LMZM23601SILR [TI]

采用 3.8mm × 3mm 封装的 36V、1A 降压直流/直流电源模块 | SIL | 10 | -40 to 125;
LMZM23601SILR
型号: LMZM23601SILR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 3.8mm × 3mm 封装的 36V、1A 降压直流/直流电源模块 | SIL | 10 | -40 to 125

开关 电源电路
文件: 总48页 (文件大小:3163K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
3.8mm × 3mm 封装LMZM23601 36V1A 降压直流/直流电源模块  
1 特性  
3 说明  
4V 36V 宽工作输入电压范围  
1.2V 15V 可调输出电压3.3V 5V 固定输出  
电压选项  
LMZM23601 集成电感器电源模块专为空间受限型工业  
应用而设计。该器件提供 5V 3.3V 两种固定输出电  
压以及支持 1.2V 15V 范围的可调 (ADJ) 输出电压  
选项。LMZM23601 4V 36V 的输入电压范围  
可提供高达 1000mA 的输出电流。该电源模块使用起  
来极其简单只需 2 个外部组件即可实现 5V 3.3V  
输出设计。LMZM23601 的所有方面均针对空间受限的  
性能驱动型、低 EMI 工业应用进行了优化。漏极开路  
电源正常输出提供了系统状态的真实指示无需使用附  
加监控组件从而节省了成本和布板空间。PWM 和  
PFM 模式之间的无缝转换以及仅 28µA 的无负载电源  
电流可确保实现整个负载电流范围的高效率和出色的瞬  
态响应。为了方便进行输出电流调节LMZM23601 与  
支持 500mA 输出电流的 LMZM23600 之间实现了引脚  
对引脚兼容。  
1A 输出电流  
5V 3.3V 输出设计仅需要输入和输出电容器  
27mm2 解决方案尺寸使用单面布局  
28µA 无负载电源电流  
2µA 关断电流  
• 电源正常状态标志  
• 外部频率同步  
• 模式选择引脚  
– 强PWM 模式可实现恒定频率操作  
– 在轻负载条件下可实现高效率的自PFM 模式  
• 内置控制环路补偿、软启动、电流限制UVLO  
• 微3.8mm × 3mm × 1.6mm 封装  
• 使LMZM23601 并借WEBENCH® Power  
Designer 创建定制设计方案  
封装信息  
封装(1)  
封装尺寸标称值)  
器件型号  
LMZM23601  
SILMicroSiP™  
10)  
2 应用  
3.80mm × 3.00mm  
• 传感器变送器  
• 测试和测量  
• 电网基础设施  
• 空间受限型应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
GND  
DC-DC Module  
GND  
MODE/  
SYNC  
CIN  
CIN  
COUT  
VIN  
VIN  
EN  
FB  
24V 5V1A 直流/直流转换器单面布局解决方案尺  
VOUT  
VOUT  
PGOOD  
COUT  
GND  
Copyright © 2017, Texas Instruments Incorporated  
24V 5V1A 直流/直流转换器的固定输出选项原理  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSAQ4  
 
 
 
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
Table of Contents  
8 Application and Implementation..................................22  
8.1 Application Information............................................. 22  
8.2 Typical Applications.................................................. 22  
8.3 Best Design Practices...............................................34  
8.4 Power Supply Recommendations.............................34  
8.5 Layout....................................................................... 35  
9 Device and Documentation Support............................38  
9.1 Device Support......................................................... 38  
9.2 Documentation Support............................................ 38  
9.3 接收文档更新通知..................................................... 38  
9.4 支持资源....................................................................38  
9.5 Trademarks...............................................................39  
9.6 静电放电警告............................................................ 39  
9.7 术语表....................................................................... 39  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 System Characteristics............................................... 9  
6.7 Typical Characteristics..............................................10  
7 Detailed Description......................................................16  
7.1 Overview...................................................................16  
7.2 Functional Block Diagram.........................................16  
7.3 Feature Description...................................................16  
7.4 Device Functional Modes..........................................21  
Information.................................................................... 39  
10.1 Tape and Reel Information......................................40  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (May 2019) to Revision C (March 2023)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 更新的商标信息.................................................................................................................................................. 1  
Changed the VIN to GND MAX from 42 to 40.................................................................................................... 5  
Updated the Functional Block Diagram ........................................................................................................... 16  
Changes from Revision A (April 2018) to Revision B (May 2019)  
Page  
• 将最小可调输出范围2.5V 更改为 1.2V...........................................................................................................1  
Added Maximum input voltage vs output voltage graph for VOUT < 2.5 V, Power dissipation and Output  
current vs ambient temperature graphs for 1.2-V and 1.8-V outputs................................................................10  
Added information on maximum input voltage for VOUT < 2.5 V ......................................................................23  
Added output capacitance requirements for 1.2-V and 1.8-V outputs .............................................................24  
Added guidance on feedback resistor values for lower output voltages ..........................................................25  
Added typical application curves for 1.2-V and 1.8-V outputs ......................................................................... 27  
Changes from Revision * (December 2017) to Revision A (April 2018)  
Page  
• 首次发布生产数据数据表WEBENCH 链接..............................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSAQ4  
2
Submit Document Feedback  
Product Folder Links: LMZM23601  
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
Device Comparison  
5-1. LMZM23601 Device Options  
PART NUMBER  
OUTPUT VOLTAGE  
PACKAGE QTY (1)  
LMZM23601SILR  
LMZM23601V3SILR  
LMZM23601V5SILR  
LMZM23601SILT  
Adjustable  
3.3 V  
3000  
3000  
3000  
250  
5 V  
Adjustable  
3.3 V  
LMZM23601V3SILT  
LMZM23601V5SILT  
250  
5 V  
250  
(1) See Package Option Addendum for tape and reel details as well as links used to order parts.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
GND  
MODE/SYNC  
VIN  
1
2
3
4
5
10  
9
DNC  
DNC  
DNC  
FB  
Thermal  
Pad  
8
EN  
7
PGOOD  
6
VOUT  
Not to scale  
5-1. SIL 10-Pin MicroSiPPackage Top View  
5-1. Pin Functions  
DESCRIPTION  
PIN  
TYPE  
NO.  
NAME  
1
GND  
G
Ground for all circuitry. Reference point for all voltages.  
This pin is a multifunction mode control input which is tolerant of voltages up to the input voltage.  
With this input tied LOW, the device is in Auto PFM mode with automatic transition between PFM and  
PWM with diode emulation at light load. TI recommends this mode when the application requires  
high efficiency at light load.  
MODE/  
SYNC  
With this input tied HIGH, the device is in forced PWM mode. The device switches at the internal  
clock frequency. TI recommends this mode when the application requires constant switching  
frequency across the entire load current.  
2
I
With a valid synchronization signal at this pin, the device switches in forced PWM mode at the  
external clock frequency and synchronized with it at the rising edge of the clock.  
Do not float this pin.  
Input supply to the regulator. Connect a high-quality bypass capacitors directly to this pin and the  
GND pin (pin 1).  
3
4
5
VIN  
EN  
P
I
Enable input to the regulator. HIGH = ON, LOW = OFF. This pin can be connected to VIN. Do not  
float.  
Open-drain, power-good output. Connect to a suitable voltage supply through a current limiting  
resistor. HIGH = power is good, LOW = fault. This output terminal is LOW when EN is LOW.  
PGOOD  
O
Output voltage terminal. This pin is internally connected to one terminal of the integrated inductor.  
Connect an output filter capacitor from VOUT to GND and place the capacitor as close as possible to  
the VOUT pin.  
6
7
VOUT  
FB  
O
I
Feedback input to the regulator.  
If using the fixed 3.3-V or 5-V options of the device, connect this pin to the positive end of the output  
filter capacitor (the VOUT node).  
If using the adjustable output option of the device connect this to the feedback voltage divider and  
keep this node as small as possible on the board layout.  
8
DNC  
DNC  
DNC  
O
O
O
G
Do not connect. Leave floating. This pin provides access to the internal VCC voltage of the device.  
Do not connect. Leave floating. This pin provides access to the internal BOOT voltage for the high  
side MOSFET driver.  
9
10  
Do not connect. Leave floating. This pin provides access to the internal SW voltage of the device.  
This terminal is internally connected to GND and provides a wide thermal connection from the IC to  
the PCB. Connect to electrical ground plane for adequate heat sinking.  
Thermal Pad  
G = Ground, I = Input, O = Output, P = Power  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSAQ4  
4
Submit Document Feedback  
Product Folder Links: LMZM23601  
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
-0.3  
MAX  
40  
UNIT  
V
VIN to GND  
SW to GND  
VIN + 0.3  
3.6  
V
BOOT to SW  
V
EN to GND  
42  
V
VOUT to GND  
16  
V
FB to GND (3.3-V and 5-V options)  
FB to GND (ADJ option)  
PGOOD to GND  
16  
V
0.3  
0.3  
0.3  
5.5  
V
16  
V
PGOOD sink current  
MODE/SYNC to GND  
VCC to GND  
8
mA  
V
42  
0.3  
-0.3  
3.6  
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
125  
150  
°C  
°C  
40  
40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4
NOM  
MAX  
36  
UNIT  
VIN  
Input voltage  
V
V
Output voltage (5 V)  
Output voltage (3.3 V)  
Output voltage (ADJ)  
Output current (1 A)  
Operating junction temperature  
0
5
VOUT  
0
3.3  
15  
V
1.2  
0
V
IOUT  
TJ  
1
A
125  
°C  
40  
6.4 Thermal Information  
LMZM2360x  
SIL (μSIP)  
10 PINS  
45  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
3
ΨJT  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
 
