LMR14010ADDCT [TI]

具有高效 Eco-Mode 的 SIMPLE SWITCHER® 4V 至 40V、1A 降压转换器 | DDC | 6 | -40 to 125;
LMR14010ADDCT
型号: LMR14010ADDCT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有高效 Eco-Mode 的 SIMPLE SWITCHER® 4V 至 40V、1A 降压转换器 | DDC | 6 | -40 to 125

转换器
文件: 总23页 (文件大小:1078K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMR14010A  
ZHCSHV9 MARCH 2018  
LMR14010A 4V 40V1A 降压转换器 - 具有高效 Eco-mode™  
1 特性  
3 说明  
1
输入电压范围为 4V 40V,具有高达 45V 的瞬态  
保护  
LMR14010A 是一款 PWM 直流/直流降压稳压器。该  
器件具有 4V 40V 的宽输入范围,因此适用于 从工  
业 到汽车的各种应用。1µA 的超低关断电流可延长电  
池寿命。工作频率固定在 0.7MHz,从而允许使用小型  
外部组件,同时能够最大程度地降低输出纹波电压。在  
内部实现了软启动和补偿电路,从而限制了外部组件的  
数量。  
0.7MHz 开关频率  
凭借 Eco-mode™,可以在轻负载下实现超高的效  
低压降运行  
输出电流高达 1A  
精密使能输入  
LMR14010A 针对高达 1A 的负载电流进行了优化。它  
具有 0.765V 的标称反馈电压。  
过流保护  
内部补偿  
内部软启动  
该器件具有内置的保护 功能, 如逐周期电流限制、热  
感应以及在功率耗散过大时关断。LMR14010A 采用薄  
TSOT-6L 封装 (2.9mm × 1.6mm × 0.85mm)。  
小型总体解决方案尺寸(TSOT-6L 封装)  
使用 LMR14010A 并借助 WEBENCH® 电源设计器  
创建定制设计  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
2 应用  
LMR14010A  
TSOT-6L  
2.9mm x 1.6mm  
智能仪表  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
电器  
升降机和自动扶梯  
摄像机  
简化原理图  
效率与电流间的关系  
ƒSW= 0.7MHzVIN = 12VVOUT = 3.3V)  
VIN  
CB  
VIN  
Cin  
Cboot  
D1  
L1  
SW  
100  
90  
80  
70  
60  
50  
40  
30  
20  
SHDN  
Cout  
LMR14010A  
R1  
R2  
GND  
FB  
Copyright © 2018, Texas Instruments Incorporated  
0.1  
1
10  
100  
1000  
Output Current (mA)  
C001  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSD87  
 
 
 
LMR14010A  
ZHCSHV9 MARCH 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes.......................................... 9  
Application and Implementation ........................ 10  
8.1 Application Information............................................ 10  
8.2 Typical Application ................................................. 10  
Power Supply Recommendations...................... 15  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration................................................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
7.1 Overview ................................................................... 7  
7.2 Functional Block Diagram ......................................... 7  
7.3 Feature Description................................................... 8  
10 Layout................................................................... 16  
10.1 Layout Guidelines ................................................. 16  
10.2 Layout Example .................................................... 16  
11 器件和文档支持 ..................................................... 17  
11.1 器件支持 ............................................................... 17  
11.2 接收文档更新通知 ................................................. 17  
11.3 社区资源................................................................ 17  
11.4 ....................................................................... 17  
11.5 静电放电警告......................................................... 17  
11.6 Glossary................................................................ 17  
12 机械、封装和可订购信息....................................... 17  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2018 3 月  
*
初始发行版。  
2
Copyright © 2018, Texas Instruments Incorporated  
 
LMR14010A  
www.ti.com.cn  
ZHCSHV9 MARCH 2018  
5 Pin Configuration  
DDC Package  
(TOP VIEW)  
CB  
GND  
FB  
SW  
1
2
3
6
VIN  
5
PIN 1 ID  
SHDN  
4
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
CB  
1
I
I
SW FET gate bias voltage. Connect Cboot capacitor between CB and SW.  
Feedback Pin. Set feedback voltage divider ratio with VOUT = VFB  
(1+(R1/R2)).  
FB  
3
2
GND  
G
Ground connection.  
Enable and disable input pin(high voltage tolerant). Internal pull-up current  
source. Pull below 1.25 V to disable. Float to enable. Adjust the input  
undervoltage lockout with two resistors.  
