LMV7239QM7X/NOPB [TI]

汽车级微功耗 75ns 单路轨至轨比较器 | DCK | 5 | -40 to 125;
LMV7239QM7X/NOPB
型号: LMV7239QM7X/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车级微功耗 75ns 单路轨至轨比较器 | DCK | 5 | -40 to 125

比较器
文件: 总31页 (文件大小:2009K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMV7239-Q1  
ZHCSI25 APRIL 2018  
具有开漏和推挽输出的 LMV7239-Q1 75ns、超低功耗、低压、轨至轨输入  
比较器  
1 特性  
3 说明  
1
符合汽车类 标准  
具有符合 AEC-Q100 标准的下列特性:  
LMV7239-Q1 75ns 超低功耗低压比较器。此器件  
可在 2.7V 5.5V 的完整电源电压范围内正常运行。  
该器件可实现 75ns 的传播延迟,而在 5V 电压下仅消  
65μA 的电源电流。  
器件温度 1 级:–40°C 125°C 的环境工作温  
度范围  
器件人体模型 (HBM) 静电放电 (ESD) 分类等级  
1C  
LMV7239-Q1 具有更大的轨至轨共模电压范围。输入  
共模电压范围可基于地电压向下扩展 200mV 并基于电  
源电压向上扩展 200mV,从而允许接地感应和电源感  
应。  
器件 CDM ESD 分类等级 C5DBV 封装)  
VS = 5VTA = 25°C(典型值,除非另有说明)  
传播延迟:75ns  
LMV7239-Q1 具有 推挽式输出级。凭借此特性,器件  
无需外部上拉电阻器即可运行。  
低电源电流:65µA  
轨至轨输入  
开漏和推挽输出  
LMV7239-Q1 采用 5 引脚 SC70 5 引脚 SOT-23 封  
装,因此非常适合需要小尺寸和低功耗特性的系统。  
非常适合 2.7V 5V 单电源 应用  
采用节省空间的封装:  
器件信息(1)  
5 引脚 SOT-23  
5 引脚 SC70  
器件型号  
封装  
封装尺寸(标称值)  
2.90mm × 1.60mm  
2.00mm × 1.25mm  
SOT-23 (5)  
SC70 (5)  
LMV7239-Q1  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
便携式和电池供电类系统  
机顶盒  
高速差分线路接收器  
窗口比较器  
过零检测器  
高速采样电路  
电源电流与电源电压间的关系  
传播延迟与过驱动  
120  
100  
80  
60  
40  
20  
0
90  
-40°C  
25°C  
V = 5V  
S
C
=15pF  
85°C  
LOAD  
125°C  
85  
80  
75  
70  
Rising Edge  
Falling Edge  
0
1
2
3
4
5
20  
40  
60  
80  
100  
SUPPLY VOLTAGE (V)  
INPUT OVERDRIVE (mV)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNOSD85  
 
 
 
LMV7239-Q1  
ZHCSI25 APRIL 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 15  
8.1 Application Information............................................ 15  
8.2 Typical Applications ................................................ 15  
Power Supply Recommendations...................... 18  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics, 2.7 V ............................... 5  
6.6 Electrical Characteristics, 5 V .................................. 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 10  
10 Layout................................................................... 19  
10.1 Layout Guidelines ................................................. 19  
10.2 Layout Example .................................................... 19  
11 器件和文档支持 ..................................................... 20  
11.1 器件支持................................................................ 20  
11.2 文档支持 ............................................................... 20  
11.3 接收文档更新通知 ................................................. 20  
11.4 社区资源................................................................ 20  
11.5 ....................................................................... 20  
11.6 静电放电警告......................................................... 20  
11.7 术语表 ................................................................... 20  
12 机械、封装和可订购信息....................................... 20  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
第一版。将汽车器件从 SNOS532 移到独立的数  
据表,并更新电气特性,2.7V 电气特性,5V  
表中的输入失调电压参数  
2018 4 月  
*
2
Copyright © 2018, Texas Instruments Incorporated  
 
