LMP7704-SP [TI]

Radiation-hardness-assured (RHA), precision low-input-bias wide-supply-range amplifier with RRIO;
LMP7704-SP
型号: LMP7704-SP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Radiation-hardness-assured (RHA), precision low-input-bias wide-supply-range amplifier with RRIO

文件: 总33页 (文件大小:1572K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
LMP7704-SP 具有低输入偏置和宽电源电压范围的耐辐射加固保(RHA)、精  
RRIO 放大器  
1 特性  
3 说明  
QML V (QMLV)RHASMD 5962-19206  
• 辐射性能  
LMP7704-SP 是一款精密放大器具有低输入偏置、  
低失调电压、2.5 MHz 增益带宽积和宽电源电压。该器  
件耐辐射可在 -55°C +125°C 的军用级温度范围  
内运行。  
RHA TID = 100krad(Si)  
– 无低剂量率辐射损伤增(ELDRS)TID =  
100krad(Si)  
该放大器拥有高直流精度等特性特别是 ±60 µV 的低  
失调电压±500 fA 的超低输入偏置因此非常适合具  
有高输出阻抗的精密传感器接口。该放大器可配置为换  
能器/传感器、电桥、应变仪和跨阻放大。  
SEL LET 的抗扰= 85MeV-cm2/mg  
SEE LET 的额定= 85MeV cm2/mg  
• 超低输入偏置电流±500fA  
• 输入失调电压±60µV  
• 单位带宽增益积2.5MHz  
• 电源电压范围2.7 V 12 V  
• 轨至轨输入和输出  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
5962R1920601VXC  
飞行模(QMLV),  
RHA 100 krad  
• 军用温度范围-55°C +125°C  
• 采14 线CFP具有业界通用四路放大器引脚  
分配  
CFP (14)  
9.73mm x 6.47mm  
LMP7704HBH/EM,  
工程模型(2)  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 卫星运行状况监控和遥测  
• 科学勘探有效载荷  
• 姿态和轨道控制系(AOCS)  
卫星电力系(EPS)  
通信负载  
(2) 这些器件仅适用于工程评估。按非合规性流程对其进行了处理  
即未进行老化处理等操作并且仅25°C 的额定温度下进  
行了测试。这些部件不适用于质检产、辐射测试或飞行。  
这些零件无法55°C +125°C 的完MIL 额定温度范围  
内或运行寿命中保证其性能。有关工程模型的更多信息请参  
德州仪(TI) 工程评估单元MILPRF38535 QML V 类处  
概述。  
雷达成像有效载荷  
R
R
V
V
1
+
-
R
S
I = (V2 œ V1)  
A
1
RS  
+
-
V
+
V
Z
LOAD  
-
R
R
V
2
A
2
+
-
V
典型应用原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNOSDB6  
 
 
 
 
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................21  
8 Application and Implementation..................................22  
8.1 Application Information............................................. 22  
8.2 Typical Application.................................................... 24  
9 Power Supply Recommendations................................26  
10 Layout...........................................................................26  
10.1 Layout Guidelines................................................... 26  
10.2 Layout Example...................................................... 26  
11 Device and Documentation Support..........................27  
11.1 接收文档更新通知................................................... 27  
11.2 支持资源..................................................................27  
11.3 Trademarks............................................................. 27  
11.4 Electrostatic Discharge Caution..............................27  
11.5 术语表..................................................................... 27  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics: VS = 5 V............................. 5  
6.6 Electrical Characteristics: VS = 10 V........................... 7  
6.7 Typical Characteristics................................................9  
7 Detailed Description......................................................16  
7.1 Overview...................................................................16  
7.2 Functional Block Diagram.........................................16  
7.3 Feature Description...................................................17  
Information.................................................................... 27  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (September 2021) to Revision C (March 2022)  
Page  
5962R1920601VXC 飞行模型从预发布更改为量产数据正在供货...........................................................1  
• 删除了器件信表中已淘汰5962-1920601VXC 飞行模型.............................................................................1  
Changes from Revision A (January 2021) to Revision B (September 2021)  
Page  
• 将器件状态从“预告信息预发布”更改为“量产数据正在供货.........................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMP7704-SP  
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
5-1. HBH Package, 14-Pin CFP, Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
IN A+  
IN A–  
IN B+  
IN B–  
IN C+  
IN C–  
IN D+  
IN D–  
OUT A  
OUT B  
OUT C  
OUT D  
V+  
NO.  
3
I
I
Noninverting input for amplifier A  
Inverting input for amplifier A  
Noninverting input for amplifier B  
Inverting input for amplifier B  
Noninverting input for amplifier C  
Inverting input for amplifier C  
Noninverting input for amplifier D  
Inverting input for amplifier D  
Output for amplifier A  
2
5
I
6
I
10  
9
I
I
12  
13  
1
I
I
O
O
O
O
P
P
7
Output for amplifier B  
8
Output for amplifier C  
14  
4
Output for amplifier D  
Positive supply  
V–  
11  
Negative supply  
LID  
The metal lid is internally connected to V–  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMP7704-SP  
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VS  
13.2  
V
Supply voltage, VS = (V+) (V)  
Common-mode  
Differential  
(V+) + 0.3  
(V) 0.3  
Voltage  
V
(V+) (V) + 0.3  
Current  
±10  
Continuous  
150  
mA  
Output short circuit(2)  
Operating temperature  
Junction temperature  
Storage temperature  
Continuous  
TA  
°C  
°C  
°C  
55  
TJ  
150  
TSTG  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Short-circuit to ground, one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
V
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
MAX  
12  
UNIT  
V
VS  
TA  
Supply voltage, VS = (V+) (V)  
Specified temperature  
125  
°C  
55  
6.4 Thermal Information  
LMP7704-SP  
HBH (CFP)  
14 PINS  
37.5  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
ºC/W  
ºC/W  
ºC/W  
ºC/W  
ºC/W  
ºC/W  
RθJC(top)  
RθJB  
20.6  
21.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
12.9  
ψJT  
21.0  
ψJB  
RθJC(bot)  
10.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMP7704-SP  
 
 
 
 
 
 
 
 
 
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
6.5 Electrical Characteristics: VS = 5 V  
at TA = +25°C, VS = (V+) (V) = 5 V, VCM = VOUT = VS / 2, and RL = 10 kΩconnected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±60  
±260  
±520  
VOS  
Input offset voltage  
µV  
TA = 55°C to +125°C  
TA = 55°C to +125°C  
Input offset voltage  
drift(1)  
dVOS/dT  
PSRR  
±1  
±5  
µV/°C  
86  
82  
100  
dB  
dB  
Power-supply rejection  
ratio  
2.7 V < VS < 12 V  
TA = 55°C to +125°C  
INPUT BIAS CURRENT  
±0.5  
±40  
±10  
pA  
pA  
fA  
IB  
Input bias current  
±400  
TA = 55°C to +125°C  
IOS  
Input offset current  
NOISE  
Input voltage noise  
density  
en  
in  
f = 1 kHz  
9
1
nV/Hz  
fA/Hz  
Input current noise  
density  
f = 100 kHz  
INPUT VOLTAGE  
(V) –  
VCM  
Common-mode voltage  
(V+) + 0.2  
V
TA = 55°C to +125°C  
(V) < VCM < (V+)  
0.2  
85  
81  
130  
Common-mode rejection  
ratio  
TA = 55°C to +125°C  
CMRR  
dB  
Flight model post-HDR exposure,  
TA = 55°C to +125°C  
76  
OPEN-LOOP GAIN  
100  
94  
119  
130  
(V) + 0.3 V < VOUT < (V+) 0.3  
V,  
RL = 2 kΩ  
TA = 55°C to +125°C  
Flight model post-HDR exposure,  
TA = 55°C to +125°C  
AOL  
Open-loop voltage gain  
84  
dB  
100  
96  
(V) + 0.2 V < VOUT < (V+) 0.2  
V
TA = 55°C to +125°C  
FREQUENCY RESPONSE  
GBW  
SR  
Gain bandwidth  
Slew rate  
2.5  
1
MHz  
V/µs  
G = 1, 4-V step, 10% to 90% rising  
G = 1, f = 1 kHz  
Total harmonic distortion  
+ noise  
THD+N  
0.02%  
OUTPUT  
60  
120  
200  
RL = 2 kΩto VS / 2  
RL = 2 kΩto VS / 2,  
TA = 55°C to +125°C  
Positive rail  
40  
50  
60  
120  
120  
TA = 55°C to +125°C  
RL = 2 kΩto VS / 2  
Voltage output swing  
from rail  
VO  
mV  
mA  
RL = 2 kΩto VS / 2,  
TA = 55°C to +125°C  
190  
Negative rail  
30  
50  
100  
TA = 55°C to +125°C  
ISC  
Short-circuit current  
VOUT = VS / 2, VIN = ±100 mV  
+66 / 76  
POWER SUPPLY  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMP7704-SP  
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
6.5 Electrical Characteristics: VS = 5 V (continued)  
at TA = +25°C, VS = (V+) (V) = 5 V, VCM = VOUT = VS / 2, and RL = 10 kΩconnected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
2.9  
3.7  
IQ  
Total quiescent current  
IO = 0 A  
mA  
5.1  
TA = 55°C to +125°C  
(1) Specification set by device characterization, not tested in final production.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LMP7704-SP  
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
6.6 Electrical Characteristics: VS = 10 V  
at TA = +25°C, VS = (V+) (V) = 10 V, VCM = VOUT = VS / 2, and RL = 10 kΩconnected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±60  
±260  
±520  
VOS  
Input offset voltage  
µV  
TA = 55°C to +125°C  
TA = 55°C to +125°C  
Input offset voltage  
drift(1)  
dVOS/dT  
PSRR  
±1  
±5  
µV/°C  
86  
82  
100  
dB  
dB  
Power-supply rejection  
ratio  
2.7 V < VS < 12 V  
TA = 55°C to +125°C  
INPUT BIAS CURRENT  
±1  
±10  
pA  
pA  
fA  
IB  
Input bias current  
±400  
TA = 55°C to +125°C  
IOS  
Input offset current  
±40  
NOISE  
Input voltage noise  
density  
en  
in  
f = 1 kHz  
9
1
nV/Hz  
fA/Hz  
Input current noise  
density  
f = 100 kHz  
INPUT VOLTAGE  
(V) –  
VCM  
Common-mode voltage  
(V+) + 0.2  
V
0.2  
90  
86  
130  
Common-mode rejection  
ratio  
TA = 55°C to +125°C  
CMRR  
dB  
(V) < VCM < (V+)  
Flight model post-HDR exposure,  
TA = 55°C to +125°C  
83  
OPEN-LOOP GAIN  
100  
94  
121  
134  
(V) + 0.3 V < VOUT < (V+) 0.3  
V,  
RL = 2 kΩ  
TA = 55°C to +125°C  
TA = 55°C to +125°C  
AOL  
Open-loop voltage gain  
dB  
100  
97  
(V) + 0.2 V < VOUT < (V+) 0.2  
V
FREQUENCY RESPONSE  
GBW  
SR  
Gain bandwidth  
Slew rate  
2.5  
0.8  
MHz  
V/µs  
G = 1, 9-V step, 10% to 90% rising  
G = 1, f = 1 kHz  
Total harmonic distortion  
+ noise  
THD+N  
0.02%  
OUTPUT  
60  
120  
200  
RL = 2 kΩto VS / 2  
RL = 2 kΩto VS / 2,  
TA = 55°C to +125°C  
Positive rail  
40  
50  
60  
120  
120  
TA = 55°C to +125°C  
RL = 2 kΩto VS / 2  
Voltage output swing  
from rail  
VO  
mV  
mA  
RL = 2 kΩto VS / 2,  
TA = 55°C to +125°C  
190  
Negative rail  
30  
50  
100  
TA = 55°C to +125°C  
ISC  
Short-circuit current  
VOUT = VS / 2, VIN = ±100 mV  
+86 / 84  
POWER SUPPLY  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMP7704-SP  
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
6.6 Electrical Characteristics: VS = 10 V (continued)  
at TA = +25°C, VS = (V+) (V) = 10 V, VCM = VOUT = VS / 2, and RL = 10 kΩconnected to VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
3.2  
4.2  
IQ  
Total quiescent current  
IO = 0 A  
mA  
5.7  
TA = 55°C to +125°C  
(1) Specification set by device characterization, not tested in final production.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMP7704-SP  
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
at TA = 25°C, VCM = VS/2, and RL > 10 k(unless otherwise noted)  
25  
20  
V
= 3V  
V
T
= 3V  
S
S
-40°C Ç T Ç 125°C  
= 25°C  
A
A
20  
16  
12  
8
15  
10  
5
4
0
-200  
0
-100  
0
100  
200  
-3  
-3  
-3  
-2  
-1  
0
1
2
3
OFFSET VOLTAGE (mV)  
TCV  
(mV/°C)  
OS  
6-1. Offset Voltage Distribution  
6-2. TCVOS Distribution  
25  
20  
16  
V
T
= 5V  
S
V = 5V  
S
= 25°C  
A
-40°C Ç T Ç 125°C  
A
20  
15  
10  
5
12  
8
4
0
-200  
0
-100  
0
100  
200  
-2  
-1  
0
1
2
3
OFFSET VOLTAGE (mV)  
TCV  
(mV/°C)  
OS  
6-3. Offset Voltage Distribution  
6-4. TCVOS Distribution  
25  
20  
15  
10  
5
20  
16  
V
= 10V  
V
T
= 10V  
S
S
-40°C Ç T Ç 125°C  
= 25°C  
A
A
12  
8
4
0
-200  
0
-100  
0
100  
200  
-2  
-1  
0
1
2
3
OFFSET VOLTAGE (mV)  
TCV  
(mV/°C)  
OS  
6-5. Offset Voltage Distribution  
6-6. TCVOS Distribution  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMP7704-SP  
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VCM = VS/2, and RL > 10 k(unless otherwise noted)  
200  
150  
100  
0
-20  
V
= 3V  
S
-40  
V
= 3V  
S
V
S
= 5V  
50  
-60  
-80  
0
V
= 10V  
S
-50  
V
S
= 5V  
-100  
-100  
-150  
-200  
V
= 10V  
S
-120  
-140  
-40 -20  
0
20 40 60 80 100 120125  
TEMPERATURE (°C)  
10k  
FREQUENCY (Hz)  
10  
100  
1k  
100k  
1M  
6-7. Offset Voltage vs Temperature  
6-8. CMRR vs Frequency  
200  
150  
200  
150  
100  
50  
V
= 3V  
S
-40°C  
100  
-40°C  
50  
25°C  
0
0
25°C  
-50  
-50  
125°C  
-100  
-100  
-150  
-200  
125°C  
-150  
-200  
2
4
6
8
10  
12  
0
0.5  
1.5  
(V)  
2
2.5  
3
3.5  
-0.5  
1
V
CM  
SUPPLY VOLTAGE (V)  
6-10. Offset Voltage vs VCM  
6-9. Offset Voltage vs Supply Voltage  
200  
200  
150  
100  
V
S
= 10V  
V
= 5V  
S
150  
100  
-40°C  
25°C  
-40°C  
25°C  
50  
0
50  
0
-50  
-50  
-100  
-150  
-200  
-100  
-150  
125°C  
125°C  
-200  
-1  
0
1
2
3
4
5
6
5
-1  
0
1
2
3
4
6
7
8
9 10 11  
V
CM  
(V)  
V
CM  
(V)  
6-11. Offset Voltage vs VCM  
6-12. Offset Voltage vs VCM  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMP7704-SP  
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VCM = VS/2, and RL > 10 k(unless otherwise noted)  
200  
300  
V
S
= 3V  
V
S
= 3V  
200  
100  
100  
0
85°C  
-40°C  
0
-100  
-100  
-200  
-200  
-300  
125°C  
25°C  
1.5  
0
0.5  
1
1.5  
(V)  
2
2.5  
3
0
0.5  
1
2
2.5  
3
V
V
(V)  
CM  
CM  
6-14. Input Bias Current vs VCM  
6-13. Input Bias Current vs VCM  
300  
300  
V
S
= 5V  
V
S
= 5V  
200  
200  
100  
100  
0
85°C  
-40°C  
0
-100  
-100  
-200  
-300  
-200  
-300  
25°C  
125°C  
0
1
2
3
4
5
0
1
2
3
4
5
V
CM  
(V)  
V
CM  
(V)  
6-16. Input Bias Current vs VCM  
6-15. Input Bias Current vs VCM  
500  
300  
200  
V
S
= 10V  
V
S
= 10V  
250  
0
100  
0
85°C  
-40°C  
-100  
-250  
-200  
-300  
25°C  
125°C  
-500  
0
2
4
6
8
10  
0
2
4
6
8
10  
V
CM  
(V)  
V
CM  
(V)  
6-17. Input Bias Current vs VCM  
6-18. Input Bias Current vs VCM  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMP7704-SP  
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VCM = VS/2, and RL > 10 k(unless otherwise noted)  
120  
1.2  
1
V
= 10V  
S
V
S
= 5V  
100  
125°C  
-40°C  
V
= 3V  
S
25°C  
+PSRR  
0.8  
0.6  
0.4  
80  
60  
V
= 10V  
S
V
= 5V  
S
V
= 3V  
S
40  
20  
0.2  
0
-PSRR  
100k  
0
10k  
FREQUENCY (Hz)  
10  
100  
1k  
1M  
2
4
6
8
10  
12  
SUPPLY VOLTAGE (V)  
6-19. PSRR vs Frequency  
6-20. Supply Current vs Supply Voltage (Per Channel)  
120  
100  
120  
-40°C  
25°C  
-40°C  
125°C  
100  
25°C  
80  
60  
40  
80  
60  
40  
125°C  
20  
0
20  
0
2
4
6
8
10  
12  
2
4
6
8
10  
12  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
6-21. Sinking Current vs Supply Voltage  
6-22. Sourcing Current vs Supply Voltage  
+
V
1.5  
A
V
= +1  
T
A
= -40°C, 25°C, 125C  
V
1.4  
1.3  
1.2  
1.1  
1
= 2 V  
+
(V ) -1  
IN  
PP  
R
C
= 10 kW  
L
L
FALLING EDGE  
= 10 pF  
+
(V ) -2  
3V  
ö
ö
0.9  
0.8  
0.7  
0.6  
0.5  
2
1
0
RISING EDGE  
V
= 3V, 5V, 10V  
S
0
20  
40  
60  
80  
100  
2
4
6
8
10  
12  
OUTPUT CURRENT (mA)  
SUPPLY VOLTAGE (V)  
6-23. Output Voltage vs Output Current  
6-24. Slew Rate vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LMP7704-SP  
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VCM = VS/2, and RL > 10 k(unless otherwise noted)  
100  
80  
60  
40  
20  
0
225  
180  
135  
90  
100  
80  
60  
40  
20  
0
225  
V
= 3V, 5V, 10V  
= 20 pF, 50 pF, 100 pF  
= 10 kW  
S
GAIN  
GAIN  
180  
135  
C
R
L
L
V
= 10V  
S
-40°C  
25°C  
C
= 20 pF 90  
L
PHASE  
PHASE  
45  
0
45  
0
125°C  
125°C  
25°C  
-40°C  
-45  
-90  
-45  
-90  
-20  
-40  
-60  
-20  
-40  
-60  
V
= 5V  
S
C
R
= 20 pF  
= 10 kW  
V
= 3V  
L
L
S
C
= 100 pF  
L
-135  
100M  
-135  
10M  
100M  
100k  
10M  
100  
10k  
1M  
1k  
100k  
FREQUENCY (Hz)  
100  
10k  
1M  
1k  
FREQUENCY (Hz)  
6-25. Open-Loop Frequency Response  
6-26. Open-Loop Frequency Response  
V
= 5V  
V
= 5V  
S
S
f = 10 kHz  
f = 10 kHz  
A
V
= +1  
A
V
= +1  
V
V
= 100 mV  
= 10 kW  
= 10 pF  
= 2 V  
IN  
PP  
IN  
PP  
R
C
R
C
= 10 kW  
L
L
L
L
= 10 pF  
10 ms/DIV  
10 ms/DIV  
6-27. Large Signal Step Response  
6-28. Small Signal Step Response  
V
= 5V  
V
= 5V  
S
S
f = 10 kHz  
f = 10 kHz  
A
V
= +10  
A
V
= +10  
V
V
= 100 mV  
= 10 kW  
= 10 pF  
= 400 mV  
= 10 kW  
= 10 pF  
IN  
PP  
IN  
PP  
R
C
R
C
L
L
L
L
10 ms/DIV  
10 ms/DIV  
6-29. Large Signal Step Response  
6-30. Small Signal Step Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMP7704-SP  
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VCM = VS/2, and RL > 10 k(unless otherwise noted)  
120  
100  
80  
150  
140  
130  
120  
V
= 10V  
S
V
= 5V  
S
R
L
= 10 kW  
110  
100  
90  
V
= 3V  
S
60  
40  
20  
0
V
= 3V  
S
V
= 5V  
S
80  
R
= 2 kW  
L
70  
V
= 10V  
S
60  
1k  
FREQUENCY (Hz)  
10k  
1
10  
100  
100k  
500  
400  
300  
200  
100  
0
OUTPUT SWING FROM RAIL (mV)  
6-31. Input Voltage Noise vs Frequency  
6-32. Open Loop Gain vs Output Voltage Swing  
50  
50  
R
= 10 kW  
R
= 10 kW  
L
L
25°C  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
125°C  
-40°C  
125°C  
-40°C  
25°C  
2
4
6
8
10  
12  
2
4
6
8
10  
12  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
6-33. Output Swing High vs Supply Voltage  
6-34. Output Swing Low vs Supply Voltage  
100  
100  
R
= 2 kW  
R
= 2 kW  
L
L
25°C  
25°C  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
125°C  
125°C  
-40°C  
-40°C  
2
4
6
8
10  
12  
2
4
6
8
10  
12  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
6-35. Output Swing High vs Supply Voltage  
6-36. Output Swing Low vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMP7704-SP  
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at TA = 25°C, VCM = VS/2, and RL > 10 k(unless otherwise noted)  
1
1
V
= 5V  
S
V
V
= 5V  
S
f = 1 kHz  
= 100 kW  
= 4.5 V  
O
PP  
R
L
R
= 100 kW  
L
0.1  
0.01  
0.1  
0.01  
A
V
= +10  
A = +10  
V
A
V
= +1  
A
V
= +1  
0.001  
0.001  
10  
100  
1k  
10k  
100k  
0.001  
0.01  
0.1  
1
10  
V
OUT  
(V)  
FREQUENCY (Hz)  
6-37. THD+N vs Frequency  
6-38. THD+N vs Output Voltage  
140  
V
S
= 12V  
120  
100  
80  
V
= 5V  
S
V
S
= 3V  
60  
40  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
6-39. Crosstalk Rejection Ratio vs Frequency (LMP7702/LMP7704)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMP7704-SP  
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMP7704-SP is a radiation-hardened, quad, low offset voltage, rail-to-rail input and output precision  
amplifier with a CMOS input stage. The LMP7704-SP has a wide supply voltage range of 2.7 V to 12 V and a  
very low input bias current of only ±500 fA at room temperature.  
The wide supply voltage range of 2.7 V to 12 V over the extensive temperature range of 55°C to +125°C makes  
the LMP7704-SP an excellent choice for low-voltage, precision applications with extensive temperature  
requirements.  
The LMP7704-SP has only ±60 μV of input-referred offset voltage. This offset voltage allows for more accurate  
signal detection and amplification in precision applications.  
The low input bias current of only ±500 fA along with the low input-referred voltage noise of 9 nV/Hz give the  
LMP7704-SP superiority for use in sensor applications. Lower levels of noise from the LMP7704-SP mean better  
signal fidelity and a higher signal-to-noise ratio.  
7.2 Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LMP7704-SP  
 
 
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Radiation Hardened Performance  
Total Ionizing Dose (TID)The LMP7704-SP is a radiation-hardness-assured (RHA) QML class V (QMLV)  
product, with a total ionizing dose (TID) level specified in the Device Information table on the front page of this  
data sheet. Testing and qualification of these products is done on a wafer level according to MIL-STD-883, Test  
Method 1019. Radiation lot acceptance testing (RLAT) is performed at 30-krad, 50-krad, and 100-krad TID  
levels.  
Group E TID RLAT data are available with lot shipments as part of the QCI summary reports; for information on  
finding QCI summary reports, see QML Flow, Its Importance, and Obtaining Lot Information.  
Neutron Displacement Damage (NDD)The LMP7704-SP was irradiated up to 1 × 1012 n/cm2. A sample size  
of 15 units was exposed to radiation testing per MILSTD-883, Method 1017 for Neutron Irradiation.  
Single-Event Effects (SEE)One-time SEE characterization was performed according to EIA/JEDEC standard,  
EIA/JEDEC57 to linear energy transfer (LET) = 85 MeVcm2/mg. During testing, no single-event latch-up (SEL)  
was observed.  
7.3.2 Engineering Model (Devices With /EM Suffix)  
Engineering evaluation or engineering model (EM) devices are available for order and are identified by the /EM  
in the orderable device name (see the Ordering Information table on the front page of the data sheet). These  
devices meet the performance specifications of the data sheet at room temperature only and have not received  
the full space production flow or testing. Engineering samples may be QCI rejects that failed tests that would not  
impact the performance at room temperature, such as radiation or reliability testing.  
7.3.3 Capacitive Load  
The LMP7704-SP can be connected as a noninverting unity gain follower. This configuration is the most  
sensitive to capacitive loading.  
The combination of a capacitive load placed on the output of an amplifier along with the amplifier output  
impedance creates a phase lag, which in turn reduces the phase margin of the amplifier. If the phase margin is  
significantly reduced, the response is either underdamped or oscillated.  
To drive heavier capacitive loads, use an isolation resistor, labeled as RISO in 7-1. By using this isolation  
resistor, the capacitive load is isolated from the amplifier output, and thus, the pole caused by CL is no longer in  
the feedback loop. The larger the value of RISO, the more stable the output voltage. If values of RISO are  
sufficiently large, the feedback loop will be stable, independent of the value of CL. However, larger values of RISO  
result in reduced output swing and reduced output current drive.  
7-1. Isolating Capacitive Load  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMP7704-SP  
 
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
7.3.4 Input Capacitance  
CMOS input stages inherently have low input bias current and higher input-referred voltage noise. The  
LMP7704-SP enhances this performance by having a low input bias current of only ±500 fA, as well as a very  
low input-referred voltage noise of 9 nV/Hz. To achieve these specifications, a larger input stage is used. This  
larger input stage increases the input capacitance of the LMP7704-SP. The typical value of this input  
capacitance, CIN, for the LMP7704-SP is 25 pF. The input capacitance interacts with other impedances, such as  
gain and feedback resistors, which are seen on the inputs of the amplifier, to form a pole. This pole has little or  
no effect on the output of the amplifier at low frequencies and dc conditions, but plays a bigger role as the  
frequency increases. At higher frequencies, the presence of this pole decreases phase margin and also causes  
gain peaking. To compensate for the input capacitance, choose the feedback resistors carefully. In addition to  
being selective in picking values for the feedback resistor, add a capacitor to the feedback path to increase  
stability.  
The dc gain of the circuit shown in 7-2 is simply R2/R1.  
C
R
F
2
R
1
-
+
C
IN  
V
+
-
IN  
+
V
OUT  
-
R2  
R1  
VOUT  
-
AV =  
-
=
VIN  
7-2. Compensating for Input Capacitance  
For the time being, ignore CF. The ac gain of the circuit in 7-2 can be calculated as follows:  
VOUT  
VIN  
-R2/R1  
(s) =  
s2  
s
«
«
1 +  
+
A0 R1  
A0  
«
«
CIN R2  
R1 + R2  
(1)  
(2)  
This equation is rearranged to find the location of the two poles:  
2
«
4 A0CIN  
1
1
-1  
1
1
-
P1,2  
=
+
ê
+
R1  
R2  
R
R2  
R2  
2CIN  
«
1
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMP7704-SP  
 
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
方程式 2 shows that as values of R1 and R2 are increased, the magnitude of the poles is reduced, which in turn  
decreases the bandwidth of the amplifier. Whenever possible, the best practice is to choose smaller feedback  
resistors. 7-3 shows the effect of the feedback resistor on the bandwidth of the LMP7704-SP.  
2
V
= 5V  
= 0 pF  
= -1  
S
C
F
V
0
-2  
A
R
= R = 100 kW  
2
1
-4  
R
= R = 30 kW  
2
1
-6  
R
= R = 10 kW  
2
1
-8  
R
= R = 1 kW  
1
2
-10  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
7-3. Closed-Loop Gain vs Frequency  
方程式 2 has two poles. In most cases, the presence of pairs of poles causes gain peaking. To eliminate this  
effect, place the poles in a Butterworth position, because poles in a Butterworth position do not cause gain  
peaking. To achieve a Butterworth pair, set the quantity under the square root in 方程式 2 to equal 1. Using this  
fact and the relation between R1 and R2 (R2 = AV R1), the optimum value for R1 is found. Use 方程式 3 to  
calculate the value of R1. If R1 is larger than this optimum value, gain peaking occurs.  
(1 - AV)2  
R1  
<
2A0AVCIN  
(3)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMP7704-SP  
 
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
In 7-2, CF is added to compensate for input capacitance and to increase stability. Additionally, CF reduces or  
eliminates the gain peaking that can be caused by having a larger feedback resistor. 7-4 shows how CF  
reduces gain peaking.  
2
C
= 0 pF  
= 1 pF  
F
0
-2  
C
F
C
= 5 pF  
F
-4  
C
= 3 pF  
F
-6  
V
= 5V  
S
-8  
R
= R = 100 kW  
1
2
A
= -1  
V
-10  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
7-4. Closed-Loop Gain vs Frequency With Compensation  
7.3.5 Diodes Between the Inputs  
The LMP7704-SP have a set of anti-parallel diodes between the input pins, as shown in 7-5. These diodes  
are present to protect the input stage of the amplifier. At the same time, the diodes limit the amount of differential  
input voltage that is allowed on the input pins. A differential signal larger than one diode voltage drop might  
damage the diodes. The differential signal between the inputs must be limited to ±300 mV or the input current  
must be limited to ±10 mA.  
+
+
V
V
D
1
ESD  
IN  
ESD  
ESD  
R
R
2
1
-
+
IN  
ESD  
D
2
-
-
V
V
7-5. Input of LMP7704-SP  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LMP7704-SP  
 
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Precision Current Source  
The LMP7704-SP can be used as a precision current source in many different applications. 7-6 shows a  
typical precision current source. This circuit implements a precision, voltage-controlled current source. Amplifier  
A1 is a differential amplifier that uses the voltage drop across RS as the feedback signal. Amplifier A2 is a buffer  
that eliminates the error current from the load side of the RS resistor. In general, the circuit is stable as long as  
the closed-loop bandwidth of amplifier A2 is greater then the closed-loop bandwidth of amplifier A1. If A1 and A2  
are the same type of amplifiers, then the feedback around A1 reduces bandwidth compared to A2.  
R
R
V
1
+
V
-
R
S
I = (V2 œ V1)  
A
1
RS  
+
-
V
+
V
Z
LOAD  
-
R
R
V
2
A
2
+
-
V
7-6. Precision Current Source  
The equation for output current is derived as shown in 方程4:  
(V0 œ IRS)R  
V2R  
V1R  
+
R + R R + R  
V0R  
=
+
R + R  
R + R  
(4)  
(5)  
Solving for current I results in 方程5:  
V2 œ V1  
I =  
R
S
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMP7704-SP  
 
 
 
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
8.1.1 Low Input Voltage Noise  
The LMP7704-SP has a very low input voltage noise of 9 nV/Hz. This input voltage noise is further reduced by  
placing N amplifiers in parallel, as shown in 8-1. The total voltage noise on the output of this circuit is divided  
by the square root of the number of amplifiers used in this parallel combination. The reason is because each  
individual amplifier acts as an independent noise source, and the average noise of independent sources is the  
quadrature sum of the independent sources divided by the number of sources. For N identical amplifiers:  
1
2
2
+e  
n1 n2  
2
+....+e  
REDUCED INPUT VOLTAGE NOISE =  
e
nN  
N
N
N
1
Ne2  
=
=
=
e
n
n
N
1
e
n
N
(6)  
8-1 shows a schematic of this input voltage noise reduction circuit. Typical resistor values are:  
RG = 10 , RF = 1 k, and RO = 1 k.  
+
V
V
+
IN  
V
OUT  
-
R
O
O
O
-
V
R
G
R
F
+
V
+
-
R
-
R
G
V
R
F
+
V
+
-
R
-
R
G
V
R
F
+
V
+
-
R
O
-
R
G
V
R
F
8-1. Noise Reduction Circuit  
8.1.2 Total Noise Contribution  
The LMP7704-SP has a very-low input bias current, very-low input current noise, and very-low input voltage  
noise. As a result, this amplifier is an excellent choice for circuits with high-impedance sensor applications.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMP7704-SP  
 
 
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
8-2 shows the typical input noise of the LMP7704-SP as a function of source resistance where:  
en denotes the input-referred voltage noise.  
ei is the voltage drop across source resistance due to input-referred current noise or ei = RS * in.  
et shows the thermal noise of the source resistance.  
eni shows the total noise on the input, where:  
eni = en2+ e2i + et2  
1000  
100  
e
ni  
e
n
10  
e
t
e
i
1
0.1  
10k  
(W)  
1M  
10  
1k  
100k  
10M  
100  
R
S
8-2. Total Input Noise  
The input current noise of the LMP7704-SP is so low that this noise does not become the dominant factor in the  
total noise unless the source resistance exceeds 300 M, which is an unrealistically high value.  
As is evident in 8-2, at lower RS values, total noise is dominated by the amplifier input voltage noise. If RS is  
larger than a few kilo-ohms, then the dominant noise factor becomes the thermal noise of RS. As mentioned  
previously, the current noise will not be the dominant noise factor for any practical application.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMP7704-SP  
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
8.2 Typical Application  
10 k  
240 kꢀ  
GND  
5 V  
Signal Source with  
high output impedance  
GND  
Vout  
œ
10 Mꢀ  
+
+
Vin = 0.1 V  
œ
-5 V  
GND  
GND  
8-3. LMP7704-SP Configured for 25x Gain With High Signal Source Impedance  
8.2.1 Design Requirements  
Many precision analog sensors, such as temperature or pressure (bridge) sensors, require a high-precision  
amplifier with low input bias to condition the signal before the analog-to-digital converter. The LMP7704-SP is an  
excellent amplifier choice for a voltage gain stage thanks to the low offset voltage, offset voltage drift, and ultra-  
low input bias current.  
8.2.2 Detailed Design Procedure  
Many sensors have high source impedances that may range up to 10 M. The output signal of sensors must  
often be amplified or otherwise conditioned by means of an amplifier. The input bias current of this amplifier can  
load the sensor output and cause a voltage drop across the source resistance, as shown in 8-4, where VIN+  
VS IBIAS * RS.  
=
SENSOR  
+
V
I
B
R
S
V
+
IN  
+
-
+
V
S
-
-
V
8-4. Offset Error Due to IBIAS  
The last term, IBIAS * RS, shows the voltage drop across RS. To prevent errors introduced to the system due to  
this voltage, an op amp with very low input bias current must be used with high impedance sensors. An amplifier  
with low input bias also has low input current noise, further improving the accuracy of systems with high source  
resistance.  
8-3 shows one channel of the LMP7704-SP configured for a gain of 25. A high source impedance is placed  
between the input signal and the noninverting input of the amplifier to represent the output impedance of the  
sensor.  
With the ultra-low input bias current of the LMP7704-SP, even with a signal source that has high output  
impedance, the system output maintains very good linearity to the ideal output voltage (that is, the output of an  
ideal amplifier in the same configuration). 8-5 shows the output voltage vs input voltage of the LMP7704-SP  
with a 10-MΩ source impedance. 8-6 shows the output voltage vs input voltage for an ideal amplifier with no  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LMP7704-SP  
 
 
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
input bias current. Comparing the two graphs shows that the LMP7704-SP maintains high accuracy even with a  
large source impedance connected to an input.  
8.2.3 Application Curves  
8-5. LMP7704-SP Output Voltage vs Input  
8-6. LMP7704-SP Ideal Output Voltage vs Input  
Voltage  
Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LMP7704-SP  
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
9 Power Supply Recommendations  
For proper operation, the power supplies must be decoupled. To decouple the supply, place 10nF to 1µF  
capacitors as close as possible to the operational-amplifier power-supply pins. For single-supply configurations,  
place a capacitor between the V+ and Vsupply pins. For dual-supply configurations, place one capacitor  
between V+ and ground, and place a second capacitor between Vand ground. Bypass capacitors must have a  
low ESR of less than 0.1 .  
10 Layout  
10.1 Layout Guidelines  
Take care to minimize the loop area formed by the bypass capacitor connection between supply pins and  
ground. Use a ground plane underneath the device; best practice is for any bypass components to ground to  
have a nearby via to the ground plane. The optimum bypass capacitor placement is closest to the corresponding  
supply pin. Use of thicker traces from the bypass capacitors to the corresponding supply pins lowers the power-  
supply inductance and provides a more stable power supply.  
To minimize stray parasitics, place the feedback components as close as possible to the device.  
10.2 Layout Example  
+3.3V  
GND  
+3.3V  
+3.3V  
5
2
GND  
1
+3.3V  
VOUT  
2
2
2
1
VOUT  
GND  
VOUT  
VOUT  
+3.3V  
4
3
1
1
V–  
V+  
V–  
V–  
2
+3.3V  
1
2
1
1
2
V+  
GND GND  
GND  
V–  
V+  
GND  
V+  
10-1. LMP7704-SP Example Layout for a Single Channel  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LMP7704-SP  
 
 
 
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LMP7704-SP  
 
 
 
 
 
 
 
LMP7704-SP  
ZHCSN30C DECEMBER 2020 REVISED MARCH 2022  
www.ti.com.cn  
PACKAGE OUTLINE  
HBH0014A  
CFP - 2.874 mm max height  
S
C
A
L
E
1
.
0
0
0
CERAMIC FLATPACK  
B
(6.09)  
4X (R0.76)  
6X 1.27  
14  
1
9.91  
(9.27)  
9.55  
2X 7.62  
7
8
0.482  
0.382  
8X  
6.65  
6.30  
A
0.2  
C A B  
2.874 MAX  
0.18  
0.10  
0.43 MAX  
(4.45)  
C
0.18 MIN  
8
7
1
14  
PIN 1 ID  
25 MAX  
4225069/A 06/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This package is hermetically sealed with a metal lid. The lid is not connected to any lead.  
4. The leads are gold plated.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LMP7704-SP  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
5962R1920601VXC  
LMP7704HBH/EM  
ACTIVE  
CFP  
CFP  
HBH  
14  
14  
1
RoHS & Green  
RoHS & Green  
NIAU  
N / A for Pkg Type  
N / A for Pkg Type  
-55 to 125  
-55 to 125  
5962R1920601VXC  
LMP7704  
Samples  
Samples  
ACTIVE  
HBH  
1
NIAU  
LMP7704HBH/EM  
EVAL ONLY  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Nov-2022  
OTHER QUALIFIED VERSIONS OF LMP7704-SP :  
Catalog : LMP7704  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Apr-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
5962R1920601VXC  
LMP7704HBH/EM  
HBH  
HBH  
CFP  
CFP  
14  
14  
1
1
506.98  
506.98  
26.16  
26.16  
6220  
6220  
NA  
NA  
Pack Materials-Page 1  
PACKAGE OUTLINE  
HBH0014A  
CFP - 2.861 mm max height  
S
C
A
L
E
1
.
0
0
0
CERAMIC FLATPACK  
METAL LID  
B
(6.09)  
4X (R0.76)  
6X 1.27  
14  
1
9.91  
(9.27)  
9.55  
2X 7.62  
7
8
0.482  
0.382  
C A B  
8X  
6.65  
6.30  
A
0.2  
2.861  
2.325  
0.18  
0.10  
0.98  
0.80  
4.65  
4.25  
C
0.18 MIN  
(4.04)  
8
7
(9.32)  
1
14  
PIN 1 ID  
BACKSIDE METALLIZATION  
(THERMAL PAD)  
25 MAX  
4225069/C 07/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This package is hermetically sealed with a metal lid. The lid is not connected to any lead.  
4. The leads are gold plated.  
5. Metal lid is connected to backside metalization.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LMP7704HBH/EM

Radiation-hardness-assured (RHA), precision low-input-bias wide-supply-range amplifier with RRIO | HBH | 14 | -55 to 125
TI

LMP7704MA

LMP7701/LMP7702/LMP7704 Precision, CMOS Input, RRIO, Wide Supply Range Amplifiers
TI

LMP7704MA/NOPB

精密 CMOS 输入 RRIO 宽电源电压范围四通道放大器 | D | 14
TI

LMP7704MAX

LMP7701/LMP7702/LMP7704 Precision, CMOS Input, RRIO, Wide Supply Range Amplifiers
TI

LMP7704MAX/NOPB

IC QUAD OP-AMP, 520 uV OFFSET-MAX, 2.5 MHz BAND WIDTH, PDSO14, SOIC-14, Operational Amplifier
NSC

LMP7704MAX/NOPB

Precision, CMOS Input, RRIO, Wide Supply Range Amplifiers
TI

LMP7704MT

Precision, CMOS Input, RRIO, Wide Supply Range Amplifiers
NSC

LMP7704MT

LMP7701/LMP7702/LMP7704 Precision, CMOS Input, RRIO, Wide Supply Range Amplifiers
TI

LMP7704MT/NOPB

Precision, CMOS Input, RRIO, Wide Supply Range Quad Amplifier 14-TSSOP -40 to 125
TI

LMP7704MTX

Precision, CMOS Input, RRIO, Wide Supply Range Amplifiers
NSC

LMP7704MTX

LMP7701/LMP7702/LMP7704 Precision, CMOS Input, RRIO, Wide Supply Range Amplifiers
TI

LMP7704MTX/NOPB

Precision, CMOS Input, RRIO, Wide Supply Range Quad Amplifier 14-TSSOP -40 to 125
TI