SHDN  
4
I
SW  
VIN  
6
5
O
I
Switch node. Connect to inductor, diode and Cboot capacitor.  
Power input voltage pin. Input for internal supply and drain node input for  
internal high-side MOSFET.  
Copyright © 2018, Texas Instruments Incorporated  
3
LMR14010A  
ZHCSHV9 MARCH 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–1  
MAX  
45  
UNIT  
V
VIN to GND  
SHDN to GND  
Input Voltages  
45  
V
FB to GND  
7
V
CB to SW  
7
V
SW to GND  
Output Voltages  
45  
V
SW to GND less than 30ns transients  
–2  
45  
V
Storage temperature range, Tstg  
Operating junction temperature, TJ  
–55  
–0  
165  
150  
°C  
°C  
(1) Stresses at or beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress  
ratings only and functional operation of the device at these or any other conditions beyond those indicated under “recommended  
operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
40  
46  
6
UNIT  
V
Vin  
4
CB  
Buck regulator  
CB to SW  
SW  
–0.7  
0
40  
5
FB  
Control  
SHDN  
0
40  
125  
Temperature  
Operating junction temperature, TJ  
–40  
°C  
6.4 Thermal Information  
LMR14010A  
THERMAL METRIC(1)  
SOT (DDC)  
6 PINS  
102  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
ψJB  
Junction-to-case (top) thermal resistance  
Junction-to-board characterization parameter  
36.9  
°C/W  
28.4  
(1) All numbers apply for packages soldered directly onto a 3" x 3" PC board with 2 oz. copper on 4 layers in still air in accordance to  
JEDEC standards. Thermal resistance varies greatly with layout, copper thickness, number of layers in PCB, power distribution, number  
of thermal vias, board size, ambient temperature, and air flow.  
4
Copyright © 2018, Texas Instruments Incorporated  
LMR14010A  
www.ti.com.cn  
ZHCSHV9 MARCH 2018  
6.5 Electrical Characteristics  
VIN = 12V, SHDN = VIN, TJ = 25°C, unless otherwise noted.  
PARAMETER  
INPUT POWER SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Operating input voltage  
Shutdown supply current  
4
40  
3
V
µA  
V
EN = 0 V  
Rising  
1
4
Undervoltage lockout thresholds  
IQ  
Falling  
3
V
ECO mode, no load, VIN = 12 V, not  
switching  
30  
µA  
SHDN AND UVLO  
Rising SHDN Threshold Voltage  
1.05  
1.25  
–4.2  
–1  
1.38  
V
SHDN = 2.3 V  
SHDN = 0.9 V  
µA  
µA  
µA  
SHDN PIN current  
Hysteresis current  
–3  
HIGH-SIDE MOSFET  
On-resistance  
VIN = 12 V, CB to SW = 5.8 V  
500  
(1)95  
mΩ  
tON-MIN  
DMAX  
VFB  
ns  
: Maximum duty cycle(1)  
: Feedback voltage  
96%  
0.74  
550  
0.765  
0.79  
850  
V
CURRENT LIMIT  
Current limit threshold  
Switching frequency  
VIN = 12 V  
Hysteresis  
1500  
700  
mA  
ƒSW  
kHz  
THERMAL PERFORMANCE  
TSHUTDOW  
N
Thermal shutdown trip point(1)  
170  
10  
°C  
°C  
(1)  
THYS  
(1) Specified by design.  
版权 © 2018, Texas Instruments Incorporated  
5
LMR14010A  
ZHCSHV9 MARCH 2018  
www.ti.com.cn  
6.6 Typical Characteristics  
Unless otherwise noted, VIN = 12 V, L = 22 µH, COUT = 22 µF, TA = 25°C  
100  
90  
80  
70  
60  
50  
40  
30  
100  
Vin=15V  
Vin=12V  
90  
80  
70  
60  
50  
40  
30  
Vin=18V  
Vin=15V  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
C001  
C002  
ƒSW = 0.7 MHz  
VOUT = 12 V  
ƒSW = 0.7 MHz  
VOUT = 5 V  
1. Efficiency vs Load Current  
2. Efficiency vs Load Current  
1.5%  
1.0%  
0.5%  
0.0%  
-0.5%  
-1.0%  
-1.5%  
100  
10  
1
ECO  
Shutdown  
0.1  
0
200  
400  
600  
800  
1000  
4
14  
24  
34  
44  
Load Current (mA)  
Input Voltage (V)  
C004  
C005  
VIN = 18 V  
VOUT = 12 V  
VOUT = 5 V  
3. Load Regulation  
4. Supply Current vs Input Voltage (No Load)  
6
版权 © 2018, Texas Instruments Incorporated  
LMR14010A  
www.ti.com.cn  
ZHCSHV9 MARCH 2018  
7 Detailed Description  
7.1 Overview  
The LMR14010A device is a 40-V, 1-A step-down (buck) regulator. The buck regulator has a very low-quiescent  
current during the light load to prolong the battery life.  
