LMV341-Q1_15 [TI]

RAIL-TO-RAIL OUTPUT CMOS OPERATIONAL AMPLIFIERS;
LMV341-Q1_15
型号: LMV341-Q1_15
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

RAIL-TO-RAIL OUTPUT CMOS OPERATIONAL AMPLIFIERS

放大器 输出元件
文件: 总27页 (文件大小:1126K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMV341-Q1  
LMV344-Q1  
www.ti.com.............................................................................................................................................................. SGLS342CJULY 2006REVISED JUNE 2009  
RAIL-TO-RAIL OUTPUT CMOS OPERATIONAL AMPLIFIERS  
1
FEATURES  
Qualified for Automotive Applications  
Low Supply Current: 100 µA Typ  
Gain Bandwidth: 1 MHz Typ  
2.7-V and 5-V Performance  
Rail-to-Rail Output Swing  
Slew Rate: 1 V/µs Typ  
Input Bias Current: 1 pA Typ  
Input Offset Voltage: 0.25 mV Typ  
Turn-On Time From Shutdown: 5 µs Typ  
Input Referred Voltage Noise (at 10 kHz):  
20 nV/Hz  
LMV341  
DBV OR DCK PACKAGE  
(TOP VIEW)  
LMV344  
PW PACKAGE  
(TOP VIEW)  
1
2
3
6
5
4
IN+  
GND  
IN–  
V+  
1
2
3
4
5
6
7
14 4OUT  
1OUT  
1IN-  
1IN+  
V+  
13  
12  
11  
10  
9
4IN-  
SHDN  
OUT  
4IN+  
GND  
3IN+  
3IN-  
2IN+  
2IN-  
2OUT  
8
3OUT  
DESCRIPTION/ORDERING INFORMATION  
The LMV341 and LMV344 devices are single and quad CMOS operational amplifiers, respectively, with low  
voltage, low power, and rail-to-rail output swing capabilities. The PMOS input stage offers an ultra-low input bias  
current of 1 pA (typ) and an offset voltage of 0.25 mV (typ). The single supply amplifier is designed specifically  
for low-voltage (2.7 V to 5 V) operation, with a wide common-mode input voltage range that typically extends  
from –0.2 V to 0.8 V from the positive supply rail. Additional features are a 20-nV/Hz voltage noise at 10 kHz,  
1-MHz unity-gain bandwidth, 1-V/µs slew rate, and 100-µA current consumption per channel.  
An extended industrial temperature range from –40°C to 125°C makes this device suitable for automotive  
applications.  
ORDERING INFORMATION(1)  
TA  
PACKAGE(2)  
ORDERABLE PART NUMBER  
LMV341QDCKRQ1  
TOP-SIDE MARKING(3)  
RR_  
SC-70 – DCK  
SOT-23 – DBV  
TSSOP – PW  
Reel of 3000  
–40°C to 125°C  
Reel of 3000  
Reel of 2000  
LMV341QDBVRQ1  
RCH_  
LMV344IPWRQ1  
LMV344Q  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
(3) DBV/DCK: The actual top-side marking has one additional character that designates the wafer fab/assembly site.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2006–2009, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
LMV341-Q1  
LMV344-Q1  
SGLS342CJULY 2006REVISED JUNE 2009.............................................................................................................................................................. www.ti.com  
APPLICATION CIRCUIT: SAMPLE-AND-HOLD CIRCUIT  
V
+
V
+
+
V
O
V
I
+
C = 200 pF  
Sample  
Clock  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
V+  
VID  
VI  
Supply voltage(2)  
Differential input voltage(3)  
5.5 V  
±5.5 V  
Input voltage range (either input)  
0 to 5.5 V  
165°C/W  
259°C/W  
113°C/W  
150°C  
DBV package  
DCK package  
PW package  
θJA  
Package thermal impedance(4)(5)  
TJ  
Operating virtual junction temperature  
Storage temperature range  
Tstg  
–65°C to 150°C  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values (except differential voltages and V+ specified for the measurement of IOS) are with respect to the network GND.  
(3) Differential voltages are at IN+ with respect to IN.  
(4) Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient  
temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.  
(5) The package thermal impedance is calculated in accordance with JESD 51-7.  
RECOMMENDED OPERATING CONDITIONS  
MIN  
2.5  
MAX  
5.5  
UNIT  
V
V+  
TA  
Supply voltage (single-supply operation)  
Operating free-air temperature  
–40  
125  
°C  
ESD PROTECTION  
TEST CONDITIONS  
TYP  
2000  
200  
UNIT  
V
Human-Body Model (HBM)  
Machine Model (MM)  
V
2
Submit Documentation Feedback  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): LMV341-Q1 LMV344-Q1  
LMV341-Q1  
LMV344-Q1  
www.ti.com.............................................................................................................................................................. SGLS342CJULY 2006REVISED JUNE 2009  
ELECTRICAL CHARACTERISTICS  
V+ = 2.7 V, GND = 0 V, VIC = VO = V+/2, RL > 1 M(unless otherwise noted)  
LMV341  
MIN TYP(1)  
0.25  
LMV344  
MIN TYP(1)  
0.25  
PARAMETER  
TEST CONDITIONS  
TA  
UNIT  
MAX  
4
MAX  
4
25°C  
VIO  
Input offset voltage  
mV  
Full range  
4.5  
4.5  
Average temperature  
coefficient of input  
offset voltage  
αVIO  
Full range  
1.7  
1
1.7  
1
µV/°C  
25°C  
–40°C to 85°C  
–40°C to 125°C  
25°C  
120  
250  
3
120  
250  
3
pA  
IIB  
Input bias current  
Input offset current  
nA  
fA  
IIO  
6.6  
6.6  
0 VICR 1.7 V  
25°C  
40  
36  
45  
60  
80  
56  
50  
65  
60  
80  
Common-mode  
rejection ratio  
CMRR  
dB  
0 VICR 1.6 V  
Full range  
25°C  
82  
82  
Supply-voltage  
rejection ratio  
kSVR  
2.7 V V+ 5 V  
dB  
V
Full range  
Common-mode input  
voltage range  
–0.2  
to 1.9  
–0.2  
to 1.9  
VICR  
CMRR 50 dB  
25°C  
0
1.7  
0
1.7  
25°C  
Full range  
25°C  
73  
66  
70  
63  
113  
103  
24  
78  
70  
72  
64  
113  
103  
24  
RL = 10 kto 1.35 V  
Large-signal voltage  
gain(2)  
AV  
dB  
RL = 2 kto 1.35 V  
RL = 2 kto 1.35 V  
Full range  
25°C  
60  
95  
60  
95  
Low level  
High level  
Low level  
High level  
Full range  
25°C  
26  
60  
26  
60  
Output swing  
(delta from supply  
rails)  
Full range  
25°C  
95  
95  
VO  
mV  
5
30  
5
30  
Full range  
25°C  
40  
40  
RL = 10 kto 1.35 V  
5.3  
100  
30  
5.3  
100  
30  
Full range  
25°C  
40  
40  
170  
230  
170  
230  
Supply current  
(per channel)  
ICC  
µA  
Full range  
Sourcing  
20  
15  
32  
24  
1
18  
15  
24  
24  
1
Output short- circuit  
current  
IOS  
25°C  
mA  
Sinking  
SR  
Slew rate  
RL = 10 k(3)  
RL = 10 k, CL = 200 pF  
RL = 100 kΩ  
RL = 100 kΩ  
25°C  
25°C  
25°C  
25°C  
V/µs  
MHz  
deg  
dB  
GBM  
Φm  
Unity-gain bandwidth  
Phase margin  
Gain margin  
1
1
72  
20  
72  
20  
Gm  
Equivalent input noise  
voltage  
Vn  
f = 1 kHz  
f = 1 kHz  
25°C  
25°C  
25°C  
40  
0.001  
0.017  
40  
0.001  
0.017  
nV/Hz  
pA/Hz  
%
Equivalent input noise  
current  
In  
Total harmonic  
distortion  
f = 1 kHz, AV = 1,  
RL = 600 , VI = 1 VPP  
THD  
(1) Typical values represent the most likely parametric norm.  
(2) GND + 0.2 V VO V+ – 0.2 V  
(3) Connected as voltage follower with 2-VPP step input. Number specified is the slower of the positive and negative slew rates.  
Copyright © 2006–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): LMV341-Q1 LMV344-Q1  
LMV341-Q1  
LMV344-Q1  
SGLS342CJULY 2006REVISED JUNE 2009.............................................................................................................................................................. www.ti.com  
SHUTDOWN CHARACTERISTICS  
V+ = 2.7 V, GND = 0 V, VIC = VO = V+/2, RL > 1 M(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
25°C  
MIN  
TYP  
MAX  
1000  
1.5  
UNIT  
nA  
0.045  
Supply current in shutdown mode  
(per channel)  
ICC(SHDN)  
t(on)  
VSD = 0 V  
Full range  
25°C  
µA  
Amplifier turn-on time  
5
1.7 to 2.7  
0 to 1  
µs  
ON mode  
2.4 to 2.7  
0 to 0.8  
VSD  
Shutdown pin voltage range  
25°C  
V
Shutdown mode  
4
Submit Documentation Feedback  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): LMV341-Q1 LMV344-Q1  
LMV341-Q1  
LMV344-Q1  
www.ti.com.............................................................................................................................................................. SGLS342CJULY 2006REVISED JUNE 2009  
ELECTRICAL CHARACTERISTICS  
V+ = 5 V, GND = 0 V, VIC = VO = V+/2, RL > 1 M(unless otherwise noted)  
LMV341  
MIN TYP(1)  
0.25  
LMV344  
MIN TYP(1)  
0.25  
PARAMETER  
TEST CONDITIONS  
TA  
UNIT  
MAX  
4
MAX  
4
25°C  
VIO  
Input offset voltage  
mV  
Full range  
4.5  
4.5  
Average temperature  
coefficient of input  
offset voltage  
αVIO  
Full range  
1.9  
1
1.9  
1
µV/°C  
25°C  
–40°C to 85°C  
–40°C to 125°C  
25°C  
200  
375  
5
200  
375  
5
pA  
IIB  
Input bias current  
Input offset current  
nA  
fA  
IIO  
6.6  
6.6  
0 VICR 4 V  
25°C  
46  
47  
45  
44  
86  
56  
50  
65  
60  
86  
Common-mode  
rejection ratio  
CMRR  
dB  
0 VICR 3.9 V  
Full range  
25°C  
82  
82  
Supply-voltage  
rejection ratio  
kSVR  
2.7 V V+ 5 V  
dB  
V
Full range  
Common-mode input  
voltage range  
–0.2  
to 4.2  
–0.2  
to 4.2  
VICR  
CMRR 50 dB  
25°C  
0
4
0
4
25°C  
Full range  
25°C  
78  
70  
72  
64  
116  
107  
32  
34  
7
78  
70  
72  
64  
116  
107  
32  
34  
7
RL = 10 kto 2.5 V  
Large-signal voltage  
gain(2)  
AV  
dB  
RL = 2 kto 2.5 V  
RL = 2 kto 2.5 V  
Full range  
25°C  
67  
95  
60  
95  
Low level  
High level  
Low level  
High level  
Full range  
25°C  
60  
60  
Output swing  
(delta from supply  
rails)  
Full range  
25°C  
95  
95  
VO  
mV  
30  
30  
Full range  
25°C  
45  
40  
RL = 10 kto 2.5 V  
7
30  
7
30  
Full range  
25°C  
40  
40  
107  
200  
260  
107  
200  
260  
Supply current  
(per channel)  
ICC  
µA  
Full range  
Sourcing  
85  
50  
113  
75  
1
70  
50  
90  
75  
1
Output short-circuit  
current  
IOS  
25°C  
mA  
Sinking  
SR  
Slew rate  
RL = 10 k(3)  
RL = 10 k, CL = 200 pF  
RL = 100 kΩ  
RL = 100 kΩ  
25°C  
25°C  
25°C  
25°C  
V/µs  
MHz  
deg  
dB  
GBM  
Φm  
Unity-gain bandwidth  
Phase margin  
Gain margin  
1
1
70  
20  
70  
20  
Gm  
Equivalent input noise  
voltage  
Vn  
f = 1 kHz  
f = 1 kHz  
25°C  
25°C  
25°C  
39  
0.001  
0.012  
39  
0.001  
0.012  
nV/Hz  
pA/Hz  
%
Equivalent input noise  
current  
In  
Total harmonic  
distortion  
f = 1 kHz, AV = 1,  
RL = 600 , VI = 1 VPP  
THD  
(1) Typical values represent the most likely parametric norm.  
(2) GND + 0.2 V VO V+ – 0.2 V  
(3) Connected as voltage follower with 2-VPP step input. Number specified is the slower of the positive and negative slew rates.  
Copyright © 2006–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): LMV341-Q1 LMV344-Q1  
LMV341-Q1  
LMV344-Q1  
SGLS342CJULY 2006REVISED JUNE 2009.............................................................................................................................................................. www.ti.com  
SHUTDOWN CHARACTERISTICS  
V+ = 5 V, GND = 0 V, VIC = VO = V+/2, RL > 1 M(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
25°C  
MIN  
TYP  
MAX  
1
UNIT  
µA  
µs  
0.033  
Supply current in shutdown mode  
(per channel)  
ICC(SHDN)  
t(on)  
VSD = 0 V  
Full range  
25°C  
1.5  
Amplifier turn-on time  
5
3.1 to 5  
0 to 1  
ON mode  
4.5 to 5  
0 to 0.8  
VSD  
Shutdown pin voltage range  
25°C  
V
Shutdown mode  
6
Submit Documentation Feedback  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): LMV341-Q1 LMV344-Q1  
LMV341-Q1  
LMV344-Q1  
www.ti.com.............................................................................................................................................................. SGLS342CJULY 2006REVISED JUNE 2009  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
INPUT BIAS CURRENT  
vs  
TEMPERATURE  
130  
120  
110  
100  
90  
1000  
100  
V = 5 V  
+
125°C  
85°C  
10  
80  
25°C  
70  
60  
1
−40°C  
50  
40  
30  
0.1  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
−40 −20  
0
T
20  
40  
60 80 100 120 140  
− Free-Air Temperature − °C  
V
CC  
− Supply Voltage − V  
A
Figure 1.  
Figure 2.  
OUTPUT VOLTAGE SWING  
vs  
OUTPUT VOLTAGE SWING  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
35  
30  
25  
20  
15  
10  
7
6.5  
6
R
L
= 2 k  
R
L
= 10 k  
Negative Swing  
Negative Swing  
5.5  
5
4.5  
Positive Swing  
4
3.5  
3
Positive Swing  
1.5  
2
2.5  
V
3
3.5  
4
4.5  
5
1.5  
2
2.5  
3
3.5  
4
4.5  
5
− Supply Voltage − V  
V
CC  
− Supply Voltage − V  
CC  
Figure 3.  
Figure 4.  
Copyright © 2006–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): LMV341-Q1 LMV344-Q1  
LMV341-Q1  
LMV344-Q1  
SGLS342CJULY 2006REVISED JUNE 2009.............................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
SOURCE CURRENT  
vs  
OUTPUT VOLTAGE  
SOURCE CURRENT  
vs  
OUTPUT VOLTAGE  
1000  
100  
10  
1000  
100  
10  
V = 5 V  
+
V = 2.7 V  
+
−40°C  
−40°C  
125°C  
25°C  
25°C  
85°C  
85°C  
1
1
125°C  
0.1  
0.01  
0.1  
0.01  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
V
O
− Output Voltage Referenced to V (V)  
+
V
O
− Output Voltage Referenced to V (V)  
+
Figure 5.  
Figure 6.  
SINK CURRENT  
vs  
OUTPUT VOLTAGE  
SINK CURRENT  
vs  
OUTPUT VOLTAGE  
1000  
100  
10  
1000  
100  
10  
V
+
= 2.7 V  
V = 5 V  
+
−40°C  
−40°C  
25°C  
25°C  
85°C  
125°C  
85°C  
1
1
125°C  
0.1  
0.01  
0.1  
0.01  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
V
O
− Output Voltage Referenced to V− (V)  
V
O
− Output Voltage Referenced to V− (V)  
Figure 7.  
Figure 8.  
8
Submit Documentation Feedback  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): LMV341-Q1 LMV344-Q1  
LMV341-Q1  
LMV344-Q1  
www.ti.com.............................................................................................................................................................. SGLS342CJULY 2006REVISED JUNE 2009  
TYPICAL CHARACTERISTICS (continued)  
OFFSET VOLTAGE  
vs  
COMMON-MODE VOLTAGE  
OFFSET VOLTAGE  
vs  
COMMON-MODE VOLTAGE  
1
0.5  
0
1
0.5  
0
V = 5 V  
+
V = 2.7 V  
+
−0.5  
−1  
−0.5  
−1  
125°C  
85°C  
25°C  
125°C  
85°C  
−1.5  
−2  
−1.5  
−2  
25°C  
−40°C  
−40°C  
−2.5  
−3  
−2.5  
−3  
−0.2  
0.8  
1.8  
2.8  
−0.2  
0.8  
1.8  
2.8  
3.8  
4.8  
5.8  
V
IC  
− Common-Mode Voltage − V  
V
IC  
− Common-Mode Voltage − V  
Figure 9.  
Figure 10.  
INPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
INPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
300  
200  
100  
0
300  
V /GND = ±1.35 V  
+
V /GND = ±2.5 V  
+
200  
100  
R
L
= 2 kΩ  
R
L
= 2 kΩ  
R = 10 kΩ  
L
0
R
L
= 10 kΩ  
−100  
−200  
−300  
−100  
−200  
−300  
−1.5  
−1  
−0.5  
0
0.5  
1
1.5  
−3  
−2  
−1  
0
1
2
3
V
O
− Output Voltage − V  
V
O
− Output Voltage − V  
Figure 11.  
Figure 12.  
Copyright © 2006–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): LMV341-Q1 LMV344-Q1  
LMV341-Q1  
LMV344-Q1  
SGLS342CJULY 2006REVISED JUNE 2009.............................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
SLEW RATE  
vs  
TEMPERATURE  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
R
= 10 k  
= 1  
L
A
V
Falling Edge  
V = 2 V  
I
PP  
V = 2.7 V  
+
Falling Edge  
Rising Edge  
Rising Edge  
R
A
V
= 10 k  
= 1  
L
V = 0.8 V for V < 2.7 V  
V = 2 V for V > 2.7 V  
I
PP  
+
I
PP  
+
1.5  
2
2.5  
3
3.5  
4
4.5  
5
−40 −20  
0
20 40 60  
80 100 120 140  
V
CC  
− Supply Voltage − V  
V
CC  
− Supply Voltage − V  
Figure 13.  
Figure 14.  
SLEW RATE  
vs  
TEMPERATURE  
CMRR  
vs  
FREQUENCY  
2.5  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R
= 10 k  
= 1  
L
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
A
V
V = 2 V  
I
PP  
= 5 V  
5 V  
V
+
Falling Edge  
2.7 V  
Rising Edge  
V = V /2  
I
+
R
L
= 5 k  
−40 −20  
0
20 40 60  
80 100 120 140  
100  
1k  
10k  
100k  
1M  
V
CC  
− Supply Voltage − V  
f − Frequency − Hz  
Figure 16.  
Figure 15.  
10  
Submit Documentation Feedback  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): LMV341-Q1 LMV344-Q1  
LMV341-Q1  
LMV344-Q1  
www.ti.com.............................................................................................................................................................. SGLS342CJULY 2006REVISED JUNE 2009  
TYPICAL CHARACTERISTICS (continued)  
PSRR  
vs  
FREQUENCY  
INPUT VOLTAGE NOISE  
vs  
FREQUENCY  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
220  
200  
180  
+PSRR (2.7 V)  
−PSRR (2.7 V)  
160  
140  
120  
−PSRR (5 V)  
+PSRR (5 V)  
100  
80  
5 V  
2.7 V  
60  
40  
20  
0
R
L
= 5 k  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 17.  
Figure 18.  
TOTAL HARMONIC DISTORTION + NOISE  
TOTAL HARMONIC DISTORTION + NOISE  
vs  
vs  
FREQUENCY  
OUTPUT VOLTAGE  
10  
10  
1
R
V
V
= 600  
= 1 V for V = 2.7 V  
PP +  
L
O
O
f = 10 kHz  
R = 600  
L
= 2.5 V for V = 5 V  
PP  
+
5 V  
= 10  
A
V
5 V  
A = 10  
V
1
2.7 V  
A = 10  
0.1  
0.01  
V
2.7 V  
= 10  
A
V
2.7 V  
= 1  
A
V
0.1  
0.01  
5 V  
= 1  
5 V  
= 1  
0.001  
2.7 V  
= 1  
A
A
V
V
A
V
0.0001  
10  
100  
1k  
10k  
100k  
0.001  
0.01  
0.1  
1
10  
f − Frequency − Hz  
V
O
− Output Voltage − V  
PP  
Figure 19.  
Figure 20.  
Copyright © 2006–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): LMV341-Q1 LMV344-Q1  
LMV341-Q1  
LMV344-Q1  
SGLS342CJULY 2006REVISED JUNE 2009.............................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
GAIN AND PHASE MARGIN  
vs  
FREQUENCY  
(TA = –40°C, 25°C, 125°C)  
160  
140  
V
R
= 5 V  
= 2 k  
Phase  
+
140  
120  
100  
80  
L
120  
100  
80  
−40°C  
Gain  
60  
−40°C  
25°C  
25°C  
60  
40  
125°C  
40  
20  
125°C  
20  
0
0
−20  
10k  
100k  
1M  
10M  
1k  
f − Frequency − Hz  
Figure 21.  
GAIN AND PHASE MARGIN  
vs  
FREQUENCY  
(RL = 600 , 2 k, 100 k)  
140  
120  
100  
80  
160  
V = 2.7 V  
+
Closed-Loop  
Gain = 60 dB  
140  
120  
100  
80  
Phase  
Gain  
R = 600  
L
60  
R
L
= 2 kΩ  
R = 100 kΩ  
L
60  
40  
R = 100 kΩ  
L
40  
20  
20  
0
R
L
= 2 kΩ  
0
R
L
= 600 Ω  
−20  
1k  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
Figure 22.  
12  
Submit Documentation Feedback  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): LMV341-Q1 LMV344-Q1  
LMV341-Q1  
LMV344-Q1  
www.ti.com.............................................................................................................................................................. SGLS342CJULY 2006REVISED JUNE 2009  
TYPICAL CHARACTERISTICS (continued)  
GAIN AND PHASE MARGIN  
vs  
FREQUENCY  
(RL = 600 , 2 k, 100 k)  
160  
140  
V
+
= 5 V  
Closed-Loop  
Gain = 60 dB  
140  
120  
100  
80  
120  
100  
80  
Phase  
Gain  
R
L
= 600  
60  
R
L
= 2 kΩ  
R = 100 kΩ  
L
60  
40  
R = 100 kΩ  
L
40  
20  
R
L
= 2 kΩ  
20  
R
L
= 600 Ω  
0
0
10M  
−20  
1k  
10k  
100k  
1M  
f − Frequency − Hz  
Figure 23.  
GAIN AND PHASE MARGIN  
vs  
FREQUENCY  
(CL = 0 pF, 100 pF, 500 pF, 1000 pF)  
100  
140  
Phase  
V = 5 V  
+
R = 600  
Closed-Loop Gain = 60 dB  
120  
100  
80  
L
80  
60  
40  
20  
C
L
= 0 pF  
C
L
= 100 pF  
C
L
= 500 pF  
Gain  
C = 1000 pF  
L
60  
0
40  
C
= 0 pF  
L
−20  
−40  
−60  
20  
0
C
= 500 pF  
L
−20  
−40  
C = 1000 pF  
L
C = 100 pF  
L
−80  
1k  
10k  
100k  
f − Frequency − Hz  
Figure 24.  
1M  
10M  
Copyright © 2006–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): LMV341-Q1 LMV344-Q1  
LMV341-Q1  
LMV344-Q1  
SGLS342CJULY 2006REVISED JUNE 2009.............................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
SMALL-SIGNAL NONINVERTING RESPONSE  
0.1  
LARGE-SIGNAL NONINVERTING RESPONSE  
2
0.25  
0.2  
6
5
Input  
Input  
1
0.05  
0
0
4
0.15  
0.1  
−1  
3
2
1
T
R
= −40°C  
= 2 kΩ  
A
−0.05  
−0.1  
−0.15  
−0.2  
−0.25  
T
R
= −40°C  
= 2 kΩ  
V /GND = ±2.5 V  
A
L
−2  
−3  
−4  
−5  
−6  
V /GND = ±2.5 V  
L
+
+
0.05  
0
0
−0.05  
−0.1  
−1  
−2  
Output  
Output  
4 µs/div"  
Figure 25.  
4 µs/div"  
Figure 26.  
SMALL-SIGNAL NONINVERTING RESPONSE  
0.1  
LARGE-SIGNAL NONINVERTING RESPONSE  
2
1
6
5
0.25  
0.2  
Input  
Input  
0.05  
0
4
3
0
0.15  
0.1  
−1  
−2  
−3  
−4  
−5  
−6  
T
R
= 25°C  
= 2 kΩ  
A
T
R
= 25°C  
= 2 kΩ  
V /GND = ±2.5 V  
A
−0.05  
−0.1  
−0.15  
−0.2  
−0.25  
L
L
2
V /GND = ±2.5 V  
+
+
0.05  
0
1
0
−1  
−2  
−0.05  
−0.1  
Output  
Output  
4 µs/div"  
4 µs/div"  
Figure 27.  
Figure 28.  
14  
Submit Documentation Feedback  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): LMV341-Q1 LMV344-Q1  
LMV341-Q1  
LMV344-Q1  
www.ti.com.............................................................................................................................................................. SGLS342CJULY 2006REVISED JUNE 2009  
TYPICAL CHARACTERISTICS (continued)  
SMALL-SIGNAL NONINVERTING RESPONSE  
0.1  
LARGE-SIGNAL NONINVERTING RESPONSE  
2
0.25  
0.2  
6
5
Input  
Input  
0.05  
0
1
0
4
0.15  
0.1  
−1  
3
T
R
= 125°C  
= 2 kΩ  
A
−0.05  
−0.1  
−0.15  
−0.2  
−0.25  
T
= 125°C  
R = 2 kΩ  
L
V /GND = ±2.5 V  
A
L
V /GND = ±2.5 V  
−2  
−3  
−4  
−5  
−6  
+
2
0.05  
0
+
1
0
−0.05  
−0.1  
−1  
−2  
Output  
4 µs/div"  
Figure 29.  
Output  
4 µs/div"  
Figure 30.  
SMALL-SIGNAL INVERTING RESPONSE  
LARGE-SIGNAL INVERTING RESPONSE  
6
5
0.1  
2
0.25  
0.2  
Input  
Input  
1
0.05  
0
4
0
0.15  
0.1  
3
−1  
−2  
−3  
−4  
−5  
−6  
−0.05  
−0.1  
−0.15  
−0.2  
−0.25  
T
R
= −40°C  
= 2 kΩ  
A
T = −40°C  
A
R = 2 kΩ  
L
V /GND = ±2.5 V  
+
L
2
V /GND = ±2.5 V  
+
0.05  
0
1
0
−0.05  
−0.1  
−1  
−2  
Output  
Output  
4 µs/div"  
4 µs/div"  
Figure 31.  
Figure 32.  
Copyright © 2006–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): LMV341-Q1 LMV344-Q1  
LMV341-Q1  
LMV344-Q1  
SGLS342CJULY 2006REVISED JUNE 2009.............................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
SMALL-SIGNAL INVERTING RESPONSE  
LARGE-SIGNAL INVERTING RESPONSE  
6
5
2
0.1  
0.25  
0.2  
Input  
Input  
1
0.05  
0
4
0
0.15  
0.1  
3
−1  
T
R
= 25°C  
= 2 kΩ  
A
−0.05  
−0.1  
−0.15  
−0.2  
−0.25  
T
R
= 25°C  
= 2 kΩ  
A
L
L
2
−2  
−3  
−4  
−5  
−6  
V /GND = ±2.5 V  
+
V /GND = ±2.5 V  
+
0.05  
0
1
0
−0.05  
−0.1  
−1  
−2  
Output  
Output  
4 µs/div"  
Figure 33.  
4 µs/div"  
Figure 34.  
SMALL-SIGNAL INVERTING RESPONSE  
LARGE-SIGNAL INVERTING RESPONSE  
2
0.1  
6
5
0.25  
0.2  
Input  
Input  
1
0
0.05  
0
4
0.15  
0.1  
−1  
3
T
R
= 125°C  
= 2 kΩ  
A
−0.05  
−0.1  
−0.15  
−0.2  
−0.25  
T = 125°C  
A
L
R
L
= 2 kΩ  
−2  
−3  
−4  
−5  
−6  
2
V /GND = ±2.5 V  
+
V /GND = ±2.5 V  
+
0.05  
0
1
0
−0.05  
−0.1  
−1  
−2  
Output  
Output  
4 µs/div"  
Figure 35.  
4 µs/div"  
Figure 36.  
16  
Submit Documentation Feedback  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): LMV341-Q1 LMV344-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
LMV341QDBVRQ1  
LMV341QDCKRQ1  
LMV344IPWRQ1  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 85  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SOT-23  
SC70  
DBV  
6
6
3000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
RCHE  
ACTIVE  
ACTIVE  
DCK  
PW  
3000  
2000  
Green (RoHS  
& no Sb/Br)  
RRE  
TSSOP  
14  
Green (RoHS  
& no Sb/Br)  
LMV344Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
OTHER QUALIFIED VERSIONS OF LMV341-Q1, LMV344-Q1 :  
Catalog: LMV341, LMV344  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Mar-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMV341QDBVRQ1  
LMV341QDCKRQ1  
LMV344IPWRQ1  
SOT-23  
SC70  
DBV  
DCK  
PW  
6
6
3000  
3000  
2000  
179.0  
179.0  
330.0  
8.4  
8.4  
3.2  
2.2  
6.9  
3.2  
2.5  
5.6  
1.4  
1.2  
1.6  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q1  
TSSOP  
14  
12.4  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Mar-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMV341QDBVRQ1  
LMV341QDCKRQ1  
LMV344IPWRQ1  
SOT-23  
SC70  
DBV  
DCK  
PW  
6
6
3000  
3000  
2000  
203.0  
203.0  
367.0  
203.0  
203.0  
367.0  
35.0  
35.0  
35.0  
TSSOP  
14  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2015, Texas Instruments Incorporated  

相关型号:

LMV341DBVR

IC,OP-AMP,SINGLE,CMOS,TSOP,6PIN,PLASTIC
TI

LMV341ICKVT

RAIL-TO-RAIL OUTPUT CMOS OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

LMV341IDBVR

RAIL-TO-RAIL OUTPUT CMOS OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

LMV341IDBVRE4

RAIL-TO-RAIL OUTPUT CMOS OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

LMV341IDBVRG4

单路、5.5V、1MHz、高输出电流 (75mA) 运算放大器 | DBV | 6 | -40 to 125
TI

LMV341IDBVT

RAIL-TO-RAIL OUTPUT CMOS OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

LMV341IDCKR

RAIL-TO-RAIL OUTPUT CMOS OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

LMV341IDCKRE4

RAIL-TO-RAIL OUTPUT CMOS OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

LMV341IDCKRG4

RAIL-TO-RAIL OUTPUT CMOS OPERATIONAL AMPLIFIERS WITH SHUTDOWN
TI

LMV341IDCKT

OP-AMP, 4500uV OFFSET-MAX, 1MHz BAND WIDTH, PDSO6, PLASTIC, SC-70, 6 PIN
TI

LMV341MG

Single with Shutdown/Dual/Quad General Purpose, 2.7V, Rail-to-Rail Output, 125∑C, Operational Amplifiers
NSC

LMV341MG

Single with Shutdown/Dual/Quad General Purpose, 2.7V,Rail-to-Rail Output, 125C, Operational Amplifiers
TI