LMV1012TPX-15/NOPB [TI]

用于高增益双线麦克风的模拟输入麦克风前置放大器 | YPB | 4 | -40 to 85;
LMV1012TPX-15/NOPB
型号: LMV1012TPX-15/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于高增益双线麦克风的模拟输入麦克风前置放大器 | YPB | 4 | -40 to 85

放大器 商用集成电路
文件: 总23页 (文件大小:667K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMV1012  
www.ti.com  
SNAS194H NOVEMBER 2002REVISED MAY 2013  
LMV1012 Analog Series: Pre-Amplified IC's for High Gain 2-Wire Microphones  
Check for Samples: LMV1012  
1
FEATURES  
DESCRIPTION  
The LMV1012 is an audio amplifier series for small  
form factor electret microphones. This 2-wire portfolio  
is designed to replace the JFET amplifier currently  
being used. The LMV1012 series is ideally suited for  
applications requiring high signal integrity in the  
presence of ambient or RF noise, such as in cellular  
communications. The LMV1012 audio amplifiers are  
specified to operate over a 2.2V to 5.0V supply  
voltage range with fixed gains of 7.8 dB, 15.6 dB,  
20.9 dB, and 23.8 dB. The devices offer excellent  
THD, gain accuracy and temperature stability as  
compared to a JFET microphone.  
2
Typical LMV1012-15, 2.2V Supply, RL = 2.2 k,  
C = 2.2 μF, VIN = 18 mVPP, Unless Otherwise  
Specified  
Supply Voltage: 2V - 5V  
Supply Current: <180 μA  
Signal to Noise Ratio (A-Weighted): 60 dB  
Output Voltage Noise (A-Weighted): 89 dBV  
Total Harmonic Distortion: 0.09%  
Voltage Gain  
LMV1012-07: 7.8 dB  
LMV1012-15: 15.6 dB  
LMV1012-20: 20.9 dB  
LMV1012-25: 23.8 dB  
The LMV1012 series enables a two-pin electret  
microphone solution, which provides direct pin-to-pin  
compatibility with the existing JFET market.  
The devices are offered in extremely thin space  
saving 4-bump DSBGA packages. The LMV1012XP  
is designed for 1.0 mm canisters and thicker ECM  
canisters. These extremely miniature packages are  
designed for electret condenser microphones (ECM)  
form factor.  
Temperature Range: 40°C to 85°C  
Offered in 4-Bump DSBGA Packages  
APPLICATIONS  
Cellular Phones  
Headsets  
Mobile Communications  
Automotive Accessories  
PDAs  
Accessory Microphone Products  
Schematic Diagram  
Built-In Gain Electret Microphone  
DIAPHRAGM  
V
DD  
2.2k  
AIRGAP  
ELECTRET  
2.2mF  
BACKPLATE  
CONNECTOR  
OUTPUT  
LMV1012  
IC  
-
INPUT  
+
-
+
GND  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2002–2013, Texas Instruments Incorporated  
LMV1012  
SNAS194H NOVEMBER 2002REVISED MAY 2013  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
Absolute Maximum Ratings(1)(2)  
Human Body Model  
Machine Model  
VDD - GND  
2500V  
250V  
ESD Tolerance(3)  
Supply Voltage  
5.5V  
Storage Temperature Range  
Junction Temperature(4)  
Mounting Temperature  
65°C to 150°C  
150°C max  
235°C  
Infrared or Convection (20 sec.)  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test  
conditions, see the 5V Electrical Characteristics.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(3) Human Body Model (HBM) is 1.5 kin series with 100 pF.  
(4) The maximum power dissipation is a function of TJ(MAX) , θJA and TA. The maximum allowable power dissipation at any ambient  
temperature is PD = (TJ(MAX) - TA)/θJA. All numbers apply for packages soldered directly into a PC board.  
Operating Ratings(1)  
Supply Voltage  
2V to 5V  
Temperature Range  
40°C to 85°C  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test  
conditions, see the 5V Electrical Characteristics.  
2
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: LMV1012  
LMV1012  
www.ti.com  
SNAS194H NOVEMBER 2002REVISED MAY 2013  
2.2V Electrical Characteristics(1)  
Unless otherwise specified, all limits are specified for TJ = 25°C, VDD = 2.2V, VIN = 18 mV, RL = 2.2 kand C = 2.2 μF.  
Boldface limits apply at the temperature extremes.  
Symbol  
IDD  
Parameter  
Supply Current  
Conditions  
LMV1012-07  
Min(2)  
Typ(3)  
Max(2)  
Units  
VIN = GND  
139  
250  
300  
LMV1012-15  
LMV1012-20  
LMV1012-25  
180  
160  
141  
300  
325  
μA  
250  