The LMR14010A improves performance during line and load transients by implementing a constant frequency,  
current mode control which reduces output capacitance and simplifies frequency compensation design. The  
LMR14010A reduces the external component count by integrating the boot recharge diode. The bias voltage for  
the integrated high-side MOSFET is supplied by a capacitor on the CB to SW pin. The boot capacitor voltage is  
monitored by an UVLO circuit and will turn the high side MOSFET off when the boot voltage falls below a preset  
threshold. The LMR14010A can operate at high duty cycles because of the boot UVLO and small refresh FET.  
The output voltage can be stepped down to as low as the 0.765-V reference. Internal soft start is featured to  
minimize inrush currents.  
7.2 Functional Block Diagram  
VIN  
Leading Edge  
Blanking  
Bootstrap  
Regulator  
CB  
Logic &  
HS  
PWM Latch  
Driver  
SW  
œ
+
Frequency  
Shift  
0.765V  
SS  
COMP  
+
+
EA  
FB  
œ
Main OSC  
Bandgap  
Ref  
Slope  
Compensation  
SHDN  
GND  
版权 © 2018, Texas Instruments Incorporated  
7
LMR14010A  
ZHCSHV9 MARCH 2018  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Fixed Frequency PWM Control  
The LMR14010A operates at a fixed frequency, and it implements peak current mode control. The output voltage  
is compared through external resistors on the FB pin to an internal voltage reference by an error amplifier which  
drives the internal COMP node. An internal oscillator initiates the turn on of the high side power switch. The error  
amplifier output is compared to the high side power switch current. When the power switch current reaches the  
level set by the internal COMP voltage, the power switch is turned off. The internal COMP node voltage will  
increase and decrease as the output current increases and decreases. The device implements a current limit by  
clamping the COMP node voltage to a maximum level.  
7.3.2 Bootstrap Voltage (CB)  
The LMR14010A has an integrated boot regulator, and requires a small ceramic capacitor between the CB and  
SW pins to provide the gate drive voltage for the high side MOSFET. The CB capacitor is refreshed when the  
high side MOSFET is off and the low side diode conducts.  
To improve drop out, the LMR14010A is designed to operate at 96% duty cycle as long as the CB to SW pin  
voltage is greater than 3.2 V. When the voltage from CB to SW drops below 3.2 V, the high-side MOSFET is  
turned off using an UVLO circuit which allows the low side diode to conduct and refresh the charge on the CB  
capacitor. Since the supply current sourced from the CB capacitor is low, the high-side MOSFET can remain on  
for more switching cycles than are required to refresh the capacitor, thus the effective duty cycle of the switching  
regulator is high.  
Attention must be taken in maximum duty cycle applications with light load. To ensure SW can be pulled to  
ground to refresh the CB capacitor, an internal circuit will charge the CB capacitor when the load is light or the  
device is working in dropout condition.  
7.3.3 Setting the Output Voltage  
The output voltage is set using the feedback pin and a resistor divider connected to the output as shown on the  
front page schematic. The feedback pin voltage 0.765 V, so the ratio of the feedback resistors sets the output  
voltage according to the following equation: VOUT = 0.765 V (1+(R1/R2)). Typically R2 will be given as 1 kto  
100 kfor a starting value. To solve for R1 given R2 and VOUT uses R1 = R2 ((VOUT/0.765 V) – 1).  
7.3.4 Enable (SHDN ) and VIN Undervoltage Lockout  
The LMR14010A SHDN pin is a high-voltage tolerant input with an internal pull-up circuit. The device can be  
enabled even if the SHDN pin is floating. The regulator can also be turned on using 1.25-V or higher logic  
signals. If the use of a higher voltage is desired due to system or other constraints it may be used. A 100-kor  
larger resistor is recommended between the applied voltage and the SHDN pin to protect the device. When  
SHDN is pulled down to 0 V, the chip is turned off and enters the lowest shutdown current mode. In shutdown  
mode the supply current will be decreased to approximately 1 µA. If the shutdown function is not to be used, the  
SHDN pin may be tied to VIN. The maximum voltage to the SHDN pin should not exceed 40 V.  
