LMT01QLPGMQ1 [TI]

具有脉冲序列接口的汽车级 0.5°C 高精度双引脚温度传感器 | LPG | 2 | -40 to 125;
LMT01QLPGMQ1
型号: LMT01QLPGMQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有脉冲序列接口的汽车级 0.5°C 高精度双引脚温度传感器 | LPG | 2 | -40 to 125

温度传感 脉冲 传感器 温度传感器
文件: 总34页 (文件大小:2613K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMT01-Q1  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
具有脉冲计数接口的 LMT01-Q1 0.5°C 精度双引脚数字输出温度传感器  
1 特性  
3 说明  
1
符合 AEC-Q100 标准,其中包括以下内容:  
LMT01-Q1器件是一款高精度双引脚温度传感器,具备  
一个易于使用的脉冲计数电流环路接口,因此适用于汽  
车、工业和消费品市场中的 板载和非板载 应用。  
LMT01-Q1 具有数字脉冲计数输出,可在宽温度范围  
内实现高精度,因此适合与所有 MCU 配对使用,不仅  
能够降低软件开销,而且不会影响集成 ADC 的质量或  
可用性。TI LMT01-Q1 器件在 –20°C 90°C 的温  
度范围内支持 ±0.5°C 的最大精度,同时具有极高的分  
辨率 (0.0625°C),无需借助系统校准或软硬件补偿。  
温度等级 0 (E)–40°C +150°C (2)  
温度等级 1 (Q) 级:–40°C +125°C  
人体模型 (HBM) 静电放电 (ESD) 组件分类等级  
2
充电器件模型 (CDM) ESD 组件分类等级 C5  
–40°C 150°C 宽温度范围内保持高精度  
–20°C 90°C±0.5°C(最大值)  
90°C 120°C±0.625°C(最大值)  
–40°C –20°C±0.625°C(最大值)  
LMT01-Q1 的脉冲计数接口设计用于直接连接 GPIO  
或比较器输入,从而简化硬件实施。同样,LMT01-Q1  
具备集成的 EMI 抑制功能和简单的双引脚架构,因而  
适用于噪声环境中的板载和非板载温度传感。LMT01-  
Q1 器件可轻松转换成双线温度探针,电线长度可达两  
米。  
通过双引脚封装简化精密数字温度测量  
脉冲计数电流环路可由处理器轻松读取。脉冲计  
数,分辨率为 0.0625°C  
通信频率:88kHz  
转换电流:34μA  
每次转换的连续温度更新100ms  
器件信息(1)  
由具有集成 EMI 抗扰度的 2V 5.5V (VP-VN) 悬  
空电源供电运行  
器件型号  
LMT01QLPG  
LMT01ELPG  
LMT01QDQX  
封装  
TO-92 (2)  
封装尺寸(标称值)  
4.00mm × 3.15mm  
4.00mm × 3.15mm  
1.70mm × 2.50mm  
多种双引脚封装产品:TO-92/LPG (3.1mm × 4mm  
× 1.5mm) – 尺寸为传统 TO-92 和具有可湿性侧面  
WSON 的一半  
TO-92 (2)  
WSON (2)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
2 应用  
(2) 仅适用于 LPG 封装。  
汽车  
电池管理系统  
引擎管理和 ADAS  
双引脚集成电路 (IC) 温度传感器  
V
: 3.0V to 5.5V  
DD  
数字输出接线探针  
暖通空调 (HVAC)  
电源和电池管理  
GPIO  
Up to 2m  
MCU/  
FPGA/  
ASIC  
VP  
LMT01  
VN  
Min 2.0V  
LMT01-Q1 精度  
GPIO/  
COMP  
1.0  
0.8  
Max Limit  
LMT01 Pulse Count Interface  
0.6  
Conversion Time  
ADC Conversion Result  
0.4  
Power Off  
0.2  
0.0  
Power On  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
Min Limit  
75  
0
25  
50  
100  
125  
150  
œ50  
œ25  
LMT01 Junction Temperaure (°C)  
C014  
在曲线中心绘制的典型单元  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNIS192  
 
 
 
 
 
LMT01-Q1  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
目录  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 11  
7.4 Device Functional Modes........................................ 14  
Application and Implementation ........................ 15  
8.1 Application Information............................................ 15  
8.2 Typical Application .................................................. 16  
8.3 System Examples .................................................. 18  
Power Supply Recommendations...................... 20  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions ...................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
8
9
10 Layout................................................................... 21  
10.1 Layout Guidelines ................................................. 21  
10.2 Layout Example .................................................... 21  
11 器件和文档支持 ..................................................... 22  
11.1 接收文档更新通知 ................................................. 22  
11.2 社区资源................................................................ 22  
11.3 ....................................................................... 22  
11.4 静电放电警告......................................................... 22  
11.5 术语表 ................................................................... 22  
12 机械、封装和可订购信息....................................... 22  
6.6 Electrical Characteristics - TO-92/LPG Pulse Count  
to Temperature LUT................................................... 6  
6.7 Electrical Characteristics - WSON/DQX Pulse Count  
to Temperature LUT................................................... 6  
6.8 Switching Characteristics.......................................... 7  
6.9 Timing Diagram......................................................... 7  
6.10 Typical Characteristics............................................ 8  
Detailed Description ............................................ 11  
7
4 修订历史记录  
Changes from Revision B (June 2017) to Revision C  
Page  
Added device stamp to the TO-92 pinout top view ................................................................................................................ 3  
Changed the TO-92S pin numbers in the Pin Functions........................................................................................................ 3  
Changes from Revision A (April 2017) to Revision B  
Page  
Removed Electrical Characteristics: WSON/DQX table; Combined the LPG and DQX Electrical Characteristics  
tables together........................................................................................................................................................................ 5  
Changed IOL maximum value from: 39 µA to: 40 µA.............................................................................................................. 5  
Changed leakage value from: 1 µA to 3.5 µA ........................................................................................................................ 5  
Moved the thermal response time parameters to the Electrical Characteristics table ........................................................... 5  
Added Missing Cross References ........................................................................................................................................ 11  
Changes from Original (November 2016) to Revision A  
Page  
已添加 全新 WSON/DQX 封装(整个数据表中)................................................................................................................... 1  
Changed updated package information. ................................................................................................................................ 3  
Added Electrical Characteristics - WSON/DQX Pulse Count to Temperature LUT ............................................................... 6  
Added -40 for Sample Calculations Table ........................................................................................................................... 12  
Added missing cross reference ........................................................................................................................................... 13  
2
Copyright © 2016–2018, Texas Instruments Incorporated  
 