 
 
 
 
 
 
 
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
LMZM2360x  
SIL (μSIP)  
10 PINS  
20  
THERMAL METRIC(1)  
UNIT  
Junction-to-board characterization parameter  
°C/W  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Limits apply over the recommended operating junction temperature range of -40°C to +125°C, unless otherwise stated.  
Minimum and maximum limits are ensured through test, design or statistical correlation. Typical values represent the most  
likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated, the following  
conditions apply: VIN = 24 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FEEDBACK  
VFB  
Initial output voltage accuracy  
(3.3-V and 5-V fixed output)  
VIN = 4 V to 36 V, open loop  
VIN = 4 V to 36 V, open loop  
FB = 1 V  
1.5%  
1.015  
1.5%  
VFB  
Reference voltage (ADJ option)  
0.985  
1
V
Input current from FB to GND  
(ADJ option)  
IFB  
20  
nA  
CURRENT  
VIN = 12 V, VFB = +10%, VOUT = 5 V  
7
µA  
µA  
VIN = 12 V, VFB = +10%, VOUT = 5 V, TJ =  
85°C  
16  
18  
VIN = 12 V, VFB = +10%, VOUT = 5 V, TJ =  
125°C  
Operating quiescent current;  
measured at VIN pin  
IQ  
VIN = 24 V, VFB = +10%, VOUT = 5 V  
12  
VIN = 24 V, VFB = +10%, VOUT = 5 V, TJ =  
85°C  
24  
26  
80  
VIN = 24 V, VFB = +10%, VOUT = 5 V, TJ =  
125°C  
VIN = 24 V, VFB = +10%, VOUT = 5 V,  
Mode = 0 V  
IB  
Bias current into the VOUT pin  
48  
µA  
µA  
EN = 0 V, VIN = 12 V, TJ = 25°C  
EN = 0 V, VIN = 12 V, TJ = 85°C  
EN = 0 V, VIN = 24 V, TJ = 25°C  
EN = 0 V, VIN = 24 V, TJ = 85°C  
1.8  
3
Shutdown quiescent current;  
measured at VIN pin  
ISD  
5
10  
UNDERVOLTAGE LOCKOUT (UVLO)  
VIN_UVLO  
Minimum input voltage to operate Rising  
UVLO hysteresis  
3.1  
0.2  
3.5  
3.85  
0.3  
V
V
VIN_UVLO_HYST  
0.25  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSAQ4  
6
Submit Document Feedback  
Product Folder Links: LMZM23601  
 
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Limits apply over the recommended operating junction temperature range of -40°C to +125°C, unless otherwise stated.  
Minimum and maximum limits are ensured through test, design or statistical correlation. Typical values represent the most  
likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated, the following  
conditions apply: VIN = 24 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER GOOD FLAG (PGOOD)  
VPGOOD_OV  
VPGOOD_UV  
PGOOD upper threshold voltage Rising, % of Vout  
PGOOD lower threshold voltage Falling, % of Vout  
103.5% 106.7%  
109%  
97%  
92%  
94.7%  
Magnitude of PGOOD lower  
VPGOOD_GUARD threshold difference from steady  
state output voltage.  
Steady state output voltage PGOOD  
threshold read at the same TJ and VIN  
4%  
PGOOD hysteresis as a percent  
VPGOOD_HYST  
1.4%  
1.0  
of output voltage set point  
Minimum input voltage for proper 50-µA pullup to PGOOD pin, EN = 0 V, TJ  
VPGOOD_VALID  
tRESET_FILTER  
1.5  
V
PGOOD function  
= 25°C  
Glitch filter time constant for  
PGOOD function  
190  
µs  
50-µA pullup to PGOOD pin, VIN = 1.5 V,  
EN = 0 V  
0.4  
0.4  
0.4  
110  
Low-level PGOOD function output 0.5-mA pullup to PGOOD pin, VIN = 12 V,  
VOL  
V
voltage  
EN = 0 V  
1-mA pullup to PGOOD pin, VIN = 12 V,  
EN = 3.3 V  
RDSON of the PGOOD output  
pull down  
RPGOOD_RDSON  
50  
Ω
SWITCHING FREQUENCY  
VIN = 24 V, 5-V and 3.3-V fixed output  
options  
675  
890  
750  
1000  
750  
825  
VIN = 24 V, ADJ output options  
1090  
fSW  
Switching frequency  
kHz  
kHz  
VIN = 36 V, 5-V and 3.3-V fixed output  
options  
VIN = 36 V, ADJ output options  
800  
FREQUENCY SYNCHRONIZATION AND MODE  
5-V and 3.3-V fixed output options VOUT  
VDROPOUT < VIN < 36 V  
+
500  
825  
fSYNC  
Sync frequency range  
ADJ output options VOUT + VDROPOUT  
VIN < 28 V  
<
700  
25%  
1.5  
1100  
75%  
DSYNC  
Sync input duty cycle range  
2.3 V < HIGH state input < 5.5 V  
MODE/SYNC input logic HIGH  
voltage to enter FPWM mode  
VMODE_HIGH  
V
V
MODE/SYNC input logic LOW  
voltage to enter AUTO PFM mode  
VMODE_LOW  
0.4  
VIN = 12 V, VMODE/SYNC = 3.3 V  
VIN = 12 V, VMODE/SYNC = 12V  
VIN = 12 V, VOUT = 5 V, IOUT= 20 mA  
1
5
IMODE  
MODE/SYNC leakage current  
µA  
µs  
MODE transition time to FPWM  
300  
tMODE  
MODE transition time to AUTO  
PFM  
VIN = 12 V, VOUT = 5 V, IOUT = 20 mA  
300  
CURRENT LIMIT PROTECTION  
IL-HS  
IL-LS  
IL-ZC  
high-side switch current limit  
Duty cycle approaches 0%  
MODE/SYNC = logic LOW  
1.45  
1
1.81  
1.2  
2.2  
A
A
A
low-side switch current limit  
Zero-cross current limit  
1.43  
0.01  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Limits apply over the recommended operating junction temperature range of -40°C to +125°C, unless otherwise stated.  
Minimum and maximum limits are ensured through test, design or statistical correlation. Typical values represent the most  
likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated, the following  
conditions apply: VIN = 24 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Low-side reverse current limit  
IL-NEG  
(positive current ino the SW pin to MODE/SYNC = logic HIGH  
GND)  
0.5  
0.8  
A
POWER STAGE CHARACTERISTICS  
HS RDS-ON  
LS RDS-ON  
tON-MIN  
High-side MOSFET on-resistance  
220  
200  
50  
mΩ  
mΩ  
ns  
Low-side MOSFET on-resistance  
Minimum high-side on-time  
Minimum high-side off-time  
IOUT = 500 mA  
80  
tOFF-MIN  
IOUT = 500 mA, ADJ  
5-V and 3.3-V fixed output options  
ADJ option  
62  
100  
ns  
93%  
91%  
97%  
10  
DMAX  
Maximum switch duty cycle  
While in frequency foldback  
L
Integrated inductor - inductance  
Integrated inductor - DCR  
µH  
LDCR  
390  
mΩ  
ENABLE  
VEN  
Enable input threshold voltage  
Enable input threshold hysteresis  
Enable input wake-up threshold  
Enable pin input current  
Rising  
1.7  
0.42  
0.4  
1.92  
0.52  
V
V
VEN_HYST  
VEN_WAKE  
IEN  
V
VIN = VEN = 12 V  
2.7  
µA  
VCC REGULATOR  
VIN = 12 V, VOUT < 3.3 V  
3.05  
3.15  
2.73  
VCC  
Internal VCC voltage  
V
VIN = 12 V, VOUT 3.3V  
VCC_UVLO  
Internal VCC voltage input UVLO VIN rising  
2.23  
150  
3.25  
240  
V
Internal VCC voltage input UVLO  
hysteresis  
VCC_UVLO_HYST  
Hysteresis below VCC_UVLO  
mV  
SOFT START  
tSS  
Soft-start time  
Time for VREF to ramp from 0% to 90%  
1.8  
3.5  
4
5.5  
ms  
ms  
ms  
tEN_LV  
tEN  
Turnon delay with low VIN  
Turnon delay  
VIN < 4.2 V  
VIN = 12 V  
0.7  
Short circuit wait time (hiccup  
time)  
tW  
8.0  
ms  
THERMAL PROTECTION  
TSD  
Thermal shutdown  
Thermal shutdown hysteresis  
Rising threshold  
155  
15  
°C  
°C  
TSD_HYST  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSAQ4  
8
Submit Document Feedback  
Product Folder Links: LMZM23601  
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
6.6 System Characteristics  
The following specifications apply to a typical applications circuit, with nominal component values. Specifications in the  
typical (TYP) column apply to TJ = 25°C. Specifications in the minimum (MIN) and maximum (MAX) columns apply to the  
case of typical components over the temperature range of TJ = 40°C to 125°C. These specifications are not ensured by  
production testing.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT  
VIN = 12 V, VOUT = 3.3 V, IOUT = 0 A,  
fixed output option, EN connected  
to VIN  
25  
32  
24  
28  
VIN =12 V, VOUT = 5 V, IOUT = 0 A,  
fixed output option, EN connected  
to VIN  
Input current to the DC-DC converter  
while in regulation  
IQ-VIN  
µA  
VIN =24 V, VOUT = 3.3 V, IOUT = 0 A,  
fixed output option, EN connected  
to VIN  
VIN = 24 V, VOUT = 5 V, IOUT = 0 A,  
fixed output option, EN connected  
to VIN  
EFFICIENCY  
Efficiency  
Efficiency  
Efficiency  
Efficiency  
Efficiency  
Typical efficiency 12-V input  
Typical efficiency 12-V input  
Typical efficiency 24-V input  
Typical efficiency 24-V input  
Typical efficiency 24-V input  
VIN =12 V, VOUT = 5 V, IOUT = 1 A  
VIN = 12 V, VOUT = 3.3 V, IOUT = 1 A  
VIN = 24 V, VOUT = 5 V, IOUT = 1 A  
VIN = 24 V, VOUT = 3.3 V, IOUT = 1 A  
VIN = 24 V, VOUT = 12 V, IOUT = 1 A  
87%  
81%  
85%  
79%  
92%  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
6.7 Typical Characteristics  
VIN = 24 V, TA = 25°C (unless otherwise noted). Refer to default evaluation board layout and bill of materials.  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
VOUT = 3.3 V  
VOUT = 5.0 V  
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9  
Output Voltage (V)  
2
2.1 2.2 2.3 2.4  
0
4
8
12  
16 20  
Input Voltage (V)  
24  
28  
32  
36  
D099  
D041  
6-1. Maximum Input Voltage for VOUT < 2.5V  
Fixed output voltage options  
Output voltage in regulation  
EN = VIN  
Load = Open  
6-2. Input Supply Current  
3.5  
3.4  
3.3  
3.2  
3.1  
3
5.1  
5
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4
2.9  
2.8  
2.7  
2.6  
2.5  
IOUT = 1.0 A  
IOUT = 0.75 A  
IOUT = 0.5 A  
IOUT = 0.25 A  
IOUT = 1.0 A  
IOUT = 0.75 A  
IOUT = 0.5 A  
IOUT = 0.25 A  
3.9  
3.8  
3.7  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
Input Voltage (V)  
4.5  
4.7  
4.9  
4.5 4.7 4.9 5.1 5.3 5.5 5.7 5.9 6.1 6.3 6.5  
Input Voltage (V)  
D033  
D035  
VOUT = 3.3 V  
6-3. Dropout Voltage  
VOUT = 5 V  
6-4. Dropout Voltage  
12.2  
12  
15.2  
15  
11.8  
11.6  
11.4  
11.2  
11  
14.8  
14.6  
14.4  
14.2  
14  
10.8  
10.6  
10.4  
10.2  
10  
13.8  
13.6  
13.4  
13.2  
13  
IOUT = 1.0 A  
IOUT = 0.75 A  
IOUT = 0.5 A  
IOUT = 0.25 A  
IOUT = 1.0 A  
IOUT = 0.75 A  
IOUT = 0.5 A  
IOUT = 0.25 A  
11  
11.4  
11.8  
12.2 12.6  
Input Voltage (V)  
13  
13.4  
13.8  
14  
14.4  
14.8  
15.2 15.6  
Input Voltage (V)  
16  
16.4  
16.8  
D037  
D039  
VOUT = 12 V  
6-5. Dropout Voltage  
VOUT = 15 V  
6-6. Dropout Voltage  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSAQ4  
10  
Submit Document Feedback  
Product Folder Links: LMZM23601  
 