The LMR14010A has an internal UVLO circuit to shutdown the output if the input voltage falls below an internally  
fixed UVLO threshold level. This ensures that the regulator is not latched into an unknown state during low input  
voltage conditions. The regulator will power up when the input voltage exceeds the UVLO voltage level. If there  
is a requirement for a higher UVLO voltage, the SHDN can be used to adjust the input voltage UVLO by using  
external resistors.  
7.3.5 Current Limit  
The LMR14010A implements current mode control which uses the internal COMP voltage to turn off the high  
side MOSFET on a cycle by cycle basis. Each cycle the switch current and internal COMP voltage are  
compared, when the peak switch current intersects the COMP voltage, the high-side switch is turned off. During  
overcurrent conditions that pull the output voltage low, the error amplifier will respond by driving the COMP node  
high, increasing the switch current. The error amplifier output is clamped internally, which functions as a switch  
current limit.  
8
版权 © 2018, Texas Instruments Incorporated  
LMR14010A  
www.ti.com.cn  
ZHCSHV9 MARCH 2018  
Feature Description (接下页)  
7.3.6 Thermal Shutdown  
The device implements an internal thermal shutdown to protect itself if the junction temperature exceeds 170°C  
typical. The thermal shutdown forces the device to stop switching when the junction temperature exceeds the  
thermal trip threshold. Once the junction temperature decreases below 160°C typical, the device reinitiates the  
power-up sequence.  
7.4 Device Functional Modes  
7.4.1 Continuous Conduction Mode  
The LMR14010A steps the input voltage down to a lower output voltage. In continuous conduction mode (when  
the inductor current never reaches zero at steady state), the buck regulator operates in two cycles. The power  
switch is connected between VIN and SW. In the first cycle of operation the transistor is closed and the diode is  
reverse biased. Energy is collected in the inductor, the load current is supplied by COUT and the current through  
the inductor is rising. During the second cycle the transistor is open and the diode is forward biased due to the  
fact that the inductor current cannot instantaneously change direction. The energy stored in the inductor is  
transferred to the load and output capacitor. The ratio of these two cycles determines the output voltage. The  
output voltage is defined approximately as: D = VOUT/VIN and D' = (1-D) where D is the duty cycle of the switch,  
D and D' will be required for design calculations.  
7.4.2 Eco-mode™  
The LMR14010A operates in Eco-mode™ at light-load currents to improve efficiency by reducing switching and  
gate drive losses. For Eco-mode™ operation, the LMR14010A senses peak current, not average or load current,  
so the load current where the device enters Eco-mode™ is dependent on VIN, VOUT and the output inductor  
value. When the load current is low and the output voltage is within regulation, the device enters Eco-mode™  
(see 12) and draws only 28-µA input quiescent current.  
版权 © 2018, Texas Instruments Incorporated  
9
LMR14010A  
ZHCSHV9 MARCH 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LMR14010A is a step down DC-to-DC regulator. It is typically used to convert a higher DC voltage to a lower  
DC voltage with a maximum output current of 1 A. The following design procedure can be used to select  
components for the LMR14010A. This section presents a simplified discussion of the design process.  
8.2 Typical Application  
VIN  
VIN  
CB  
Cin  
2.2µF/50V  
L1  
22µH  
Cboot  
100nF  
SW  
5V, 1A  
SHDN  
LMR14010A  
Cout  
22µF  
C1out (optional)  
100µF  
R1  
54.9k  
D1  
GND  
FB  
R2  
10kꢀ  
Copyright © 2018, Texas Instruments Incorporated  
5. LMR14010A Application Circuit, 5-V Output  
8.2.1 Design Requirements  
8.2.1.1 Step-By-Step Design Procedure  
This example details the design of a high-frequency switching regulator using ceramic output capacitors. A few  
parameters must be known in order to start the design process. These parameters are typically determined at the  
system level:  
PARAMETER  
VALUE  
Input voltage, VIN  
9 V to 16 V, typical 12 V  
Output voltage, VOUT  
5.0 V ± 3%  
Maximum output current example IO_max  
Minimum output current example IO_min  
Transient response 0.03 A to 0.6 A  
Output voltage ripple  
1 A  
0.1 A  
5%  
1%  
Switching frequency fSW  
700 kHz  
Target during load transient  
Overvoltage peak value  
Undervoltage value  
106% of output voltage  
91% of output voltage  
10  
版权 © 2018, Texas Instruments Incorporated  
LMR14010A  
www.ti.com.cn  
ZHCSHV9 MARCH 2018  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LMR14010A device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Output Inductor Selection  
The most critical parameters for the inductor are the inductance, peak current and the DC resistance. The  
inductance is related to the peak-to-peak inductor ripple current, the input and the output voltages. Since the  
ripple current increases with the input voltage, the maximum input voltage is always used to determine the  
inductance. 公式 1 is used to calculate the minimum value of the output inductor, where KIND is ripple current  
percentage. A reasonable value is setting the ripple current to be 30% (KIND) of the DC output current. For this  
design example, the minimum inductor value is calculated to be 16.4 µH, and a nearest standard value was  
chosen: 22 µH. For the output filter inductor, it is important that the RMS current and saturation current ratings  
not be exceeded. The RMS and peak inductor current can be found from 公式 3 and 公式 4. The inductor ripple  
current is 0.22 A, and the RMS current is 1 A. As the equation set demonstrates, lower ripple currents will reduce  
the output voltage ripple of the regulator but will require a larger value of inductance. A good starting point for  
most applications is 22 μH with a 1.6-A current rating. Using a rating near 1.6 A will enable the LMR14010A to  
current limit without saturating the inductor. This is preferable to the LMR14010A going into thermal shutdown  
mode and the possibility of damaging the inductor if the output is shorted to ground or other long-term overload.  
Vin max -Vout  
Vout  
Lo min  
=
ì
Io ì KIND  
Vin max ì fsw  
(1)  
(2)  
Vout ì(Vin max -Vout  
Vin max ì Lo ì fsw  
)
Iripple  
=
1
2
2
IL-RMS  
=
Io  
+
Iripple  
12  
(3)  
(4)  
Iripple  
IL- peak = Io +  
2
版权 © 2018, Texas Instruments Incorporated  
11  
 
 
 
LMR14010A  
ZHCSHV9 MARCH 2018  
www.ti.com.cn  
8.2.2.3 Output Capacitor Selection  
The selection of COUT is mainly driven by three primary considerations. The output capacitor will determine the  
modulator pole, the output voltage ripple, and how the regulator responds to a large change in load current. The  
output capacitance needs to be selected based on the most stringent of these three criteria.  
The desired response to a large change in the load current is the first criteria. The regulator usually needs two or  
more clock cycles for the control loop to see the change in load current and output voltage and adjust the duty  
cycle to react to the change. The output capacitance must be large enough to supply the difference in current for  
2 clock cycles while only allowing a tolerable amount of droop in the output voltage. Equation 5 shows the  
minimum output capacitance necessary to accomplish this. For this example, the transient load response is  
specified as a 3% change in Vout for a load step from 0.1 A to 1 A (full load). For this example, ΔIOUT = 1 - 0.1 =  
0.9 A and ΔVOUT = 0.03 × 5 = 0.15 V. Using these numbers gives a minimum capacitance of 17.1 µF. For  
ceramic capacitors, the ESR is usually small enough to ignore in this calculation. Aluminum electrolytic and  
tantalum capacitors have higher ESR that should be taken into account.  
The stored energy in the inductor will produce an output voltage overshoot when the load current rapidly  
decreases. The output capacitor must also be sized to absorb energy stored in the inductor when transitioning  
from a high load current to a lower load current. Equation 6 is used to calculate the minimum capacitance to  
keep the output voltage overshoot to a desired value. Where L is the value of the inductor, IOH is the output  
current under heavy load, IOL is the output under light load, Vf is the final peak output voltage, and Vi is the initial  
capacitor voltage. For this example, the worst case load step will be from 1 A to 0.1 A. The output voltage will  
increase during this load transition and the stated maximum in our specification is 3 % of the output voltage. This  
will make Vo_overshoot = 1.03 × 5 = 5.15 V. Vi is the initial capacitor voltage which is the nominal output voltage  
of 5 V. Using these numbers in Equation 6 yields a minimum capacitance of 14.3 µF.  
Equation 7 calculates the minimum output capacitance needed to meet the output voltage ripple specification.  