LMV7239-Q1  
www.ti.com.cn  
ZHCSI25 APRIL 2018  
5 Pin Configuration and Functions  
DBV and DGK Package  
5-Pin SC70 and SOT-23  
Top View  
VOUT  
V+  
1
2
5
Vœ  
Non-Inverting  
Input  
Inverting  
Input  
3
4
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
VOUT  
V-  
1
2
3
4
5
O
P
I
Output  
Negative Supply  
Noninverting Input  
Inverting Input  
IN+  
IN-  
I
V+  
P
Positive Supply  
Copyright © 2018, Texas Instruments Incorporated  
3
LMV7239-Q1  
ZHCSI25 APRIL 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Differential Input Voltage  
± Supply Voltage  
V
(2)  
Output Short Circuit Duration  
Supply Voltage (V+ - V)  
See  
6
V
SOLDERING INFORMATION  
Infrared or Convection (20 sec)  
Wave Soldering (10 sec)  
235  
°C  
°C  
V
260 (lead temp)  
(V+) +0.3, (V) 0.3  
Voltage at Input/Output Pins  
(3)  
Current at Input Pin  
±10  
150  
150  
mA  
°C  
°C  
Storage Temperature, Tstg  
Junction Temperature,TJ  
–65  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in  
exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of ±30mA over long term may adversely  
affect reliability.  
(3) Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.  
6.2 ESD Ratings  
VALUE  
±1000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011(1)  
Machine model (MM)  
Electrostatic  
discharge  
V(ESD)  
DBV package only  
V
±100  
(1) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
6.3 Recommended Operating Conditions  
MIN  
2.7  
–40  
MAX  
5.5  
125  
UNIT  
V
Supply Voltages (V+ - V)  
Temperature Range(1)  
°C  
(1) The maximum power dissipation is a function of TJ(MAX), θJA. The maximum allowable power dissipation at any ambient temperature is  
PD = (TJ(MAX) – TA) / θJA. All numbers apply for packages soldered directly onto a PCB.  
6.4 Thermal Information  
LMV7239-Q1  
THERMAL METRIC(1)  
DGK (SC70)  
5 PINS  
DBV (SOT-23)  
5 PINS  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
478  
265  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018, Texas Instruments Incorporated  
LMV7239-Q1  
www.ti.com.cn  
ZHCSI25 APRIL 2018  
6.5 Electrical Characteristics, 2.7 V  
Unless otherwise specified, all limits ensured for TA = 25°C, VCM = V+/2, V+ = 2.7 V, V= 0 V.  
PARAMETER  
TEST CONDITIONS  
MIN(1)  
TYP(2) MAX(1) UNIT  
–6  
±0.8  
30  
5
+6  
+8  
mV  
VOS  
Input Offset Voltage  
At temp extremes  
–8  
400  
600  
200  
400  
IB  
Input Bias Current  
Input Offset Current  
nA  
nA  
At temp extremes  
IOS  
At temp extremes  
Common-Mode Rejection  
Ratio  
Power Supply Rejection Ratio V+ = 2.7 V to 5 V  
0 V < VCM < 2.7 V(3)  
CMRR  
PSRR  
52  
65  
62  
85  
dB  
dB  
V0.1 0.2 to 2.9 V+ +0.1  
Input Common-Mode Voltage  
CMRR > 50 dB  
VCM  
VO  
IS  
V
Range  
At temp extremes  
V−  
V+  
350  
450  
IL = 4 mA,  
VID = 500 mV  
230  
Output Swing Low  
Supply Current  
At temp extremes  
mV  
µA  
IL = 0.4 mA,  
VID = 500 mV  
15  
52  
No load  
85  
At temp extremes  
100  
Overdrive = 20 mV  
CLOAD = 15 pF  
96  
87  
85  
ns  
ns  
ns  
Overdrive = 50 mV  
CLOAD = 15 pF  
tPD  
Propagation Delay  
Overdrive = 100 mV  
CLOAD = 15 pF  
LMV7239/LMV7239Q  
10% to 90%  
tr  
tf  
Output Rise Time  
Output Fall Time  
1.7  
1.7  
ns  
ns  
90% to 10%  
(1) All limits are ensured by testing or statistical analysis.  
(2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on  
shipped production material.  
(3) CMRR is not linear over the common mode range. Limits are guaranteed over the worst case from 0 to VCC/2 or VCC/2 to VCC  
.
Copyright © 2018, Texas Instruments Incorporated  
5
LMV7239-Q1  
ZHCSI25 APRIL 2018  
www.ti.com.cn  
6.6 Electrical Characteristics, 5 V  
Unless otherwise specified, all limits ensured for TA = 25°C, VCM = V+/2, V+ = 5 V, V= 0 V.  
PARAMETER  
TEST CONDITIONS  
MIN(1)  
TYP(2) MAX(1)  
UNIT  
–6  
±1  
30  
5
+6  
+8  
VOS  
Input Offset Voltage  
mV  
At temp extremes  
–8  
400  
600  
200  
400  
IB  
Input Bias Current  
Input Offset Current  
nA  
At temp extremes  
IOS  
nA  
dB  
At temp extremes  
0 V < VCM < 5 V  
Common-Mode Rejection  
Ratio  
Power Supply Rejection Ratio V+ = 2.7 V to 5 V  
CMRR  
PSRR  
52  
65  
67  
85  
dB  
V
0.2 to  
V0.1  
V−  
V+ +0.1  
Input Common-Mode Voltage  
CMRR > 50dB  
5.2  
VCM  
Range  
At temp extremes  
At temp extremes  
V+  
350  
450  
IL = 4 mA,  
VID = 500 mV  
230  
VO  
Output Swing Low  
mV  
µA  
IL = 0.4 mA,  
VID = 500 mV  
10  
65  
95  
IS  
Supply Current  
No load  
At temp extremes  
110  
Overdrive = 20 mV  
CLOAD = 15 pF  
89  
82  
ns  
ns  
Overdrive = 50 mV  
CLOAD = 15 pF  
tPD  
Propagation Delay  
Output Fall Time  
Overdrive = 100 mV  
CLOAD = 15 pF  
75  
ns  
ns  
tf  
90% to 10%  
1.2  
(1) All limits are ensured by testing or statistical analysis.  
(2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on  
shipped production material.  
6
Copyright © 2018, Texas Instruments Incorporated  
LMV7239-Q1  
www.ti.com.cn  
ZHCSI25 APRIL 2018  
6.7 Typical Characteristics  
(Unless otherwise specified, VS = 5V, CL = 10pF, TA = 25°C).  
100  
10  
1
120  
-40°C  
25°C  
V
= 5V  
S
85°C  
125°C  
100  
80  
60  
40  
20  
0
.1  
.01  
.1  
1
10  
0
1
2
3
4
5
OUTPUT VOLTAGE REFERENCED TO V+ (V)  
SUPPLY VOLTAGE (V)  
Figure 1. Supply Current vs. Supply Voltage  
Figure 2. Sourcing Current vs. Output Voltage  
100  
100  
V
= 2.7V  
V
= 5V  
S
S
10  
1
10  
1
.1  
.1  
.01  
.1  
1
10  
.01  
.1  
1
10  
OUTPUT VOLTAGE REFERENCED TO V+ (V)  
OUTPUT VOLTAGE REFERENCED TO GND (V)  
Figure 3. Sourcing Current vs. Output Voltage  
Figure 4. Sinking Current vs. Output Voltage  
50  
100  
40  
V
= 2.7V  
S
VS = 5V  
30  
IBIAS+  
20  
10  
10  
1
0
-10  
-20  
-30  
-40  
-50  
IBIAS  
-
.1  
.01  
.1  
1
10  
-0.2  
1
2
3
4
5
OUTPUT VOLTAGE REFERENCED TO GND (V)  
VIN (V)  
Figure 5. Sinking Current vs. Output Voltage  
Figure 6. Input Bias Current vs. Input Voltage  
Copyright © 2018, Texas Instruments Incorporated  
7
LMV7239-Q1  
ZHCSI25 APRIL 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
(Unless otherwise specified, VS = 5V, CL = 10pF, TA = 25°C).  
70  
60  
160  
150  
140  
130  
120  
110  
100  
90  
V
V
=2.7V  
S
=20mV  
VS = 2.7V  
50  
40  
30  
20  
10  
0
OD  
C
=15pF  
LOAD  
IBIAS  
+
Falling Edge  
-10  
-20  
-30  
-40  
IBIAS  
-
Rising Edge  
-50  
-60  
80  
2
0
1
2.7  
-40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
VIN (V)  
Figure 7. Input Bias Current vs. Input Voltage  
Figure 8. Propagation Delay vs. Temperature  
140  
106  
V =5V  
S
V = 2.7V  
S
V
=20mV  
OD  
V
=20mV  
OD  
130  
120  
110  
100  
90  
104  
102  
100  
98  
C
LOAD  
=15pF  
Falling Edge  
Falling Edge  
96  
Rising Edge  
Rising Edge  
80  
94  
-40 -20  
0
20 40 60 80 100 120 140  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
CAPACITANCE (pF)  
Figure 9. Propagation Delay vs. Temperature  
Figure 10. Propagation Delay vs. Capacitive Load  
96  
100  
V
= 2.7V  
LOAD  
V
V
= 5V  
S
S
C
=15pF  
=20mV  
OD  
94  
92  
90  
88  
95  
90  
85  
80  
Rising Edge  
Falling Edge  
Rising Edge  
Falling Edge  
0
20  
40  
60  
80  
100  
20 30 40 50 60 70 80 90 100  
INPUT OVERDRIVE (mV)  
CAPACITANCE (pF)  
Figure 11. Propagation Delay vs. Capacitive Load  
Figure 12. Propagation Delay vs. Input Overdrive  
8
Copyright © 2018, Texas Instruments Incorporated  
LMV7239-Q1  
www.ti.com.cn  
ZHCSI25 APRIL 2018  
Typical Characteristics (continued)  
(Unless otherwise specified, VS = 5V, CL = 10pF, TA = 25°C).  
90  
120  
115  
110  
105  
100  
95  
V
V
= 2.7V  
V
= 5V  
LOAD  
S
S
=20mV  
C
=15pF  
OD  
C
=15pF  
LOAD  
85  
80  
75  
70  
Rising Edge  
90  
Falling Edge  
85  
Rising Edge  
Falling Edge  
80  
20  
40  
60  
80  
100  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
INPUT OVERDRIVE (mV)  
INPUT COMMON MODE VOLTAGE (V)  
Figure 13. Propagation Delay vs. Input Overdrive  
Figure 14. Propagation Delay vs. Common-Mode Voltage  
110  
V
V
= 5V  
OD  
LOAD  
S
=20mV  
C
=15pF  
100  
90  
Falling Edge  
Rising Edge  
80  
0
1
2
3
4
5
INPUT COMMON MODE VOLTAGE (V)  
Figure 15. Propagation Delay vs. Common-Mode Voltage  
Copyright © 2018, Texas Instruments Incorporated  
9
LMV7239-Q1  
ZHCSI25 APRIL 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMV7239-Q1 is an ultra low power, low voltage, 75-ns comparator. They are ensured to operate over the full  
supply voltage range of 2.7 V to 5.5 V. These devices achieve a 75-ns propagation delay while consuming only  
65 µA of supply current at 5 V.  
The LMV7239-Q1 has a greater than rail-to-rail common-mode voltage range. The input common-mode voltage  
range extends 200 mV below ground and 200 mV above supply, allowing both ground and supply sensing.  
7.2 Functional Block Diagram  
Figure 16. Simplified Schematic  
7.3 Feature Description  
7.3.1 Input Stage  
The LMV7239-Q1 is a rail-to-rail input and output. The typical input common-mode voltage range of 0.2 V below  
the ground to 0.2 V above the supply. The LMV7239-Q1 uses a complimentary PNP and NPN input stage in  
which the PNP stage senses common-mode voltage near Vand the NPN stage senses common-mode voltage  
near V+. If either of the input signals falls below the negative common mode limit, the parasitic PN junction  
formed by the substrate and the base of the PNP will turn on resulting in an increase of input bias current.  
If one of the inputs goes above the positive common mode limit, the output will still maintain the correct logic  
level as long as the other input stays within the common mode range. However, the propagation delay will  
increase. When both inputs are outside the common-mode voltage range, current saturation occurs in the input  
stage, and the output becomes unpredictable.  
The propagation delay does not increase significantly with large differential input voltages. However, large  
differential voltages greater than the supply voltage should be avoided to prevent damage to the input stage.  
7.3.2 Output Stage: LMV7239-Q1  
The LMV7239-Q1 has a push-pull output. When the output switches, there is a low resistance path between VCC  
and ground, causing high output sinking or sourcing current during the transition.  
10  
Copyright © 2018, Texas Instruments Incorporated  
LMV7239-Q1  
www.ti.com.cn  
ZHCSI25 APRIL 2018  
Feature Description (continued)  
Figure 17. LMV7239-Q1 Push-Pull Output Stage  
7.4 Device Functional Modes  
7.4.1 Capacitive and Resistive Loads  
The propagation delay is not affected by capacitive loads at the output of the LPV7239 or LMV7239-Q1.  
However, resistive loads slightly effect the propagation delay on the falling edge depending on the load  
resistance value.  
7.4.2 Noise  
Most comparators have rather low gain. This allows the output to spend time between high and low when the  
input signal changes slowly. The result is the output may oscillate between high and low when the differential  
input is near zero. The high gain of this comparator eliminates this problem. Less than 1 μV of change on the  
input will drive the output from one rail to the other rail. If the input signal is noisy, the output cannot ignore the  
noise unless some hysteresis is provided by positive feedback. (See Hysteresis.)  
7.4.3 Hysteresis  
To improve propagation delay when low overdrive is needed hysteresis can be added.  
7.4.3.1 Inverting Comparator With Hysteresis  
The inverting comparator with hysteresis requires a three resistor network that is referenced to the supply voltage  
V+ of the comparator as shown in Figure 18. When VIN at the inverting input is less than VA, the voltage at the  
noninverting node of the comparator (VIN < VA), the output voltage is high (for simplicity assume VO switches as  
high as V+). The three network resistors can be represented as R1//R3 in series with R2.  
Copyright © 2018, Texas Instruments Incorporated  
11  
 
LMV7239-Q1  
ZHCSI25 APRIL 2018  
www.ti.com.cn  
Device Functional Modes (continued)  
Figure 18. Inverting Comparator With Hysteresis  
The lower input trip voltage VA1 is defined as:  
VA1 = VCCR2 / [(R1 // R3) + R2)]  
(1)  
When VIN is greater than VA, the output voltage is low or very close to ground. In this case the three network  
resistors can be presented as R2 // R3 in series with R1.  
The upper trip voltage VA2 is defined as:  
VA2 = VCC (R2 // R3) / [(R1 ) + (R2 // R3)]  
(2)  
The total hysteresis provided by the network is defined as ΔVA = VA1 - VA2.  
+VCCR1R2  
DVA  
=
R1R2 + R1R3 + R2R3  
(3)  
7.4.3.2 Non-Inverting Comparator With Hysteresis  
A noninverting comparator with hysteresis requires a two resistor network, and a voltage reference (VREF) at the  
inverting input. When VIN is low, the output is also low. For the output to switch from low to high, VIN must rise up  
to VIN1 where VIN1 is calculated by:  
VREF(R1 + R2 )  
DV  
=
IN1  
R2  
(4)  
As soon as VO switches to VCC, VA steps to a value greater than VREF which is given by:  
(VCC - VIN1)R1  
VA = V  
+
IN  
R1 + R2  
(5)  
To make the comparator switch back to its low state, VIN must equal VREF before VA will again equal VREF. VIN2  
can be calculated by:  
12  
Copyright © 2018, Texas Instruments Incorporated  
LMV7239-Q1  
www.ti.com.cn  
ZHCSI25 APRIL 2018  
Device Functional Modes (continued)  
VREF(R1 + R2 ) - VCC R1  
V
=
IN2  
R2  
(6)  
(7)  
The hysteresis of this circuit is the difference between VIN1 and VIN2  
.
ΔVIN = VCCR1 / R2  
V
CC  
V
REF  
R
-
V
A
V
O
V
IN  
+
R
1
L
R
2
Figure 19. Noninverting Comparator With Hysteresis  
Figure 20. Noninverting Comparator Thresholds  
7.4.4 Zero Crossing Detector  
In a zero crossing detector circuit, the inverting input is connected to ground and the noninverting input is  
connected to a 100 mVPP AC signal. As the signal at the noninverting input crosses 0V, the comparator’s output  
changes state.  
Figure 21. Simple Zero Crossing Detector  
7.4.4.1 Zero Crossing Detector With Hysteresis  
To improve switching times and centering the input threshold to ground a small amount of positive feedback is  
added to the circuit. Voltage divider R4 and R5 establishes a reference voltage, V1, at the positive input. By  
making the series resistance, R1 plus R2 equal to R5, the switching condition, V1 = V2, will be satisfied when VIN  
= 0.  
The positive feedback resistor, R6, is made very large with respect to R5 || R6 = 2000 R5). The resultant  
hysteresis established by this network is very small (ΔV1 < 10 mV) but it is sufficient to insure rapid output  
voltage transitions.  
Diode D1 is used to ensure that the inverting input terminal of the comparator never goes below approximately  
100 mV. As the input terminal goes negative, D1 will forward bias, clamping the node between R1 and R2 to  
approximately 700 mV. This sets up a voltage divider with R2 and R3 preventing V2 from going below ground.  
The maximum negative input overdrive is limited by the current handling ability of D1.  
Copyright © 2018, Texas Instruments Incorporated  
13  
LMV7239-Q1  
ZHCSI25 APRIL 2018  
www.ti.com.cn  
Device Functional Modes (continued)  
V
CC  
R3  
R
4
R
R
2
1
V
-
IN  
V
2
V
O
V
1
+
D1  
R
6
R
5
Figure 22. Zero Crossing Detector With Hysteresis  
7.4.5 Threshold Detector  
Instead of tying the inverting input to 0 V, the inverting input can be tied to a reference voltage. As the input on  
the noninverting input passes the VREF threshold, the comparator’s output changes state. It is important to use a  
stable reference voltage to ensure a consistent switching point.  
Figure 23. Threshold Detector  
14  
Copyright © 2018, Texas Instruments Incorporated  
LMV7239-Q1  
www.ti.com.cn  
ZHCSI25 APRIL 2018  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LMV7239-Q1 is a single supply comparator with 75 ns of propagation delay and only 65 µA of supply  
current.  
8.2 Typical Applications  
8.2.1 Square Wave Oscillator  
R
4
C
R
1
-
V
C
V
O
+
R
3
1
V
A
+
V
+
V
R
2
0
Figure 24. Square Wave Oscillator  
8.2.1.1 Design Requirements  
A typical application for a comparator is as a square wave oscillator. The circuit in Figure 24 generates a square  
wave whose period is set by the RC time constant of the capacitor C1 and resistor R4.  
8.2.1.2 Detailed Design Procedure  
The maximum frequency is limited by the large signal propagation delay of the comparator and by the capacitive  
loading at the output, which limits the output slew rate.  
Figure 25. Square Wave Oscillator Timing Thresholds  
Consider the output of Figure 24 to be high to analyze the circuit. That implies that the inverted input (VC) is  
lower than the noninverting input (VA). This causes the C1 to be charged through R4, and the voltage VC  
increases until it is equal to the noninverting input. The value of VA at this point is:  
VCC R2  
VA1  
=
R
R2 + R1 R3  
(8)  
15  
If R1 = R2 = R3, then V A1 = 2 Vcc/3  
Copyright © 2018, Texas Instruments Incorporated  
 
LMV7239-Q1  
ZHCSI25 APRIL 2018  
www.ti.com.cn  
Typical Applications (continued)  
At this point the comparator switches pulling down the output to the negative rail. The value of VA at this point is:  
R
VCC(R2 R3 )  
VA2  
=
R
R1 + (R2 R3 )  
(9)  
If R1 = R2 = R3, then VA2 = VCC/3.  
The capacitor C1 now discharges through R4, and the voltage VC decreases until it is equal to VA2, at which point  
the comparator switches again, bringing it back to the initial stage. The time period is equal to twice the time it  
takes to discharge C1 from 2VCC/3 to VCC/3, which is given by R4C1·ln2. Hence the formula for the frequency is:  
F = 1/(2·R4·C1·ln2)  
(10)  
The LMV7239 should be used for a symmetrical output. The LMV7235 will require a pullup resistor on the output  
to function, and will have a slightly asymmetrical output due to the reduced sourcing current.  
8.2.1.3 Application Curves  
Figure 26 shows the simulated results of an oscillator using the following values:  
1. R1 = R2 = R3 = R4 = 100 kΩ  
2. C1 = 100 pF, CL = 20 pF  
3. V+ = 5 V, V– = GND  
4. CSTRAY (not shown) from Va to GND = 10 pF  
6
VOUT  
5
V
a
4
3
2
1
V
c
0
-1  
0
10  
20  
30  
40  
50  
TIME (µs)  
C001  
Figure 26. Square Wave Oscillator Output Waveform  
8.2.2 Crystal Oscillator  
A simple crystal oscillator using the LMV7239-Q1 is shown in Figure 27. Resistors R1 and R2 set the bias point at  
the comparator’s noninverting input. Resistors, R3 and R4 and capacitor C1 set the inverting input node at an  
appropriate DC average level based on the output. The crystal’s path provides resonant positive feedback and  
stable oscillation occurs. The output duty cycle for this circuit is roughly 50%, but it is affected by resistor  
tolerances and to a lesser extent by the comparator  
16  
Copyright © 2018, Texas Instruments Incorporated  
 
LMV7239-Q1  
www.ti.com.cn  
ZHCSI25 APRIL 2018  
Typical Applications (continued)  
VCC  
100K  
100K  
Crystal  
VOUT  
100K  
0.1uF  
Figure 27. Crystal Oscillator  
8.2.3 Infrared (IR) Receiver  
The LMV7239-Q1 can also be used as an infrared receiver. The infrared photo diode creates a current relative to  
the amount of infrared light present. The current creates a voltage across RD. When this voltage level cross the  
voltage applied by the voltage divider to the inverting input, the output transitions.  
Figure 28. IR Receiver  
8.2.4 Window Detector  
+
V
R
1
V
+
-
REF2  
OUTPUT A  
OUTPUT B  
A
B
V
IN  
R
2
+
-
V
REF1  
R
3
Figure 29. Window Detector  
A window detector monitors the input signal to determine if it falls between two voltage levels. Both outputs are  
true (high) when VREF1 < VIN < VREF2  
Copyright © 2018, Texas Instruments Incorporated  
17  
LMV7239-Q1  
ZHCSI25 APRIL 2018  
www.ti.com.cn  
Typical Applications (continued)  
OUTPUT B  
V
IN  
+
V
V
V
REF2  
REF1  
OUTPUT A  
BOTH OUTPUTS  
ARE HIGH  
Figure 30. Window Detector Output Signal  
The comparator outputs A and B are high only when VREF1 < VIN < VREF2, or "within the window", where these are  
defined as:  
VREF1 = R3/R1+R2+R3) × V+  
(11)  
(12)  
VREF2 = R2+R3)/R1+R2+R3) × V+  
To determine if the input signal falls outside of the two voltage levels, both inputs on each comparators can be  
reversed to invert the logic.  
Other names for window detectors are: threshold detector, level detector, and amplitude trigger or detector.  
9 Power Supply Recommendations  
To minimize supply noise, power supplies should be decoupled by a 0.01-μF ceramic capacitor in parallel with a  
10-μF capacitor.  
Due to the nanosecond edges on the output transition, peak supply currents will be drawn during the time the  
output is transitioning. Peak current depends on the capacitive loading on the output. The output transition can  
cause transients on poorly bypassed power supplies. These transients can cause a poorly bypassed power  
supply to "ring" due to trace inductance and low self-resonance frequency of high ESR bypass capacitors.  
Treat the LMV7239-Q1 as a high-speed device. Keep the ground paths short and place small (low ESR ceramic)  
bypass capacitors directly between the V+ and V– pins.  
Output capacitive loading and output toggle rate will cause the average supply current to rise over the quiescent  
current.  
18  
Copyright © 2018, Texas Instruments Incorporated  
LMV7239-Q1  
www.ti.com.cn  
ZHCSI25 APRIL 2018  
10 Layout  
10.1 Layout Guidelines  
Proper grounding and the use of a ground plane will help to ensure the specified performance of the LMV7239-  
Q1. Minimizing trace lengths, reducing unwanted parasitic capacitance and using surface-mount components will  
also help. Comparators are very sensitive to input noise.  
The LMV7239-Q1 requires a high-speed layout. Follow these layout guidelines:  
1. Use printed-circuit board with a good, unbroken low-inductance ground plane.  
2. Place a decoupling capacitor (0.1-µF, ceramic surface-mount capacitor) as close as possible to VCC pin.  
3. On the inputs and the output, keep lead lengths as short as possible to avoid unwanted parasitic feedback  
around the comparator. Keep inputs away from output.  
4. Solder the device directly to the printed-circuit board rather than using a socket.  
5. For slow moving input signals, take care to prevent parasitic feedback. A small capacitor (1000 pF or less)  
placed between the inputs can help eliminate oscillations in the transition region. This capacitor causes some  
degradation to tPD when the source impedance is low.  
6. The top-side ground plane runs between the output and inputs.  
7. Ground trace from the ground pin runs under the device up to the bypass capacitor, shielding the inputs from  
the outputs.  
10.2 Layout Example  
Figure 31. SOT-23 Board Layout Example  
版权 © 2018, Texas Instruments Incorporated  
19  
LMV7239-Q1  
ZHCSI25 APRIL 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
TINA-TI 基于 SPICE 的模拟仿真程序,http://www.ti.com.cn/tool/cn/tina-ti  
DIP 适配器评估模块,http://www.ti.com.cn/tool/cn/dip-adapter-evm  
TI 通用运行放大器评估模块,http://www.ti.com.cn/tool/cn/opampevm  
11.2 文档支持  
11.2.1 相关文档  
《四个独立运行的比较器》(SNOA654)  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请参阅左侧的导航栏。  
20  
版权 © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMV7239QDBVRQ1  
LMV7239QM7/NOPB  
LMV7239QM7X/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SC70  
DBV  
DCK  
DCK  
5
5
5
3000 RoHS & Green  
1000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
ZBMX  
C42  
SN  
SN  
SC70  
C42  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Oct-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMV7239QDBVRQ1  
LMV7239QM7/NOPB  
LMV7239QM7X/NOPB  
SOT-23  
SC70  
DBV  
DCK  
DCK  
5
5
5
3000  
1000  
3000  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
3.2  
3.2  
1.4  
1.2  
1.2  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
2.25  
2.25  
2.45  
2.45  
SC70  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Oct-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMV7239QDBVRQ1  
LMV7239QM7/NOPB  
LMV7239QM7X/NOPB  
SOT-23  
SC70  
DBV  
DCK  
DCK  
5
5
5
3000  
1000  
3000  
208.0  
208.0  
208.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
SC70  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LMV7251

1.8V Low Voltage Comparator with Rail-to-Rail Input
NSC

LMV7251M5

1.8V Low Voltage Comparator with Rail-to-Rail Input
NSC

LMV7251M5X

1.8V Low Voltage Comparator with Rail-to-Rail Input
NSC

LMV7251M7

1.8V Low Voltage Comparator with Rail-to-Rail Input
NSC

LMV7251M7X

1.8V Low Voltage Comparator with Rail-to-Rail Input
NSC

LMV7251MDC

IC COMPARATOR, 6000 uV OFFSET-MAX, 670 ns RESPONSE TIME, UUC, DIE, Comparator
NSC

LMV7251MWC

IC COMPARATOR, 6000 uV OFFSET-MAX, 670 ns RESPONSE TIME, UUC, WAFER, Comparator
NSC

LMV7255

1.8V Low Voltage Comparator with Rail-to-Rail Input
NSC

LMV7255M5

1.8V Low Voltage Comparator with Rail-to-Rail Input
NSC

LMV7255M5X

1.8V Low Voltage Comparator with Rail-to-Rail Input
NSC

LMV7255M7

1.8V Low Voltage Comparator with Rail-to-Rail Input
NSC

LMV7255M7X

1.8V Low Voltage Comparator with Rail-to-Rail Input
NSC