300  
250  
300  
SNR  
Signal to Noise Ratio  
Max Input Signal  
Output Voltage  
f = 1 kHz, VIN = 18 mV, LMV1012-07  
59  
60  
A-Weighted  
LMV1012-15  
dB  
LMV1012-20  
LMV1012-25  
61  
61  
VIN  
f = 1 kHz and THD+N < LMV1012-07  
170  
100  
50  
1%  
LMV1012-15  
mVPP  
LMV1012-20  
LMV1012-25  
28  
VOUT  
VIN = GND  
LMV1012-07  
LMV1012-15  
LMV1012-20  
LMV1012-25  
1.65  
1.54  
1.90  
2.03  
2.09  
1.54  
1.48  
1.81  
1.85  
1.90  
1.94  
2.00  
V
1.65  
1.55  
2.03  
2.13  
1.65  
2.02  
1.49  
2.18  
fLOW  
fHIGH  
en  
Lower 3dB Roll Off Frequency  
Upper 3dB Roll Off Frequency  
Output Noise  
RSOURCE = 50Ω  
RSOURCE = 50Ω  
A-Weighted  
65  
95  
Hz  
kHz  
LMV1012-07  
LMV1012-15  
LMV1012-20  
LMV1012-25  
LMV1012-07  
LMV1012-15  
LMV1012-20  
LMV1012-25  
96  
89  
84  
82  
0.10  
0.09  
0.12  
0.15  
2
dBV  
%
THD  
Total Harmonic Distortion  
f = 1 kHz,  
VIN = 18 mV  
CIN  
ZIN  
AV  
Input Capacitance  
Input Impedance  
Gain  
pF  
>1000  
7.8  
GΩ  
f = 1 kHz,  
RSOURCE = 50Ω  
LMV1012-07  
LMV1012-15  
LMV1012-20  
LMV1012-25  
6.4  
5.5  
9.5  
10.0  
14.0  
13.1  
15.6  
20.9  
23.8  
16.9  
17.5  
dB  
19.5  
17.4  
22.0  
23.3  
22.5  
25.0  
21.4  
25.7  
(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very  
limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables under  
conditions of internal self-heating where TJ > TA.  
(2) All limits are specified by design or statistical analysis.  
(3) Typical values represent the most likely parametric norm.  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LMV1012  
LMV1012  
SNAS194H NOVEMBER 2002REVISED MAY 2013  
www.ti.com  
5V Electrical Characteristics(1)  
Unless otherwise specified, all limits are specified for TJ = 25°C, VDD = 5V, VIN = 18 mV, RL = 2.2 kand C = 2.2 μF.  
Boldface limits apply at the temperature extremes.  
Symbol  
IDD  
Parameter  
Supply Current  
Conditions  
LMV1012-07  
Min(2)  
Typ(3)  
Max(2)  
Units  
VIN = GND  
158  
250  
300  
LMV1012-15  
LMV1012-20  
LMV1012-25  
200  
188  
160  
300  
325  
μA  
260  
310  
250  
300  
SNR  
Signal to Noise Ratio  
Max Input Signal  
Output Voltage  
f = 1 kHz, VIN = 18 mV, LMV1012-07  
59  
60  
A-Weighted  
LMV1012-15  
dB  
LMV1012-20  
LMV1012-25  
61  
61  
VIN  
f = 1 kHz and THD+N < LMV1012-07  
170  
100  
55  
1%  
LMV1012-15  
mVPP  
LMV1012-20  
LMV1012-25  
28  
VOUT  
VIN = GND  
LMV1012-07  
LMV1012-15  
LMV1012-20  
LMV1012-25  
4.45  
4.38  
4.65  
4.80  
4.85  
4.34  
4.28  
4.56  
4.58  
4.65  
4.74  
4.80  
V
4.40  
4.30  
4.75  
4.85  
4.45  
4.83  
4.39  
4.86  
fLOW  
fHIGH  
en  
Lower 3dB Roll Off Frequency  
Upper 3dB Roll Off Frequency  
Output Noise  
RSOURCE = 50Ω  
RSOURCE = 50Ω  
A-Weighted  
67  
150  
96  
89  
84  
82  
0.12  
0.13  
0.18  
0.21  
2
Hz  
kHz  
LMV1012-07  
LMV1012-15  
LMV1012-20  
LMV1012-25  
LMV1012-07  
LMV1012-15  
LMV1012-20  
LMV1012-25  
dBV  
%
THD  
Total Harmonic Distortion  
f = 1 kHz,  
VIN = 18 mV  
CIN  
ZIN  
AV  
Input Capacitance  
Input Impedance  
Gain  
pF  
>1000  
8.1  
GΩ  
f = 1 kHz,  
RSOURCE = 50Ω  
LMV1012-07  
LMV1012-15  
LMV1012-20  
LMV1012-25  
6.4  
5.5  
9.5  
10.7  
14.0  
13.1  
15.6  
21.1  
23.9  
16.9  
17.5  
dB  
19.2  
17.0  
22.3  
23.5  
22.5  
25.0  
21.2  
25.8  
(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very  
limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables under  
conditions of internal self-heating where TJ > TA.  
(2) All limits are specified by design or statistical analysis.  
(3) Typical values represent the most likely parametric norm.  
4
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: LMV1012  
LMV1012  
www.ti.com  
SNAS194H NOVEMBER 2002REVISED MAY 2013  
Connection Diagram  
A2  
B2  
OUTPUT  
GND  
X
A1  
B1  
GND  
INPUT  
4-Bump DSBGA (Top View)  
NOTE  
Pin numbers are referenced to package marking text orientation.  
The actual physical placement of the package marking will vary slightly from part to part.  