LMT01-Q1  
www.ti.com.cn  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
5 Pin Configuration and Functions  
DQX Package  
2-Pin WSON  
Bottom View  
VP  
VN  
LPG Package  
2-Pin TO-92  
Top View  
VN  
VP  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
VP  
TO-92S  
WSON  
2
1
1
2
Input Positive voltage pin; may be connected to system power supply or bias resistor.  
Output Negative voltage pin; may be connected to system ground or a bias resistor.  
VN  
Copyright © 2016–2018, Texas Instruments Incorporated  
3
LMT01-Q1  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)(2)  
See  
.
MIN  
0.3  
65  
MAX  
6
UNIT  
V
Voltage drop (VP – VN)  
Storage temperature, Tstg  
175  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Soldering process must comply with Reflow Temperature Profile specifications. Refer to www.ti.com/packaging.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
-40  
MAX  
UNIT  
°C  
Free-air temperature(LPG)  
Free-air temperature (DQX)  
Voltage drop (VP – VN)  
150  
125  
5.5  
–40  
2(1)  
°C  
V
(1) During transmission of pulses at a high level.  
6.4 Thermal Information  
LMT01-Q1  
THERMAL METRIC(1)  
DQX (WSON)  
LPG (TO-92)  
UNIT  
2 PINS  
213  
71  
2 PINS  
177  
94  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
81  
152  
33  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
2.4  
ψJB  
79  
152  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
LMT01-Q1  
www.ti.com.cn  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
6.5 Electrical Characteristics  
Over operating free-air temperature range and operating VP-VN range (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ACCURACY  
150°C(3)  
125°C  
120°C  
110°C  
–0.75  
-0.75  
0.75  
0.75  
°C  
°C  
°C  
°C  
°C  
°C  
°C  
°C  
°C  
°C  
–0.625  
–0.5625  
–0.5625  
–0.5  
0.625  
0.5625  
0.5625  
0.5  
100°C  
90°C  
VP – VN of  
2.15 V to 5.5 V  
(1)(2)  
Temperature accuracy  
25°C  
–0.5  
±0.125  
0.5  
–20°C  
–30°C  
–40°C  
–0.5  
0.5  
–0.5625  
–0.625  
0.5625  
0.625  
PULSE COUNT TRANSFER FUNCTION  
Number of pulses at 0°C  
800  
15  
808  
816  
3228  
Output pulse range  
Theoretical max (exceeds  
device rating)  
1
4095  
Resolution of one pulse  
0.0625  
°C  
OUTPUT CURRENT  
IOL  
Low level  
High level  
28  
112.5  
3.1  
34  
125  
3.7  
40  
143  
4.5  
µA  
µA  
Output current variation  
IOH  
High-to-Low level output current ratio  
POWER SUPPLY  
Accuracy sensitivity to change in VP – VN  
Leakage Current VP – VN  
2.15 V VP – VN 5. 0 V(4)  
VDD 0.4 V  
40  
133 m°C/V  
0.002  
3.5  
µA  
THERMAL RESPONSE  
DQX (WSON)  
LPG (TO-92)  
DQX (WSON)  
LPG (TO-92)  
0.4  
0.8  
9.4  
28  
Stirred oil thermal response time to 63% of final value  
(package only)  
s
s
Still air thermal response time to 63% of final value  
(package only)  
(1) Calculated using Pulse Count to Temperature LUT and 0.0625°C resolution per pulse, see section Electrical Characteristics - TO-  
92/LPG Pulse Count to Temperature LUT and Electrical Characteristics - WSON/DQX Pulse Count to Temperature LUT.  
(2) Error can be linearly interpolated between temperatures given in table as shown in the Accuracy vs Temperature curves in section  
Typical Characteristics.  
(3) Applicable only for the LPG package.  
(4) Limit is using end point calculation.  
Copyright © 2016–2018, Texas Instruments Incorporated  
5
LMT01-Q1  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
6.6 Electrical Characteristics - TO-92/LPG Pulse Count to Temperature LUT  
Over operating free-air temperature range and 2.15 V VP – VN 5. 0 V power supply operating range (unless otherwise  
noted). LUT is short for Look-up Table.  
PARAMETER  
TEST CONDITIONS  
–40°C  
MIN  
172  
TYP  
181  
MAX  
190  
UNIT  
–30°C  
–20°C  
–10°C  
0°C  
329  
338  
347  
486  
494  
502  
643  
651  
659  
800  
808  
816  
10°C  
958  
966  
974  
20°C  
1117  
1276  
1435  
1594  
1754  
1915  
2076  
2237  
2398  
2560  
2721  
2883  
3047  
3208  
1125  
1284  
1443  
1603  
1762  
1923  
2084  
2245  
2407  
2569  
2731  
2894  
3058  
3220  
1133  
1292  
1451  
1611  
1771  
1931  
2092  
2254  
2416  
2578  
2741  
2905  
3069  
3231  
30°C  
40°C  
50°C  
Digital output code  
pulses  
60°C  
70°C  
80°C  
90°C  
100°C  
110°C  
120°C  
130°C  
140°C  
150°C  
6.7 Electrical Characteristics - WSON/DQX Pulse Count to Temperature LUT  
Over operating free-air temperature range and 2.15 V VP – VN 5. 0 V power supply operating range (unless otherwise  
noted). LUT is short for Look-up Table.  
PARAMETER  
TEST CONDITIONS  
–40°C  
MIN  
172  
TYP  
181  
MAX  
190  
UNIT  
–30°C  
–20°C  
–10°C  
0°C  
328  
338  
346  
486  
494  
502  
643  
651  
659  
800  
808  
816  
10°C  
20°C  
30°C  
40°C  
50°C  
60°C  
70°C  
80°C  
90°C  
100°C  
110°C  
120°C  
125°C  
958  
966  
974  
1117  
1276  
1435  
1594  
1754  
1915  
2076  
2237  
2398  
2560  
2721  
2802  
1125  
1284  
1443  
1602  
1762  
1923  
2084  
2245  
2407  
2569  
2731  
2814  
1133  
1292  
1451  
1611  
1771  
1931  
2092  
2254  
2416  
2578  
2741  
2826  
Digital output code  
pulses  
6
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
LMT01-Q1  
www.ti.com.cn  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
6.8 Switching Characteristics  
Over operating free-air temperature range and operating VP – VN range (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
CL = 10 pF, RL = 8 k  
MIN  
TYP  
1.45  
88  
MAX  
UNIT  
µs  
tR, tF  
fP  
Output current rise and fall time  
Output current pulse frequency  
Output current duty cycle  
Temperature conversion time(1)  
Data transmission time  
82  
40%  
46  
94  
60%  
54  
kHz  
50%  
50  
tCONV  
tDATA  
2.15 V to 5.5 V  
ms  
ms  
44  
47  
50  
(1) Conversion time includes power up time or device turn on time that is typically 3 ms after POR threshold of 1.2 V is exceeded.  
6.9 Timing Diagram  
tCONV  
tDATA  
Power  
125µA  
34µA  
tR  
Power Off  
Output  
Current  
tF  
1/fP  
Figure 1. Timing Specification Waveform  
Copyright © 2016–2018, Texas Instruments Incorporated  
7