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
VIN = 24 V, TA = 25°C (unless otherwise noted). Refer to default evaluation board layout and bill of materials.  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
CISPR11 Class A Limit  
CISPR11 Class B Limit  
Evaluation Board  
CISPR11 Class A Limit  
CISPR11 Class B Limit  
Evaluation Board  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
D042  
D044  
VIN = 24 V  
OUT = 5 V  
IOUT = 1 A  
VIN = 24 V  
IOUT = 1 A  
VOUT = 5 V  
Default EVM Layout with added 3 × 100pF 0603 CIN  
Default EVM BOM with GND Plane as Top Layer  
6-7. Radiated EMI  
6-8. Radiated EMI  
75  
1.5  
VIN = 18 V PFM  
VIN = 18 V FPWM  
VIN = 22 V PFM  
VIN = 22 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
1.4  
1.3  
1.2  
1.1  
1
70  
65  
60  
55  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2-Layer  
4-Layer  
50  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
5
10  
15  
20  
25  
30  
35  
40  
Board Area (cm2)  
D020  
D032  
VOUT = 15 V  
6-9. Package Thermal Resistance vs Board Copper Area, No  
Air Flow  
6-10. Power Dissipation  
1.5  
1.5  
1.4  
1.3  
1.2  
1.1  
1
VIN = 15 V PFM  
VIN = 15 V FPWM  
VIN = 18 V PFM  
VIN = 18 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
VIN = 6.5 V PFM  
VIN = 6.5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
D018  
D014  
VOUT = 12 V  
VOUT = 5 V  
6-11. Power Dissipation  
6-12. Power Dissipation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
VIN = 24 V, TA = 25°C (unless otherwise noted). Refer to default evaluation board layout and bill of materials.  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.5  
1.4  
1.3  
1.2  
1.1  
1
VIN = 5 V PFM  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
VIN = 5 V PFM  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
D016  
D012  
VOUT = 3.3 V  
VOUT = 2.5 V  
6-13. Power Dissipation  
6-14. Power Dissipation  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.5  
1.4  
1.3  
1.2  
1.1  
1
VIN = 5 V PFM  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 15 V PFM  
VIN = 15 V FPWM  
VIN = 5 V PFM  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
D094  
D092  
VOUT = 1.8 V  
VOUT = 1.2 V  
6-15. Power Dissipation  
6-16. Power Dissipation  
1.1  
1
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VIN = 5 V  
VIN = 12 V  
VIN = 15 V  
VIN = 5 V  
VIN = 12 V  
30  
40  
50  
60  
Ambient Temperature (degrees C)  
70  
80  
90 100 110 120 130  
30  
40  
50  
60  
Ambient Temperature (degrees C)  
70  
80  
90 100 110 120 130  
D085  
D086  
VOUT = 1.2 V  
Rθ = 58°C/W  
VOUT = 1.8V  
Rθ = 58°C/W  
6-17. Ambient Temperature vs Output Current  
6-18. Ambient Temperature vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSAQ4  
12  
Submit Document Feedback  
Product Folder Links: LMZM23601  
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
VIN = 24 V, TA = 25°C (unless otherwise noted). Refer to default evaluation board layout and bill of materials.  
1.1  
1
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VIN = 5 V  
VIN = 12 V  
VIN = 18 V  
VIN = 24 V  
VIN = 5 V  
VIN = 12 V  
VIN = 18 V  
VIN = 24 V  
30  
40  
50  
60  
Ambient Temperature (degrees C)  
70  
80  
90 100 110 120 130  
30  
40  
50  
60  
Ambient Temperature (degrees C)  
70  
80  
90 100 110 120 130  
D022  
D026  
D030  
D024  
VOUT = 2.5 V  
Rθ = 58°C/W  
VOUT = 3.3 V  
Rθ = 58°C/W  
6-19. Ambient Temperature vs Output Current  
6-20. Ambient Temperature vs Output Current  
1.1  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VIN = 12 V  
VIN = 18 V  
VIN = 24 V  
VIN = 18 V  
VIN = 24 V  
30  
40  
50  
60  
Ambient Temperature (degrees C)  
70  
80  
90 100 110 120 130  
30  
40  
50  
60  
Ambient Temperature (degrees C)  
70  
80  
90 100 110 120 130  
D028  
VOUT = 5 V  
Rθ = 58°C/W  
VOUT = 12 V  
Rθ = 58°C/W  
6-21. Ambient Temperature vs Output Current  
6-22. Ambient Temperature vs Output Current  
1.1  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VIN = 5V  
VIN = 12V  
VIN = 24 V  
VIN = 18 V  
VIN = 24 V  
VIN = 36 V  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
30  
40  
50  
60  
70  
Ambient Temperature (degrees C)  
80  
90 100 110 120 130  
D045  
VOUT = 2.5 V  
VOUT = 15 V  
Rθ = 58°C/W  
6-24. Auto PFM Mode Switching Frequency vs Output  
6-23. Ambient Temperature vs Output Current  
Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
VIN = 24 V, TA = 25°C (unless otherwise noted). Refer to default evaluation board layout and bill of materials.  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VIN = 5V  
VIN = 12V  
VIN = 24 V  
VIN = 5V  
VIN = 12V  
VIN = 24 V  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
D047  
D057  
VOUT = 3.3 V Adjustable Option  
VOUT = 3.3 V Fixed Option  
6-25. Auto PFM Mode Switching Frequency vs Output  
6-26. Auto PFM Mode Switching Frequency vs Output  
Current  
Current  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
900  
800  
700  
600  
500  
400  
300  
200  
VIN = 12V  
VIN = 24V  
VIN = 12V  
VIN = 24V  
100  
0
100  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
D049  
D059  
VOUT = 5 V Adjustable Option  
VOUT = 5 V Fixed Option  
6-27. Auto PFM Mode Switching Frequency vs Output  
6-28. Auto PFM Mode Switching Frequency vs Output  
Current  
Current  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
100  
VIN = 24V  
VIN = 24V  
0
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
D053  
D051  
VOUT = 15 V  
VOUT = 12 V  
6-30. Auto PFM Mode Switching Frequency vs Output  
6-29. Auto PFM Mode Switching Frequency vs Output  
Current  
Current  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
VIN = 24 V, TA = 25°C (unless otherwise noted). Refer to default evaluation board layout and bill of materials.  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VOUT = 2.5V  
VOUT = 3.3V  
VOUT = 5.0V  
VOUT = 12V  
VOUT = 15V  
VOUT = 5.0 V FIXED  
VOUT = 3.3V FIXED  
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32 34 36  
Input Voltage (V)  
0
5
10  
15  
20  
25  
Input Voltage (V)  
30  
35  
40  
D055  
D061  
6-31. Switching Frequency vs Input Voltage for Adjustable  
6-32. Switching Frequency vs Input Voltage for Fixed Output  
Output Options at Full Load  
Options at Full Load  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMZM23601 is a 4-V to 36-V wide-input voltage range, low quiescent current, high-performance DC/DC  
module designed specifically for space-constrained industrial applications. The device is available in an  
adjustable output voltage option with 1.2-V to 15-V output range, as well as fixed 5-V and 3.3-V output options.  
The high level of integration and innovative packaging technology utilized in this power module makes it possible  
to design a 5-V or a 3.3-V 1-A DC/DC converter with only an input capacitor and an output capacitor in just 27  
mm² of available board space.  
7.2 Functional Block Diagram  
7.3 Feature Description  
7.3.1 Control Scheme  
The LMZM23601 power module utilizes peak-current-mode-control architecture. This enables the use of wide  
range of input voltages while maintaining constant switching frequency and good input and output transient  
response. The device can be used with 5-V, 12-V, or 24-V typical industrial input voltage rail. The short minimum  
on- and off-times ensure constant frequency regulation over a wide range of input to output voltage conversion  
ratios. The adjustable (ADJ) output voltage option operates at 1000-kHz switching frequency. The minimum on-  
and off- times allow for a duty factor window of 5% to 91% at 1000-kHz switching frequency. If the input voltage  
exceeds approximately 28 V on the ADJ version, the frequency is smoothly reduced from 1000 kHz as a function  
of input voltage. The switching frequency reduction allows output voltage regulation and the current mode  
control to operate with a duty factor below 5%. The fixed 5-V and 3.3-V output options operate at 750 kHz  
nominal switching frequency and the frequency foldback at high input voltage is not active or needed.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSAQ4  
16  
Submit Document Feedback  
Product Folder Links: LMZM23601  
 
