduces output voltage ripple. These capacitors must be selected with sufficient capacitance  
and sufficiently low ESR and ESL to perform these functions. The minimum effective output capacitance to  
ensure good performance is 10 μF per output voltage rail at the output voltage DC bias, including tolerances and  
over ambient temperature range.  
The output voltage ripple is caused by the charging and discharging of the output capacitor and also due to its  
RESR. The RESR is frequency dependent (as well as temperature dependent); make sure the value used for  
selection process is at the switching frequency of the part. See Table 10.  
A higher output capacitance improves the load step behavior and reduces the output voltage ripple as well as  
decreases the PFM switching frequency. For most applications one 22-μF 0603 capacitor for COUT per voltage  
rail is suitable. A point-of-load (POL) capacitance CPOL can be added as shown in Figure 19. Although the loop  
compensation of the converter can be programmed to adapt to virtually several hundreds of microfarads COUT, it  
is preferable for COUT to be < 50 µF . Choosing higher than that is not necessarily of any benefit. Note: the output  
capacitor may be the limiting factor in the output voltage ramp, especially for very large (> 100 µF) output  
capacitors. For large output capacitors, the output voltage might be slower than the programmed ramp rate at  
voltage transitions, because of the higher energy stored on the output capacitance. Also at start-up, the time  
required to charge the output capacitor to target value might be longer. At shutdown, if the output capacitor is  
discharged by the internal discharge resistor, more time is required to settle VOUT down as a consequence of the  
increased time constant.  
Table 10. Recommended Output Capacitors (X5R Dielectric)  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
DIMENSIONS L × W × H  
(mm)  
VOLTAGE RATING (V)  
Samsung  
Murata  
CL10A226MP8NUNE  
22 µF (20%)  
22 µF (20%)  
0603  
0603  
1.6 × 0.8 × 0.8  
1.6 × 0.8 × 0.8  
10  
GRM188R60J226MEA0  
6.3  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: LP8758-E3  
 