The package will designate the date code and will vary considerably. Package marking  
does not correlate to device type in any way.  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LMV1012  
LMV1012  
SNAS194H NOVEMBER 2002REVISED MAY 2013  
www.ti.com  
Typical Performance Characteristics  
Unless otherwise specified, VS = 2.2V, RL = 2.2 k, C = 2.2 μF, single supply, TA = 25°C  
Supply Current vs. Supply Voltage (LMV1012-07)  
Supply Current vs. Supply Voltage (LMV1012-15)  
180  
260  
170  
240  
85°C  
160  
25°C  
220  
200  
180  
85°C  
150  
140  
25°C  
130  
120  
160  
140  
120  
110  
-40°C  
-40°C  
100  
2
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
2
2.5  
4
4.5  
5
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 1.  
Figure 2.  
Supply Current vs. Supply Voltage (LMV1012-20)  
Supply Current vs. Supply Voltage (LMV1012-25)  
220  
260  
240  
200  
220  
85°C  
85°C  
180  
200  
25°C  
180  
25°C  
160  
140  
160  
140  
-40°C  
120  
120  
-40°C  
100  
100  
5.5  
2
2.5  
3
3.5  
4
4.5  
5
2
2.5  
3
3.5  
4
4.5  
5
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 3.  
Figure 4.  
Gain and Phase vs. Frequency (LMV1012-07)  
Gain and Phase vs. Frequency (LMV1012-15)  
10  
300  
0
18  
16  
14  
GAIN  
250  
GAIN  
-40  
8
6
200  
-80  
150  
4
2
PHASE  
-120  
12  
10  
8
100  
50  
PHASE  
-160  
-200  
-240  
-280  
-320  
-360  
0
-2  
-4  
-6  
0
6
-50  
-100  
4
2
-150  
-200  
-8  
-10  
0
10k  
10  
100  
1k  
100k  
1M  
100k  
10  
100  
1k  
10k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 5.  
Figure 6.  
6
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: LMV1012  
LMV1012  
www.ti.com  
SNAS194H NOVEMBER 2002REVISED MAY 2013  
Typical Performance Characteristics (continued)  
Unless otherwise specified, VS = 2.2V, RL = 2.2 k, C = 2.2 μF, single supply, TA = 25°C  
Gain and Phase vs. Frequency (LMV1012-20)  
Gain and Phase vs. Frequency (LMV1012-25)  
25  
25  
20  
15  
300  
300  
250  
200  
GAIN  
GAIN  
250  
200  
20  
150  
100  
150  
100  
PHASE  
PHASE  
15  
10  
50  
0
50  
0
10  
5
-50  
-50  
5
0
-100  
-100  
-150  
-200  
-150  
-200  
0
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7.  
Figure 8.  
Total Harmonic Distortion vs. Frequency (LMV1012-07)  
Total Harmonic Distortion vs. Frequency (LMV1012-15)  
0.7  
0.6  
V
IN  
= 18 mV  
PP  
V
IN  
= 18 mV  
PP  
0.6  
0.5  
0.5  
0.4  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.0  
0.1  
0.0  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 9.  
Figure 10.  
Total Harmonic Distortion vs. Frequency (LMV1012-20)  
Total Harmonic Distortion vs. Frequency (LMV1012-25)  
0.6  
0.6  
V
= 18 mV  
V = 18 mV  
IN PP  
IN  
PP  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 11.  
Figure 12.  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LMV1012  
LMV1012  
SNAS194H NOVEMBER 2002REVISED MAY 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
Unless otherwise specified, VS = 2.2V, RL = 2.2 k, C = 2.2 μF, single supply, TA = 25°C  
Total Harmonic Distortion vs. Input Voltage (LMV1012-07)  
Total Harmonic Distortion vs. Input Voltage (LMV1012-15)  
1.0  
1.0  
f = 1 kHz  
0.9  
f = 1 kHz  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0
50  
100  
150  
200  
250  
0
20  
40  
60  
80  
100  
120  
INPUT VOLTAGE (mV  
)
INPUT VOLTAGE (mV  
)
PP  
PP  
Figure 13.  
Figure 14.  
Total Harmonic Distortion vs. Input Voltage (LMV1012-20)  
Total Harmonic Distortion vs. Input Voltage (LMV1012-25)  
1.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.1  
f = 1 kHz  
f = 1 kHz  
50 60  
0.0  
0.0  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
INPUT VOLTAGE (mV )  
PP  
INPUT VOLTAGE (mV  
)
PP  
Figure 15.  
Figure 16.  
Output Noise vs. Frequency (LMV1012-07)  
Output Noise vs. Frequency (LMV1012-15)  
-100  
-100  
INPUT IS CONNECTED  
TO GND  
INPUT IS CONNECTED TO  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