Where fsw is the switching frequency, Vo_ripple is the maximum allowable output voltage ripple, and IL_ripple is  
the inductor ripple current. Equation 7 yields 0.26 µF.  
Equation 8 calculates the maximum ESR an output capacitor can have to meet the output voltage ripple  
specification. Equation 8 indicates the ESR should be less than 680 mΩ. Additional capacitance de-ratings for  
aging, temperature and dc bias should be factored in which will increase this minimum value. For this example,  
22 µF ceramic capacitors will be used. Capacitors in the range of 4.7 µF to 100 µF are a good starting point with  
an ESR of 0.7 Ω or less.  
2ì DIout  
fswì DVout  
Cout  
>
(5)  
(6)  
(Ioh2 - Iol2 )  
(Vf 2 -Vi2 )  
Cout > Lo ì  
1
1
Cout  
>
ì
Vo _ ripple  
8ì fsw  
IL _ ripple  
(7)  
(8)  
Vo _ ripple  
RESR  
<
IL _ ripple  
8.2.2.4 Schottky Diode Selection  
The breakdown voltage rating of the diode is preferred to be 25% higher than the maximum input voltage. In the  
target application, the current rating for the diode should be equal to the maximum output current for best  
reliability in most applications. In cases where the input voltage is not much greater than the output voltage the  
average diode current is lower. In this case it is possible to use a diode with a lower average current rating,  
approximately (1-D) × IOUT, however the peak current rating should be higher than the maximum load current. A  
1-A to 2-A rated diode is a good starting point.  
12  
版权 © 2018, Texas Instruments Incorporated  
LMR14010A  
www.ti.com.cn  
ZHCSHV9 MARCH 2018  
8.2.2.5 Input Capacitor Selection  
A low ESR ceramic capacitor is needed between the VIN pin and ground pin. This capacitor prevents large  
voltage transients from appearing at the input. Use a 1-µF to 10-µF value with X5R or X7R dielectric. Depending  
on construction, a ceramic capacitor’s value can decrease up to 50% of its nominal value when rated voltage is  
applied. Consult with the capacitor manufactures data sheet for information on capacitor derating over voltage  
and temperature. The capacitor must also have a ripple current rating greater than the maximum input current  
ripple of the LMR14010A. The input ripple current can be calculated using below Equations.  
For this example design, one 2.2-µF, 50-V capacitor is selected. The input capacitance value determines the  
input ripple voltage of the regulator. The input voltage ripple can be calculated using Equation 10. Using the  
design example values, IOUTMAX = 1 A, CIN = 2.2 µF, ƒSW = 700 kHz, yields an input voltage ripple of 162 mV and  
an rms input ripple current of 0.5 A.  
(Vin min -Vout  
)
Vout  
Icirms = Iout  
ì
ì
Vin min  
Vin min  
(9)  
Iout max ì 0.25  
Cin ì fsw  
DVin  
=
(10)  
8.2.2.6 Bootstrap Capacitor Selection  
A 0.1-µF ceramic capacitor or larger is recommended for the bootstrap capacitor (Cboot). For applications where  
the input voltage is close to output voltage a larger capacitor is recommended, generally 0.1 µF to 1 µF to ensure  
plenty of gate drive for the internal switches and a consistently low RDSON. A ceramic capacitor with an X7R or  
X5R grade dielectric with a voltage rating of 10 V or higher is recommended because of the stable characteristics  
over temperature and voltage.  
Below are the recommended typical output voltage inductor/capacitor combinations for optimized total solution  
size.  