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
8.2.3 Application Curves  
Measurements are done using typical application set up with connections shown in Figure 19. Graphs may not  
reflect the OTP default settings. Unless otherwise specified: VIN = 3.7 V, V(NRST) = 1.8 V, TA = 25 °C, ƒSW = 3  
MHz, L = 470 nH (TDK VLS252010HBX-R47M), ILIM FWD set to maximum 5 A.  
100  
95  
90  
85  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000 mV  
1200 mV  
1800 mV  
2500 mV  
PFM Operation  
1000 mV  
1200 mV  
1800 mV  
2500 mV  
PWM Operation  
1
10  
100  
Load Current (mA)  
1000  
5000  
2500  
3000  
3500  
4000  
Input Voltage (mV)  
4500  
5000  
5500  
D014  
D002  
VIN = 3.7 V  
Load = 100 mA  
VOUT settings = 1000 mV, 1200 mV, 1800 mV, and 2500 mV  
VOUT settings = 1000 mV, 1200 mV, 1800 mV, and 2500 mV  
Figure 20. Efficiency vs Load Current  
Figure 21. Efficiency vs Input Voltage in PFM Mode  
100  
100  
1000 mV  
1200 mV  
1800 mV  
1000 mV  
1200 mV  
1800 mV  
2500 mV  
95  
90  
85  
80  
75  
70  
2500 mV  
95  
90  
85  
80  
2500  
3000  
3500  
4000  
Input Voltage (mV)  
4500  
5000  
5500  
2500  
3000  
3500  
4000  
Input Voltage (mV)  
4500  
5000  
5500  
D041  
D016  
Load = 1A  
Load = 3A  
VOUT settings = 1000 mV, 1200 mV, 1800 mV, and 2500 mV  
VOUT settings = 1000 mV, 1200 mV, 1800 mV, and 2500 mV  
Figure 22. Efficiency vs Input Voltage in PWM Mode  
Figure 23. Efficiency vs Input Voltage in PWM Mode  
46  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
0
1015  
1010  
1005  
1000  
995  
1000 mV  
1200 mV  
1800 mV  
2500 mV  
-0.025  
-0.05  
-0.075  
-0.1  
PFM Operation  
-0.125  
-0.15  
-0.175  
-0.2  
PWM Operation  
-0.225  
-0.25  
0
500 1000 1500 2000 2500 3000 3500 4000  
Output Current (mA)  
1
10  
100  
Output Current (mA)  
1000  
5000  
D005  
D047  
Change in Output Voltage from Zero Load (%)  
VOUT setting = 1000 mV  
VOUT settings = 1000 mV, 1200 mV, 1800 mV, and 2500 mV  
Figure 24. DC Load Regulation in PWM mode  
Figure 25. Output Voltage vs Load Current in  
PWM-PFM Mode  
2515  
0.06  
0.04  
0.02  
0
1000mV  
1200mV  
1800mV  
2500mV  
PFM Operation  
2510  
2505  
2500  
-0.02  
-0.04  
-0.06  
PWM Operation  
2495  
2490  
1
10  
100  
Output Current (mA)  
1000  
5000  
2500  
3000  
3500  
4000  
Input Voltage (mV)  
4500  
5000  
5500  
D046  
D044  
VOUT setting = 2500 mV  
Change in Output Voltage from VIN = 3.7 V (%)  
Load = 1 A  
VOUT settings = 1000 mV, 1200 mV, 1800 mV, and 2500 mV  
Figure 26. Output Voltage vs Load Current in  
PWM-PFM Mode  
Figure 27. DC Line Regulation in PWM Mode  
1010  
1005  
1000  
995  
V(SW_Bx) (5 V/div)  
V(EN1) (1 V/div)  
PWM Mode  
PFM Mode  
VOUT (200 mV/div)  
-50  
-25  
0
25  
50  
75  
100  
125  
Time (40 ms/div)  
Temperature (èC)  
D048  
Load = 0 A  
VOUT setting = 1000 mV  
Load = 1 A (PWM Mode) and 100 mA (PFM Mode)  
Figure 29. Start-up with EN1  
Figure 28. Output Voltage vs Temperature  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: LP8758-E3  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
V(SW_Bx) (5 V/div)  
V(SW_Bx) (5 V/div)  
V(EN1) (1 V/div)  
V(EN1) (1 V/div)  
ILOAD (500 mA/div)  
ILOAD (500 mA/div)  
VOUT (200 mV/div)  
VOUT (50 mV/div)  
Time (40 ms/div)  
Time (200 ms/div)  
Load = 1 A  
Figure 30. Start-up with EN1  
Figure 31. Start-up With Short on Output  
VOUT0 (1 V/div)  
VOUT1 (1 V/div)  
V(SW_Bx) (5 V/div)  
VOUT (200 mV/div)  
VOUT2 (1 V/div)  
VOUT3 (1 V/div)  
V(EN1) (1 V/div)  
Time (10 ms/div)  
Time (4 ms/div)  
Load = 0 A  
Load = 0 A  
Enable and disable delays = default  
VOUT settings = default  
Figure 33. Shutdown with EN1  
Figure 32. VOUT0,1,2,3: Start-up and Shutdown with Default  
Register Settings, triggered by EN1.  
VOUT (10 mV/div)  
VOUT (10 mV/div)  
V(SW_B0) (2 V/div)  
V(SW_B0) (2 V/div)  
Time (200 ns/div)  
Time (40 ms/div)  
Load = 200 mA  
Load = 10 mA  
Figure 35. Output Voltage Ripple, Forced PWM Mode  
Figure 34. Output Voltage Ripple, PFM Mode  
48  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
V(SW_Bx) (2 V/div)  
V(SW_Bx) (2 V/div)  
VOUT (10 mV/div)  
VOUT (10 mV/div)  
Time (4 ms/div)  
Time (4 ms/div)  
Figure 36. Transient from PFM-to-PWM Mode  
Figure 37. Transient from PWM-to-PFM Mode  
VIN (500 mV/div)  
VOUT (20 mV/div)  
ILOAD (1 A/div)  
VOUT (10 mV/div)  
Time (40 ms/div)  
Time (40 ms/div)  
Load = 4 A  
VOUT = 1000 mV  
Load = 0 A 2 A 0 A  
TR = TF = 400 ns  
VOUT = 1 V  
VIN stepping 3.3 V 3.8 V, TR = TF = 10 µs  
Figure 38. Transient Line Response  
Figure 39. Transient Load Step Response, AUTO Mode  
VOUT (50 mV/div)  
VOUT (20 mV/div)  
ILOAD (1 A/div)  
ILOAD (1 A/div)  
Time (40 ms/div)  
Time (40 ms/div)  
Load = 1A 4 A 1A  
TR = TF = 1 µs  
VOUT = 1 V  
Load = 0 A 2 A 0 A  
TR = TF = 400 ns  
VOUT = 1 V  
Figure 41. Transient Load Step Response,  
Forced PWM Mode  
Figure 40. Transient Load Step Response,  
Forced PWM Mode  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: LP8758-E3  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
VOUT (200 mV/div)  
VOUT (200 mV/div)  
Time (400 µs/div)  
Time (400 µs/div)  
Figure 42. VOUT Transition From 0.6 V to 1.4 V With  
Different Slew Rate Settings  
Figure 43. VOUT Transition From 1.4 V to 0.6 V With  
Different Slew Rate Settings  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.5 V and 5.5 V. This input supply  
must be well-regulated and able to withstand maximum input current and maintain stable voltage without voltage  
drop even at load transition condition. The resistance of the input supply rail must be low enough that the input  
current transient does not cause too high drop in the LP8758-E3 supply voltage that can cause false UVLO fault  
triggering. If the input supply is located more than a few inches from the LP8758-E3 additional bulk capacitance  
may be required in addition to the ceramic bypass capacitors.  
50  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
10 Layout  
10.1 Layout Guidelines  
The high frequency and large switching currents of the LP8758-E3 make the choice of layout important. Good  
power supply results only occur when care is given to proper design and layout. Layout affects noise pickup and  
generation and can cause a good design to perform with less-than-expected results. With a range of output  
currents from milliamps to 4 A per converter core, good power supply layout is much more difficult than most  
general PCB design. The following steps should be used as a reference to ensure the device is stable and  
maintains proper voltage and current regulation across its intended operating voltage and current range.  
1. Place CIN as close as possible to the VIN_Bx pin and the PGND_Bxx pin. Route the VIN trace wide and thick  
to avoid IR drops. The trace between the positive node of the input capacitor and the LP8758-E3 VIN_Bx  
pin(s), as well as the trace between the input capacitor's negative node and power PGND_Bxx pin(s), must  
be kept as short as possible. The input capacitance provides a low-impedance voltage source for the  
switching converter. The inductance of the connection is the most important parameter of a local decoupling  
capacitor — parasitic inductance on these traces must be kept as tiny as possible for proper device  
operation.  
2. The output filter, consisting of Lx and COUTx, converts the switching signal at SW_Bx to the noiseless output  
voltage. It must be placed as close as possible to the device keeping the switch node small, for best EMI  
behavior. Route the traces between the output capacitors of the device and the load (or input capacitors of  
the load) direct and wide to avoid losses due to the IR drop.  
3. Input for analog blocks (VANA and AGND) must be isolated from noisy signals. Connect VANA directly to a  
quiet system voltage node and AGND to a quiet ground point where no IR drop occurs. Place the decoupling  
capacitor as close to the VANA pin as possible. VANA must be connected to the same power node as  
VIN_Bx pins.  
4. If the load supports remote voltage sensing, connect the feedback pins FB_Bx of the device to the respective  
sense pins on the load. The sense lines are susceptible to noise. They must be kept away from noisy signals  
such as PGND_Bxx, VIN_Bx, and SW_Bx, as well as high bandwidth signals such as the I2C. Avoid both  
capacitive as well as inductive coupling by keeping the sense lines short and direct. Run the lines in a quiet  
layer. Isolate them from noisy signals by a voltage or ground plane if possible.  
5. PGND_Bxx, VIN_Bx and SW_Bx must be routed on thick layers. They must not surround inner signal layers  
which are not able to withstand interference from noisy PGND_Bxx, VIN_Bx and SW_Bx.  
Due to the small package of this converter and the overall small solution size, the thermal performance of the  
PCB layout is important. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and  
convection surfaces, and the presence of other heat-generating components affect the power dissipation limits of  
a given component. Proper PCB layout, focusing on thermal performance, results in lower die temperatures.  
Wide power traces come with the ability to sink dissipated heat. This can be improved further on multi-layer PCB  
designs with vias to different planes. This results in reduced junction-to-ambient (RθJA) and junction-to-board  
(RθJB) thermal resistances and thereby reduces the device junction temperature, TJ. Performing a careful system-  
level 2D or full 3D dynamic thermal analysis at the beginning product design process is strongly recommended,  
using a thermal modeling analysis software.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: LP8758-E3  
LP8758-E3  
SNVSBP2 FEBRUARY 2020  
www.ti.com  
10.2 Layout Example  
Via to GND plane  
Via to VIN plane  
VOUT2  
VOUT3  
L2  
COUT2  
COUT3  
L3  
VIN  
GND  
CIN2  
CIN3  
VIN  
_B2  
SW  
_B2  
PGND  
_B23  
SW  
_B3  
VIN  
_B3  
CIN5  
VIN  
VIN  
VIN  
_B2  
SW  
_B2  
PGND  
_B23  
SW  
_B3  
VIN  
_B3  
FB  
_B2  
PGND  
_B23  
FB  
_B3  
VIN  
GND  
SCL  
SDA  
EN1  
VANA  
AGND  
SGND  
GND  
NRST  
EN2  
nINT  
FB  
_B0  
PGND  
_B01  
FB  
_B1  
VIN  
_B0  
SW  
_B0  
PGND  
_B01  
SW  
_B1  
VIN  
_B1  
CVANA  
VIN  
_B0  
SW  
_B0  
PGND  
_B01  
SW  
_B1  
VIN  
_B1  
VIN  
CIN0  
VIN  
Pin A1  
CIN4  
CIN1  
GND  
VIN  
L0  
COUT0  
COUT1  
L1  
VOUT0  
VOUT1  
Figure 44. LP8758-E3 Board Layout  
52  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: LP8758-E3  
LP8758-E3  
www.ti.com  
SNVSBP2 FEBRUARY 2020  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, DSBGA Wafer Level Chip Scale Package application report  
Texas instruments, Using the LP8758EVM Evaluation Module user's guide  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.4 Community Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: LP8758-E3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP8758A2E3YFFR  
ACTIVE  
DSBGA  
YFF  
35  
3000 RoHS & Green  
SAC396  
Level-1-260C-UNLIM  
-40 to 85  
LP8758A2E3  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
D: Max = 2.91 mm, Min = 2.85 mm  
E: Max = 2.16 mm, Min = 2.1 mm  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

LP8758A2EAYFFR

四路、单相、4A 输出直流/直流降压转换器 | YFF | 35 | -40 to 105
TI

LP876242-Q1

四个适用于 AWR 和 IWR MMIC 的汽车级 8.8MHz 降压转换器
TI

LP876242B0RQKRQ1

四个适用于 AWR 和 IWR MMIC 的汽车级 8.8MHz 降压转换器 | RQK | 32 | -40 to 125
TI

LP8764-Q1

4 个适用于汽车 SoC 的 5A/20A 多相降压转换器 PMIC
TI

LP876411B4RQKRQ1

4 个适用于汽车 SoC 的 5A/20A 多相降压转换器 PMIC | RQK | 32 | -40 to 125
TI

LP876411B5RQKRQ1

4 个适用于汽车 SoC 的 5A/20A 多相降压转换器 PMIC | RQK | 32 | -40 to 125
TI

LP876441B1RQKRQ1

4 个适用于汽车 SoC 的 5A/20A 多相降压转换器 PMIC | RQK | 32 | -40 to 125
TI

LP8765-E

High Performance Power Management Unit for Handset Applications
TI

LP87702

LP87702 Dual Buck Converter and 5-V Boost With Diagnostic Functions
TI

LP87702-Q1

具有诊断功能的双路降压转换器和 5V 升压转换器
TI

LP877020RHBRQ1

具有诊断功能的双路降压转换器和 5V 升压转换器 | RHB | 32 | -40 to 125
TI

LP87702DRHBRQ1

具有诊断功能的双路降压转换器和 5V 升压转换器 | RHB | 32 | -40 to 125
TI