GND  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17.  
Figure 18.  
8
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: LMV1012  
LMV1012  
www.ti.com  
SNAS194H NOVEMBER 2002REVISED MAY 2013  
Typical Performance Characteristics (continued)  
Unless otherwise specified, VS = 2.2V, RL = 2.2 k, C = 2.2 μF, single supply, TA = 25°C  
Output Noise vs. Frequency (LMV1012-20)  
Output Noise vs. Frequency (LMV1012-25)  
-100  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
INPUT IS CONNECTED  
TO GND  
INPUT IS CONNECTED  
TO GND  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19.  
Figure 20.  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LMV1012  
LMV1012  
SNAS194H NOVEMBER 2002REVISED MAY 2013  
www.ti.com  
APPLICATION SECTION  
HIGH GAIN  
The LMV1012 series provides outstanding gain versus the JFET and still maintains the same ease of  
implementation, with improved gain, linearity and temperature stability. A high gain eliminates the need for extra  
external components.  
BUILT IN GAIN  
The LMV1012 is offered in 0.3 mm height space saving small 4-pin DSBGA packages in order to fit inside the  
different size ECM canisters of a microphone. The LMV1012 is placed on the PCB inside the microphone.  
The bottom side of the PCB usually shows a bull's eye pattern where the outer ring, which is shorted to the metal  
can, should be connected to the ground. The center dot on the PCB is connected to the VDD through a resistor.  
This phantom biasing allows both supply voltage and output signal on one connection.  
DIAPHRAGM  
AIRGAP  
ELECTRET  
BACKPLATE  
CONNECTOR  
LMV1012  
IC  
Figure 21. Built in Gain  
A-WEIGHTED FILTER  
The human ear has a frequency range from 20 Hz to about 20 kHz. Within this range the sensitivity of the human  
ear is not equal for each frequency. To approach the hearing response weighting filters are introduced. One of  
those filters is the A-weighted filter.  
The A-weighted filter is usually used in signal to noise ratio measurements, where sound is compared to device  
noise. This filter improves the correlation of the measured data to the signal to noise ratio perceived by the  
human ear.  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 22. A-Weighted Filter  
10  
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: LMV1012  
LMV1012  
www.ti.com  
SNAS194H NOVEMBER 2002REVISED MAY 2013  
MEASURING NOISE AND SNR  
The overall noise of the LMV1012 is measured within the frequency band from 10 Hz to 22 kHz using an A-  
weighted filter. The input of the LMV1012 is connected to ground with a 5 pF capacitor, as in Figure 23. Special  
precautions in the internal structure of the LMV1012 have been taken to reduce the noise on the output.  
A-WEIGHTED FILTER  
5 pF  
Figure 23. Noise Measurement Setup  
The signal to noise ratio (SNR) is measured with a 1 kHz input signal of 18 mVPP using an A-weighted filter. This  
represents a sound pressure level of 94 dB SPL. No input capacitor is connected for the measurement.  
SOUND PRESSURE LEVEL  
The volume of sound applied to a microphone is usually stated as a pressure level referred to the threshold of  
hearing of the human ear. The sound pressure level (SPL) in decibels is defined by:  
Sound pressure level (dB) = 20 log Pm/PO  
where  
Pm is the measured sound pressure  
PO is the threshold of hearing (20 μPa).  
(1)  
In order to be able to calculate the resulting output voltage of the microphone for a given SPL, the sound  
pressure in dB SPL needs to be converted to the absolute sound pressure in dBPa. This is the sound pressure  
level in decibels referred to 1 Pascal (Pa).  
The conversion is given by:  
dBPa = dB SPL + 20*log 20 μPa  
(2)  
(3)  
dBPa = dB SPL - 94 dB  
Translation from absolute sound pressure level to a voltage is specified by the sensitivity of the microphone. A  
conventional microphone has a sensitivity of -44 dBV/Pa.  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LMV1012  
 