P/N  
VOUT (V)  
R1 (kΩ)  
54.9 (1%)  
64.9 (1%)  
147 (1%)  
R2 (kΩ)  
10 (1%)  
10 (1%)  
10 (1%)  
L (µH)  
22  
COUT (µF)  
LMR14010A  
LMR14010A  
LMR14010A  
5
22  
22  
10  
5.7  
12  
22  
22  
版权 © 2018, Texas Instruments Incorporated  
13  
LMR14010A  
ZHCSHV9 MARCH 2018  
www.ti.com.cn  
8.2.3 Application Performance Curves  
Unless otherwise noted, VIN = 12 V, L = 22 µH, COUT = 22 µF, TA = 25°C  
VOUT (50 mV/DIV, AC coupled)  
VOUT (10 mV/DIV, AC coupled)  
VSW (5 V/DIV)  
IINDUCTOR (500 mA/DIV)  
Time (1 µs/DIV)  
Time (800 µs/DIV)  
6. Switching Node and Output Voltage  
7. Load Transient Between 0.1 A and 1 A  
Waveform (VIN = 12 V, VOUT = 5 V, ILoad = 1 A)  
(VIN= 12 V, VOUT = 5 V)  
VSHND (5 V/DIV)  
VOUT (10 V/DIV)  
VSHND (5 V/DIV)  
VOUT (10 V/DIV)  
VSW (10 V/DIV)  
VSW (10 V/DIV)  
IINDUCTOR (1 A/DIV)  
IINDUCTOR (1 A/DIV)  
Time (400 µs/DIV)  
Time (400 µs/DIV)  
8. Start-up Waveform  
9. Shutdown Waveform  
(VIN = 18 V, VOUT= 12 V, ILoad= 800 mA)  
(VIN = 18 V, VOUT = 12 V, ILoad= 800 mA)  
VSHND (5 V/DIV)  
VOUT (5 V/DIV)  
VSHND (5 V/DIV)  
VOUT (5 V/DIV)  
VSW (10 V/DIV)  
VSW (10 V/DIV)  
IINDUCTOR (1 A/DIV)  
IINDUCTOR (1 A/DIV)  
Time (200 µs/DIV)  
Time (100 µs/DIV)  
10. Start-Up Waveform  
11. Shutdown Waveform  
(VIN = 12 V, VOUT = 5 V, ILoad = 800 mA)  
(VIN = 12 V, VOUT = 5 V, ILoad= 800 mA)  
14  
版权 © 2018, Texas Instruments Incorporated  
LMR14010A  
www.ti.com.cn  
ZHCSHV9 MARCH 2018  
Unless otherwise noted, VIN = 12 V, L = 22 µH, COUT = 22 µF, TA = 25°C  
VOUT (20 mV/DIV, AC coupled)  
IINDUCTOR (100 mA/DIV)  
VSW (5 V/DIV)  
Time (200 µs/DIV)  
12. Eco-mode™ Operation (VIN = 12 V, VOUT = 5 V, No Load)  
9 Power Supply Recommendations  
The LMR14010A is designed to operate from an input voltage supply range between 4 V and 40 V. This input  
supply should be able to withstand the maximum input current and maintain a voltage above 4 V. The resistance  
of the input supply rail should be low enough that an input current transient does not cause a high enough drop  
at the LMR14010A supply voltage that can cause a false UVLO fault triggering and system reset. If the input  
supply is located more than a few inches from the LMR14010A, additional bulk capacitance may be required in  
addition to the ceramic input capacitors.  
版权 © 2018, Texas Instruments Incorporated  
15  
LMR14010A  
ZHCSHV9 MARCH 2018  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Layout is a critical portion of good power supply design. The following guidelines will help users design a PCB  
with the best power conversion performance, thermal performance, and minimized generation of unwanted EMI.  
1. The feedback network, resistors R1 and R2, should be kept close to the FB pin, and away from the inductor  
to minimize coupling noise into the feedback pin.  
2. The input capacitor CIN must be placed close to the VIN pin. This will reduce copper trace inductance which  
effects input voltage ripple of the device.  
3. The inductor L1 should be placed close to the SW pin to reduce magnetic and electrostatic noise.  
4. The output capacitor COUT should be placed close to the junction of L1 and the diode D1. The L1, D1 and  
COUT trace should be as short as possible to reduce conducted and radiated noise.  
5. The ground connection for the diode, CIN and COUT should be tied to the system ground plane in only one  
spot (preferably at the COUT ground point) to minimize conducted noise in the system ground plane.  
10.2 Layout Example  
13. LMR14010A Layout Example  
16  
版权 © 2018, Texas Instruments Incorporated  
LMR14010A  
www.ti.com.cn  
ZHCSHV9 MARCH 2018  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 使用 WEBENCH® 工具创建定制设计  
请单击此处,使用 LMR14010A 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 首先键入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化关键参数设计,如效率、封装和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案导出至常用 CAD 格式  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com/WEBENCH。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。请单击右上角的提醒我 进行注册,即可每周接收  
产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
Eco-mode, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,也  
不会对此文档进行修订。如欲获取此数据表的浏览器版本,请参阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMR14010ADDCR  
LMR14010ADDCT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
6
6
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
1N72  
1N72  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY