LP5024RSMR [TI]

24 通道 I2C 恒流 RGB LED 驱动器 | RSM | 32 | -40 to 85;
LP5024RSMR
型号: LP5024RSMR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

24 通道 I2C 恒流 RGB LED 驱动器 | RSM | 32 | -40 to 85

驱动 驱动器
文件: 总54页 (文件大小:2011K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
LP50xx 18/24 通道 12 PWM 超低静态电流 I2C RGB LED 驱动器  
1 特性  
2 应用  
用于以下设备的 LED 照明、指示灯和闪烁光:  
1
工作电压范围:  
智能扬声器(带语音助理)  
智能家用电器  
可视门铃  
VCC 范围:2.7V 5.5V  
1.8V3.3V 5V 电源轨兼容的 ENSDA 和  
SCL 引脚  
电子智能锁  
最大输出电压:6V  
烟雾和热量探测器  
STB DVR  
智能路由器  
24 路高精度恒定电流阱  
在整个 VCC 范围内,每个通道的最大电流为  
25.5mA  
手持设备  
VCC 3.3V 时,每个通道的最大电流为  
35mA  
3 说明  
器件间的误差为 ±7%;通道间的误差为 ±7%  
在智能家居以及配备人机交互功能的其他 应用中, 高  
性能 RGB LED 驱动器必不可少。LED 动画效果(如  
闪烁、呼吸以及追逐)可极大地改善用户体验,同时最  
大限度地降低系统噪声也至关重要。  
超低静态电流:  
关断模式:1µA(最大值),EN 处于低电平  
省电模式:10µA(典型),EN 处于高电平,  
所有 LED 关断时间大于 30ms  
LP50xx 器件是一款 18 24 通道恒定电流阱 LED 驱  
动器。LP50xx 器件包含集成色彩混合和亮度控制,预  
配置特性简化了软件编码过程。为每个通道配备的集成  
12 位、29kHz PWM 发生器可实现流畅、清晰的  
LED 色彩,并消除了可闻噪声。  
每个通道具有一个集成式 12 29kHz PWM 发生  
器:  
每个通道具有一个独立的色彩混合寄存器  
每个 RGB LED 模块具有一个独立的亮度控制  
寄存器  
可选的对数或线性标度亮度控制  
器件信息(1)  
集成式三相 PWM 相移方案  
器件型号  
LP5018  
LP5024  
封装  
封装尺寸(标称值)  
3 个可编程组(RGB),可轻松对每种颜色进  
行软件控制  
VQFN (32)  
4.00mm × 4.00mm  
2 个外部硬件地址引脚允许连接多达 4 个器件  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
广播从地址允许同时配置多个器件  
自动递增允许在一次传输期间写入或读取多个连续  
的寄存器  
简化原理图  
高达 400kHz 的快速模式 I2C 速度  
VCC  
CVCC  
VMCU  
VLED  
VCC  
OUT0  
EN  
OUT1  
OUT2  
SDA  
SCL  
ADDR0  
ADDR1  
MCU  
LP5024  
OUT21  
VCAP  
IREF  
CVCAP  
RIREF  
OUT22  
OUT23  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEB8  
 
 
 
 
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 17  
8.5 Programming .......................................................... 18  
8.6 Register Maps ........................................................ 22  
Application and Implementation ........................ 38  
9.1 Application Information............................................ 38  
9.2 Typical Application ................................................. 38  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Timing Requirements................................................ 8  
7.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 11  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagram ....................................... 11  
8.3 Feature Description................................................. 11  
9
10 Power Supply Recommendations ..................... 41  
11 Layout................................................................... 41  
11.1 Layout Guidelines ................................................. 41  
11.2 Layout Examples................................................... 42  
12 器件和文档支持 ..................................................... 44  
12.1 相关链接................................................................ 44  
12.2 接收文档更新通知 ................................................. 44  
12.3 社区资源................................................................ 44  
12.4 ....................................................................... 44  
12.5 静电放电警告......................................................... 44  
12.6 术语表 ................................................................... 44  
13 机械、封装和可订购信息....................................... 45  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (October 2018) to Revision B  
Page  
Added % after 100 in Parameter for IERR_DD and IERR_CC under OUTPUT STAGE................................................................. 7  
已更改 value of "KIREF = 100" to "KIREF = 105"...................................................................................................................... 16  
Changes from Original (October 2018) to Revision A  
Page  
首次发布生产数据数据表 ........................................................................................................................................................ 1  
2
版权 © 2018, Texas Instruments Incorporated  
 
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
5 说明 (续)  
LP50xx 12 PWM 分辨率和 29kHz 开关频率控制每个 LED 输出,这有助于实现平滑的调光效果和消除可闻噪  
声。独立的色彩混合和亮度控制寄存器使软件编码变得非常简单。在以淡入淡出类型的呼吸效果为目标时,全局  
RGB 组控制可显著减轻微控制器负载。LP50xx 还可以实现 PWM 相移功能,以帮助在多个 LED 同时打开时  
降低输入功率预算。  
LP50xx 可实现自动节能模式,以实现超低静态电流。当所有通道都关断 30ms 时,该器件的总功耗会降至 10µA,  
这使得 LP50xx 器件成为电池供电终端设备的潜在选择。  
Copyright © 2018, Texas Instruments Incorporated  
3
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
6 Pin Configuration and Functions  
LP5018 RSM Package  
32-Pin VQFN With Exposed Thermal Pad  
Top View  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
1
2
3
4
5
6
7
8
24  
NC  
23  
22  
21  
20  
19  
18  
17  
NC  
NC  
NC  
Exposed Thermal Pad (GND)  
NC  
NC  
OUT17  
OUT16  
Not to scale  
LP5024 RSM Package  
32-Pin VQFN With Exposed Thermal Pad  
Top View  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
1
2
3
4
5
6
7
8
24  
OUT23  
OUT22  
OUT21  
OUT20  
OUT19  
OUT18  
OUT17  
OUT16  
23  
22  
21  
20  
19  
18  
17  
Exposed Thermal Pad  
(GND)  
Not to scale  
4
Copyright © 2018, Texas Instruments Incorporated  
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
LP5018  
25  
LP5024  
25  
ADDR0  
ADDR1  
EN  
I
I2C slave-address selection pin. This pin must not be left floating.  
I2C slave-address selection pin. This pin must not be left floating.  
Chip enable input pin  
26  
26  
30  
30  
IREF  
31  
31  
Output current-reference global-setting pin  
19, 20, 21,  
22, 23, 24  
NC  
No internal connection  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
OUT11  
OUT12  
OUT13  
OUT14  
OUT15  
OUT16  
OUT17  
OUT18  
OUT19  
OUT20  
OUT21  
OUT22  
OUT23  
SCL  
1
2
1
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
Current sink output 0. If not used, this pin can be left floating.  
Current sink output 1. If not used, this pin can be left floating.  
Current sink output 2. If not used, this pin can be left floating.  
Current sink output 3. If not used, this pin can be left floating.  
Current sink output 4. If not used, this pin can be left floating.  
Current sink output 5. If not used, this pin can be left floating.  
Current sink output 6. If not used, this pin can be left floating.  
Current sink output 7. If not used, this pin can be left floating.  
Current sink output 8. If not used, this pin can be left floating.  
Current sink output 9. If not used, this pin can be left floating.  
Current sink output 10. If not used, this pin can be left floating.  
Current sink output 11. If not used, this pin can be left floating.  
Current sink output 12. If not used, this pin can be left floating.  
Current sink output 13. If not used, this pin can be left floating.  
Current sink output 14. If not used, this pin can be left floating.  
Current sink output 15. If not used, this pin can be left floating.  
Current sink output 16. If not used, this pin can be left floating.  
Current sink output 17. If not used, this pin can be left floating.  
Current sink output 18. If not used, this pin can be left floating.  
Current sink output 19. If not used, this pin can be left floating.  
Current sink output 20. If not used, this pin can be left floating.  
Current sink output 21. If not used, this pin can be left floating.  
Current sink output 22. If not used, this pin can be left floating.  
Current sink output 23. If not used, this pin can be left floating.  
I2C bus clock line. If not used, this pin must be connected to GND or VCC.  
I2C bus data line. If not used, this pin must be connected to GND or VCC.  
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
29  
28  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
29  
28  
SDA  
I/O  
Internal LDO output pin, this pin must be connected to a 1-µF capacitor to  
GND. Place the capacitor as close to the device as possible.  
VCAP  
32  
32  
27  
VCC  
GND  
27  
I
Input power.  
GND  
Exposed thermal pad also serves the ground pin for the device.  
Copyright © 2018, Texas Instruments Incorporated  
5
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
Voltage on EN, IREF, OUTx, SCL, SDA, VCC  
Voltage on ADDRx  
6
VCC+0.3  
2
V
V
V
Voltage on VCAP  
Continuous power dissipation  
Junction temperature, TJ-MAX  
Storage temperature, Tstg  
Internally limited  
–40  
–65  
125  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1500  
V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±500 V  
may actually have higher performance.  
7.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
2.7  
0
MAX  
5.5  
5.5  
5.5  
85  
UNIT  
V
Input voltage on VCC  
Voltage on OUTx  
V
Voltage on ADDRx, EN, SDA, SCL  
Operating ambient temperature, TA  
0
V
–40  
°C  
7.4 Thermal Information  
LP5018 or LP5024  
THERMAL METRIC(1)  
RSM (QFN)  
32 PINS  
36.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
34.8  
15.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.9  
ψJB  
16  
RθJC(bot)  
6.3  
(1) For more information about traditional and new thermal metrics, see Semiconductor and ICPackage Thermal Metrics .  
6
Copyright © 2018, Texas Instruments Incorporated  
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
7.5 Electrical Characteristics  
over operating ambient temperature range (–40°C < TA<85°C) (unless otherwise noted)  
PARAMETER  
POWER SUPPLIES (VCC)  
VVCC Supply voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
2.7  
5.5  
1
V
Shutdown supply current  
Standby supply current  
VEN = 0 V  
0.2  
6
µA  
mA  
VEN = 3.3 V, Chip_EN = 0 (bit)  
10  
8
Normal-mode supply current  
With 10-mA LED current per OUTx  
5
IVCC  
VEN = 3.3 V, Chip_EN = 1 (bit),  
Power_Save_EN = 1 (bit), all the  
LEDs off duration > tPSM  
Power-save mode supply current  
6
10  
µA  
VUVR  
Undervoltage restart  
VVCC rising  
VVCC falling  
2.5  
V
V
V
VUVF  
Undervoltage shutdown  
2
VUV_HYS  
Undervoltage shutdown hysteresis  
0.2  
OUTPUT STAGE (OUTx)  
Maximum sink current  
VVCC in full range,  
(OUT0–OUTx) (For LP5024, x = 23. Max_Current_Option = 0 (bit), PWM  
25.5  
35  
For LP5018, x = 17.)  
= 100%  
IMAX  
mA  
Maximum sink current  
(OUT0–OUTx) (For LP5024, x = 23.  
For LP5018, x = 17.)  
V
VCC 3.3 V, Max_Current_Option  
= 1 (bit), PWM = 100%  
Internal sink current limit  
VVCC in full range,  
(OUT0–OUTx) (For LP5024, x = 23. Max_Current_Option = 0 (bit), VIREF  
35  
40  
55  
75  
80  
For LP5018, x = 17.)  
= 0 V  
ILIM  
mA  
µA  
Internal sink current limit  
VVCC 3.3V,  
(OUT0–OUTx) (For LP5024, x = 23. Max_Current_Option=1 (bit), VIREF  
=
120  
1
For LP5018, x = 17.)  
0 V  
Leakage current (OUT0–OUTx) (For  
LP5024, x = 23. For LP5018, x =  
17.)  
Ilkg  
PWM = 0%  
0.1  
All channels' current set to 10 mA.  
PWM = 100%. Already includes the  
VIREF and KIREF tolerance  
Device to device current error,  
IERR_DD=(IAVE-ISET)/ISET×100%  
IERR_DD  
–7%  
–7%  
7%  
7%  
All channels' current set to 10 mA.  
PWM = 100%. Already includes the  
VIREF and KIREF tolerance  
Channel to channel current error,  
IERR_CC=(IOUTX-IAVE)/IAVE×100%  
IERR_CC  
VIREF  
KIREF  
ƒPWM  
IREF voltage  
0.7  
105  
29  
V
IREF ratio  
PWM switching frequency  
21  
kHz  
VVCC in full range,  
Max_Current_Option = 0 (bit), output  
current set to 20 mA, the voltage  
when the LED current has dropped  
5%  
0.25  
0.3  
0.35  
VSAT  
Output saturation voltage  
V
VVCC 3.3 V, Max_Current_Option  
= 1 (bit), output current set to 20  
mA, the voltage when the LED  
current has dropped 5%  
0.4  
0.4  
LOGIC INPUTS (EN, SCL, SDA, ADDRx)  
VIL  
Low level input voltage  
High level input voltage  
Input current  
V
V
VIH  
1.4  
–1  
ILOGIC  
VSDA  
1
µA  
V
SDA output low level  
IPULLUP = 5 mA  
0.4  
PROTECTION CIRCUITS  
Thermal-shutdown junction  
temperature  
T(TSD)  
160  
°C  
Copyright © 2018, Texas Instruments Incorporated  
7
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating ambient temperature range (–40°C < TA<85°C) (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Thermal shutdown temperature  
hysteresis  
T(HYS)  
15  
°C  
7.6 Timing Requirements  
over operating ambient temperature range (-40°C < TA<85°C) (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ƒOSC  
tPSM  
Internal oscillator frequency  
Power save mode deglitch time  
EN first rising edge until first I2C access  
EN first falling edge until first I2C reset  
I2C clock frequency  
15  
30  
MHz  
ms  
µs  
20  
40  
500  
3
tEN_H  
tEN_L  
ƒSCL  
µs  
400  
kHz  
µs  
Hold time (repeated) START condition  
Clock low time  
0.6  
1
2
3
4
5
6
7
8
9
1.3  
600  
µs  
Clock high time  
ns  
Setup time for a repeated START condition  
Data hold time  
600  
ns  
0
ns  
Data setup time  
100  
ns  
Rise time of SDA and SCL  
Fall time of SDA and SCL  
Setup time for STOP condition  
20 + 0.1 Cb  
15 + 0.1 Cb  
600  
300  
300  
ns  
ns  
ns  
Bus free time between a STOP and a START  
condition  
1.3  
10  
µs  
pF  
10  
Capacitive load parameter for each bus line Load  
of 1 pF corresponds to one nanosecond.  
Cb  
200  
1. I2C Timing Parameters  
8
版权 © 2018, Texas Instruments Incorporated  
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
7.7 Typical Characteristics  
35  
32.5  
30  
40  
35  
30  
25  
20  
15  
10  
5
27.5  
25  
22.5  
20  
17.5  
15  
5-mA Average Current  
10-mA Average Current  
25-mA Average Current  
35-mA Average Current  
12.5  
10  
7.5  
5
2.5  
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
RIREF(kW)  
Ambient Temperature (èC)  
RIRE  
CURR  
VCC = 3.3 V  
2. IOUT Target vs RIREF  
3. Output Current vs Temperature  
40  
35  
30  
25  
20  
15  
10  
5
1.65  
1.35  
1.05  
0.75  
0.45  
0.15  
-0.15  
-0.45  
-0.75  
-1.05  
Minimum at 5 mA  
Maximum at 5 mA  
Minimum at 10mA  
Maximum at 10 mA  
Minimum at 25 mA  
Maximum at 25 mA  
Minimum at 35 mA  
Maximum at 35 mA  
5-mA Average Current  
10-mA Average Current  
25-mA Average Current  
35-mA Average Current  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
-40  
-20  
0
20  
40  
60  
80 90  
Ambient Temperature (èC)  
Air Temperature (èC)  
CURR  
C2C3  
VCC = 5 V  
VCC = 3.3 V  
5. Channel-to-Channel Current Accuracy  
4. Output Current vs Temperature  
0.055  
0.05  
0.045  
0.04  
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
1.6  
1.2  
0.8  
0.4  
0
50-mA IREF  
100-mA IREF  
150-mA IREF  
200-mA IREF  
250-\sm}A IREF  
300-mA IREF  
350-mA IREF  
Minimum at 5 mA  
Maximum at 5 mA  
Minimum at 10mA  
Maximum at 10 mA  
Minimum at 25 mA  
Maximum at 25 mA  
Minimum at 35 mA  
Maximum at 35 mA  
-0.4  
-0.8  
-1.2  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5  
Ambient Tempeature (èC)  
Output Pin Voltage (V)  
C2C5  
VSAT  
VCC = 5 V  
VCC = 3.3 V  
7. OUT Pin Voltage vs Current  
6. Channel-to-Channel Current Accuracy vs Temperature  
版权 © 2018, Texas Instruments Incorporated  
9
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
0.055  
0.05  
0.045  
0.04  
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
50-mA IREF  
100-mA IREF  
150-mA IREF  
200-mA IREF  
250-mA IREF  
300-mA IREF  
350-mA IREF  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5  
Output Pin Volatge (V)  
VSAT  
VCC = 5 V  
8. OUT Pin Voltage vs Output Current  
10  
版权 © 2018, Texas Instruments Incorporated  
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
8 Detailed Description  
8.1 Overview  
The LP50xx device is an 18- or 24-channel constant-current-sink LED driver. The LP50xx device includes all  
necessary power rails, an on-chip oscillator, and a two-wire serial I2C interface. The maximum constant-current  
value of all channels is set by a single external resistor. Two hardware address pins allow up to four devices on  
the same bus. An automatic power-saving mode is implemented to keep the total current consumption under 10  
µA, which makes the LP50xx device a potential choice for battery-powered end-equipment.  
The LP50xx device is optimized for RGB LEDs regarding to both live effects and software efforts. The LP50xx  
device controls each LED output with 12-bit PWM resolution at 29-kHz switching frequency, which helps achieve  
a smooth dimming effect and eliminates audible noise. The independent color-mixing and intensity-control  
registers make the software coding straightforward. When targeting a fade-in, fade-out type breathing effect, the  
global RGB bank control reduces the microcontroller loading significantly. The LP50xx device also implements a  
PWM phase-shifting function to help reduce the input power budget when LEDs turn on simultaneously.  
8.2 Functional Block Diagram  
VCC  
VLED  
VCC  
Bandgap  
OUT0  
OUT1  
OUT2  
V1P8  
LDO  
VCAP  
12 Bits  
29 kHz  
PWM  
Oscillator  
15MHz  
Generators  
EN  
SDA  
SCL  
OUT21  
OUT22  
OUT23  
Digital  
Interface  
Digital Control  
ADDR0  
ADDR1  
IREF  
IREF Setting Current  
Thermal Shutdown  
GND  
8.3 Feature Description  
8.3.1 PWM Control for Each Channel  
Most traditional LED drivers are designed for the single-color LEDs, in which the high-resolution PWM generator  
is used for intensity control only. However, for RGB LEDs, both the color mixing and intensity control should be  
addressed to achieve the target effect. With the traditional solution, the users must handle the color mixing and  
intensity control simultaneously with a single PWM register. Several undesired effects occur: the limited dimming  
steps, the complex software design, and the color distortion when using a logarithmic scale control.  
版权 © 2018, Texas Instruments Incorporated  
11  
 
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
The LP50xx device is designed with independent color mixing and intensity control, which makes the RGB LED  
effects fancy and the control experience straightforward. With the inputs of the color-mixing register and the  
intensity-control register, the final PWM generator output for each channel is 12-bit resolution and 29-kHz  
dimming frequency, which helps achieve a smooth dimming effect and eliminates audible noise. See 9.  
Color-Mixing  
Brightness-Control  
PWM Generators  
OUT0  
8 Bits Color  
12 Bits / 29KHz PWM  
OUT1  
OUT2  
8 Bits Color  
8 Bits Color  
8 Bits Brightness  
12 Bits / 29KHz PWM  
12 Bits / 29KHz PWM  
OUT21  
8 Bits Color  
8 Bits Color  
8 Bits Color  
12 Bits / 29KHz PWM  
12 Bits / 29KHz PWM  
12 Bits / 29KHz PWM  
8 Bits Brightness  
OUT22  
OUT23  
9. PWM Control Scheme for Each Channel  
8.3.1.1 Independent Color Mixing Per RGB LED Module  
Each output channel has its own individual 8-bit color-setting register (OUTx_COLOR). The device allows every  
RGB LED module to achieve >16 million (256 × 256 × 256) color-mixing.  
8.3.1.2 Independent Intensity Control Per RGB LED Module  
When color is fixed, the independent intensity-control is used to achieve accurate and flexible dimming control for  
every RGB LED module.  
8.3.1.2.1 Intensity-Control Register Configuration  
Every three consecutive output channels are assigned to their respective intensity-control register  
(LEDx_BRIGHTNESS). For example, OUT0, OUT1, and OUT2 are assigned to LED0_BRIGHTNESS, so it is  
recommended to connect the RGB LEDs in the sequence as shown in 1. The LP50xx device allows 256-step  
intensity control for each RGB LED module, which helps achieve a smooth dimming effect.  
Keeping FFh (default value) in the LED0_BRIGHTNESS register results in 100% dimming duty cycle. With this  
setting, users can just configure the color mixing register by channel to achieve the target dimming effect in a  
single-color LED application.  
8.3.1.2.2 Logarithmic- or Linear-Scale Intensity Control  
For human-eye-friendly visual performance, a logarithmic-scale dimming curve is usually implemented in LED  
drivers. However, for RGB LEDs, if using a single register to achieve both color mixing and intensity control,  
color distortion can be observed easily when using a logarithmic scale. The LP50xx device, with independent  
color-mixing and intensity-control registers, implements the logarithmic scale dimming control inside the intensity  
control function, which solves the color distortion issue effectively. See 10. Also, the LP50xx device allows  
users to configure the dimming scale either logarithmically or linearly through the global Log_Scale_EN register.  
If a special dimming curve is desired, using the linear scale with software correction is the most flexible  
approach. See 11.  
12  
版权 © 2018, Texas Instruments Incorporated  
 
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
Feature Description (接下页)  
Brightness Control  
8 Bits Brightness  
Linear OR Logarithmic  
Log_Scale_EN  
8 Bits Brightness  
Linear OR Logarithmic  
10. Logarithmic- or Linear-Scale Intensity Control  
Linear Scale Dimming Curve  
Logarithmic Scale Dimming Curve  
100 %  
80 %  
60 %  
40 %  
20 %  
0 %  
100 %  
80 %  
60 %  
40 %  
20 %  
0 %  
0
32  
64  
96  
128 160 192 224 255  
0
32  
64  
96  
128 160 192 224 255  
LEDx_BRIGHTNESS Register Input  
LEDx_BRIGHTNESS Register Input  
11. Logarithmic vs Linear Dimming Curve  
8.3.1.3 12-Bit, 29-kHz PWM Generator Per Channel  
8.3.1.3.1 PWM Generator  
With the inputs of the color mixing and the intensity control, the final output PWM duty cycle is defined as the  
product obtained by multiplying the color-mixing register value by the related intensity-control register value. The  
final output PWM duty cycle has 12 bits of control accuracy, which is achieved by a 9 bits of pure PWM  
resolution and 3 bits of digital dithering control. For 3-bit dithering, every eighth pulse is made 1 LSB longer to  
increase the average value by 1 / 8th. The LP50xx device allows users to enable or disable the dithering function  
through the PWM_Dithering_EN register. When enabled (default), the output PWM duty-cycle accuracy is 12  
bits. When disabled, the output PWM duty-cycle accuracy is 9 bits.  
To eliminate the audible noise due to the PWM switching, the LP50xx device sets the PWM switching frequency  
at 29-kHz, above the 20-kHz human hearing range.  
版权 © 2018, Texas Instruments Incorporated  
13  
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
8.3.1.4 PWM Phase-Shifting  
A PWM phase-shifting scheme allows delaying the time when each LED driver is active. When the LED drivers  
are not activated simultaneously, the peak load current from the pre-stage power supply is significantly  
decreased. The scheme also reduces input-current ripple and ceramic-capacitor audible ringing. LED drivers are  
grouped into three different phases.  
Phase 1—the rising edge of the PWM pulse is fixed. The falling edge of the pulse is changed when the duty  
cycle changes. Phase 1 is applied to LED0, LED3, …, LED21.  
Phase 2—the middle point of the PWM pulse is fixed. The pulse spreads in both directions when the PWM  
duty cycle is increased. Phase 2 is applied to LED1, LED4, …, LED22.  
Phase 3—the falling edge of the PWM pulse is fixed. The rising edge of the pulse is changed when the duty  
cycle changes. Phase 3 is applied to LED2, LED5, …, LED23.  
Cycle Time  
LED0  
LED3  
Phase 1  
LED[3Ü (n-1)]  
LED1  
LED4  
Phase 2  
LED[3Ü (n-1)+1]  
LED2  
LED5  
Phase 3  
LED[3Ü (n-1)+2]  
Phase 1  
Phase 2  
Phase 3  
12. PWM Phase-Shifting  
8.3.2 LED Bank Control  
For most LED-animation effects, like blinking and breathing, all the RGB LEDs have the same lighting pattern.  
Instead of controlling the individual LED separately, which occupies the microcontroller resources heavily, the  
LP50xx device provides an easy coding approach, the LED bank control.  
Each channel can be configured as either independent control or bank control through the LEDx_Bank_EN  
register. When LEDx_Bank_EN = 0 (default), the LED is controlled independently by the related color-mixing and  
intensity-control registers. When LEDx_Bank_EN = 1, the LP50xx device drives the LEDs in LED bank-control  
mode. The LED bank has its own independent PWM control scheme, which is the same structure as the PWM  
scheme of each channel. See PWM Control for Each Channel for more details. When a channel is configured in  
LED bank-control mode, the related color mixing and intensity control is governed by the bank control registers  
(BANK_A_COLOR, BANK_B_COLOR, BANK_C_COLOR, and BANK_BRIGHTNESS) regardless of the inputs  
on its own color-mixing and intensity-control registers.  
14  
版权 © 2018, Texas Instruments Incorporated  
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
Feature Description (接下页)  
Bank Color-Mixing Bank Brightness-Control  
Bank PWM Generators  
Bank A:  
Bank B:  
Bank C:  
8 Bits Color  
8 Bits Color  
8 Bits Color  
12 Bits / 29kHz PWM  
8 Bits Brightness  
12 Bits / 29kHz PWM  
12 Bits / 29kHz PWM  
13. Bank PWM Control Scheme  
1. Bank Number and LED Number Assignment  
OUT NUMBER  
BANK Number  
Bank A  
Bank B  
Bank C  
Bank A  
Bank B  
Bank C  
Bank A  
Bank B  
Bank C  
Bank A  
Bank B  
Bank C  
Bank A  
Bank B  
Bank C  
Bank A  
Bank B  
Bank C  
Bank A  
Bank B  
Bank C  
Bank A  
Bank B  
Bank C  
RGB LED MODULE NUMBER  
OUT0  
OUT1  
LED0  
LED1  
LED2  
LED3  
LED4  
LED5  
LED6  
LED7  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
OUT11  
OUT12  
OUT13  
OUT14  
OUT15  
OUT16  
OUT17  
OUT18 (LP5024 only)  
OUT19 (LP5024 only)  
OUT20 (LP5024 only)  
OUT21 (LP5024 only)  
OUT22 (LP5024 only)  
OUT23 (LP5024 only)  
版权 © 2018, Texas Instruments Incorporated  
15  
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
With the bank control configuration, the LP50xx device enables users to achieve smooth and live LED effects  
globally with an ultrasimple software effort. 14 shows an example using LED0 as an independent RGB  
indicator and others with group breathing effect.  
Bank A  
CH3/6/9/12/15/18/21  
Bank B  
Independent  
Ch0/1/2  
CH4/7/10/13/16/19/22  
Bank C  
CH5/8/11/14/17/20/23  
14. Bank PWM Control Example  
8.3.3 Current Range Setting  
The constant-current value (ISET) of all 24 channels is set by a single external resistor, RIREF. The value of RIREF  
can be calculated by 公式 1.  
VIREF  
RIREF=KIREF  
×
ISET  
where:  
KIREF = 105  
VIREF = 0.7 V  
(1)  
With the IREF pin floating, the output current is close to zero. With the IREF pin shorted to GND, the LP50xx  
device provides internal current-limit protection, and the output-channel maximum current is limited to ILIM  
.
The LP50xx device supports two levels of maximum output current, IMAX  
.
When VCC is in the range from 2.7 V to 5.5 V, and the Max_Current_Option (bit) = 0, IMAX = 25.5 mA.  
When VCC is in the range from 3.3 V to 5.5 V, and the Max_Current_Option (bit) = 1, IMAX = 35 mA.  
8.3.4 Automatic Power-Save Mode  
When all the LED outputs are inactive, the LP50xx device is able to enter power-save mode automatically, thus  
lowering idle-current consumption down to 10 μA (typical). Automatic power-save mode is enabled when register  
bit Power_Save_EN = 1 (default) and all the LEDs are off for a duration of >30 ms. Almost all analog blocks are  
powered down in power-save mode. If any I2C command to the device occurs, the LP50xx device returns to  
NORMAL mode.  
16  
版权 © 2018, Texas Instruments Incorporated  
 
 
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
8.3.5 Protection Features  
8.3.5.1 Thermal Shutdown  
The LP50xx device implements a thermal shutdown mechanism to protect the device from damage due to  
overheating. When the junction temperature rises to 160°C (typical), the device switches into shutdown mode.  
The LP50xx device releases thermal shutdown when the junction temperature of the device is reduced to 145°C  
(typical).  
8.3.5.2 UVLO  
The LP50xx device has an internal comparator that monitors the voltage at VCC. When VCC is below VUVF, reset  
is active and the LP50xx device is in the INITIALIZATION state.  
8.4 Device Functional Modes  
VCC Power Up  
EN = L  
From all states  
From all states  
SHUTDOWN  
EN = H  
RESET = FF or UVLO = H  
INITIALIZATION  
STANDBY  
Chip_EN = 1  
Chip_EN = 0  
TSD=H  
TSD=L  
I2C Command  
THERMAL  
SHUTDOWN  
POWER SAVE  
NORMAL  
Power_Save_EN =1 and  
All LEDs off > 30ms  
15. Functional Modes  
INITIALIZATION: The device enters into INITIALIZATION mode when EN = H. In this mode, all the registers  
are reset. Entry can also be from any state, if the RESET (register) = FFh or UVLO is active.  
NORMAL: The device enters the NORMAL mode when Chip_EN (register) = 1. ICC is 10 mA (typ.).  
POWER SAVE: The device automatically enters the POWER SAVE mode when Power_Save_EN (register) =  
1 and all the LEDs are off for a duration of >30 ms. In POWER SAVE mode, analog blocks are disabled to  
minimize power consumption, but the registers retain the data and keep it available via I2C. ICC is 10 µA (typ.).  
In case of any I2C command to this device, it returns to the NORMAL mode.  
SHUTDOWN: The device enters into SHUTDOWN mode from all states on VCC power up or when EN = L.  
ICC is < 1 µA (max).  
STANDBY: The device enters the STANDBY mode when Chip_EN (register) = 0. In this mode, all the OUTx  
pins are shut down, but the registers retain the data and keep it available via I2C. STANDBY is the low-  
power-consumption mode, when all circuit functions are disabled. ICC is 10 µA (typ.).  
THERMAL SHUTDOWN: The device automatically enters the THERMAL SHUTDOWN mode when the  
版权 © 2018, Texas Instruments Incorporated  
17  
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Device Functional Modes (接下页)  
junction temperature exceeds 160°C (typical). In this mode, all the OUTx outputs are shut down. If the  
junction temperature decreases below 145°C (typical), the device returns to the NORMAL mode.  
8.5 Programming  
8.5.1 I2C Interface  
The I2C-compatible two-wire serial interface provides access to the programmable functions and registers on the  
device. This protocol uses a two-wire interface for bidirectional communications between the devices connected  
to the bus. The two interface lines are the serial data line (SDA) and the serial clock line (SCL). Every device on  
the bus is assigned a unique address and acts as either a master or a slave depending on whether it generates  
or receives the serial clock, SCL. The SCL and SDA lines should each have a pullup resistor placed somewhere  
on the line and remain HIGH even when the bus is idle.  
8.5.1.1 Data Validity  
The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, the state  
of the data line can only be changed when the clock signal is LOW.  
16. Data Validity  
8.5.1.2 Start and Stop Conditions  
START and STOP conditions classify the beginning and the end of the data transfer session. A START condition  
is defined as the SDA signal transitioning from HIGH to LOW while the SCL line is HIGH. A STOP condition is  
defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The bus master always generates  
START and STOP conditions. The bus is considered to be busy after a START condition and free after a STOP  
condition. During data transmission, the bus master can generate repeated START conditions. First START and  
repeated START conditions are functionally equivalent.  
17. Start and Stop Conditions  
18  
版权 © 2018, Texas Instruments Incorporated  
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
Programming (接下页)  
8.5.1.3 Transferring Data  
Every byte put on the SDA line must be eight bits long, with the most-significant bit (MSB) being transferred first.  
Each byte of data must be followed by an acknowledge bit. The acknowledge-related clock pulse is generated by  
the master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The device pulls  
down the SDA line during the ninth clock pulse, signifying an acknowledge. The device generates an  
acknowledge after each byte has been received.  
There is one exception to the acknowledge-after-every-byte rule. When the master is the receiver, it must  
indicate to the transmitter an end of data by not acknowledging (negative acknowledge) the last byte clocked out  
of the slave. This negative acknowledge still includes the acknowledge clock pulse (generated by the master),  
but the SDA line is not pulled down.  
After the START condition, the bus master sends a chip address. This address is seven bits long followed by an  
eighth bit which is a data direction bit (READ or WRITE). For the eighth bit, a 0 indicates a WRITE, and a 1  
indicates a READ. The second byte selects the register to which the data is written. The third byte contains data  
to write to the selected register.  
18. Acknowledge and Not Acknowledge on I2C Bus  
8.5.1.4 I2C Slave Addressing  
The device slave address is defined by connecting GND or VCC to the ADDR0 and ADDR1 pins. A total of four  
independent slave addresses can be realized by combinations when GND or VCC is connected to the ADDR0  
and ADDR1 pins (see 2 and 3).  
The device responds to a broadcast slave address regardless of the setting of the ADDR0 and ADDR1 pins.  
Global writes to the broadcast address can be used for configuring all devices simultaneously. The device  
supports global read using a broadcast address; however, the data read is only valid if all devices on the I2C bus  
contain the same value in the addressed register.  
2. Slave-Address Combinations  
SLAVE ADDRESS  
ADDR1  
ADDR0  
INDEPENDENT  
010 1000  
BROADCAST  
GND  
GND  
VCC  
VCC  
GND  
VCC  
GND  
VCC  
010 1001  
011 1100  
010 1010  
010 1011  
版权 © 2018, Texas Instruments Incorporated  
19  
 
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
3. Chip Address  
SLAVE ADDRESS  
R/W  
Bit 0  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
ADDR1  
0
Bit 1  
ADDR0  
0
Independent  
Broadcast  
0
0
1
1
0
1
1
1
0
1
1 or 0  
1 or 0  
8.5.1.5 Control-Register Write Cycle  
The master device generates a start condition.  
The master device sends the slave address (7 bits) and the data direction bit (R/W = 0).  
The slave device sends an acknowledge signal if the slave address is correct.  
The master device sends the control register address (8 bits).  
The slave device sends an acknowledge signal.  
The master device sends the data byte to be written to the addressed register.  
The slave device sends an acknowledge signal.  
If the master device sends further data bytes, the control register address of the slave is incremented by 1  
after the acknowledge signal. To reduce program load time, the device supports address auto incrementation.  
The register address is incremented after each 8 data bits.  
The write cycle ends when the master device creates a stop condition.  
19. Write Cycle  
8.5.1.6 Control-Register Read Cycle  
The master device generates a start condition.  
The master device sends the slave address (7 bits) and the data direction bit (R/W = 0).  
The slave device sends an acknowledge signal if the slave address is correct.  
The master device sends the control register address (8 bits).  
The slave device sends an acknowledge signal.  
The master device generates a repeated-start condition.  
The master device sends the slave address (7 bits) and the data direction bit (R/W = 1).  
The slave device sends an acknowledge signal if the slave address is correct.  
The slave device sends the data byte from the addressed register.  
If the master device sends an acknowledge signal, the control-register address is incremented by 1. The  
slave device sends the data byte from the addressed register. To reduce program load time, the device  
supports address auto incrementation. The register address is incremented after each 8 data bits.  
The read cycle ends when the master device does not generate an acknowledge signal after a data byte and  
generates a stop condition.  
20. Read Cycle  
20  
版权 © 2018, Texas Instruments Incorporated  
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
8.5.1.7 Auto-Increment Feature  
The auto-increment feature allows writing or reading several consecutive registers within one transmission. For  
example, when an 8-bit word is sent to the device, the internal address index counter is incremented by 1, and  
the next register is written. The auto-increment feature is enabled by default and can be disabled by setting the  
Auto_Incr_EN bit = 0 in the DEVICE_CONFIG1 register. The auto-increment feature is applied for the full register  
address from 0h to FFh.  
版权 © 2018, Texas Instruments Incorporated  
21  
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
8.6 Register Maps  
4 lists the memory-mapped registers of the device.  
4. Register Maps  
REGISTER  
NAME  
DEF-  
AULT  
ADDR TYPE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DEVICE_  
CONFIG0  
00h  
01h  
R/W  
R/W  
RESERVED  
Chip_EN  
RESERVED  
00h  
DEVICE_  
CONFIG1  
Power_Save_  
PWM_  
Dithering_EN  
Max_Current_  
Option  
RESERVED  
LED7_Bank_EN LED6_Bank_EN  
Log_Scale_EN  
Auto_Incr_EN  
LED_Global Off  
3Ch  
00h  
EN  
LED_CONFIG0  
02h  
R/W  
(Only for  
LP5024)  
(Only for  
LP5024)  
LED5_Bank_EN LED4_Bank_EN LED3_Bank_EN LED2_Bank_EN LED1_Bank_EN LED0_Bank_EN  
BANK_  
BRIGHTNESS  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Bank_Brightness  
Bank_A_Color  
FFh  
00h  
00h  
00h  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
BANK_A_  
COLOR  
BANK_B_  
COLOR  
Bank_B_Color  
BANK_C_  
COLOR  
Bank_C_Color  
LED0_  
BRIGHTNESS  
LED0_Brightness  
LED1_Brightness  
LED2_Brightness  
LED3_Brightness  
LED4_Brightness  
LED5_Brightness  
LED1_  
BRIGHTNESS  
LED2_  
BRIGHTNESS  
LED3_  
BRIGHTNESS  
LED4_  
BRIGHTNESS  
LED5_  
BRIGHTNESS  
LED6_  
BRIGHTNESS  
LED6_Brightness  
(Only for LP5024)  
LED7_  
BRIGHTNESS  
LED7_Brightness  
(Only for LP5024)  
OUT0_COLOR  
OUT1_COLOR  
OUT2_COLOR  
OUT3_COLOR  
0Fh  
10h  
11h  
12h  
R/W  
R/W  
R/W  
R/W  
OUT0_Color  
OUT1_Color  
OUT2_Color  
OUT3_Color  
00h  
00h  
00h  
00h  
22  
版权 © 2018, Texas Instruments Incorporated  
 
 
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
Register Maps (接下页)  
4. Register Maps (接下页)  
REGISTER  
ADDR TYPE  
NAME  
DEF-  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
AULT  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
OUT4_COLOR  
OUT5_COLOR  
OUT6_COLOR  
OUT7_COLOR  
OUT8_COLOR  
OUT9_COLOR  
OUT10_COLOR  
OUT11_COLOR  
OUT12_COLOR  
OUT13_COLOR  
OUT14_COLOR  
OUT15_COLOR  
OUT16_COLOR  
OUT17_COLOR  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
OUT4_Color  
OUT5_Color  
OUT6_Color  
OUT7_Color  
OUT8_Color  
OUT9_Color  
OUT10_Color  
OUT11_Color  
OUT12_Color  
OUT13_Color  
OUT14_Color  
OUT15_Color  
OUT16_Color  
OUT17_Color  
OUT18_Color  
OUT18_COLOR  
OUT19_COLOR  
OUT20_COLOR  
OUT21_COLOR  
OUT22_COLOR  
21h  
22h  
23h  
24h  
25h  
R/W  
R/W  
R/W  
R/W  
R/W  
00h  
00h  
00h  
00h  
00h  
(Only for LP5024)  
OUT19_Color  
(Only for LP5024)  
OUT20_Color  
(Only for LP5024)  
OUT21_Color  
(Only for LP5024)  
OUT22_Color  
(Only for LP5024)  
OUT23_Color  
(Only for LP5024)  
OUT23_COLOR  
RESET  
26h  
27h  
R/W  
W
00h  
00h  
Reset  
版权 © 2018, Texas Instruments Incorporated  
23  
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
5. Access Type Codes  
ACCESS TYPE  
CODE  
DESCRIPTION  
Read Type  
R
R
Read  
Write  
Write Type  
W
W
Reset or Default Value  
-n  
Value after reset or the default  
value  
8.6.1 DEVICE_CONFIG0 (Address = 0h) [reset = 0h]  
DEVICE_CONFIG0 is shown in 21 and described in 6.  
Return to 4.  
21. DEVICE_CONFIG0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
Chip_EN  
R/W-0h  
RESERVED  
R/W-0h  
6. DEVICE_CONFIG0 Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
R/W  
R/W  
Reset  
0h  
Description  
Reserved  
6
Chip_EN  
0h  
1 = LP50xx enabled  
0 = LP50xx not enabled  
5–0  
RESERVED  
R/W  
0h  
Reserved  
8.6.2 DEVICE_CONFIG1 (Address = 1h) [reset = 3Ch]  
DEVICE_CONFIG1 is shown in 22 and described in 7.  
Return to 4.  
22. DEVICE_CONFIG1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
Log_Scale_EN Power_Save_E Auto_Incr_EN PWM_Dithering Optional_Headr LED_Global Off  
N
_EN  
oom  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-0h  
7. DEVICE_CONFIG1 Register Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
RESERVED  
Reserved  
Log_Scale_EN  
1h  
1 = Logarithmic scale dimming curve enabled  
0 = Linear scale dimming curve enabled  
4
3
2
1
0
Power_Save_EN  
Auto_Incr_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
0h  
0h  
1 = Automatic power-saving mode enabled  
0 = Automatic power-saving mode not enabled  
1 = Automatic increment mode enabled  
0 = Automatic increment mode not enabled  
PWM_Dithering_EN  
Max_Current_Option  
LED_Global Off  
1 = PWM dithering mode enabled  
0 = PWM dithering mode not enabled  
1 = Output maximum current IMAX = 35 mA.  
0 = Output maximum current IMAX = 25.5 mA.  
1 = Shut down all LEDs  
0 = Normal operation  
24  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
 
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
8.6.3 LED_CONFIG0 (Address = 2h) [reset = 00h]  
LED_CONFIG0 is shown in 23 and described in 8.  
Return to 4.  
23. LED_CONFIG0 Register  
7
6
5
4
3
2
1
0
LED7_Bank_E LED6_Bank_E LED5_Bank_E LED4_Bank_E LED3_Bank_E LED2_Bank_E LED1_Bank_E LED0_Bank_E  
N
N
N
N
N
N
N
N
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8. LED_CONFIG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LED7_Bank_EN  
LED6_Bank_EN  
LED5_Bank_EN  
LED4_Bank_EN  
LED3_Bank_EN  
LED2_Bank_EN  
LED1_Bank_EN  
LED0_Bank_EN  
R/W  
0h  
1 = LED7 bank control mode enabled  
0 = LED7 independent control mode enabled  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
1 = LED6 bank control mode enabled  
0 = LED6 independent control mode enabled  
1 = LED5 bank control mode enabled  
0 = LED5 independent control mode enabled  
1 = LED4 bank control mode enabled  
0 = LED4 independent control mode enabled  
1 = LED3 bank control mode enabled  
0 = LED3 Independent control mode enabled  
1 = LED2 bank control mode enabled  
0 = LED2 independent control mode enabled  
1 = LED1 bank control mode enabled  
0 = LED1 independent control mode enabled  
1 = LED0 bank control mode enabled  
0 = LED0 independent control mode enabled  
8.6.4 BANK_BRIGHTNESS (Address = 3h) [reset = FFh]  
BANK_BRIGHTNESS is shown in 24 and described in 9.  
Return to 4.  
24. BANK_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
Bank_Brightness  
R/W-FFh  
9. BANK_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
Bank_Brightness  
Type  
Reset  
Description  
7–0  
R/W  
FFh  
FFh = 100% of full brightness  
...  
80h = 50% of full brightness  
...  
00h = 0% of full brightness  
8.6.5 BANK_A_COLOR (Address = 4h) [reset = 00h]  
BANK_A_COLOR is shown in 25 and described in 10.  
Return to 4.  
版权 © 2018, Texas Instruments Incorporated  
25  
 
 
 
 
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
25. BANK_A_COLOR Register  
7
6
5
4
3
2
1
0
Bank_A_Color  
R/W-0h  
10. BANK_A_COLOR Register Field Descriptions  
Bit  
Field  
Bank_A_Color  
Type  
Reset  
Description  
7–0  
R/W  
0h  
FFh = The color mixing percentage is 100%.  
...  
80h = The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 0%.  
8.6.6 BANK_B_COLOR (Address = 5h) [reset = 00h]  
BANK_B_COLOR is shown in 26 and described in 11.  
Return to 4.  
26. BANK_B_COLOR Register  
7
6
5
4
3
2
1
0
Bank_B_Color  
R/W-0h  
11. BANK_B_COLOR Register Field Descriptions  
Bit  
Field  
Bank_B_Color  
Type  
Reset  
Description  
7–0  
R/W  
0h  
FFh = The color mixing percentage is 100%.  
...  
80h = The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 0%.  
8.6.7 BANK_C_COLOR (Address = 6h) [reset = 00h]  
BANK_C_COLOR is shown in 27 and described in 12.  
Return to 4.  
27. BANK_C_COLOR Register  
7
6
5
4
3
2
1
0
Bank_C_Color  
R/W-0h  
12. BANK_C_COLOR Register Field Descriptions  
Bit  
Field  
Bank_C_Color  
Type  
Reset  
Description  
7–0  
R/W  
0h  
FFh = The color mixing percentage is 100%.  
...  
80h = The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 0%.  
8.6.8 LED0_BRIGHTNESS (Address = 7h) [reset = FFh]  
LED0_BRIGHTNESS is shown in 28 and described in 13.  
Return to 4.  
26  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
 
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
28. LED0_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED0_Brightness  
R/W-FFh  
13. LED0_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
LED0_Brightness  
R/W  
FFh  
FFh = 100% of full intensity  
...  
80h = 50% of full intensity  
...  
00h = 0% of full intensity  
8.6.9 LED1_BRIGHTNESS (Address = 8h) [reset = FFh]  
LED1_BRIGHTNESS is shown in 29 and described in 14.  
Return to 4.  
29. LED1_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED1_Brightness  
R/W-FFh  
14. LED1_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
LED1_Brightness  
Type  
Reset  
Description  
7–0  
R/W  
FFh  
FFh = 100% of full intensity  
...  
80h = 50% of full intensity  
...  
00h = 0% of full intensity  
8.6.10 LED2_BRIGHTNESS (Address = 9h) [reset = FFh]  
LED2_BRIGHTNESS is shown in 30 and described in 15.  
Return to 4.  
30. LED2_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED2_Brightness  
R/W-FFh  
15. LED2_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
LED2_Brightness  
Type  
Reset  
Description  
7–0  
R/W  
FFh  
FFh = 100% of full intensity  
...  
80h = 50% of full intensity  
...  
00h = 0% of full intensity  
8.6.11 LED3_BRIGHTNESS (Address = 0Ah) [reset = FFh]  
LED3_BRIGHTNESS is shown in 31 and described in 16.  
Return to 4.  
版权 © 2018, Texas Instruments Incorporated  
27  
 
 
 
 
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
31. LED3_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED3_Brightness  
R/W-FFh  
16. LED3_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
LED3_Brightness  
Type  
Reset  
Description  
7–0  
R/W  
FFh  
FFh = 100% of full intensity  
...  
80h = 50% of full intensity  
...  
00h = 0% of full intensity  
8.6.12 LED4_BRIGHTNESS (Address = 0Bh) [reset = FFh]  
LED4_BRIGHTNESS is shown in 32 and described in 17.  
Return to 4.  
32. LED4_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED4_Brightness  
R/W-FFh  
17. LED4_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
LED4_Brightness  
Type  
Reset  
Description  
7–0  
R/W  
FFh  
FFh = 100% of full intensity  
...  
80h = 50% of full intensity  
...  
00h = 0% of full intensity  
8.6.13 LED5_BRIGHTNESS (Address = 0Ch) [reset = FFh]  
LED5_BRIGHTNESS is shown in 33 and described in 18.  
Return to 4.  
33. LED5_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED5_Brightness  
R/W-FFh  
18. LED5_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
LED5_Brightness  
Type  
Reset  
Description  
7–0  
R/W  
FFh  
FFh = 100% of full intensity  
...  
80h = 50% of full intensity  
...  
00h = 0% of full intensity  
8.6.14 LED6_BRIGHTNESS (Address = 0Dh) [reset = FFh]  
LED6_BRIGHTNESS is shown in 34 and described in 19.  
Return to 4.  
28  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
 
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
34. LED6_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED6_Brightness  
R/W-FFh  
19. LED6_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
LED6_Brightness  
R/W  
FFh  
FFh = 100% of full intensity  
...  
80h = 50% of full intensity  
...  
00h = 0% of full intensity  
8.6.15 LED7_BRIGHTNESS (Address = 0Eh) [reset = FFh]  
LED7_BRIGHTNESS is shown in 35 and described in 20.  
Return to 4.  
35. LED7_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED7_Brightness  
R/W-FFh  
20. LED7_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
LED7_Brightness  
Type  
Reset  
Description  
7–0  
R/W  
FFh  
FFh = 100% of full intensity  
...  
80h = 50% of full intensity  
...  
00h = 0% of full intensity  
8.6.16 OUT0_COLOR (Address = 0Fh) [reset = 00h]  
OUT0_COLOR is shown in 36 and described in 21.  
Return to 4.  
36. OUT0_COLOR Register  
7
6
5
4
3
2
1
0
OUT0_Color  
R/W-00h  
21. OUT0_COLOR Register Field Descriptions  
Bit  
Field  
OUT0_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.17 OUT1_COLOR (Address = 10h) [reset = 00h]  
OUT1_COLOR is shown in 37 and described in 22.  
Return to 4.  
版权 © 2018, Texas Instruments Incorporated  
29  
 
 
 
 
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
37. OUT1_COLOR Register  
7
6
5
4
3
2
1
0
OUT1_Color  
R/W-00h  
22. OUT1_COLOR Register Field Descriptions  
Bit  
Field  
OUT1_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.18 OUT2_COLOR (Address = 11h) [reset = 00h]  
OUT2_COLOR is shown in 38 and described in 23.  
Return to 4.  
38. OUT2_COLOR Register  
7
6
5
4
3
2
1
0
OUT2_Color  
R/W-00h  
23. OUT2_COLOR Register Field Descriptions  
Bit  
Field  
OUT2_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.19 OUT3_COLOR (Address = 12h) [reset = 00h]  
OUT3_COLOR is shown in 39 and described in 24.  
Return to 4.  
39. OUT3_COLOR Register  
7
6
5
4
3
2
1
0
OUT3_Color  
R/W-00h  
24. OUT3_COLOR Register Field Descriptions  
Bit  
Field  
OUT3_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.20 OUT4_COLOR (Address = 13h) [reset = 00h]  
OUT4_COLOR is shown in 40 and described in 25.  
Return to 4.  
30  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
 
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
40. OUT4_COLOR Register  
7
6
5
4
3
2
1
0
OUT4_Color  
R/W-00h  
25. OUT4_COLOR Register Field Descriptions  
Bit  
Field  
OUT4_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.21 OUT5_COLOR (Address = 14h) [reset = 00h]  
OUT5_COLOR is shown in 41 and described in 26.  
Return to 4.  
41. OUT5_COLOR Register  
7
6
5
4
3
2
1
0
OUT5_Color  
R/W-00h  
26. OUT5_COLOR Register Field Descriptions  
Bit  
Field  
OUT5_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.22 OUT6_COLOR (Address = 15h) [reset = 00h]  
OUT6_COLOR is shown in 42 and described in 27.  
Return to 4.  
42. OUT6_COLOR Register  
7
6
5
4
3
2
1
0
OUT6_Color  
R/W-00h  
27. OUT6_COLOR Register Field Descriptions  
Bit  
Field  
OUT6_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.23 OUT7_COLOR (Address = 16h) [reset = 00h]  
OUT7_COLOR is shown in 43 and described in 28.  
Return to 4.  
版权 © 2018, Texas Instruments Incorporated  
31  
 
 
 
 
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
43. OUT7_COLOR Register  
7
6
5
4
3
2
1
0
OUT7_Color  
R/W-00h  
28. OUT7_COLOR Register Field Descriptions  
Bit  
Field  
OUT7_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.24 OUT8_COLOR (Address = 17h) [reset = 00h]  
OUT8_COLOR is shown in 44 and described in 29.  
Return to 4.  
44. OUT8_COLOR Register  
7
6
5
4
3
2
1
0
OUT8_Color  
R/W-00h  
29. OUT8_COLOR Register Field Descriptions  
Bit  
Field  
OUT8_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.25 OUT9_COLOR (Address = 18h) [reset = 00h]  
OUT9_COLOR is shown in 45 and described in 30.  
Return to 4.  
45. OUT9_COLOR Register  
7
6
5
4
3
2
1
0
OUT9_Color  
R/W-00h  
30. OUT9_COLOR Register Field Descriptions  
Bit  
Field  
OUT9_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.26 OUT10_COLOR (Address = 19h) [reset = 00h]  
OUT10_COLOR is shown in 46 and described in 31.  
Return to 4.  
32  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
 
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
46. OUT10_COLOR Register  
7
6
5
4
3
2
1
0
OUT10_Color  
R/W-00h  
31. OUT10_COLOR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
OUT10_Color  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.27 OUT11_COLOR (Address = 1Ah) [reset = 00h]  
OUT11_COLOR is shown in 47 and described in 32.  
Return to 4.  
47. OUT11_COLOR Register  
7
6
5
4
3
2
1
0
OUT11_Color  
R/W-00h  
32. OUT11_COLOR Register Field Descriptions  
Bit  
Field  
OUT11_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.28 OUT12_COLOR (Address = 1Bh) [reset = 00h]  
OUT12_COLOR is shown in 48 and described in 33.  
Return to 4.  
48. OUT12_COLOR Register  
7
6
5
4
3
2
1
0
OUT12_Color  
R/W-00h  
33. OUT12_COLOR Register Field Descriptions  
Bit  
Field  
OUT12_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.29 OUT13_COLOR (Address = 1Ch) [reset = 00h]  
OUT13_COLOR is shown in 49 and described in 34.  
Return to 4.  
版权 © 2018, Texas Instruments Incorporated  
33  
 
 
 
 
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
49. OUT13_COLOR Register  
7
6
5
4
3
2
1
0
OUT13_Color  
R/W-00h  
34. OUT13_COLOR Register Field Descriptions  
Bit  
Field  
OUT13_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.30 OUT14_COLOR (Address = 1Dh) [reset = 00h]  
OUT14_COLOR is shown in 50 and described in 35.  
Return to 4.  
50. OUT14_COLOR Register  
7
6
5
4
3
2
1
0
OUT14_Color  
R/W-00h  
35. OUT14_COLOR Register Field Descriptions  
Bit  
Field  
OUT14_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.31 OUT15_COLOR (Address = 1Eh) [reset = 00h]  
OUT15_COLOR is shown in 51 and described in 36.  
Return to 4.  
51. OUT15_COLOR Register  
7
6
5
4
3
2
1
0
OUT15_Color  
R/W-00h  
36. OUT15_COLOR Register Field Descriptions  
Bit  
Field  
OUT15_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.32 OUT16_COLOR (Address = 1Fh) [reset = 00h]  
OUT16_COLOR is shown in 52 and described in 37.  
Return to 4.  
34  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
 
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
52. OUT16_COLOR Register  
7
6
5
4
3
2
1
0
OUT16_Color  
R/W-00h  
37. OUT16_COLOR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
OUT16_Color  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.33 OUT17_COLOR (Address = 20h) [reset = 00h]  
OUT17_COLOR is shown in 53 and described in 38.  
Return to 4.  
53. OUT17_COLOR Register  
7
6
5
4
3
2
1
0
OUT17_Color  
R/W-00h  
38. OUT17_COLOR Register Field Descriptions  
Bit  
Field  
OUT17_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.34 OUT18_COLOR (Address = 21h) [reset = 00h]  
OUT18_COLOR is shown in 54 and described in 39.  
Return to 4.  
54. OUT18_COLOR Register  
7
6
5
4
3
2
1
0
OUT18_Color  
R/W-00h  
39. OUT18_COLOR Register Field Descriptions  
Bit  
Field  
OUT18_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.35 OUT19_COLOR (Address = 22h) [reset = 00h]  
OUT19_COLOR is shown in 55 and described in 40.  
Return to 4.  
版权 © 2018, Texas Instruments Incorporated  
35  
 
 
 
 
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
55. OUT19_COLOR Register  
7
6
5
4
3
2
1
0
OUT19_Color  
R/W-00h  
40. OUT19_COLOR Register Field Descriptions  
Bit  
Field  
OUT19_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.36 OUT20_COLOR (Address = 23h) [reset = 00h]  
OUT20_COLOR is shown in 56 and described in 41.  
Return to 4.  
56. OUT20_COLOR Register  
7
6
5
4
3
2
1
0
OUT20_Color  
R/W-00h  
41. OUT20_COLOR Register Field Descriptions  
Bit  
Field  
OUT20_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.37 OUT21_COLOR (Address = 24h) [reset = 00h]  
OUT21_COLOR is shown in 57 and described in 42.  
Return to 4.  
57. OUT21_COLOR Register  
7
6
5
4
3
2
1
0
OUT21_Color  
R/W-00h  
42. OUT21_COLOR Register Field Descriptions  
Bit  
Field  
OUT21_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.38 OUT22_COLOR (Address = 25h) [reset = 00h]  
OUT22_COLOR is shown in 58 and described in 43.  
Return to 4.  
36  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
 
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
58. OUT22_COLOR Register  
7
6
5
4
3
2
1
0
OUT22_Color  
R/W-00h  
43. OUT22_COLOR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
OUT22_Color  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.39 OUT23_COLOR (Address = 26h) [reset = 00h]  
OUT23_COLOR is shown in 59 and described in 44.  
Return to 4.  
59. OUT23_COLOR Register  
7
6
5
4
3
2
1
0
OUT23_Color  
R/W-00h  
44. OUT23_COLOR Register Field Descriptions  
Bit  
Field  
OUT23_Color  
Type  
Reset  
Description  
7–0  
R/W  
00h  
FFh = The color mixing percentage is 0%.  
...  
80h =The color mixing percentage is 50%.  
...  
00h = The color mixing percentage is 100%.  
8.6.40 RESET (Address = 27h) [reset = 00h]  
RESET is shown in 60 and described in 45.  
Return to 4.  
60. RESET Register  
7
6
5
4
3
2
1
0
Reset  
W-00h  
45. OUT14_COLOR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
FFh = Reset all the registers to default value.  
7–0  
Reset  
W
00h  
版权 © 2018, Texas Instruments Incorporated  
37  
 
 
 
 
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LP50xx device is an 18- or 24-channel constant-current-sink LED driver. The LP50xx device improves the  
user experience in color mixing and intensity control, for both live effects and coding effort. The optimized  
performance for RGB LEDs makes it a good choice for human-machine interaction applications.  
9.2 Typical Application  
The LP50xx design supports up to four devices in parallel with different configurations on the ADDR0 and  
ADDR1 pins.  
38  
版权 © 2018, Texas Instruments Incorporated  
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
Typical Application (接下页)  
VCC  
CVCC  
VMCU  
VLED  
VCC  
OUT0  
RPULLUP  
RPULLUP  
EN  
OUT1  
OUT2  
SDA  
SCL  
ADDR0  
ADDR1  
MCU  
LP5024  
OUT21  
VCAP  
IREF  
CVCAP  
RIREF  
OUT22  
OUT23  
GND  
VCC  
CVCC  
VLED  
VCC  
OUT0  
EN  
OUT1  
OUT2  
SDA  
SCL  
ADDR0  
ADDR1  
LP5024  
OUT21  
VCAP  
IREF  
CVCAP  
OUT22  
OUT23  
RIREF  
GND  
61. Driving Dual LP5024 Application Example  
9.2.1 Design Requirements  
Set the LED current to 15 mA using the RIREF resistor.  
9.2.2 Detailed Design Procedure  
LP50xx scales up the reference current (IREF) set by the external resistor (RIREF) to sink the output current (IOUT  
)
at each output port. The following formula can be used to calculate the external resistor (RIREF):  
版权 © 2018, Texas Instruments Incorporated  
39  
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Application (接下页)  
VIREF  
RIREF=KIREF  
×
ISET  
(2)  
The SCL and SDA lines must each have a pullup resistor placed somewhere on the line (the pullup resistors are  
normally located on the bus master). In typical applications, values of 1.8 kΩ to 4.7 kΩ are used.  
VCAP is internal LDO output pin. This pin must be connected through a 1-µF capacitor to GND. Place the  
capacitor as close to the device as possible.  
TI recommends having a 1-µF capacitor between VCC and GND to ensure proper operation. Place the capacitor  
as close to the device as possible.  
9.2.3 Application Curves  
The test condition for is that the testing is under bank control, using the following register values: 0x02 (0xFF),  
0x04 (0xA0), 0x05 (0xA0), 0x06 (0xA0).  
The test condition for is that the testing is under bank control, using the following register values: 0x02 (0xFF),  
0x04 (0x10), 0x05 (0x10), 0x06 (0x10).  
62. Current Waveform of OUT0, OUT1, OUT2 and OUT3  
63. Current Waveform of OUT0, OUT1, OUT2 and OUT3  
40  
版权 © 2018, Texas Instruments Incorporated  
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
10 Power Supply Recommendations  
The device is designed to operate from a VVCC input-voltage supply range between 2.7 V and 5.5 V. This input  
supply must be well-regulated and able to withstand maximum input current and maintain stable voltage without  
voltage drop even in a load-transition condition (start-up or rapid intensity change). The resistance of the input  
supply rail must be low enough that the input-current transient does not cause a drop below a 2.7-V level in the  
LP50xx VVCC supply voltage.  
11 Layout  
11.1 Layout Guidelines  
To prevent thermal shutdown, the junction temperature, TJ, must be less than T(TSD). If the voltage drop across  
the output channels is high, the device power dissipation can be large. The LP50xx device has very good  
thermal performance because of the thermal pad design; however, the PCB layout is also very important to  
ensure that the device has good thermal performance. Good PCB design can optimize heat transfer, which is  
essential for the long-term reliability of the device.  
Use the following guidelines when designing the device layout:  
Place the CVCAP, CVCCand RIREF as close to the device as possible. Also, TI recommends to put the ground  
plane as 64 and 65.  
Maximize the copper coverage on the PCB to increase the thermal conductivity of the board. The major heat  
flow path from the package to the ambient is through copper on the PCB. Maximum copper density is  
extremely important when no heat sinks are attached to the PCB on the other side from the package.  
Add as many thermal vias as possible directly under the package ground pad to optimize the thermal  
conductivity of the board.  
Use either plated-shut or plugged and capped vias for all the thermal vias on both sides of the board to  
prevent solder voids. To ensure reliability and performance, the solder coverage should be at least 85%.  
版权 © 2018, Texas Instruments Incorporated  
41  
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
11.2 Layout Examples  
GND  
GND  
OUT0  
OUT1  
OUT2  
1
2
3
4
5
6
7
8
To LED  
To LED  
To LED  
24  
23  
22  
21  
20  
19  
18  
17  
To LED OUT3  
GND  
To LED  
To LED  
OUT4  
OUT5  
To LED OUT6  
To LED OUT7  
To LED  
To LED  
OUT17  
OUT16  
GND  
GND  
64. LP5018 Layout Example  
42  
版权 © 2018, Texas Instruments Incorporated  
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
Layout Examples (接下页)  
GND  
GND  
OUT0  
OUT1  
OUT2  
1
2
3
4
5
6
7
8
To LED  
To LED  
To LED  
24  
23  
22  
21  
20  
19  
18  
17  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
OUT23  
OUT22  
OUT21  
OUT20  
OUT19  
OUT18  
OUT17  
OUT16  
To LED OUT3  
GND  
To LED  
To LED  
OUT4  
OUT5  
To LED OUT6  
To LED OUT7  
GND  
GND  
65. LP5024 Layout Example  
版权 © 2018, Texas Instruments Incorporated  
43  
LP5018, LP5024  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
46. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
LP5018  
LP5024  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
44  
版权 © 2018, Texas Instruments Incorporated  
LP5018, LP5024  
www.ti.com.cn  
ZHCSHV7B OCTOBER 2018REVISED OCTOBER 2018  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查看左侧的导航面板。  
版权 © 2018, Texas Instruments Incorporated  
45  
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-May-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP5018RSMR  
LP5024RSMR  
ACTIVE  
VQFN  
VQFN  
RSM  
32  
32  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
-40 to 125  
-40 to 85  
LP  
5018  
ACTIVE  
RSM  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
LP  
5024  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-May-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP5018RSMR  
LP5024RSMR  
VQFN  
VQFN  
RSM  
RSM  
32  
32  
3000  
3000  
330.0  
330.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP5018RSMR  
LP5024RSMR  
VQFN  
VQFN  
RSM  
RSM  
32  
32  
3000  
3000  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RSM 32  
4 x 4, 0.4 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224982/A  
www.ti.com  
PACKAGE OUTLINE  
RSM0032B  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
B
4.1  
3.9  
A
0.45  
0.25  
0.25  
0.15  
PIN 1 INDEX AREA  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
4.1  
3.9  
(0.1)  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.8 0.05  
2X 2.8  
(0.2) TYP  
4X (0.45)  
28X 0.4  
9
16  
SEE SIDE WALL  
DETAIL  
8
17  
EXPOSED  
THERMAL PAD  
2X  
SYMM  
33  
2.8  
24  
0.25  
32X  
1
SEE TERMINAL  
DETAIL  
0.15  
0.1  
C A B  
25  
32  
PIN 1 ID  
(OPTIONAL)  
0.05  
SYMM  
0.45  
0.25  
32X  
4219108/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.8)  
SYMM  
32  
25  
32X (0.55)  
1
32X (0.2)  
24  
(
0.2) TYP  
VIA  
(1.15)  
SYMM  
33  
(3.85)  
28X (0.4)  
17  
8
(R0.05)  
TYP  
9
16  
(1.15)  
(3.85)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219108/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.715)  
4X ( 1.23)  
(R0.05) TYP  
25  
32  
32X (0.55)  
1
24  
32X (0.2)  
(0.715)  
(3.85)  
33  
SYMM  
28X (0.4)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(3.85)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 33:  
77% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219108/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LP502MINI

Application Specific Amplifier
ETC

LP502PLID

Application Specific Amplifier
ETC

LP502T12IST

Series - 3Rd Overtone Quartz Crystal, 50.2857MHz Nom,
CTS

LP502T13CET

Parallel - 3Rd Overtone Quartz Crystal, 50.2857MHz Nom,
CTS

LP502T13CJT

Parallel - 3Rd Overtone Quartz Crystal, 50.2857MHz Nom,
CTS

LP502T13IDT

Parallel - 3Rd Overtone Quartz Crystal, 50.2857MHz Nom,
CTS

LP502T15CCT

Parallel - 3Rd Overtone Quartz Crystal, 50.2857MHz Nom,
CTS

LP502T15IBT

Parallel - 3Rd Overtone Quartz Crystal, 50.2857MHz Nom,
CTS

LP502T1YCGT

Parallel - 3Rd Overtone Quartz Crystal, 50.2857MHz Nom,
CTS

LP502T22CHT

Parallel - 3Rd Overtone Quartz Crystal, 50.2857MHz Nom,
CTS

LP502T22IAT

Parallel - 3Rd Overtone Quartz Crystal, 50.2857MHz Nom,
CTS

LP502T22IBT

Parallel - 3Rd Overtone Quartz Crystal, 50.2857MHz Nom,
CTS