LMV1012  
SNAS194H NOVEMBER 2002REVISED MAY 2013  
www.ti.com  
ABSOLUTE  
SOUND  
PRESSURE  
[dBPa]  
SENSITIVITY  
[dBV/Pa]  
-94 dB  
SOUND  
PRESSURE  
[dB SPL]  
VOLTAGE  
[dBV]  
Figure 24. dB SPL to dBV Conversion  
Example: Busy traffic is 70 dB SPL  
VOUT = 70 94 44 = 68 dBV  
(4)  
This is equivalent to 1.13 mVPP  
Since the LMV1012-15 has a gain of 6 (15.6 dB) over the JFET, the output voltage of the microphone is 6.78  
mVPP. By implementing the LMV1012-15, the sensitivity of the microphone is -28.4 dBV/Pa (44 + 15.6).  
LOW FREQUENCY CUT OFF FILTER  
To reduce noise on the output of the microphone a low frequency cut off filter has been implemented. This filter  
reduces the effect of wind and handling noise.  
It's also helpful to reduce the proximity effect in directional microphones. This effect occurs when the sound  
source is very close to the microphone. The lower frequencies are amplified which gives a bass sound. This  
amplification can cause an overload, which results in a distortion of the signal.  
20  
15  
10  
5
85°C  
25°C  
0
-40°C  
V
DD  
= 2.2V  
-5  
10k  
FREQUENCY (Hz)  
10  
100  
1k  
100k  
1M  
Figure 25. LMV1012-15 Gain vs. Frequency Over Temperature  
The LMV1012 is optimized to be used in audio band applications. By using the LMV1012, the gain response is  
flat within the audio band and has linearity and temperature stability (see Figure 25).  
12  
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: LMV1012  
 
LMV1012  
www.ti.com  
SNAS194H NOVEMBER 2002REVISED MAY 2013  
NOISE  
Noise pick-up by a microphone in cell phones is a well-known problem. A conventional JFET circuit is sensitive  
for noise pick-up because of its high output impedance, which is usually around 2.2 k.  
RF noise is amongst other caused by non-linear behavior. The non-linear behavior of the amplifier at high  
frequencies, well above the usable bandwidth of the device, causes AM-demodulation of high frequency signals.  
The AM modulation contained in such signals folds back into the audio band, thereby disturbing the intended  
microphone signal. The GSM signal of a cell phone is such an AM-modulated signal. The modulation frequency  
of 216 Hz and its harmonics can be observed in the audio band. This kind of noise is called bumblebee noise.  
RF noise caused by a GSM signal can be reduced by connecting two external capacitors to ground, see  
Figure 26. One capacitor reduces the noise caused by the 900 MHz carrier and the other reduces the noise  
caused by 1800/1900 MHz.  
V
DD  
OUTPUT  
INPUT  
10 pF  
33 pF  
Figure 26. RF Noise Reduction  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LMV1012  
 
 
LMV1012  
SNAS194H NOVEMBER 2002REVISED MAY 2013  
www.ti.com  
REVISION HISTORY  
Changes from Revision G (May 2013) to Revision H  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 13  
14  
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: LMV1012  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMV1012TP-25/NOPB  
LMV1012TPX-15/NOPB  
LMV1012TPX-25/NOPB  
LMV1012UP-07/NOPB  
LMV1012UP-15/NOPB  
LMV1012UP-20/NOPB  
LMV1012UP-25/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YPB  
YPB  
YPB  
YPC  
YPC  
YPC  
YPC  
4
4
4
4
4
4
4
250  
RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
3000 RoHS & Green  
3000 RoHS & Green  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
-40 to 85  
-40 to 85  
250  
250  
250  
250  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMV1012TP-25/NOPB  
DSBGA  
YPB  
YPB  
YPB  
YPC  
YPC  
YPC  
YPC  
4
4
4
4
4
4
4
250  
3000  
3000  
250  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
1.02  
1.02  
1.02  
1.02  
1.02  
1.02  
1.02  
1.09  
1.09  
1.09  
1.09  
1.09  
1.09  
1.09  
0.66  
0.66  
0.66  
0.56  
0.56  
0.56  
0.56  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
LMV1012TPX-15/NOPB DSBGA  
LMV1012TPX-25/NOPB DSBGA  
LMV1012UP-07/NOPB DSBGA  
LMV1012UP-15/NOPB DSBGA  
LMV1012UP-20/NOPB DSBGA  
LMV1012UP-25/NOPB DSBGA  
250  
250  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMV1012TP-25/NOPB  
LMV1012TPX-15/NOPB  
LMV1012TPX-25/NOPB  
LMV1012UP-07/NOPB  
LMV1012UP-15/NOPB  
LMV1012UP-20/NOPB  
LMV1012UP-25/NOPB  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YPB  
YPB  
YPB  
YPC  
YPC  
YPC  
YPC  
4
4
4
4
4
4
4
250  
3000  
3000  
250  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
250  
250  
250  
Pack Materials-Page 2  
MECHANICAL DATA  
YPC0004  
D
0.350±0.045  
E
UPA04XXX (Rev C)  
D: Max = 1.057 mm, Min =0.996 mm  
E: Max = 0.981 mm, Min = 0.92 mm  
4215139/A  
12/12  
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.  
B. This drawing is subject to change without notice.  
NOTES:  
www.ti.com  
PACKAGE OUTLINE  
YPB0004  
DSBGA - 0.575 mm max height  
SCALE 12.000  
DIE SIZE BALL GRID ARRAY  
A
D
B
E
BALL A1  
CORNER  
0.575 MAX  
C
SEATING PLANE  
0.05 C  
BALL TYP  
0.15  
0.11  
0.5  
B
SYMM  
0.5  
D: Max = 1.057 mm, Min =0.996 mm  
E: Max = 0.981 mm, Min = 0.92 mm  
A
1
2
SYMM  
0.18  
4X  
0.16  
0.015  
C A B  
4215097/B 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YPB0004  
DSBGA - 0.575 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.5)  
4X ( 0.16)  
2
1
A
B
SYMM  
(0.5)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE:40X  
(
0.16)  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
METAL  
(
0.16)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4215097/B 07/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YPB0004  
DSBGA - 0.575 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.5) TYP  
4X ( 0.3)  
(R0.05) TYP  
2
1
A
B
SYMM  
(0.5) TYP  
METAL  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125mm THICK STENCIL  
SCALE:50X  
4215097/B 07/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