LMT01-Q1  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
6.10 Typical Characteristics  
1.0  
1.0  
0.8  
0.8  
Max Limit  
Max Limit  
0.6  
0.4  
0.6  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
Min Limit  
Min Limit  
75  
-0.8  
-1.0  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
100  
125  
150  
œ50  
œ25  
œ50  
œ25  
LMT01 Junction Temperaure (°C)  
LMT01 Junction Temperaure (°C)  
C017  
C016  
Using Electrical Characteristics - TO-92/LPG Pulse Count to  
Using Electrical Characteristics - TO-92/LPG Pulse Count to  
Temperature LUT  
Temperature LUT  
VP – VN = 2.15 V  
VP – VN = 2.4 V  
Figure 2. Accuracy vs LMT01-Q1 Junction Temperature  
Figure 3. Accuracy vs LMT01-Q1 Junction Temperature  
1.0  
1.0  
0.8  
0.8  
Max Limit  
Max Limit  
0.6  
0.4  
0.6  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.2  
-0.4  
-0.6  
Min Limit  
Min Limit  
-0.8  
-0.8  
-1.0  
-1.0  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
œ50  
œ25  
LMT01 Junction Temperaure (°C)  
LMT01 Junction Temperaure (°C)  
C015  
C014  
Using Electrical Characteristics - TO-92/LPG Pulse Count to  
Using Electrical Characteristics - TO-92/LPG Pulse Count to  
Temperature LUT  
Temperature LUT  
VP – VN = 2.7 V  
VP – VN = 3 V  
Figure 4. Accuracy vs LMT01-Q1 Junction Temperature  
Figure 5. Accuracy vs LMT01-Q1 Junction Temperature  
1.0  
1.0  
0.8  
0.8  
Max Limit  
Max Limit  
0.6  
0.4  
0.6  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.2  
-0.4  
-0.6  
Min Limit  
Min Limit  
-0.8  
-0.8  
-1.0  
-1.0  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
œ50  
œ25  
LMT01 Junction Temperaure (°C)  
LMT01 Junction Temperaure (°C)  
C013  
C012  
Using Electrical Characteristics - TO-92/LPG Pulse Count to  
Using Electrical Characteristics - TO-92/LPG Pulse Count to  
Temperature LUT  
Temperature LUT  
VP – VN = 4 V  
VP – VN = 5 V  
Figure 6. Accuracy vs LMT01-Q1 Junction Temperature  
Figure 7. Accuracy vs LMT01-Q1 Junction Temperature  
8
Copyright © 2016–2018, Texas Instruments Incorporated  
LMT01-Q1  
www.ti.com.cn  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
Typical Characteristics (continued)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
1.00  
0.80  
Max Limit  
0.60  
0.40  
0.20  
0.00  
-0.20  
-0.40  
-0.60  
Min Limit  
-0.80  
-1.00  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
0
25  
50  
75  
100  
125  
150  
œ50  
œ25  
LMT01 Junction Temperaure (°C)  
C018  
LMT01 Junction Temperature (°C)  
C011  
Using Electrical Characteristics - TO-92/LPG Pulse Count to  
Temperature LUT  
VP – VN = 5.5 V  
Using Temp = (PC/4096 × 256°C ) – 50°C  
VP – VN = 2.15 V  
Figure 9. Accuracy Using Linear Transfer Function  
Figure 8. Accuracy vs LMT01-Q1 Junction Temperature  
3.0  
150  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
125  
100  
75  
50  
25  
0
High Level Current  
Low Level Current  
0
25  
50  
75  
100  
125  
150  
2
3
4
5
6
œ50  
œ25  
LMT01 Junction Temperaure (°C)  
VP - VN (V)  
C019  
C004  
Using Temp = (PC/4096 × 256°C ) – 50°C  
VP – VN = 5.5V  
TA = 30°C  
Figure 10. Accuracy Using Linear Transfer Function  
Figure 11. Output Current vs VP-VN Voltage  
150  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
125  
100  
75  
50  
25  
0
High Level Current  
Low Level Current  
0
25  
50  
75  
100  
125  
150  
0
120 240 360 480 600 720 840 960 1080 1200  
œ50  
œ25  
LMT01 Juntion Temperature (°C)  
Time (seconds)  
C003  
C033  
VP – VN = 3.3 V  
TINITIAL = 23°C,  
VP – VN = 3.3 V  
TFINAL = 70°C  
Figure 12. Output Current vs Temperature  
Figure 13. Thermal Response in Still Air (TO92S/LPG  
Package)  
Copyright © 2016–2018, Texas Instruments Incorporated  
9
LMT01-Q1  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
20  
40  
60  
80 100 120 140 160 180 200  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
Time (seconds)  
Time (seconds)  
C032  
C031  
VP – VN = 3.3 V  
TINITIAL = 23°C,  
Air Flow = 2.34  
meters/sec  
VP – VN = 3.3 V  
TINITIAL = 23°C,  
TFINAL = 70°C  
TFINAL = 70°C  
Figure 14. Thermal Response in Moving Air (TO92S/LPG  
Package)  
Figure 15. Thermal Response in Stirred Oil (TO92S/LPG  
Package)  
10  
Copyright © 2016–2018, Texas Instruments Incorporated  
LMT01-Q1  
www.ti.com.cn  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
7 Detailed Description  
7.1 Overview  
The LMT01-Q1 temperature output is transmitted over a single wire using a train of current pulses that typically  
change from 34 µA to 125 µA. A simple resistor can then be used to convert the current pulses to a voltage. With  
a 10-kΩ resistor, the output voltage levels range from 340 mV to 1.25 V, typically. A simple microcontroller  
comparator or external transistor can be used convert this signal to valid logic levels the microcontroller can  
process properly through a GPIO pin. The temperature can be determined by gating a simple counter on for a  
specific time interval to count the total number of output pulses. After power is first applied to the device the  
current level will remain below 34 µA for at most 54 ms while the LMT01-Q1 is determining the temperature.  
When the temperature is determined, the pulse train begins. The individual pulse frequency is typically 88 kHz.  
The LMT01-Q1 will continuously convert and transmit data when the power is applied approximately every 104  
ms (maximum).  
The LMT01-Q1 uses thermal diode analog circuitry to detect the temperature. The temperature signal is then  
amplified and applied to the input of a ΣΔ ADC that is driven by an internal reference voltage. The ΣΔ ADC  
output is then processed through the interface circuitry into a digital pulse train. The digital pulse train is then  
converted to a current pulse train by the output signal conditioning circuitry that includes high and low current  
regulators. The voltage applied across the pins of the LMT01-Q1 is regulated by an internal voltage regulator to  
provide a consistent Chip VDD that is used by the ADC and its associated circuitry.  
7.2 Functional Block Diagram  
VP  
Chip VDD  
Chip VSS  
Voltage  
Regulator  
and  
Output  
Signal  
Thermal Diode  
Analog Circuitry  
Data  
Interface  
ADC  
Conditioning  
VREF  
LMT01  
VN  
7.3 Feature Description  
7.3.1 Output Interface  
The LMT01-Q1 provides a digital output in the form of a pulse count that is transmitted by a train of current  
pulses. After the LMT01-Q1 is powered up, it transmits a very low current of 34 µA for less than 54 ms while the  
part executes a temperature to digital conversion, as shown in Figure 16. When the temperature-to-digital  
conversion is complete, the LMT01-Q1 starts to transmit a pulse train that toggles from the low current of 34 µA  
to a high current level of 125 µA. The pulse train total time interval is at maximum 50 ms. The LMT01-Q1  
transmits a series of pulses equivalent to the pulse count at a given temperature as described in Electrical  
Characteristics - TO-92/LPG Pulse Count to Temperature LUT. After the pulse count has been transmitted the  
LMT01-Q1 current level will remain low for the remainder of the 50 ms. The total time for the temperature to  
digital conversion and the pulse train time interval is 104 ms (maximum). If power is continuously applied, the  
pulse train output will repeat start every 104 ms (maximum).  
Copyright © 2016–2018, Texas Instruments Incorporated  
11  
LMT01-Q1  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
Feature Description (continued)  
Start of data  
transmission  
Start of next  
conversion result data  
End of data  
Power  
ON  
End of data  
54ms  
max  
104ms max  
Power  
50ms max  
50ms max  
Power  
Off  
Pulse  
Train  
Figure 16. Temperature to Digital Pulse Train Timing Cycle  
The LMT01-Q1 can be powered down at any time to conserve system power. Take care to ensure that a  
minimum power-down wait time of 50 ms is used before the device is turned on again.  
7.3.2 Output Transfer Function  
TheLMT01-Q1 outputs at minimum 1 pulse and a theoretical maximum 4095 pulses. Each pulse has a weight of  
0.0625°C. One pulse corresponds to a temperature less than –50°C while a pulse count of 4096 corresponds to  
a temperature greater than 200°C. Note that the LMT01-Q1 is only ensured to operate up to 150°C. Exceeding  
this temperature by more than 5°C may damage the device. The accuracy of the device degrades as well when  
150°C is exceeded.  
Two different methods of converting the pulse count to a temperature value are discussed in this section. The  
first method is the least accurate and uses a first order equation, and the second method is the most accurate  
and uses linear interpolation of the values found in the look-up table (LUT) as described in Electrical  
Characteristics - TO-92/LPG Pulse Count to Temperature LUT.  
The output transfer function appears to be linear and can be approximated by Equation 1:  
PC  
Temp =  
ì 256èC - 50èC  
«
÷
4096  
where  
PC is the Pulse Count  
Temp is the temperature reading  
(1)  
Table 1 shows some sample calculations using Equation 1.  
Table 1. Sample Calculations Using Equation 1  
TEMPERATURE (°C)  
NUMBER OF PULSES  
–40  
–20  
0
160  
480  
800  
30  
1280  
1600  
2400  
3200  
50  
100  
150  
12  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
LMT01-Q1  
www.ti.com.cn  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
The curve shown in Figure 17 shows the output transfer function using equation Equation 1 (blue line) and the  
look-up table (LUT) found in Electrical Characteristics - TO-92/LPG Pulse Count to Temperature LUT (red line).  
The LMT01-Q1 output transfer function as described by the LUT appears to be linear, but upon close inspection,  
it can be seen as truly not linear. To actually see the difference, the accuracy obtained by the two methods must  
be compared.  
4096  
3584  
3072  
2560  
2048  
1536  
1024  
512  
0
0
25 50 75 100 125 150 175 200 225  
œ50 œ25  
LMT01 Junction Temperature (°C)  
C002  
Figure 17. LMT01-Q1 Output Transfer Function  
For more exact temperature readings the output pulse count can be converted to temperature using linear  
interpolation of the values found in Electrical Characteristics - TO-92/LPG Pulse Count to Temperature LUT.  
The curves in Figure 18 and Figure 19, show the accuracy of typical units when using the Equation 1 and linear  
interpolation using Electrical Characteristics - TO-92/LPG Pulse Count to Temperature LUT, respectively. When  
compared, the improved performance when using the LUT linear interpolation method can clearly be seen. For a  
limited temperature range of 25°C to 80°C, the error shown in Figure 18 is flat, so the linear equation will provide  
good results. For a wide temperature range, TI recommends that linear interpolation and the LUT be used.  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
1.0  
0.8  
Max Limit  
0.6  
0.4  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
Min Limit  
75  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
100  
125  
150  
œ50  
œ25  
œ50  
œ25  
LMT01 Junction Temperaure (°C)  
LMT01 Junction Temperaure (°C)  
C018  
C017  
Figure 18. LMT01-Q1 Typical Accuracy When Using First  
Order Equation Equation 1 – 92 Typical Units Plotted at  
(VP – VN) = 2.15 V  
Figure 19. LMT01-Q1 Accuracy Using Linear Interpolation  
of LUT Found in Electrical Characteristics - WSON/DQX  
Pulse Count to Temperature LUT – 92 Typical Units  
Plotted at (VP – VN) = 2.15 V  
7.3.3 Current Output Conversion to Voltage  
The minimum voltage drop across the LMT01-Q1 must be maintained at 2.15 V during the conversion cycle.  
After the conversion cycle, the minimum voltage drop can decrease to 2.0 V. Thus the LMT01-Q1 can be used  
for low voltage applications. See Application Information for more information on low voltage operation and other  
information on picking the actual resistor value for different applications conditions. The resistor value is  
dependent on the power supply level and the variation and the threshold level requirements of the circuitry the  
resistor is driving (that is, MCU, GPIO, or Comparator).  
Copyright © 2016–2018, Texas Instruments Incorporated  
13  
 
 
LMT01-Q1  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
Stray capacitance can be introduced when connecting the LMT01-Q1 through a long wire. This stray capacitance  
influences the signal rise and fall times. The wire inductance has negligible effect on the AC signal integrity. A  
simple RC time constant model as shown in Figure 20 can be used to determine the rise and fall times.  
POWER  
tHL  
LMT01  
VF  
VHL  
OUTPUT  
VS  
C
100pF  
34 and  
125 µA  
R
10k  
Figure 20. Simple RC Model for Rise and Fall Times  
«
÷
VF - VS  
VF - VHL ◊  
tHL = RìCìIn  
where  
RC as shown in Figure 20  
VHL is the target high level  
the final voltage VF = 125 µA × R  
the start voltage VS = 34 µA × R  
(2)  
(3)  
For the 10% to 90% level rise time (tr), Equation 2 simplifies to:  
tr= R×C×2.197  
Take care to ensure that the LMT01-Q1 voltage drop does not exceed 300 mV under reverse bias conditions, as  
given in the Absolute Maximum Ratings.  
7.4 Device Functional Modes  
The only functional mode the LMT01-Q1 has is that it provides a pulse count output that is directly proportional to  
temperature.  
14  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
LMT01-Q1  
www.ti.com.cn  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Mounting, Temperature Conductivity, and Self-Heating  
The LMT01-Q1 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be  
glued or cemented to a surface to ensure good temperature conductivity. The temperatures of the lands and  
traces to the leads of the LMT01-Q1 also affect the temperature reading, so they must be a thin as possible.  
Alternatively, the LMT01-Q1 can be mounted inside a sealed-end metal tube, and then can be dipped into a bath  
or screwed into a threaded hole in a tank. As with any IC, the LMT01-Q1 and accompanying wiring and circuits  
must be kept insulated and dry to avoid excessive leakage and corrosion. Printed-circuit coatings are often used  
to ensure that moisture cannot corrode the leads or circuit traces.  
The junction temperature of the LMT01-Q1 is the actual temperature being measured by the device. The thermal  
resistance junction-to-ambient (RθJA) is the parameter (from Thermal Information) used to calculate the rise of a  
device junction temperature (self-heating) due to its average power dissipation. The average power dissipation of  
the LMT01-Q1 is dependent on the temperature it is transmitting as it effects the output pulse count and the  
voltage across the device. Equation 4 is used to calculate the self-heating in the die temperature of the LMT01-  
Q1 (TSH).  
»
ÿ
tCONV  
»
ÿ
tDATA  
÷
PC  
÷
«
I
OL +IOH  
4096 -PC  
(
)
(
)
TSH  
=
I
OLì  
ì VCONV  
+
ì
+
ìIOL  
ì
Ÿ
÷
ì V  
ìR  
DATAŸ  
«
÷
÷
qJA  
t
(
CONV + tDATA  
t
(
CONV + tDATA  
)
4096  
)
2
4096  
«
Ÿ
«
where  
TSH is the ambient temperature  
IOL and IOH are the output low and high current level, respectively  
VCONV is the voltage across the LMT01-Q1 during conversion  
VDATA is the voltage across the LMT01-Q1 during data transmission  
tCONV is the conversion time  
tDATA is the data transmission time  
PC is the output pulse count  
RθJA is the junction to ambient package thermal resistance  
(4)  
Plotted in the curve Figure 21 are the typical average supply current (black line using left y axis) and the resulting  
self-heating (red and violet lines using right y axis) during continuous conversions. A temperature range of –50°C  
to +150°C, a VCONV of 5 V (red line) and 2.15 V (violet line) were used for the self-heating calculation. As can be  
seen in the curve, the average power supply current and thus the average self-heating changes linearly over  
temperature because the number of pulses increases with temperature. A negligible self-heating of about 45m°C  
is observed at 150°C with continuous conversions. If temperature readings are not required as frequently as  
every 100 ms, self-heating can be minimized by shutting down power to the part periodically thus lowering the  
average power dissipation.  
Copyright © 2016–2018, Texas Instruments Incorporated  
15  
 
LMT01-Q1  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
Application Information (continued)  
60  
50  
40  
30  
20  
10  
0
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
Average Current  
Self Heating at VP-VN=5V  
Self Heating at VP-VN=2.15V  
-100  
-50  
0
50  
100  
150  
200  
Temperature (°C)  
C001  
Figure 21. Average Current Draw and Self-Heating Over Temperature  
8.2 Typical Application  
8.2.1 3.3-V System VDD MSP430 Interface - Using Comparator Input  
V
DD  
3.3V  
MSP430  
GPIO  
Divider  
VREF  
2.73V  
or  
VP  
LMT01  
VN  
2.24V  
TIMER2  
COMP_B  
CLOCK  
+
R
VR  
IR = 34  
and 125 µA  
6.81k  
1%  
Figure 22. MSP430 Comparator Input Implementation  
8.2.1.1 Design Requirements  
The design requirements listed in are used in the detailed design procedure.  
Table 2. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VDD  
3.3 V  
3.0 V  
VDD minimum  
LMT01-Q1 VP – VN minimum during conversion  
2.15 V  
LMT01-Q1 VP – VN minimum during data  
transmission  
2.0 V  
50 mV minimum  
< 1 uA  
Noise margin  
Comparator input current over temperature range  
of interest  
Resistor tolerance  
1%  
16  
Copyright © 2016–2018, Texas Instruments Incorporated  
LMT01-Q1  
www.ti.com.cn  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
8.2.1.2 Detailed Design Procedure  
First, select the R and determine the maximum logic low voltage and the minimum logic high voltage while  
ensuring that when the LMT01-Q1 is converting, the minimum (VP – VN) requirement of 2.15 V is met.  
1. Select R using minimum VP-VN during data transmission (2 V) and maximum output current of the LMT01-  
Q1 (143.75 µA)  
R = (3.0 V – 2 V) / 143.75 µA = 6.993 k the closest 1% resistor is 6.980 k  
6.993 k is the maximum resistance so if using 1% tolerance resistor the actual resistor value needs to be  
1% less than 6.993 k and 6.98 k is 0.2% less than 6.993 k thus 6.81 k must be used.  
2. Check to see if the 2.15-V minimum voltage during conversion requirement for the LMT01-Q1 is met with the  
maximum IOL of 39 µA and maximum R of 6.81 k + 1%:  
VLMT01 = 3 V – (6.81 k × 1.01) × 39 µA = 2.73 V  
3. Find the maximum low level voltage range using the maximum R of 6.81 k and maximum IOL of 39 µA:  
VRLmax = (6.81 k × 1.01) × 39 µA = 268 mV  
4. Find the minimum high level voltage using the minimum R of 6.81 k and minimum IOH of 112.5 µA:  
VRHmin = (6.81 k × 0.99) × 112.5 µA = 758 mV  
Now select the MSP430 comparator threshold voltage that enables the LMT01-Q1 to communicate to the  
MSP430 properly.  
1. The MSP430 voltage is selected by selecting the internal VREF and then choosing the appropriate 1 of n/32  
settings for n of 1 to 31.  
VMID= (VRLmax – VRHmin) / 2 + VRHmin = (758 mV – 268 mV) / 2 + 268 mV = 513 mV  
n = (VMID / VREF ) × 32 = (0.513 / 2.5) × 32 = 7  
2. To prevent oscillation of the comparator, output hysteresis must be implemented. The MSP430 allows this by  
enabling different n for the rising edge and falling edge of the comparator output. For a falling comparator  
output transition, N must be set to 6.  
3. Determine the noise margin caused by variation in comparator threshold level. Even though the comparator  
threshold level theoretically is set to VMID, the actual level varies from device to device due to VREF tolerance,  
resistor divider tolerance, and comparator offset. For proper operation, the COMP_B worst case input  
threshold levels must be within the minimum high and maximum low voltage levels presented across R,  
VRHmin and VRLmax, respectively  
N+ N_TOL  
(
)
VCHmax = VREFì 1+ V_REF_TOL ì  
+ COMP_OFFSET  
(
)
32  
where  
VREF is the MSP430 COMP_B reference voltage for this example at 2.5 V  
V_REF_TOL is the tolerance of the VREF of 1% or 0.01,  
N is the divisor for the MSP430 or 7  
N_TOL is the tolerance of the divisor or 0.5  
COMP_OFFSET is the comparator offset specification or 10 mV  
N-N_TOL  
(5)  
(
)
- COMP_OFFSET  
VCLmin = VREFì 1- V_REF_TOL ì  
(
)
32  
where  
VREF is the MSP430 COMP_B reference voltage for this example at 2.5 V,  
V_REF_TOL is the tolerance of the VREF of 1% or 0.01,  
N is the divisor for the MSP430 for the hysteresis setting or 6,  
N_TOL is the tolerance of the divisor or 0.5,  
COMP_OFFSET is the comparator offset specification or 10 mV  
(6)  
(7)  
The noise margin is the minimum of the two differences:  
(VRHmin – VCHmax) or (VCHmin – VRLmax  
)
which works out to be 145 mV.  
Copyright © 2016–2018, Texas Instruments Incorporated  
17  
LMT01-Q1  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
VDD  
Pulse  
Count  
Signal  
VRHmax  
VRHmin  
VCHmax  
VMID  
Noise Margin  
Noise Margin  
VCHmin  
VRLmax  
VRLmin  
GND  
Time (µs)  
Figure 23. Pulse Count Signal Amplitude Variation  
8.2.1.2.1 Setting the MSP430 Threshold and Hysteresis  
The comparator hysteresis determines the noise level that the signal can support without causing the comparator  
to trip falsely and resulting in an inaccurate pulse count. The comparator hysteresis is set by the precision of the  
MSP430 and what thresholds it is capable of. For this case, as the input signal transitions high, the comparator  
threshold is dropped by 77 mV. If the noise on the signal is kept below this level as it transitions, the comparator  
will not trip falsely. In addition, the MSP430 has a digital filter on the COMP_B output that be used to further filter  
output transitions that occur too quickly.  
8.2.1.3 Application Curves  
Amplitude = 200 mV/div  
Time Base = 10 µs/div  
Δy at cursors = 500 mV  
Δx at cursors = 11.7 µs  
Amplitude = 200 mV/div  
Time Base = 10 µs/div  
Δy at cursors = 484 mV  
Δx at cursors = 11.7 µs  
Figure 24. MSP430 COMP_B Input Signal No Capacitance  
Load  
Figure 25. MSP430 COMP_B Input Signal 100-pF  
Capacitance Load  
8.3 System Examples  
The LMT01 device can be configured in a number of ways. Transistor level shifting can be used so that the  
output pulse of the device can be read with a GPIO (see Figure 26). An isolation block can be inserted to  
achieve electrical isolation (see Figure 27). Multiple LMT01 devices can be controlled with GPIOs enabling  
temperature monitor for multiple zones. Lastly, the LMT01 device can be configured to have a common ground  
with a high side signal (see Figure 29).  
18  
Copyright © 2016–2018, Texas Instruments Incorporated  
LMT01-Q1  
www.ti.com.cn  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
System Examples (continued)  
3.3V  
VDD  
MCU/  
FPGA/  
ASIC  
VP  
LMT01  
VN  
100k  
GPIO  
MMBT3904  
7.5k  
34 and  
125 µA  
Figure 26. Transistor Level Shifting  
3V to 5.5V  
3V to 5.5V  
ISO734x  
VCC1  
VCC2  
VDD  
VP  
MCU/FPGA/  
ASIC  
Min  
2.0V  
LMT01  
100k  
VN  
GPIO  
MMBT3904  
7.5k  
34 and  
125 µA  
GND2  
GND1  
Figure 27. Isolation  
V
DD  
3V to 5.5V  
GPIO1  
GPIO2  
GPIO n  
Up to 2.0m  
MCU/FPGA/  
ASIC  
VP  
LMT01  
U1  
VP  
LMT01  
U2  
VP  
LMT01  
Un  
Min  
2.0V  
VN  
VN  
VN  
GPIO/  
COMP  
34 and  
125 µA  
6.81k  
(for 3V)  
Note: to turn off an LMT01-Q1 set the GPIO pin connected to VP to high impedance state as setting it low would  
cause the off LMT01-Q1 to be reverse biased. Comparator input of MCU must be used.  
Figure 28. Connecting Multiple Devices to One MCU Input Pin  
Copyright © 2016–2018, Texas Instruments Incorporated  
19  
LMT01-Q1  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
System Examples (continued)  
3.3V  
VDD  
34 and  
125 µA  
7.5k  
MCU/  
FPGA/  
ASIC  
MMBT3906  
VP  
LMT01  
GPIO  
VN  
100k  
Note: the VN of the LMT01-Q1 must be connected to the MCU GND.  
Figure 29. Common Ground With High-Side Signal  
9 Power Supply Recommendations  
Because the LMT01-Q1 is only a 2-pin device the power pins are common with the signal pins, thus the LMT01-  
Q1 has a floating supply that can vary greatly. The LMT01-Q1 has an internal regulator that provides a stable  
voltage to internal circuitry.  
Take care to prevent reverse biasing of the LMT01-Q1 as exceeding the absolute maximum ratings may cause  
damage to the device.  
Power supply ramp rate can effect the accuracy of the first result transmitted by the LMT01-Q1. As shown in  
Figure 30 with a 1-ms rise time, the LMT01-Q1 output code is at 1286, which converts to 30.125°C. The scope  
photo shown in Figure 31 reflects what happens when the rise time is too slow. In Figure 31, the power supply  
(yellow trace) is still ramping up to final value while the LMT01-Q1 (red trace) has already started a conversion.  
This causes the output pulse count to decrease from the previously shown 1286, to 1282 (or 29.875°C). Thus,  
for slow ramp rates, TI recommends that the first conversion be discarded. For even slower ramp rates, more  
than one conversion may have to be discarded as TI recommends that either the power supply be within final  
value before a conversion is used or that ramp rates be faster than 2.5 ms.  
Yellow trace = 1 V/div, Red trace = 100 mV/div, Time Base = 20  
ms/div  
Yellow trace = 1V/div, Red trace = 100 mV/div, Time base = 20  
ms/div  
TA= 30°C  
LMT01 Pulse Count = 1286  
Rise Time = 1 ms  
TA=30°C  
LMT01 Pulse Count = 1282  
Rise Time = 100 ms  
VP-VN = 3.3 V  
VP-VN=3.3 V  
Figure 30. Output Pulse Count With Appropriate Power  
Supply Rise Time  
Figure 31. Output Pulse Count With Slow Power Supply  
Rise Time  
20  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
LMT01-Q1  
www.ti.com.cn  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
10 Layout  
10.1 Layout Guidelines  
The LMT01-Q1 can be mounted to a PCB as shown in Figure 32 and Figure 33. Take care to make the traces  
leading to the pads as small as possible to minimize their effect on the temperature the LMT01-Q1 is measuring.  
10.2 Layout Example  
VP  
VN  
Figure 32. Layout Example (TO92S/LPG Package)  
VN  
VP  
Figure 33. Layout Example for the DQX (WSON) Package  
版权 © 2016–2018, Texas Instruments Incorporated  
21  
 
 
LMT01-Q1  
ZHCSFO4C NOVEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请参阅左侧的导航栏。  
22  
版权 © 2016–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMT01ELPGMQ1  
LMT01ELPGQ1  
LMT01QDQXRQ1  
LMT01QDQXTQ1  
LMT01QLPGMQ1  
LMT01QLPGQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TO-92  
TO-92  
WSON  
WSON  
TO-92  
TO-92  
LPG  
LPG  
DQX  
DQX  
LPG  
LPG  
2
2
2
2
2
2
3000 RoHS & Green  
1000 RoHS & Green  
3000 RoHS & Green  
SN  
N / A for Pkg Type  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
N / A for Pkg Type  
-40 to 150  
-40 to 150  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
T01G0  
SN  
SN  
T01G0  
13M  
250  
RoHS & Green  
Call TI  
SN  
13M  
3000 RoHS & Green  
1000 RoHS & Green  
T01G1  
T01G1  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMT01QDQXRQ1  
LMT01QDQXTQ1  
WSON  
WSON  
DQX  
DQX  
2
2
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.0  
2.0  
2.8  
2.8  
1.0  
1.0  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMT01QDQXRQ1  
LMT01QDQXTQ1  
WSON  
WSON  
DQX  
DQX  
2
2
3000  
250  
200.0  
200.0  
183.0  
183.0  
25.0  
25.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
LPG0002A  
TO-92 - 5.05 mm max height  
S
C
A
L
E
1
.
3
0
0
TRANSISTOR OUTLINE  
4.1  
3.9  
3.25  
3.05  
0.51  
0.40  
3X  
5.05  
MAX  
2
1
2.3  
2.0  
2 MAX  
6X 0.076 MAX  
15.5  
15.1  
2X  
0.48  
0.33  
0.51  
0.33  
3X  
3X  
2X 1.27 0.05  
2.64  
2.44  
2.68  
2.28  
1.62  
1.42  
2X (45 )  
(0.55)  
1
2
0.86  
0.66  
4221971/B 06/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
LPG0002A  
TO-92 - 5.05 mm max height  
TRANSISTOR OUTLINE  
0.05 MAX  
ALL AROUND  
TYP  
(1.07)  
METAL  
TYP  
3X (R0.38) VIA  
(1.7)  
(1.7)  
1
2
(1.07)  
(R0.05) TYP  
(1.27)  
SOLDER MASK  
OPENING  
(2.54)  
LAND PATTERN EXAMPLE  
NON-SOLDER MASK DEFINED  
SCALE:20X  
4221971/B 06/2022  
www.ti.com  
TAPE SPECIFICATIONS  
LPG0002A  
TO-92 - 5.05 mm max height  
TRANSISTOR OUTLINE  
0
1
13.0  
12.4  
0
1
1 MAX  
21  
18  
2.5 MIN  
6.5  
5.5  
9.5  
8.5  
0.25  
0.15  
19.0  
17.5  
3.8-4.2 TYP  
0.45  
0.35  
6.55  
6.15  
12.9  
12.5  
4221971/B 06/2022  
www.ti.com  
GENERIC PACKAGE VIEW  
DQX 2  
1.7 x 2.5, 0 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225319/A  
www.ti.com  
PACKAGE OUTLINE  
DQX0002A  
WSON - 0.8 mm max height  
S
C
A
L
E
5
.
2
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
1.75  
1.65  
B
A
PIN 1 INDEX AREA  
2.55  
2.45  
C
0.8 MAX  
SEATING PLANE  
(0.2) TYP  
0.05  
0.00  
(0.45)  
0.3  
0.2  
4X  
2X 0.1 MIN  
2
2X (0.05)  
(0.15)  
SYMM  
PIN 1 ID  
(45 X0.2)  
1.1  
0.9  
1
SYMM  
(0.2) TYP  
0.8  
0.6  
0.1  
C A B  
4222491/E 03/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DQX0002A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.7)  
SYMM  
1
(1.2)  
SYMM  
(1.7)  
2
(0.25)  
(0.35)  
4X (0.25)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:30X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL EDGE  
METAL UNDER  
SOLDER MASK  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222491/E 03/2019  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view.  
It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DQX0002A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.225) TYP  
1
(1.225)  
TYP  
2X (0.6)  
2X (0.7)  
(0.55)  
SYMM  
(0.15)  
4X (0.45)  
4X (0.25)  
2
(R0.05) TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
81% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222491/E 03/2019  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LMT01QLPGQ1

具有脉冲序列接口的汽车级 0.5°C 高精度双引脚温度传感器 | LPG | 2 | -40 to 125
TI

LMT028DHHFWL-NNA

LCD Module User Manual
TOPWAY

LMT028DHHFWL-NNA_V01

LCD Module User Manual
TOPWAY

LMT043DNFFWD-NCA

LCD Module User Manual
TOPWAY

LMT043DNFFWD-NCA_V01

LCD Module User Manual
TOPWAY

LMT050DNCFWU-NGN

LCD Module User Manual
TOPWAY

LMT050DNCFWU-NGN_V01

LCD Module User Manual
TOPWAY

LMT070DDCFWD

LCD Module User Manual
TOPWAY

LMT070DDCFWD_V01

LCD Module User Manual
TOPWAY

LMT070DICFWD-NLC

LCD Module User Manual
TOPWAY

LMT070DICFWD-NLC_V01

LCD Module User Manual
TOPWAY

LMT080DIEFWU-3

LCD Module User Manual
TOPWAY