 
 
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
The control architecture also uses frequency foldback at low input voltage to achieve low dropout voltage,  
maintaining output regulation as the input voltage falls close to output voltage. The frequency foldback at low  
input voltage is active for the ADJ as well as the 5-V and 3.3-V output options. The reduction in frequency is  
smooth and continuous and is activated as the off-time approaches the minimum value. Under these conditions,  
the LMZM23601 device operates much like a constant off-time converter allowing the maximum duty cycle to  
reach 97%. This feature allows output voltage regulation with very low dropout.  
The LMZM23601 features exceptional conversion efficiency at light load. As the load current is reduced, the  
LMZM23601 transitions to light-load mode if the MODE/SYNC terminal is pulled low. In light-load mode the  
device uses diode emulation to reduce the RMS inductor current and the switching frequency is reduced. The  
fixed voltage versions (3.3-V and 5-V) do not need an external voltage divider connected to FB, which results in  
saving two components and lower standby current when the load is in standby. As a result, the consumed supply  
current is only 24 µA (typical) with 24-V to 3.3-V conversion and 28 µA (typical) with 24-V to 5-V conversion,  
while the output is regulated with no load.  
7.3.2 Soft-Start Function  
The LMZM23601 features an internally programmed soft-start time. The soft-start time is fixed internally at about  
4 ms and is achieved by ramping the internal reference. The device starts up properly even if there is a voltage  
present on output before the activation of the LMZM23601. In such cases, there is no switching until the output  
voltage value programmed by the ramping reference voltage is above the pre-biased output value. After the  
prebiased voltage level is reached by the reference ramp, the switching starts, and the output ramps up  
smoothly from the pre-biased value up to the final output voltage.  
7.3.3 Enable and External UVLO Function  
Some applications can require a precision enable or custom input voltage lockout (UVLO) functionality. Setting  
up external UVLO based on the application needs prevents the converter from trying to regulate the output  
voltage until after the input voltage has reached a desired minimum level. Such function can be used to lower  
the current demand from the input supply as the supply is still starting up.  
The LMZM23601 features a precision enable (EN) input terminal. The EN input logic has two internal thresholds.  
The first rising threshold is at 0.9V typical. Its purpose is to wake up the internal VCC regulator to bias the  
internal circuitry. The EN rising threshold to start switching is 1.8V (typical) with 0.5V (typical) hysteresis. A  
voltage divider from VIN to EN can be used to set the VIN voltage at which the regulator starts the voltage  
conversion. The EN terminal is rated for up to the input voltage and can be connected directly to VIN for an  
always-on operation. Pulling the EN pin below 0.4 V puts the LMZM23601 in shutdown mode. In shutdown mode  
and 12-V input voltage the LMZM23601 only consumes 1.8 µA (typical) of input current.  
7.3.4 Current Limit  
The LMZM23601 devices features two current limits inside the IC. A coarse high side or peak current limit is  
provided to protect against faults. The high-side current limit limits the duration of the on-period of the high-side  
power MOSFET during a given clock cycle. A precision cycle-by-cycle valley current limit prevents excessive  
average output current. A new switching cycle is not initiated until the inductor current drops below the valley  
current limit.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
Vout  
Peak  
Valley  
7-1. Current Limit Operation During Output Short Circuit  
7-1 shows the response of the LMZM23601 device to a short circuit on the output: The peak current limit  
prevents excessive peak current while the valley current limit prevents excessive average inductor current. After  
a small number of cycles, hiccup mode is activated.  
7.3.5 Hiccup Mode  
To prevent excessive heating and power consumption under sustained output short-circuit conditions, a hiccup  
mode operation is included in the control logic. If an over current condition is maintained on the output, the  
LMZM23601 device shuts off both power MOSFETs and waits for a hiccup interval, tW, of approximately 8 ms.  
After the wait period, the device restarts operation beginning with a soft-start time interval.  
Vout  
7-2. Hiccup Operation  
7-2 shows hiccup mode operation: The LMZM23601 attempts to restart periodically, following a hiccup wait  
interval. If the fault at the output is still present, another hiccup wait interval is initiated, followed by another  
restart attempt. This sequence continues until the output short circuit is removed. When the output short circuit is  
removed, the output ramps up during the next restart sequence.  
7.3.6 Power Good (PGOOD) Function  
The LMZM23601 has a built-in power-good signal presented at the PGOOD terminal. This signal indicates  
whether the output voltage is within the regulation window. The PGOOD terminal is an open-drain output that  
requires a pullup resistor to a nominal voltage source of 15 V or less. The absolute maximum PGOOD sink  
current is 8 mA. Typically, TI recommends a pullup resistor value between 10 kΩ and 100 kΩ. Refer to  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
 
 
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
Electrical Characteristics for the power-good thresholds and hysteresis for undervoltage and overvoltage  
detection.  
7.3.7 MODE/SYNC Function  
7.3.7.1 Forced PWM Mode  
When constant frequency operation is more important than light load efficiency, the MODE/SYNC input of the  
LMZM23601 device must be pulled high or a valid synchronization input must be provided. This activates forced-  
PWM-mode operation. After activated, this feature ensures that the switching frequency stays constant across  
the entire load current range, while operating between the minimum and maximum duty cycle limits. The diode  
emulation feature is turned off in this mode. This means that the device remains in CCM under light loads. The  
switching frequency in forced PWM mode is only reduced when the input voltage-to-output voltage ratio results  
in minimum on-time limitation (ADJ version only) or minimum off-time limitation near dropout.  
This feature can be activated and deactivated while the part is regulating without removing the load. This feature  
activates and deactivates gradually, preventing perturbation of output voltage. When in FPWM mode, a limited  
reverse current is allowed through the inductor allowing power to pass from the regulators output to its input.  
7.3.7.2 Auto PFM Mode  
If the MODE/SYNC terminal is held low the LMZM23601 device enables automatic power-saving-mode transition  
at light load. With high load the LMZM23601 regulates the output using normal PWM operation. When the load is  
light, the control logic smoothly transitions to PFM operation and diode emulation. In this mode, the high side  
MOSFET is turned on for one or more pulses to provide energy to the load. The on-time of the high side in this  
mode depends on the input voltage level and a pre-programmed internal IPEAK-MIN current level. The higher the  
input voltage is, the shorter the on-time is. At this point, there is a longer off-time during which the output is still in  
the regulation window because the load is light, and the output is not getting discharged as quickly. The duration  
of the off-time depends on the load current level. Lighter load results in longer off-time. This mode of operation  
results in excellent conversion efficiency at very light load. When auto-PFM mode is used, the output voltage at  
no load is approximately 1% higher than FPWM operation.  
7.3.7.3 Dropout Mode  
When the input voltage level decreases and approaches the output voltage level, the buck regulator reaches its  
maximum duty cycle or minimum off-time requirement for each switching cycle. At this point the output is no  
longer regulated and follows the input voltage minus the voltage drops from VIN to VOUT  
.
To maximize the input voltage range for which the output is still regulated, the LMZM23601 features frequency  
foldback at low input voltage. This operation extends the switching period and, for a given fixed minimum off-  
time, it prolongs the maximum duty cycle of the regulator. As a result, the output voltage can still be well  
regulated even as the input voltage level is very close to the output voltage. This feature can be useful for  
battery applications (maximizing the useful battery range) or in applications where large input voltage variations  
can be expected.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
7.3.7.4 SYNC Operation  
Synchronizing the switching frequency of multiple regulators in a single system is often desirable. This technique  
results in better defined EMI behavior and can reduce the need for capacitance on some power rails. The  
LMZM23601 MODE/SYNC input allows synchronization to an external clock. The LMZM23601 implements an  
in-phase locking scheme the rising edge of the clock signal provided to the input of the LMZM23601 device  
corresponds to turning on the high-side MOSFET device. This function is implemented using phase locking over  
a limited frequency range eliminating large glitches upon initial application of an external clock. The clock fed into  
the LMZM23601 device replaces the internal free-running clock but does not affect frequency foldback operation.  
The foldback function takes over and the output voltage continues to be well regulated using frequency reduction  
when duty factors outside of the normal duty cycle range are reached. When the device is synchronized to the  
lower end of the synchronization range the internal inductor sees higher peak currents. For high current ripple  
designs (for example, high input voltage and 12-V and 15-V output designs), the maximum current capability of  
the device can be derated.  
The device remains in FPWM mode and operates in CCM for light loads when synchronization input is provided.  
The MODE/SYNC function logic always prioritizes the proper regulation of the output voltage. 7-1 summarizes  
the MODE/SYNC function and the operating switching frequency with various conditions. See 6.7 for  
frequency foldback vs input voltage behavior.  
7-1. Switching Frequency and MODE/SYNC Function  
SWITCHING FREQUENCY  
DEVICE  
MODE/SYNC  
LIGHT LOAD  
FULL LOAD  
VIN > 28 V  
IN DROPOUT MODE  
Reduced  
(save power)  
Fixed  
1000 kHz  
Reduced  
(maintain regulation)  
Reduced  
(maintain regulation)  
Logic LOW = Auto PFM  
Fixed  
1000 kHz  
Fixed  
1000 kHz  
Reduced  
(maintain regulation)  
Reduced  
(maintain regulation)  
ADJ Output  
Logic HIGH = FPWM  
Valid FSYNC Input  
Reduced  
(maintain regulation)  
Reduced  
(maintain regulation)  
FSYNC  
FSYNC  
Reduced  
(save power)  
Fixed  
750 kHz  
Fixed  
750 kHz  
Reduced  
(maintain regulation)  
Logic LOW = Auto PFM  
Logic HIGH = FPWM  
Valid FSYNC Input  
Fixed  
3.3-V Output  
or 5-V  
Fixed  
750 kHz  
Fixed  
750 kHz  
Fixed  
750 kHz  
Reduced  
(maintain regulation)  
Output  
Reduced  
(maintain regulation)  
FSYNC  
FSYNC  
FSYNC  
7.3.8 Thermal Protection  
The LMZM23601 monitors its junction temperature (TJ) and shuts off if the it gets too hot. The thermal shutdown  
threshold for the junction is typically 155°C. Both, high-side and low-side power MOSFETs are turned off until the  
junction temperature has decreased under the hysteresis level, typically 15°C below the shutdown temperature.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSAQ4  
20  
Submit Document Feedback  
Product Folder Links: LMZM23601  
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Shutdown  
The LMZM23601 device shuts down most internal circuitry and high-side and low-side power MOSFETs under  
any of the following conditions:  
1. EN is low  
2. VIN is below the falling UVLO threshold  
3. Junction temperature exceeds TSD threshold  
The PGOOD flag remains operational with input voltage as low as 1.5 V.  
7.4.2 FPWM Operation  
If MODE/SYNC is above the VMODE/SYNC high threshold or a valid synchronizing is applied to MODE/SYNC,  
constant frequency operation is maintained across load. The ADJ option of the device folds back the frequency  
when VIN exceeds 28 V typical so that the output voltage can be properly regulated. See 7-1 for all use cases  
and options. FPWM mode requires negative current be allowed in the inductor if the load is light. If a large  
negative load is present, operation is halted by a reverse current limit, IL-NEG  
.
7.4.3 Auto PFM Mode Operation  
If MODE/SYNC is below the VMODE/SYNC low threshold, reverse current in the inductor is not allowed. This  
feature is called diode emulation. While the load is heavy, the regulator uses PWM mode to control the output. If  
the load is light, the control logic transitions to PFM mode. The switching frequency is reduced, resulting in  
excellent energy savings while regulation is maintained. Because the frequency is reduced and switching pulses  
can come in groups, the output voltage ripple can increase slightly. Under this condition, the output ripple can be  
reduced by increasing the output capacitance.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The LMZM23601 device is a step-down power module, typically used to efficiently convert a high DC input  
voltage to a lower DC output voltage with a maximum output current of up to 1 A. The following sections  
describe a simple design procedure for creating a DC/DC converter design with these modules.  
8.2 Typical Applications  
The LMZM23601 module requires very few external components for a complete DC/DC converter design. If the  
output voltage for the application is 3.3 V or 5 V, the fixed output voltage option of the LMZM23601 device can  
be used. In such cases, the design is as simple as adding only an input and an output capacitor. The adjustable  
output voltage version of the device allows the user to set the output voltage between 1.2 V and 15 V with the  
addition of two feedback resistors to the bill of materials.  
GND  
GND  
MODE/  
SYNC  
CIN  
VIN  
VIN  
EN  
FB  
VOUT  
VOUT  
PGOOD  
COUT  
GND  
Copyright © 2017, Texas Instruments Incorporated  
8-1. Fixed 5-V or 3.3-V Typical Application Circuit  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
 
 
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
GND  
GND  
MODE/  
SYNC  
CIN  
VIN  
VIN  
EN  
RFBT  
RFBB  
FB  
VOUT  
VOUT  
PGOOD  
COUT  
GND  
Copyright © 2017, Texas Instruments Incorporated  
8-2. Adjustable 1.2-V to 15-V Output Typical Application Circuit  
8.2.1 Design Requirements  
8.2.1.1 Maximum Input Voltage for VOUT < 2.5 V  
For designs requiring VOUT less than 2.5 V the maximum input voltage is limited by the switching frequency and  
the minimum on-time. See 8-3.  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9  
Output Voltage (V)  
2
2.1 2.2 2.3 2.4  
D099  
8-3. Maximum Input Voltage for VOUT < 2.5 V  
For this design example, use the parameters listed in 8-1 as the input parameters.  
8-1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Output voltage  
VALUE  
8 V to 36 V  
5 V  
COMMENT  
This range covers a typical 12-V or 24-V industrial supply  
Fixed or adjustable output voltage can be used  
Output current range  
No load to 1 A  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LMZM23601device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
 
 
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Input Capacitor Selection  
The input capacitor selection and placement on the board layout is very important for any buck converter design.  
This component provides the pulsing high di/dt current every switching cycle and reduces the input voltage ripple  
seen by the buck converter. Use a good-quality 10-µF, 1210 (3225) case size, X5R or X7R ceramic capacitor  
with sufficient voltage rating on the input of the device. Alternatively, in applications with strict size constraints  
and more stable input voltage it is possible to use a 10-µF, 1206 (3216) case size or a parallel combination of 2 ×  
4.7-µF, 0805 (2012), X5R or X7R capacitors. Ceramic capacitors have a DC bias dependence on their effective  
capacitance and can de-rate their value significantly when used at higher bias voltage. TI recommends ceramic  
capacitors with 50-V rating when using the device with a 24-V input supply. TI recommends ceramic  
capacitors with 25-V rating when using the device with a 12-V input supply.  
Just like with any buck converter, place the input capacitor as close as possible and next to the LMZM23601.  
Connect the capacitor directly to the VIN (pin 3) and GND (pin 1) terminals of the device. This placement  
ensures that the area of the high di/dt current loop in the buck converter is kept to a minimum, resulting in the  
lowest possible inductance in the switching current path. The proper placement of the input capacitor in any  
buck converter helps to keep the output noise of the converter to a minimum. See 8-2 for several input  
capacitor choices.  
8-2. Input Capacitor Selection  
VOLTAGE  
RATING  
VALUE  
CASE SIZE  
DIELECTRIC  
QUANTITY  
VENDOR  
PART NUMBER  
10 µF  
10 µF  
10 µF  
4.7 µF  
50 V  
1210 (3225)  
1210 (3225)  
1206 (3216)  
0805 (2012)  
X7R  
X7R  
X5R  
X5R  
1
1
1
2
TDK  
MuRata  
TDK  
C3225X7R1H106M250AC  
GRJ32ER71H106KE11  
C3216X5R1H106K160AB  
C2012X5R1H475K125AB  
50 V  
50 V  
50 V  
TDK  
For this design example a single 10-µF, 50-V 1210 X7R capacitor is used.  
8.2.2.3 Output Capacitor Selection  
TI recommends low-ESR ceramic capacitors for output capacitors. There is a requirement for minimum  
capacitance on the output of the LMZM23601 to ensure stable operation. The minimum output capacitance  
requirement depends on the output voltage setting. There is also a maximum capacitance value for stability and  
to limit the in-rush supply current. Excessive output capacitance can result in excessive current to be drawn from  
the input supply during startup. If the overcurrent condition is persistent during start-up, the over current  
protection of the LMZM23601 can activate and affect the normal output voltage ramp up. In extreme cases, the  
7.3.5 operation can be activated during start-up if the maximum output capacitance is exceeded.  
Refer to 8-3 for the minimum, recommended, and maximum output capacitance values for each output  
voltage. For this example with a 5-V output a 22-µF capacitor can be used.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSAQ4  
24  
Submit Document Feedback  
Product Folder Links: LMZM23601  
 