LMV1012TPX-25

Pre-Amplified IC’s for High Gain 2-Wire Microphones
NSC

LMV1012TPX-25/NOPB

用于高增益双线麦克风的模拟输入麦克风前置放大器 | YPB | 4 | -40 to 85
TI

LMV1012UP-07

Pre-Amplified IC’s for High Gain 2-Wire Microphones
NSC

LMV1012UP-07/NOPB

IC 1 CHANNEL, AUDIO PREAMPLIFIER, PBGA4, 0.40 MM HEIGHT, LEAD FREE, MO-211CA, MICRO, SMD-4, Audio/Video Amplifier
NSC

LMV1012UP-07/NOPB

用于高增益双线麦克风的模拟输入麦克风前置放大器 | YPC | 4
TI

LMV1012UP-15

Pre-Amplified IC’s for High Gain 2-Wire Microphones
NSC

LMV1012UP-15/NOPB

用于高增益双线麦克风的模拟输入麦克风前置放大器 | YPC | 4
TI

LMV1012UP-20

Pre-Amplified IC’s for High Gain 2-Wire Microphones
NSC

LMV1012UP-20/NOPB

用于高增益双线麦克风的模拟输入麦克风前置放大器 | YPC | 4
TI

LMV1012UP-25

Pre-Amplified IC’s for High Gain 2-Wire Microphones
NSC

LMV1012UP-25/NOPB

用于高增益双线麦克风的模拟输入麦克风前置放大器 | YPC | 4
TI

LMV1012UPX-07

Pre-Amplified IC’s for High Gain 2-Wire Microphones
NSC