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
8-3. Output Capacitor  
MINIMUM  
OUTPUT CAPACITANCE  
RECOMMENDED  
OUTPUT CAPACITANCE  
MAXIMUM  
OUTPUT CAPACITANCE  
OUTPUT VOLTAGE  
1.2 V  
1.8 V  
2.5 V  
3.3 V  
5 V  
82 µF  
68 µF  
47 µF  
22 µF  
15 µF  
10 µF  
10 µF  
100 µF  
82 µF  
68 µF  
33 µF  
22 µF  
15 µF  
15 µF  
470 µF  
470 µF  
390 µF  
330 µF  
220 µF  
200 µF  
200 µF  
12 V  
15 V  
8.2.2.4 Feedback Voltage Divider for Adjustable Output Voltage Versions  
GND  
GND  
MODE/  
SYNC  
CIN  
VIN  
VIN  
EN  
RFBT  
RFBB  
FB  
VOUT  
VOUT  
PGOOD  
COUT  
GND  
Copyright © 2017, Texas Instruments Incorporated  
8-4. Adjustable 1.2-V to 15-V Output Typical Application Circuit  
The adjustable version of the LMZM23601 regulates the output voltage such that the FB node voltage is equal to  
the internal VREF voltage of 1 V. The output voltage is then set by a feedback voltage divider formed by two  
external resistors, RFBT and RFBB  
.
RFBB + RFBT  
VOUT = VREF  
ì
RFBB  
(1)  
The range of adjustable output voltage is 1.2 V to 15 V.  
Choose a value for RFBT in the kΩrange, and calculate the bottom resistor RFBB using 方程2:  
RFBT  
RFBB  
=
VOUT  
VREF  
- 1  
(2)  
For VOUT < 3.0 V, TI recommends to allow 20 µA of static load current on the output. This can be achieved by  
limiting the maximum resistance of the feedback divider. For example, for VOUT = 2 V, the maximum total  
feedback resistance (RFBB+ RFBT) must be 100 kΩor less.  
For this design example the output voltage is set to 5 V. The fixed 5-V output voltage option of the LMZM23601  
can be used without any feedback resistors. If the adjustable output option is used for this design condition, the  
top feedback resistor RFBT can be set to 102 kΩ. The RFBB value results in 25.5 kΩ.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
 
 
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
8.2.2.5 RPU - PGOOD Pullup Resistor  
The PGOOD terminal of the LMZM23601 is an open-drain output. If the application requires a power-good flag,  
use a 100-kΩ pullup resistor from the PGOOD terminal to an external voltage rail. If a power-good function is  
not necessary, the PGOOD terminal can be left floating.  
8.2.2.6 VIN Divider and Enable  
If the application requires custom input UVLO level higher than the internal UVLO, a voltage divider can be  
connected from VIN to the EN terminal to set the turnon threshold.  
VIN  
RENT  
EN  
RENB  
GND  
8-5. Enable Divider to Set External UVLO Threshold  
Choose the top resistor RENB between 10 kΩand 50 kΩand calculate the RENT according to 方程3.  
VSTART  
÷
RENT  
=
-1 ìRENB  
÷
VEN  
«
VEN_HYST  
÷
÷
VSTOP = VSTART ì 1-  
VEN  
«
(3)  
where  
VSTART is the rising input voltage level at which switching starts. Choose this value based on the application  
requirements.  
VSTOP is the input voltage at which switching stops  
VEN is the rising threshold on EN; see Electrical Characteristics  
VEN_HYST is the hysteresis on the EN threshold; see Electrical Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSAQ4  
26  
Submit Document Feedback  
Product Folder Links: LMZM23601  
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
8.2.3 Application Curves  
Unless otherwise stated, the following conditions apply: VIN = 24 V, TA = 25°C.  
8.2.3.1 VOUT = 5 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
IOUT  
(500 mA/DIV)  
VIN = 6.5V PFM  
VIN = 6.5V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
VOUT  
(50 mV/DIV)  
Time (500 µs/DIV)  
0
0.0001  
0.001  
0.01 0.1  
Output Current (A)  
1
10  
D002  
MODE = Low for Auto PFM Mode  
MODE = High for FPWM Mode  
5-V Adjustable Output  
5-V Adjustable Output  
10% to 100% Load Step  
MODE = High  
8-6. Efficiency  
8-7. Load Transient  
VOUT Ripple  
VOUT Ripple  
(20 mV/DIV)  
(5 mV/DIV)  
20MHz BW  
250MHz BW  
Time (1 µs/DIV)  
Time (1 µs/DIV)  
5-V Adjustable Output  
IOUT = 1 A  
5-V Adjustable Output  
IOUT = 1 A  
8-8. Output Ripple 20 MHz BW  
8-9. Output Ripple 250-MHz BW  
5.1  
5.075  
5.05  
5.025  
5
EN  
(2 V/DIV)  
VOUT  
(2 V/DIV)  
4.975  
4.95  
4.925  
4.9  
VIN = 5 V PFM  
IOUT  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
(500 mA/DIV)  
PGOOD  
4.875  
4.85  
4.825  
(2 V/DIV)  
Time (2 ms/DIV)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
D008  
8-11. Start-up With 24-V Input  
8-10. Line and Load Regulation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
8.2.3.2 VOUT = 3.3 V  
100  
90  
80  
70  
60  
50  
IOUT  
(500 mA/DIV)  
VIN = 5 V PFM  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
40  
30  
20  
10  
VOUT  
(50 mV/DIV)  
Time (500 µs/DIV)  
0
0.0001  
0.001  
0.01 0.1  
Output Current (A)  
1
10  
D003  
3.3-V Adjustable Output  
10% to 100% Load Step  
MODE = High  
MODE = High for FPWM Mode  
MODE = Low for Auto PFM Mode  
3.3-V Adjustable Output  
8-13. Load Transient  
8-12. Efficiency  
VOUT Ripple  
VOUT Ripple  
(20 mV/DIV)  
(5 mV/DIV)  
250MHz BW  
Time (1 µs/DIV)  
20MHz BW  
Time (1 µs/DIV)  
3.3-V Adjustable Output  
IOUT = 1 A  
3.3-V Adjustable Output  
IOUT = 1 A  
8-14. Output Ripple 20-MHz BW  
8-15. Output Ripple 250 MHz BW  
3.38  
3.36  
3.34  
3.32  
3.3  
EN  
(2 V/DIV)  
VOUT  
(2 V/DIV)  
VIN = 5 V PFM  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
3.28  
3.26  
3.24  
3.22  
3.2  
IOUT  
(500 mA/DIV)  
PGOOD  
(2 V/DIV)  
Time (2 ms/DIV)  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
D009  
3.3-V Adjustable Output  
Toggle Enable  
MODE = High for FPWM Mode  
MODE = Low for Auto PFM Mode  
3.3-V Adjustable Output  
8-17. Start-up With 24-V Input  
8-16. Line and Load Regulation  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSAQ4  
28  
Submit Document Feedback  
Product Folder Links: LMZM23601  
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
8.2.3.3 VOUT = 12 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT  
(500 mA/DIV)  
VIN = 15V PFM  
VIN = 15V FPWM  
VIN = 18 V PFM  
VIN = 18 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
VOUT  
(100 mV/DIV)  
Time (500 µs/DIV)  
0.0001  
0.001  
0.01 0.1  
Output Current (A)  
1
10  
D004  
MODE = High for FPWM Mode  
MODE = Low for Auto PFM Mode  
12-V Adjustable Output  
12-V Adjustable Output  
10% to 100% Load Step  
MODE = High  
8-18. Efficiency  
8-19. Load Transient  
VOUT Ripple  
VOUT Ripple  
(20 mV/DIV)  
(5 mV/DIV)  
20MHz BW  
250MHz BW  
Time (1 µs/DIV)  
Time (1 µs/DIV)  
12-V Adjustable Output  
IOUT = 1 A  
12-V Adjustable Output  
IOUT = 1 A  
8-20. Output Ripple 20-MHz BW  
8-21. Output Ripple 250-MHz BW  
12.2  
12.15  
12.1  
EN  
(2 V/DIV)  
12.05  
12  
VOUT  
(5 V/DIV)  
11.95  
11.9  
VIN = 5 V PFM  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
IOUT  
11.85  
11.8  
(500 mA/DIV)  
PGOOD  
11.75  
11.7  
(2 V/DIV)  
Time (2 ms/DIV)  
11.65  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
D010  
12-V Adjustable Output  
Toggle Enable  
MODE = High for FPWM Mode  
MODE = Low for Auto PFM Mode  
12-V Adjustable Output  
8-23. Start-up With 24-V Input  
8-22. Line and Load Regulation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
8.2.3.4 VOUT = 15 V  
100  
90  
80  
70  
60  
50  
IOUT  
(500 mA/DIV)  
VIN = 18V PFM  
VIN = 18V FPWM  
VIN = 22 V PFM  
VIN = 22 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
40  
30  
20  
10  
VOUT  
(100 mV/DIV)  
Time (500 µs/DIV)  
0
0.0001  
0.001  
0.01 0.1  
Output Current (A)  
1
10  
D006  
15-V Adjustable Output  
10% to 100% Load Step  
MODE = High  
MODE = High for FPWM Mode  
MODE = Low for Auto PFM Mode  
15-V Adjustable Output  
8-25. Load Transient  
8-24. Efficiency  
VOUT Ripple  
VOUT Ripple  
(20 mV/DIV)  
(5 mV/DIV)  
20MHz BW  
250MHz BW  
Time (1 µs/DIV)  
Time (1 µs/DIV)  
15-V Adjustable Output  
IOUT = 1 A  
15-V Adjustable Output  
IOUT = 1 A  
8-26. Output Ripple 20-MHz BW  
8-27. Output Ripple 250-MHz BW  
15.3  
15.25  
15.2  
15.15  
15.1  
EN  
(2 V/DIV)  
15.05  
15  
VOUT  
14.95  
14.9  
14.85  
14.8  
14.75  
14.7  
14.65  
14.6  
(10 V/DIV)  
VIN = 5 V PFM  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
IOUT  
(500 mA/DIV)  
PGOOD  
(2 V/DIV)  
Time (2 ms/DIV)  
14.55  
14.5  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
D011  
MODE = High for FPWM Mode  
MODE = Low for Auto PFM Mode  
15-V Adjustable Output  
15-V Adjustable Output  
Toggle Enable  
8-29. Start-up with 24-V Input  
8-28. Line and Load Regulation  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSAQ4  
30  
Submit Document Feedback  
Product Folder Links: LMZM23601  
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
8.2.3.5 VOUT = 2.5 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT  
(500 mA/DIV)  
VIN = 5 V PFM  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
VOUT  
(20 mV/DIV)  
Time (500 µs/DIV)  
0.0001  
0.001  
0.01 0.1  
Output Current (A)  
1
10  
D005  
2.5-V Adjustable Output  
10% to 100% Load Step  
MODE = High  
MODE = High for FPWM Mode  
MODE = Low for Auto PFM Mode  
2.5-V Adjustable Output  
8-31. Load Transient  
8-30. Efficiency  
VOUT Ripple  
VOUT Ripple  
(20 mV/DIV)  
(5 mV/DIV)  
20MHz BW  
250MHz BW  
Time (1 µs/DIV)  
Time (1 µs/DIV)  
2.5-V Adjustable Output  
IOUT = 1 A  
2.5-V Adjustable Output  
IOUT = 1 A  
8-32. Output Ripple 20-MHz BW  
8-33. Output Ripple 250-MHz BW  
2.6  
2.575  
2.55  
EN  
(2 V/DIV)  
2.525  
2.5  
VOUT  
(2 V/DIV)  
2.475  
2.45  
VIN = 5 V PFM  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
IOUT  
2.425  
2.4  
(500 mA/DIV)  
PGOOD  
2.375  
2.35  
(2 V/DIV)  
Time (2 ms/DIV)  
2.325  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
D007  
8-35. Start-up with 24-V Input  
8-34. Line and Load Regulation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
8.2.3.6 VOUT = 1.2 V and VOUT = 1.8 V  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5 V PFM  
30  
20  
10  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 15 V PFM  
VIN = 15 V FPWM  
VIN = 5 V PFM  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
0
0.0001  
0.001  
0.01  
Output Current (A)  
0.1 0.2 0.5  
1
2 3 5 710  
0.0001  
0.001  
0.01 0.1 0.2 0.5  
Output Current (A)  
1
2 3 5 710  
D096  
D098  
MODE = Low for Auto PFM Mode  
MODE = High for FPWM Mode  
1.8-V Adjustable Output  
MODE = Low for Auto PFM Mode  
MODE = High for FPWM Mode  
1.2-V Adjustable Output  
8-36. Efficiency for VOUT = 1.8 V  
8-37. Efficiency for VOUT = 1.2 V  
1.88  
1.86  
1.84  
1.82  
1.8  
1.24  
1.22  
1.2  
1.78  
1.76  
1.74  
1.72  
VIN = 5 V PFM  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 15 V PFM  
VIN = 15 V FPWM  
1.18  
1.16  
VIN = 5 V PFM  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
D090  
D088  
8-38. Line and Load Regulation for VOUT = 1.8 V 8-39. Line and Load Regulation for VOUT = 1.2 V  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.5  
1.4  
1.3  
1.2  
1.1  
1
VIN = 5 V PFM  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 15 V PFM  
VIN = 15 V FPWM  
VIN = 5 V PFM  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
D094  
D092  
MODE = Low for Auto PFM Mode  
MODE = High for FPWM Mode  
1.8-V Adjustable Output  
MODE = Low for Auto PFM Mode  
MODE = High for FPWM Mode  
1.2-V Adjustable Output  
8-40. Power Dissipation for VOUT = 1.8 V  
8-41. Power Dissipation for VOUT = 1.2 V  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
8.2.3.7 VOUT = 5 V and 3.3 V Fixed Output Options  
100  
90  
80  
70  
60  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
VIN = 6.5V PFM  
VIN = 6.5V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
VIN = 5 V PFM  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
40  
30  
20  
10  
0
0.0001  
0.001  
0.01  
Output Current (A)  
0.1 0.2 0.5  
1
2 3 5 710  
0.0001  
0.001  
0.01 0.1 0.2 0.5  
Output Current (A)  
1
2 3 5 710  
D063  
D065  
MODE = Low for Auto PFM Mode  
MODE = High for FPWM Mode  
5-V Fixed Output  
MODE = Low for Auto PFM Mode  
MODE = High for FPWM Mode  
3.3-V Fixed Output  
8-42. Efficiency for VOUT = 5 V  
8-43. Efficiency for VOUT = 3.3 V  
5.1  
5.075  
5.05  
5.025  
5
3.38  
3.36  
3.34  
3.32  
3.3  
3.28  
3.26  
3.24  
3.22  
3.2  
4.975  
4.95  
4.925  
4.9  
VIN = 5 V PFM  
VIN = 5 V PFM  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
VIN = 5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
3.18  
3.16  
3.14  
3.12  
3.1  
4.875  
4.85  
4.825  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
D073  
D071  
8-44. Line and Load Regulation for VOUT = 5 V 8-45. Line and Load Regulation for VOUT = 3.3 V  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.5  
1.4  
1.3  
1.2  
1.1  
1
VIN = 6.5 V PFM  
VIN = 6.5 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
VIN = 5.0 V PFM  
VIN = 5.0 V FPWM  
VIN = 12 V PFM  
VIN = 12 V FPWM  
VIN = 24 V PFM  
VIN = 24 V FPWM  
VIN = 36 V PFM  
VIN = 36 V FPWM  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
D067  
D069  
MODE = Low for Auto PFM Mode  
MODE = High for FPWM Mode  
5-V Fixed Output  
MODE = Low for Auto PFM Mode  
MODE = High for FPWM Mode  
3.3-V Fixed Output  
8-46. Power Dissipation for VOUT = 5 V  
8-47. Power Dissipation for VOUT = 3.3 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
8.3 Best Design Practices  
Do not: Exceed the absolute maximum ratings of the device.  
Do not: Exceed the ESD ratings of the device.  
Do not: Exceed the recommended operating conditions.  
Do not: Allow the EN or MODE/SYNC terminals to float.  
Do not: Allow the output voltage to exceed the input voltage, nor go below ground.  
Do: Follow all of the guidelines and suggestions found in this data sheet, before committing your design to  
production.  
Do: Review your designs with TI Application Engineers on the E2E forum.  
8.4 Power Supply Recommendations  
8.4.1 Supply Voltage Range  
The voltage of the input supply must not exceed the absolute maximum ratings and the recommended operating  
conditions of the LMZM23601.  
8.4.2 Supply Current Capability  
The input supply must be able to supply the required input current to the LMZM23601 converter. The required  
input current depends on the application's minimum input voltage, the required maximum output current, the  
output voltage, and the converter efficiency ηfor this condition.  
VOUT ìIOUTMAX  
I
í
IN  
VINMIN ì h  
(4)  
As an example, assuming that the adjustable output voltage version of the LMZM23601 is used for a 5-V, 1-A  
output converter design with 12-V minimum input voltage. The conversion efficiency for this condition is about  
85%. The required input current from the supply is 0.49 A, so TI recommends an input power supply with 0.5  
A current capability.  
8.4.3 Supply Input Connections  
Long input connection cables can cause issues with the normal operation of any buck converter. Some of the  
issues can be a voltage drop in the input voltage or stability probes because of the added series input  
inductance.  
8.4.3.1 Voltage Drops  
Using long input wires to connect the supply to the input of any converter adds impedance in series with the  
input supply. This impedance can cause a voltage drop at the VIN pin of the converter when the output of the  
converter is loaded. If the input voltage is near the minimum input operating voltage for the design, this added  
voltage drop can cause the converter to drop out or reset. If long wires are used during testing, TI recommends  
adding some bulk (for example, electrolytic) capacitance at the input of the converter.  
8.4.3.2 Stability  
The added inductance of long input cables together with the ceramic (and low ESR) input capacitor can result in  
an underdamped RLC network at the input of the buck converter. This circuit can cause instability, or overvoltage  
transients at the VIN pin each time the input supply is cycled on and off. If long wires are used, TI recommends  
adding some electrolytic bulk capacitance in parallel with the ceramic input capacitor. The ESR of the bulk  
capacitor improves the damping. Use an electrolytic capacitor with a capacitance at least four times larger than  
the ceramic input capacitance.  
CBULK í 4 ìCCER  
(5)  
The required ESR from the bulk capacitor depends on the cable inductance.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSAQ4  
34  
Submit Document Feedback  
Product Folder Links: LMZM23601  
 
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
LCABLE  
ESRBULK  
í
CCER  
(6)  
For example, two cables (one for VIN and one for GND), each 1 meter (approximately 3 feet) long with  
approximately 1-mm diameter (18 AWG), placed 1 cm (approximately 0.4 inch) apart forms a rectangular loop  
resulting in about 1.2 µH of inductance. The inductance in this example can be decreased to almost half if the  
input wires are twisted. Based on a 10-µF ceramic input capacitor, the recommended parallel CBULK is 40 µF.  
Using a 47-µF capacitor is sufficient. Based on about 1.2 µH of inductance and 10 µF of ceramic input  
capacitance, the recommended ESR of the bulk capacitor is 0.35 Ω or larger. See TI User Guide, Simple  
Success with Conducted EMI for DC/DC Converters for more details on input filter design.  
8.5 Layout  
8.5.1 Layout Guidelines  
Good board layout is essential for the proper operation of any switching regulator. A poor layout can ruin an  
otherwise perfect schematic design. The good news is that it is relatively easy to achieve an optimized layout  
when using a module because some of the critical nodes for the board layout are internal to the device. To have  
a good layout with this module, the designer must follow these main objectives:  
1. Minimize the inductance in the switching current path of the converter. The switching current path in the buck  
converter is formed by the input capacitor and the power switches (for example, MOSFETs). A common  
mistake in many buck converter layouts is placing the input capacitor far from the IC. This introduces  
inductance in the switching current path, which leads to high frequency ringing on the switching node, which  
results in high frequency noise coupled all the way to the output voltage. The input capacitor placement  
affects the amount of noise on the output in a buck converter. Place the input capacitor as close as  
possible, right next to the LMZM23601 ensures that the switching current path area is kept to a minimum.  
This results in the lowest possible inductance in the path of high di/dt current.  
2. Protect any sensitive nodes in the converter design. The feedback node is usually a sensitive area of the  
converter and needs to be away from any noise sources. The fixed 5-V and 3.3-V output voltage versions of  
the LMZM23601 have the feedback resistors internal to the device, and the sensitive node is inside the  
module. However, if the adjustable option is used, then two feedback resistors are required to set the output  
voltage. A common mistake in many layouts is placing the divider close to the load, far from the device, and  
then using a long feedback trace back to the regulator. A long feedback trace can potentially pick up noise  
from other nearby circuits. TI recommends placing the feedback divider as close as possible to the  
LMZM23601 device so that the feedback node is as small as possible.  
3. Provide enough copper for heat dissipation. The board copper provides a thermal resistance path for the  
heat to flow out of the package and dissipate into the environment. Place a dog-bone shape of ground  
(GND) copper under the module for proper heat sinking. Also, place thermal vias to provide a heat path to  
the other board layers. TI recommends an unbroken GND plane or GND area of copper on the top and  
bottom layers.  
8.5.1.1 Thermal Design  
Thermal design is an important aspect of any power regulator design. Every supply dissipates some power, and  
providing sufficient copper area for proper heat dissipation is important. The package thermal resistance curves  
vs PCB copper area along with the power dissipation curves in 6.7 can be used to estimate the necessary  
copper area for the design. Consider 方程7 and 8-48.  
125 ( F 6  
#_/#:  
4à Q  
2&  
(7)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
 
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
75  
70  
65  
60  
55  
2-Layer  
4-Layer  
50  
5
10  
15  
20  
25  
30  
35  
40  
Board Area (cm2)  
D032  
8-48. Package Thermal Resistance vs Board Copper Area  
As an example, consider a typical application of 24-V input 5-V output with 0.8 A of output current and estimate  
the required heat-sinking area. For this example consider a maximum ambient temperature TA_MAX of 75°C and  
no air flow or additional heat sinking besides the PCB layers. Calculate the maximum allowed package thermal  
resistance for this design specification.  
From 6.7, it can be seen that the power dissipation for 24-V input, 5-V output, and 0.8A load is 0.75 W. Based  
on 方程式 7, for this power dissipation level and 75°C maximum ambient temperature, the maximum package  
thermal resistance must be less than 66.7°C/W. To achieve this thermal resistance with a 2-layer board, the  
approximate area of the board copper must be at least 9 cm2.  
8.5.2 Layout Examples  
INPUT CAPACITOR  
OUTPUT  
PLACED NEXT TO  
CAPACITOR  
THE MODULE  
MODULE  
GND  
GND  
GND  
MODE  
VIN  
FB  
EN  
PG  
VOUT  
VOUT  
VIN  
FEEDBACK  
CONNECTION  
GND COPPER FOR  
HEAT SINKING  
=THERMAL VIAS  
8-49. Layout Example With Fixed Output Version  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
INPUT CAPACITOR  
PLACED NEXT TO  
THE MODULE  
BOTTOM FB  
TOP FB  
OUTPUT  
CAPACITOR  
RESISTOR RESISTOR  
MODULE  
GND  
GND  
GND  
MODE  
VIN  
EN  
FB  
PG  
VOUT  
VOUT  
VIN  
MINIMIZE FB  
NODE  
GND COPPER FOR  
HEAT SINKING  
=THERMAL VIAS  
8-50. Layout Example With Adjustable Output Version  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
9.1.2 Development Support  
9.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LMZM23601 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2 Documentation Support  
9.2.1 Related Documentation  
For related documentation request the following:  
Texas Instruments, Inverting Application for the LMZM23601 and LMZM23600 application report  
Texas Instruments, AN-2020 Thermal Design By Insight, Not Hindsight application report  
Texas Instruments, AN-1149 Layout Guidelines for Switching Power Supplies application report  
Texas Instruments, Constructing Your Power Supply Layout Considerations  
Texas Instruments, AN-1229 Simple Switcher PCB Layout Guidelines application report  
Texas Instruments, Using New Thermal Metrics application report  
Texas Instruments, Semiconductor and IC Package Thermal Metrics application report  
Texas Instruments, AN-1520 A Guide to Board Layout for Best Thermal Resistance for Exposed Pad Packages  
application report  
Texas Instruments, AN-2162 Simple Success With Conducted EMI From DCDC Converters application report  
9.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
 
 
 
 
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
9.5 Trademarks  
MicroSiPand TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
 
 
 
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
10.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
LMZM23601SILR  
LMZM23601SILT  
uSiP  
uSiP  
uSiP  
uSiP  
uSiP  
uSiP  
SIL  
SIL  
SIL  
SIL  
SIL  
SIL  
10  
10  
10  
10  
10  
10  
3000  
250  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
3.27  
3.27  
3.27  
3.27  
3.27  
3.27  
4.07  
4.07  
4.07  
4.07  
4.07  
4.07  
1.78  
1.78  
1.78  
1.78  
1.78  
1.78  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
LMZM23601V3SILR  
LMZM23601V3SILT  
LMZM23601V5SILR  
LMZM23601V5SILT  
3000  
250  
3000  
250  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSAQ4  
40  
Submit Document Feedback  
Product Folder Links: LMZM23601  
 
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
uSiP  
Package Drawing Pins  
SPQ  
3000  
250  
Length (mm) Width (mm)  
Height (mm)  
58.0  
LMZM23601SILR  
LMZM23601SILT  
SIL  
SIL  
SIL  
SIL  
SIL  
SIL  
10  
10  
10  
10  
10  
10  
383.0  
383.0  
383.0  
383.0  
383.0  
383.0  
353.0  
353.0  
353.0  
353.0  
353.0  
353.0  
uSiP  
58.0  
LMZM23601V3SILR  
LMZM23601V3SILT  
LMZM23601V5SILR  
LMZM23601V5SILT  
uSiP  
3000  
250  
58.0  
uSiP  
58.0  
uSiP  
3000  
250  
58.0  
uSiP  
58.0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
PACKAGE OUTLINE  
SIL0010A  
uSiPTM - 1.578 mm max height  
S
C
A
L
E
3
.
5
0
0
MICRO SYSTEM IN PACKAGE  
3.9  
3.7  
B
A
PIN 1 ID  
3.1  
2.9  
PICK AREA  
NOTE 3  
NOTE 4  
TYP  
1.578 MAX  
C
SEATING PLANE  
0.08 C  
3.05 TYP  
11  
EXPOSED  
THERMAL PAD  
0.7 0.1  
(0.05) TYP  
5
6
6X 0.6  
2.9 0.1  
SYMM  
2X  
2.4  
0.4  
10X  
0.2  
0.1  
C A B  
C
10  
0.05  
1
PIN 1 ID  
0.175  
0.75  
0.55  
10X  
PKG  
4222635/D 08/2019  
MicroSiP is a trademark of Texas Instruments  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Pick and place nozzle 1.1 mm or smaller recommended.  
4. Location, size and quantity of components are for reference only and could vary.  
5. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
SIL0010A  
uSiPTM - 1.578 mm max height  
MICRO SYSTEM IN PACKAGE  
(0.7)  
11  
SEE SOLDER MASK  
DETAILS  
10X (0.65)  
10  
1
10X (0.3)  
SYMM  
(2.9)  
8X (0.6)  
(1.03)  
(R0.05) TYP  
6
5
(
0.2) VIA  
TYP  
(0.175)  
PKG  
(3.05)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL EDGE  
EXPOSED  
EXPOSED  
SOLDER MASK  
OPENING  
METAL  
METAL  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222635/D 08/2019  
NOTES: (continued)  
6. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
7. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
LMZM23601  
ZHCSHO5C DECEMBER 2017 REVISED MARCH 2023  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
SIL0010A  
uSiPTM - 1.578 mm max height  
MICRO SYSTEM IN PACKAGE  
3X (0.7)  
11  
(R0.05) TYP  
10X (0.65)  
1
10X (0.3)  
10  
3X  
(0.833)  
SYMM  
8X (0.6)  
(1.03)  
5
6
EXPOSED  
METAL  
2X  
(0.175)  
PKG  
(3.05)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PAD 11:  
86% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4222635/D 08/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: LMZM23601  
English Data Sheet: SNVSAQ4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMZM23601SILR  
LMZM23601SILT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
uSiP  
uSiP  
uSiP  
uSiP  
uSiP  
uSiP  
SIL  
SIL  
SIL  
SIL  
SIL  
SIL  
10  
10  
10  
10  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
A 4B  
A 4B  
A 4I  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIAU  
NIAU  
NIAU  
NIAU  
NIAU  
LMZM23601V3SILR  
LMZM23601V3SILT  
LMZM23601V5SILR  
LMZM23601V5SILT  
A 4I  
A 4H  
A 4H  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Mar-2023  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
SIL 10  
uSIPTM  
MICRO SYSTEM IN PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225402/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY