LMK03318RHST [TI]

具有单个 PLL 的超低抖动时钟发生器系列 | RHS | 48 | -40 to 85;
LMK03318RHST
型号: LMK03318RHST
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有单个 PLL 的超低抖动时钟发生器系列 | RHS | 48 | -40 to 85

时钟 时钟发生器
文件: 总141页 (文件大小:1971K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
具有一个 PLL、八路输出、集成 EEPROM LMK03318 超低噪声抖动时  
钟发生器系列  
1 特性  
添加了项目符号  
1
极低噪声、高性能  
2 应用  
抖动:FOUT > 100MHz 时的典型值为 100fs  
(均方根 (RMS))  
交换机和路由器  
网络与电信线卡  
峰值信噪比 (PSNR)-80dBc,出色的电源噪声  
抗扰度  
服务器和存储系统  
无线基站  
灵活的器件选项  
PCIe 1 代、第 2 代、第 3 代、第 4 代  
测试和测量  
多达 8 AC-LVPECLAC-LVDSAC-  
CMLHCSL LVCMOS 输出或任意组合  
引脚模式、I2C 模式、EEPROM 模式  
广播基础设施  
71 引脚可选择预编程默认启动选项  
3 说明  
支持自动或手动选择的双路输入  
LMK03318 是一款超低噪声 PLLATINUM™时钟发生  
器,具有一个带集成式 VCO、灵活时钟分配和扇出的  
分数 N 频率合成器,在片上 EEPROM 中存储有引脚  
可选配置状态。该器件可为各种千兆位级串行接口和数  
字器件提供多个时钟,从而通过替代多个振荡器和时钟  
分配器件来降低物料清单 (BOM) 成本、减小电路板面  
积、以及提高可靠性。超低抖动可降低高速串行链路中  
的比特误码率 (BER)。  
晶振输入:10MHz 52MHz  
外部输入:1MHz 300MHz  
频率裕度选项  
采用低成本可牵引晶振基准精调频率裕度  
无毛刺脉冲的粗调频率裕度 (%),采用输出分频  
其他 特性  
电源:3.3V 内核、1.8V2.5V 3.3V 输出电  
器件信息(1)  
工业温度范围(–40ºC +85ºC)  
器件型号  
LMK03318  
封装  
WQFN (48)  
封装尺寸(标称值)  
空白  
7.00mm × 7.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
LMK03318 简化框图  
Power  
Conditioning  
PLL  
2
8
8
Output  
Dividers  
Output  
Buffers  
Interface  
I2C/ROM/  
EEPROM  
LMK03318  
Ultra-high performance clock generator  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNAS669  
 
 
 
 
 
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
目录  
8.25 Typical 161.1328125-MHz Closed-Loop Output  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 3  
说明 (续.............................................................. 4  
器件比较............................................................... 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 7  
8.1 Absolute Maximum Ratings ...................................... 7  
8.2 ESD Ratings.............................................................. 7  
8.3 Recommended Operating Conditions....................... 8  
8.4 Thermal Information.................................................. 8  
8.5 Thermal Information.................................................. 8  
8.6 Electrical Characteristics - Power Supply ................. 9  
Phase Noise Characteristics.................................... 17  
8.26 Closed-Loop Output Jitter Characteristics ........... 17  
8.27 PCIe Clock Output Jitter ....................................... 17  
8.28 Typical Power Supply Noise Rejection  
Characteristics ......................................................... 18  
8.29 Typical Power-Supply Noise Rejection  
Characteristics ......................................................... 18  
8.30 Typical Closed-Loop Output Spur Characteristics 18  
8.31 Typical Characteristics.......................................... 19  
Parameter Measurement Information ................ 23  
9.1 Test Configurations................................................. 23  
9
10 Detailed Description ........................................... 27  
10.1 Overview ............................................................... 27  
10.2 Functional Block Diagram ..................................... 27  
10.3 Feature Description............................................... 28  
10.4 Device Functional Modes...................................... 32  
10.5 Programming......................................................... 50  
10.6 Register Maps....................................................... 71  
11 Application and Implementation...................... 117  
11.1 Application Information........................................ 117  
11.2 Typical Applications ............................................ 117  
12 Power Supply Recommendations ................... 127  
12.1 Device Power Up Sequence............................... 127  
12.2 Device Power Up Timing .................................... 128  
12.3 Power Down........................................................ 129  
8.7 Pullable Crystal Characteristics (SECREF_P,  
SECREF_N)............................................................. 10  
8.8 Non-Pullable Crystal Characteristics (SECREF_P,  
SECREF_N)............................................................. 11  
8.9 Clock Input Characteristics (PRIREF_P/PRIREF_N,  
SECREF_P/SECREF_N)......................................... 11  
8.10 VCO Characteristics.............................................. 11  
8.11 PLL Characteristics............................................... 12  
8.12 1.8-V LVCMOS Output Characteristics  
(OUT[7:0]) ................................................................ 12  
8.13 LVCMOS Output Characteristics (STATUS[1:0]).. 12  
8.14 Open-Drain Output Characteristics  
(STATUS[1:0]).......................................................... 13  
12.4 Power Rail Sequencing, Power Supply Ramp Rate,  
and Mixing Supply Domains .................................. 129  
8.15 AC-LVPECL Output Characteristics ..................... 13  
8.16 AC-LVDS Output Characteristics.......................... 13  
8.17 AC-CML Output Characteristics............................ 14  
8.18 HCSL Output Characteristics................................ 14  
8.19 Power-On Reset Characteristics........................... 14  
12.5 Power Supply Bypassing .................................... 131  
13 Layout................................................................. 133  
13.1 Layout Guidelines ............................................... 133  
13.2 Layout Example .................................................. 133  
14 器件和文档支持 ................................................... 135  
14.1 器件支持.............................................................. 135  
14.2 接收文档更新通知 ............................................... 135  
14.3 社区资源.............................................................. 135  
14.4 ..................................................................... 135  
14.5 静电放电警告....................................................... 135  
14.6 Glossary.............................................................. 135  
15 机械、封装和可订购信息..................................... 135  
8.20 2-Level Logic Input Characteristics  
(HW_SW_CTRL, PDN, GPIO[5:0]).......................... 15  
8.21 3-Level Logic Input Characteristics (REFSEL,  
GPIO[3:1])................................................................ 15  
8.22 Analog Input Characteristics (GPIO[5])................. 15  
8.23 I2C-Compatible Interface Characteristics (SDA,  
SCL)......................................................................... 16  
8.24 Typical 156.25-MHz Closed-Loop Output Phase  
Noise Characteristics ............................................... 16  
2
版权 © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
4 修订历史记录  
Changes from Revision D (December 2017) to Revision E  
Page  
Clarified note about VOH (rail-to-rail swing only with VDDO = 1.8 V +/- 5%)........................................................................ 12  
Changed Slew Rate minimum and maximum from: 2.25 V/ns and 5 V/ns to: 1 V/ns and 4 V/ns, respectively .................. 14  
Updated PRODID reset value to be 0x33 (was 0x31).......................................................................................................... 71  
Updated REVID reset value to be 0x02 (was 0x01) ............................................................................................................ 71  
Added the Support for PCB Temperature up to 105°C subsection.................................................................................... 133  
Changes from Revision C (August 2017) to Revision D  
Page  
应用 部分............................................................................................................................................................................ 1  
Added PCIe Clock Output Jitter table................................................................................................................................... 17  
Added tablenotes to Table 10............................................................................................................................................... 57  
Changed the first paragraph of the Powering Up From Single-Supply Rail section .......................................................... 129  
Changed the first paragraph of the Powering Up From Split-Supply Rails section and Figure 84 .................................... 130  
Changed the first paragraph and added new content to the Slow Power-Up Supply Ramp section ................................ 130  
Changed the first paragraph of the Non-Monotonic Power-Up Supply Ramp section ...................................................... 131  
Changes from Revision B (August 2016) to Revision C  
Page  
Added a table note to Recommended Operating Conditions explaining the NOM values .................................................... 8  
Changed Vbb = 1.3 V to 1.8 in Figure 45 ............................................................................................................................ 35  
Changes from Revision A (December 2015) to Revision B  
Page  
Changed title from Configuring the PLL to Device Functional Modes.................................................................................. 32  
Changed title from Interface and Control to Programming .................................................................................................. 50  
Added new sections to Power Supply Recommendations ................................................................................................ 129  
版权 © 2015–2018, Texas Instruments Incorporated  
3
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
5 说明 (续)  
对于 PLL,可以选择差分时钟、单端时钟或晶振输入作为参考时钟。所选基准输入可用于将 VCO 频率锁定在基准  
输入频率的整数或小数倍。VCO 频率可在 4.8GHz 5.4GHz 范围内进行调整。凭借 PLL,用户可以根据应用需  
求灵活选择预定义或用户定义的环路带宽。PLL 有一个后分频器,分频选项包括 2 分频、3 分频、4 分频、5 分  
频、6 分频、7 分频或 8 分频。  
所有输出通道均可选择经过 PLL 分频的 VCO 时钟作为输出驱动器的时钟源,从而设置最终输出频率。部分输出通  
道还可以单独选择 PLL 的基准输入作为将旁路到相应输出缓冲器的备用时钟源。8 位输出分频器支持 1 256(偶  
数或奇数)的分频范围,输出频率高达 1GHz,并且具有输出相位同步功能。  
所有输出对均为以地为基准并具有可编程摆幅的 CML 驱动器,并且可通过交流耦合方式连接到 LVDSLVPECL  
CML 接收器。另外,所有输出对还可以单独配置为 HCSL 输出或 2 x 1.8V LVCMOS 输出。与以电压为基准的  
驱动器设计(例如,传统的 LVDS LVPECL 驱动器)相比,该输出具有更低的功耗(1.8V 时)、更出色的性能  
和电源抗扰度、以及更少的电磁干扰 (EMI)。通过 STATUS 引脚可获得两个额外的 3.3V LVCMOS 输出。这是一  
项可选特性,可在需要 3.3V LVCMOS 输出及不需要器件状态信号时使用。  
该器件 具有 自启动功能,通过片上可编程 EEPROM 或预定义的 ROM 存储器实现,有多种定制器件模式可通过  
引脚控制进行选择来免除对串行编程的需求。可通过与 I2C 兼容的串行接口对器件寄存器和片上 EEPROM 设置进  
行完全编程。器件从地址可在 EEPROM 中编程,LSB 可使用 3 状态引脚置位。  
该器件提供有两种频率裕度选项,支持无毛刺脉冲运行,可为标准合规性和系统时序裕度测试等系统设计验证测试  
(DVT) 提供支持。通过在内部晶振 (XO) 上使用低成本可牵引晶振并选择该输入作为 PLL 合成器的基准,可支持精  
调频率裕度(用 ppm 表示)。频率裕度范围取决于晶振的修整灵敏度和片上变容二极管范围。XO 频率裕度可通过  
引脚或 I2C 接口控制,灵活度较高且易于使用。通过 I2C 接口更改输出分频值后,可在任意输出通道上使用粗调频  
率裕度(用 % 表示),同时会停止并重启输出时钟以防止更改分频器后出现毛刺脉冲或短脉冲。  
内部电源调节功能提供出色的电源噪声抑制 (PSNR),降低了供电网络的成本和复杂性。模拟和数字内核块由  
3.3V±5% 电源供电运行,输出块由 1.8V2.5V 3.3V±5% 电源供电运行。  
6 器件比较表  
1. 不同积分带宽范围内的 LVPECL 输出抖动  
输出频率 (MHz)  
< 100  
积分带宽  
抖动典型值(psrms)  
12 kHz - 5 MHz  
0.15  
0.1  
> 100  
1 kHz – 5 MHz  
12 kHz – 20 MHz  
4
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
7 Pin Configuration and Functions  
RHS Package  
48-Pin QFN  
Top View  
STATUS0  
STATUS1  
CAP_DIG  
VDD_DIG  
1
2
3
4
36 VDD_PLL  
35 CAP_PLL  
34 LF  
33 GPIO5  
VDD_IN  
5
6
32 GPIO4  
31 GPIO3  
30 GPIO2  
29 NC  
PRIREF_P  
PRIREF_N  
REFSEL  
7
8
9
HW_SW_CTRL  
28 CAP_LDO  
SECREF_P 10  
27 VDD_LDO  
26 SCL  
SECREF_N 11  
GPIO0 12  
25 SDA  
Pin Functions  
NO.  
NAME  
TYPE  
DESCRIPTION  
POWER  
n/a  
DAP  
Ground  
Die Attach Pad.  
The DAP is an electrical connection and provides a thermal dissipation path. For proper  
electrical and thermal performance of the device, a 6 × 6 via pattern (0.3 mm holes) is  
recommended to connect the DAP to multiple ground layers of the PCB. Refer to Layout  
Guidelines.  
4
VDD_DIG  
VDD_IN  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
3.3 V power supply for digital control and STATUS outputs.  
3.3 V power supply for input block.  
5
18  
19  
27  
36  
37  
40  
43  
46  
VDDO_01  
VDDO_23  
VDD_LDO  
VDD_PLL  
VDDO_4  
VDDO_5  
VDDO_6  
VDDO_7  
1.8 V, 2.5 V, or 3.3 V power supply for OUT0/OUT1 channel.  
1.8 V, 2.5 V, or 3.3 V power supply for OUT2/OUT3 channel.  
3.3 V power supply for PLL LDO.  
3.3 V power supply for PLL/VCO.  
1.8 V, 2.5 V, or 3.3 V power supply for OUT4 channel.  
1.8 V, 2.5 V, or 3.3 V power supply for OUT5 channel.  
1.8 V, 2.5 V, or 3.3 V power supply for OUT6 channel.  
1.8 V, 2.5 V, or 3.3 V power supply for OUT7 channel.  
Copyright © 2015–2018, Texas Instruments Incorporated  
5
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Pin Functions (continued)  
NO.  
NAME  
TYPE  
DESCRIPTION  
INPUT BLOCK  
6, 7  
PRIREF_P,  
PRIREF_N  
Universal Primary reference clock.  
Accepts a differential or single-ended input. Input pins have AC-coupling capacitors and  
biasing internally. For LVCMOS input, the non-driven input pin must be pulled down to  
ground.  
8
REFSEL  
LVCMOS Manual reference input selection for PLL (3-state).  
Weak pul-lup resistor.  
9
HW_SW_CTRL  
LVCMOS Selection for Hard Pin Mode (ROM), Soft Pin Mode (EEPROM), or Register Default Mode.  
Weak pullup resistor.  
10, 11  
SECREF_P,  
SECREF_N  
Universal Secondary reference clock.  
Accepts a differential or single-ended input or crystal input. Input pins have AC-coupling  
capacitors and biasing internally. For LVCMOS input, external input termination is needed  
to attenuate the swing to less than 2.6 V, and the non-driven input pin must be pulled  
down to ground.  
For crystal input, AT-cut fundamental crystal must be used as per defined specification,  
and pullable crystal should be used for fine margining.  
SYNTHESIZER BLOCK  
3
CAP_DIG  
Analog  
Analog  
Analog  
Analog  
External bypass capacitor for digital blocks. Attach a 10 µF to GND.  
External bypass capacitor for PLL LDO. Attach a 10 µF to GND.  
External loop filter for PLL.  
28  
CAP_LDO  
LF  
34  
35  
CAP_PLL  
External bypass capacitor for PLL. Attach a 10 µF to GND.  
OUTPUT BLOCK  
14, 15  
17, 16  
20, 21  
23, 22  
39, 38  
42, 41  
45, 44  
48, 47  
OUT0_P, OUT0_N  
OUT1_P, OUT1_N  
OUT2_P, OUT2_N  
OUT3_P, OUT3_N  
OUT4_P, OUT4_N  
OUT5_P, OUT5_N  
OUT6_P, OUT6_N  
OUT7_P, OUT7_N  
Universal Differential/LVCMOS output pair 0. Programmable driver with differential or 2 × 1.8-V  
LVCMOS outputs.  
Universal Differential/LVCMOS output pair 1. Programmable driver with differential or 2 × 1.8-V  
LVCMOS outputs.  
Universal Differential/LVCMOS output pair 2. Programmable driver with differential or 2 × 1.8-V  
LVCMOS outputs.  
Universal Differential/LVCMOS output pair 3. Programmable driver with differential or 2 × 1.8-V  
LVCMOS outputs.  
Universal Differential/LVCMOS output pair 4. Programmable driver with differential or 2 × 1.8-V  
LVCMOS outputs.  
Universal Differential/LVCMOS output pair 5. Programmable driver with differential or 2 × 1.8-V  
LVCMOS outputs.  
Universal Differential/LVCMOS output pair 6. Programmable driver with differential or 2 × 1.8-V  
LVCMOS outputs.  
Universal Differential/LVCMOS output pair 7. Programmable driver with differential or 2 × 1.8-V  
LVCMOS outputs.  
6
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
NO.  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Pin Functions (continued)  
NAME  
TYPE  
DESCRIPTION  
DIGITAL CONTROL / INTERFACES(1)  
1
2
STATUS0  
Universal Status output 0 (open drain, requires external pullup) or 3.3-V LVCMOS output from synth  
(push-pull).  
Status signal selection and output polarity are programmable.  
STATUS1  
Universal Status output 1 (open drain, requires external pullup) or 3.3-V LVCMOS output from synth  
(push-pull).  
Status signal selection and output polarity are programmable.  
12  
13  
24  
25  
GPIO0  
PDN  
LVCMOS Multifunction inputs (2-state).  
LVCMOS Device power-down (active low). Weak pullup resistor.  
GPIO1  
SDA  
LVCMOS Multifunction input (3-state or 2-state).  
LVCMOS I2C serial data (bidirectional, open drain).  
Requires an external pullup resistor to VDD_DIG.  
I2C slave address is initialized from on-chip EEPROM.  
26  
SCL  
LVCMOS I2C serial clock (bidirectional, open drain).  
Requires an external pullup resistor to VDD_DIG.  
29  
30  
31  
32  
33  
NC  
N/A  
No connect.  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
LVCMOS Multifunction input (3-state or 2-state).  
LVCMOS Multifunction input (3-state or 2-state).  
LVCMOS Multifunction input (2-state).  
Universal Multifunction input (2-state) or analog input for frequency margin.  
(1) Refer to Device Configuration Control for details on the digital control/interfaces.  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply voltage for input, synthesizer, control, and output blocks, VDD_IN, VDD_PLL, VDD_LDO,  
VDD_DIG, VDDO_x  
–0.3  
3.6  
V
Input voltage, clock and logic inputs, VIN  
Output voltage for clock and logic outputs, VOUT  
Junction temperature, TJ  
–0.3  
–0.3  
VDD +0.3  
VDD + 0.3  
150  
V
V
°C  
°C  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.  
8.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±500 V may actually have higher performance.  
Copyright © 2015–2018, Texas Instruments Incorporated  
7
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
MAX UNIT  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.135  
1.7  
NOM  
3.3  
1.8  
2.5  
3.3  
25  
Supply voltage for input, analog, control blocks, VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG  
Supply voltage for output drivers (Differential, LVCMOS), VDDO_x(1)  
3.465  
3.465  
3.465  
3.465  
85  
V
1.7  
V
1.7  
Ambient temperature, TA  
–40  
°C  
°C  
ms  
Junction temperature, TJ  
125  
Maximum VDD power-up ramp, dVDD/dt  
EEPROM number of writes, WR  
0.1  
100  
100  
(1) The 3 different NOM values are the 3 typical test voltages throughout the data sheet.  
8.4 Thermal Information  
(2) (3) (4)  
LMK03318  
RHA (WQFN)  
48 PINS  
THERMAL METRIC(1)  
UNIT  
Airflow (LFM) 0  
26.47  
Airflow (LFM) 200  
Airflow (LFM) 400  
RθJA  
Junction-to-ambient thermal resistance  
16.4  
n/a  
14.62  
n/a  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
16.57  
RθJB  
ψJT  
Junction-to-board thermal resistance  
6.84  
n/a  
n/a  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.23  
0.31  
3.86  
n/a  
0.47  
3.84  
n/a  
ψJB  
4.02  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
1.06  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) The package thermal resistance is calculated on a 4-layer JEDEC board.  
(3) Package DAP connected to PCB GND plane with 16 thermal vias (0.3 mm diameter).  
(4) ψJB (junction to board) is used when the main heat flow is from the junction to the GND pad. Refer to the Layout section for more  
information on ensuring good system reliability and quality.  
8.5 Thermal Information  
LMK03318  
THERMAL METRIC(1)  
CONDITION  
RHA (WQFN)  
48 PINS  
UNIT  
Junction-to-ambient thermal  
resistance  
10-layer 200 mm × 250 mm board, 36 thermal vias,  
Airflow = 0 LFM  
RθJA  
10  
°C/W  
°C/W  
Junction-to-board  
characterization parameter  
10-layer 200 mm × 250 mm board, 36 thermal vias,  
Airflow = 0 LFM  
ψJB  
2.8  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics application report.  
8
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
8.6 Electrical Characteristics - Power Supply  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V ± 5%, VDDO_x = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5%, TA = –40°C to  
+85°C(1)(2)  
PARAMETER  
TEST CONDITIONS  
Primary input (differential or single-ended) - active  
Secondary input (differential or single-ended) - active  
Secondary input (XO) - active  
MIN  
TYP  
10  
10  
11  
4
MAX UNIT  
Core current consumption,  
per block  
lDD  
mA  
PLL doubler - active  
PLL block – active  
110  
53  
46  
Control block  
Output channel (MUX and Divider only) – active  
AC-LVDS driver (one pair)  
AC-coupled to 100 Ω differential  
10  
18  
16  
25  
10  
21  
AC-LVPECL driver (one pair), AC-coupled to 100 Ω  
differential  
AC-CML driver (one pair), AC-coupled to 100 Ω  
differential  
Output current  
consumption, per block  
IDDO  
mA  
HCSL driver (one pair)  
50 Ω to GND  
1.8-V LVCMOS driver (two outputs), 100 MHz, 5 pF  
load(2)  
3.3-V LVCMOS driver on STATUS0, STATUS1, 100  
MHz, 5 pF load(2)  
IDD_IN  
Inputs:  
48  
128  
15  
65  
158  
30  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-
-
-
-
-
PRI input enabled, set to LVDS mode  
SEC input enabled, set to crystal mode  
Input MUX set to auto select  
Reference clock is 25 MHz  
IDD_PLL  
IDD_LDO  
IDD_DIG  
IDDO_01  
IDDO_23  
IDDO_4  
IDDO_5  
IDDO_6  
19  
38  
R dividers set to 1  
85  
105  
105  
75  
PLL:  
-
-
-
-
-
-
-
M divider = 1  
Doubler enabled  
ICP = 6.4 mA  
Loop bandwidth = 400 kHz  
VCO Frequency = 5 GHz  
Feedback divider = 100  
Post divider = 8  
85  
58  
Current consumption, per  
supply pin  
58  
75  
58  
75  
Outputs:  
-
-
-
OUT[0-7] = 156.25 MHz LVPECL  
STATUS1: Loss of lock PLL  
STATUS0: Loss of secondary reference  
IDDO_7  
IDD-PD  
58  
30  
75  
50  
mA  
mA  
Power Supplies:  
-
-
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V  
VDDO_xx = 3.3 V  
Total device, LMK03318  
Power down (PDN = 0)  
(1) Refer to Parameter Measurement Information for relevant test conditions.  
(2) PTOTAL = PDC + PAC, where: PDC = 3.4 mA typical. PAC = C × V2 × fOUT  
.
Copyright © 2015–2018, Texas Instruments Incorporated  
9
 
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
8.7 Pullable Crystal Characteristics (SECREF_P, SECREF_N)  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V ± 5%, VDDO_x = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5%, TA = –40°C to  
(1)(2)(3)(4)  
+85°C  
PARAMETER  
TEST CONDITIONS  
Fundamental Mode  
fXTAL = 10 MHz to 16 MHz  
MIN  
TYP  
MAX UNIT  
fXTAL  
ESR  
Crystal frequency  
10  
52  
60  
50  
30  
MHz  
Equivalent series resistance fXTAL = 16 MHz to 30 MHz  
fXTAL = 30 MHz to 52 MHz  
Ω
CL  
C0  
Load capacitance  
9
pF  
pF  
Shunt capacitance  
2.1  
Recommended crystal specifications  
Shunt capacitance to  
motional capacitance ratio  
C0/C1  
PXTAL  
220  
250  
300  
Crystal maximum drive level  
µW  
pF  
On-Chip XO input  
capacitance at SECREF_P  
and SECREF_N  
CXO  
Single-ended, each pin referenced to GND  
14  
24  
CL = 9 pF, fXTAL = 50 MHz  
CL = 9 pF, fXTAL = 25 MHz  
25  
35  
Trim  
Trim sensitivity  
ppm/pF  
fF  
On-chip tunable capacitor  
variation over VT across  
crystal load of 5 pF  
Con-chip-5p-  
load  
Frequency accuracy of crystal over temperature, aging  
and initial accuracy < ±25 ppm.  
450  
1.5  
On-chip tunable capacitor  
variation over VT across  
crystal load of 12 pF  
Con-chip-12p-  
load  
Frequency accuracy of crystal over temperature, aging  
and initial accuracy < ±25 ppm.  
pF  
fPR  
Pulling range  
Crystal C0/C1 < 250  
±50  
ppm  
(1) Parameter is specified by characterization and is not tested in production.  
(2) The crystal pullability ratio is considered in the case where the XO frequency margining option is enabled. The actual pull range  
depends on the crystal pullability, as well as on-chip capacitance (Con-chip), device crystal oscillator input capacitance (CXO), PCB stray  
capacitance (CPCB), and any installed on-board tuning capacitance (CTUNE). Trim sensitivity or pullability (ppm/pF), TS = C1 × 1e6 / [2 ×  
(C0 + CL)2]. If the total external capacitance is less than the crystal CL, the crystal oscillates at a higher frequency than the nominal  
crystal frequency. If the total external capacitance is higher than CL, the crystal oscillates at a lower frequency than nominal.  
(3) Using a crystal with higher ESR can degrade output phase noise and may impact crystal start-up.  
(4) Verified with crystals specified for a load capacitance of CL = 9 pF. PCB stray capacitance was measured to be 1 pF. Crystals tested:  
19.2-MHz TXC (Part Number: 7M19272001), 19.44 MHz TXC (Part Number: 7M19472001), 25 MHz TXC (Part Number: 7M25072001),  
38.88-MHz TXC (Part Number: 7M38872001), 49.152-MHz TXC (Part Number: 7M49172001), 50-MHz TXC (Part Number:  
7M50072001).  
10  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
8.8 Non-Pullable Crystal Characteristics (SECREF_P, SECREF_N)  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V ± 5%, VDDO_x = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5%, TA = –40°C to  
(1)(2)(3)  
+85°C  
PARAMETER  
Crystal frequency  
TEST CONDITIONS  
Fundamental mode  
MIN  
TYP  
MAX  
52  
UNIT  
fXTAL  
ESR  
10  
MHz  
fXTAL = 10 MHz to 16 MHz  
fXTAL = 16 MHz to 30 MHz  
fXTAL = 30 MHz to 52 MHz  
60  
Equivalent series resistance  
Crystal maximum drive level  
50  
Ω
30  
PXTAL  
CXO  
300  
µW  
pF  
On-Chip XO input capacitance Single-ended, each pin referenced to  
at Xi and Xo  
14  
24  
GND  
On-chip tunable capacitor  
variation over VT across  
crystal load of 5 pF  
Frequency accuracy of crystal over  
temperature, aging and initial accuracy  
< ± 25 ppm.  
Con-chip-5p-load  
450  
fF  
On-chip tunable capacitor  
variation over VT across  
crystal load of 12 pF  
Frequency accuracy of crystal over  
temperature, aging and initial accuracy  
< ± 25 ppm.  
Con-chip-12p-load  
1.5  
pF  
(1) Parameter is specified by characterization and is not tested in production.  
(2) Using a crystal with higher ESR can degrade XO phase noise and may impact crystal start-up.  
(3) Verified with crystals specified for a load capacitance of CL = 9 pF. PCB stray capacitance was measured to be 1 pF. Crystal tested: 25-  
MHz TXC (part number: 7M25072001).  
8.9 Clock Input Characteristics (PRIREF_P/PRIREF_N, SECREF_P/SECREF_N)  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V ± 5%, VDDO_x = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5%, TA = –40°C to  
85°C(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
1
TYP  
MAX  
300  
UNIT  
MHz  
V
fCLK  
Input frequency range  
(2)  
VIH  
VIH  
VIL  
LVCMOS input high voltage PRI_REF  
LVCMOS input high voltage SEC_REF  
LVCMOS input low voltage  
1.4  
1.4  
0
VDD_IN  
2.6  
(2)  
(2)  
V
0.5  
V
Input voltage swing,  
differential peak-peak  
Differential input (where VCLK – VnCLK = |VID| × 2)  
VID,DIFF,PP  
VICM  
0.2  
2
2
V
Input common-mode voltage Differential input  
0.1  
0.5  
V
Input edge slew rate (20% to Differential input, peak-peak  
80%)  
V/ns  
V/ns  
dV/dt(3)  
Single-ended input, non-driven input tied to GND  
0.5  
IDC(3)  
IIN  
Input clock duty cycle  
Input leakage current  
Input capacitance  
40%  
–100  
60%  
100  
µA  
pF  
CIN  
Single-ended, each pin  
2
(1) Refer to Parameter Measurement Information for relevant test conditions.  
(2) Slew-rate-detect circuitry must be used when VIH < 1.7 V and VIL > 0.2 V. VIH/VIL detect circuitry must be used when VIH < 1.5 V and VIL  
> 0.4 V. Refer to REFDETCTL Register; R25 for relevant register information.  
(3) Ensured by characterization.  
8.10 VCO Characteristics  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V ± 5%, VDDO_x = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5%, TA = –40°C to  
+85°C  
PARAMETER  
Frequency range  
VCO Gain  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GHz  
fVCO  
4.8  
5.4  
KVCO  
55  
MHz/V  
Copyright © 2015–2018, Texas Instruments Incorporated  
11  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
8.11 PLL Characteristics  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V ± 5%, VDDO_x = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5%, TA = –40°C to  
+85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
fPD  
Phase detector frequency  
PLL figure of merit(1)  
1
150  
PN1Hz  
–231  
–136  
dBc/Hz  
PLL 1/f noise at 10 kHz offset ICP = 6.4 mA, 25 MHz phase detector  
normalized to 1 GHz(2)  
PN10kHz  
ICP-HIZ  
dBc/Hz  
nA  
Charge-pump leakage in Hi-Z  
Mode  
55  
(1) PLL flat phase noise = PN1 Hz + 20 × log(N) + 10 × log(fPD), with wide loop bandwidth and away from1/f noise region.  
(2) Phase noise normalized to 1 GHz. PLL 1/f phase noise = PN10 kHz + 20 × log(fOUT/1 GHz) – 10 × log(offset/10 kHz)  
8.12 1.8-V LVCMOS Output Characteristics (OUT[7:0])  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V ± 5%, VDDO_x = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5%, TA = –40°C to  
+85°C, outputs loaded with 2 pF to GND(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
1
TYP  
MAX  
UNIT  
MHz  
V
fOUT  
VOH  
VOL  
IOH  
Output frequency  
200  
(2)  
Output high voltage  
Output low voltage  
Output high current  
Output low current  
Output rise/fall time  
Output-to-output skew  
Output-to-output skew  
IOH = 1 mA  
IOL = 1 mA  
1.35  
0.35  
V
21  
–21  
250  
mA  
mA  
ps  
IOL  
tR/tF  
20% to 80%  
(3)  
(3)  
tSKEW  
tSKEW  
same divide value  
100  
1.5  
ps  
LVCMOS-to-differential; same divide value  
ns  
tPROP-CMOS IN-to-OUT propagation delay PLL bypass  
Output phase noise floor  
1
ns  
PN-Floor  
66.66 MHz  
–155  
dBc/Hz  
(fOFFSET > 10 MHz)  
Output Duty Cycle  
Output Impedance  
ODC(3)  
ROUT  
45%  
55%  
50  
Ω
(1) Refer to Parameter Measurement Information for relevant test conditions.  
(2) The 1.8-V LVCMOS driver supports rail-to-rail output swing only when powered from VDDO = 1.8 V +/- 5% (recommended VDDO for  
use with LVCMOS output format). VOH level is NOT rail-to-rail for VDDO = 2.5 V or 3.3 V due to the dropout voltage of the output  
channel’s internal LDO regulator.  
(3) Ensured by characterization.  
8.13 LVCMOS Output Characteristics (STATUS[1:0])  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V ± 5%, VDD_O = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5%, TA = –40°C to 85°C,  
outputs loaded with 2 pF to GND(1)  
PARAMETER  
Output frequency  
Output high voltage  
Output low voltage  
Output high current  
Output low current  
Output rise/fall time  
TEST CONDITIONS  
MIN  
3.75  
2.5  
TYP  
MAX  
UNIT  
MHz  
V
fOUT  
VOH  
VOL  
IOH  
200  
IOH = 1 mA  
IOL = 1 mA  
0.6  
V
33  
–33  
2.1  
mA  
mA  
ns  
IOL  
(2)  
tR/tF  
20% to 80%, R49[3-2], R49[1:0] = 10  
20% to 80%, R49[3-2], R49[1-0] = 00  
0.35  
ns  
Output phase noise floor  
(fOFFSET > 10 MHz)  
PN-Floor  
66.66 MHz  
–148  
dBc/Hz  
ODC(2)  
ROUT  
Output duty cycle  
Output impedance  
45%  
55%  
50  
Ω
(1) Refer to Parameter Measurement Information for relevant test conditions.  
(2) Ensured by characterization.  
12  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
8.14 Open-Drain Output Characteristics (STATUS[1:0])  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V ± 5%, VDDO_x = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5%, TA = –40°C to  
85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOL  
Output low voltage  
0.6  
V
8.15 AC-LVPECL Output Characteristics  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V ± 5%, VDDO_x = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5%, TA = –40°C to  
85°C, output pair AC-coupled to 100-Ω differential load(1)  
PARAMETER  
Output frequency(2)  
TEST CONDITIONS  
MIN  
1
TYP  
MAX  
1000  
1000  
UNIT  
MHz  
mV  
V
fOUT  
VOD  
Output voltage swing  
500  
800  
VOUT-PP  
Differential output peak-to-  
peak swing  
2 × |VOD  
|
VOS  
Output common mode  
Output-to-output skew  
300  
700  
60  
mV  
ps  
ps  
ps  
ps  
(3)  
tSKEW  
LVPECL-to-LVPECL; same divide value  
tPROP-DIFF IN-to-OUT propagation delay PLL bypass  
400  
175  
(3)  
tR/tF  
Output rise or fall time  
20% to 80%, < 300 MHz  
300  
200  
±100 mV around center point, > 300 MHz  
Output phase noise floor  
(fOFFSET > 10 MHz)  
PN-Floor  
ODC(3)  
156.25 MHz  
–164  
dBc/Hz  
Output duty cycle  
45%  
55%  
(1) Refer to Parameter Measurement Information for relevant test conditions.  
(2) An output frequency over fOUT maximum specification is possible, but output swing may be less than VOD minimum specification.  
(3) Ensured by characterization.  
8.16 AC-LVDS Output Characteristics  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V ± 5%, VDDO_x = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5%, TA = –40°C to  
85°C, output pair AC-coupled to 100-Ω differential load(1)  
PARAMETER  
Output frequency(2)  
TEST CONDITIONS  
MIN  
1
TYP  
MAX  
800  
UNIT  
MHz  
mV  
V
fOUT  
VOD  
Output voltage swing  
250  
400  
450  
VOUT-PP  
Differential output peak-to-  
peak swing  
2 × |VOD  
|
VOS  
Output common mode  
Output-to-output skew  
150  
350  
60  
mV  
ps  
ps  
ps  
ps  
(2)  
tSKEW  
LVDS-to-LVDS; same divide value  
tPROP-DIFF IN-to-OUT propagation delay PLL bypass  
400  
200  
(3)  
tR/tF  
Output rise/fall time  
20% to 80%, < 300 MHz  
300  
200  
±100 mV around center point, > 300 MHz  
Output phase noise floor  
(fOFFSET > 10 MHz)  
PN-Floor  
ODC(3)  
156.25 MHz  
–160  
dBc/Hz  
Output duty cycle  
45%  
55%  
(1) Refer to Parameter Measurement Information for relevant test conditions.  
(2) An output frequency over fOUT maximum specification is possible, but output swing may be less than VOD minimum specification.  
(3) Ensured by characterization.  
Copyright © 2015–2018, Texas Instruments Incorporated  
13  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
8.17 AC-CML Output Characteristics  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V ± 5%, VDDO_x = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5%, TA = –40°C to  
+85°C, output pair AC-coupled to 100-Ω differential load(1)  
PARAMETER  
Output frequency(2)  
TEST CONDITIONS  
MIN  
1
TYP  
MAX  
1000  
800  
UNIT  
MHz  
mV  
V
fOUT  
VOD  
VSS  
Output voltage swing  
400  
600  
Differential output peak-to-  
peak swing  
2 × |VOD  
|
VOS  
Output common mode  
Output-to-output skew  
250  
550  
60  
mV  
ps  
(3)  
tSKEW  
CML-to-CML; same divide value  
PLL bypass  
tPROP-  
DIFF  
IN-to-OUT propagation delay  
ps  
400  
190  
(3)  
tR/tF  
Output rise/fall time  
20% to 80%, < 300 MHz  
300  
200  
ps  
ps  
±100 mV around center point, > 300 MHz  
Output phase noise floor  
(fOFFSET > 10 MHz)  
PN-Floor  
ODC(3)  
156.25 MHz  
–160  
dBc/Hz  
Output duty cycle  
45%  
55%  
(1) Refer to Parameter Measurement Information for relevant test conditions.  
(2) An output frequency over fOUT maximum specification is possible, but output swing may be less than VOD minimum specification.  
(3) Ensured by characterization.  
8.18 HCSL Output Characteristics  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG= 3.3 V ± 5%, VDDO_x = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5%, TA = –40°C to  
+85°C, outputs with 50 Ω || 2 pF to GND(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
1
TYP  
MAX  
400  
UNIT  
MHz  
mV  
fOUT  
Output frequency  
VOH  
Output high voltage(2)  
Output low voltage(2)  
Absolute crossing voltage(3)  
660  
–150  
250  
850  
150  
550  
VOL  
mV  
VCROSS  
mV  
(3)  
VCROSS-  
DELTA  
Variation of VCROSS  
mV  
0
140  
100  
(4)  
tSKEW  
Output-to-output skew  
IN-to-OUT propagation delay  
Slew rate(2)  
Same divide value  
ps  
ps  
tPROP-DIFF  
dV/dt(4)  
PLL bypass  
400  
1
4
V/ns  
Output phase noise floor  
(fOFFSET > 10 MHz)  
PN-Floor  
ODC(4)  
100 MHz  
–158  
dBc/Hz  
Output duty cycle  
45%  
55%  
(1) Refer to Parameter Measurement Information for relevant test conditions.  
(2) Measured from -150 mV to +150 mV on the differential waveform (OUT minus nOUT) with the 300 mVpp measurement window  
centered on the differential zero crossing.  
(3) Ensured by design.  
(4) Ensured by characterization.  
8.19 Power-On Reset Characteristics  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V ± 5%, VDDO_x = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5%, TA = –40°C to  
+85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
2.95  
0.1  
UNIT  
V
VTHRESH Threshold voltage  
2.72  
VDROOP  
Allowable voltage droop  
V
Start-up time with 25-MHz  
XTAL  
Measured from time of supply reaching 3.135 V to  
time of output toggling  
tS-XTAL  
10  
10  
ms  
ms  
Start-up time with 25-MHz  
clock input  
Measured from time of supply reaching 3.135 V to  
time of output toggling  
tS-CLK  
14  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
8.20 2-Level Logic Input Characteristics (HW_SW_CTRL, PDN, GPIO[5:0])  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V ± 5%, VDDO_x = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5%, TA = –40°C to  
+85°C  
PARAMETER  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
Input capacitance  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIH  
VIL  
IIH  
1.2  
0.6  
40  
40  
V
VIH = VDD_DIG  
VIL = GND  
–40  
–40  
µA  
µA  
pF  
IIL  
CIN  
2
8.21 3-Level Logic Input Characteristics (REFSEL, GPIO[3:1])  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V ± 5%, VDDO_x = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5%, TA = –40°C to  
+85°C  
PARAMETER  
Input high voltage  
Input mid voltage  
Input low voltage  
Input high current  
Input low current  
Input capacitance  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIH  
VIM  
VIL  
IIH  
1.4  
0.9  
V
0.4  
40  
40  
V
VIH = VDD_DIG  
VIL = GND  
–40  
–40  
µA  
µA  
pF  
IIL  
CIN  
2
8.22 Analog Input Characteristics (GPIO[5])  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V ± 5%, VDDO_x = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5%, TA = –40°C to  
+85°C, pulldown resistor on GPIO[5] to GND as specified below, HW_SW_CTRL = 0  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VCTRL  
VSTEP  
tDELAY  
Control voltage range  
0
VDD_DIG  
V
50 Ω to GND: Selects on-chip capacitive load set by  
R88 and R89  
50  
200  
2.32 kΩ to GND: Selects on-chip capacitive load set  
by R90 and R91  
5.62 kΩ to GND: Selects on-chip capacitive load set  
by R92 and R93  
400  
10.5 kΩ to GND: Selects on-chip capacitive load set  
by R94 and R95  
600  
Input voltage for XO  
frequency offset step  
selection on GPIO[5]  
mV  
18.7 kΩ to GND: Selects on-chip capacitive load set  
by R96 and R97  
800  
34.8 kΩ to GND: Selects on-chip capacitive load set  
by R98 and R99  
1000  
1200  
1400  
100  
84.5 kΩ to GND: Selects on-chip capacitive load set  
by R100 and R101  
Left floating: Selects on-chip capacitive load set by  
R102 and R103  
Delay between voltage  
changes on GPIO[5] pin  
ms  
Copyright © 2015–2018, Texas Instruments Incorporated  
15  
 
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
8.23 I2C-Compatible Interface Characteristics (SDA, SCL)  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V ± 5%, VDDO_x = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5%, TA = –40°C to  
+85°C(1)(2)  
PARAMETER  
Input High Voltage  
Input Low Voltage  
Input Leakage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIH  
1.2  
VIL  
0.6  
40  
V
IIH  
–40  
µA  
pF  
pF  
V
CIN  
Input Capacitance  
Input Capacitance  
Output Low Voltage  
I2C Clock Rate  
2
COUT  
VOL  
400  
0.6  
IOL = 3 mA  
fSCL  
100  
0.6  
0.6  
0.6  
1.3  
0
400  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
tSU_STA  
tH_STA  
tPH_STA  
tPL_STA  
tH_SDA  
tSU_SDA  
START Condition Setup Time  
START Condition Hold Time  
SCL Pulse Width High  
SCL Pulse Width Low  
SDA Hold Time  
SCL high before SDA low  
SCL low after SDA low  
SDA valid after SCL low  
CBUS = 10 pF to 400 pF  
0.9  
SDA Setup Time  
115  
tR_IN / tF_IN SCL/SDA Input Rise and Fall Time  
300  
250  
tF_OUT  
SDA Output Fall Time  
tSU_STOP  
STOP Condition Setup Time  
0.6  
1.3  
Bus Free Time between STOP and  
START  
tBUS  
µs  
(1) Total capacitive load for each bus line 400 pF.  
(2) Ensured by design.  
8.24 Typical 156.25-MHz Closed-Loop Output Phase Noise Characteristics  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V, VDDO_x = 1.8 V, 2.5 V, 3.3 V, TA = 25°C, Reference Input = 50 MHz,  
PFD = 100 MHz, Integer-N PLL bandwidth = 400 kHz, VCO frequency = 5 GHz, post divider = 8, output divider = 4, Output  
Type = AC-LVPECL/AC-LVDS/AC-CML/HCSL/LVCMOS(1)(2)  
OUTPUT TYPE  
PARAMETER  
UNIT  
AC-LVPECL  
–143  
AC-LVDS  
–142  
AC-CML  
–142  
–143  
–144  
–146  
–149  
–160  
–164  
HCSL  
–141  
–142  
–144  
–146  
–149  
–159  
–161  
LVCMOS  
–139  
phn10k  
phn50k  
phn100k  
phn500k  
phn1M  
Phase noise at 10-kHz offset  
Phase noise at 50-kHz offset  
Phase noise at 100-kHz offset  
Phase noise at 500-kHz offset  
Phase noise at 1-MHz offset  
Phase noise at 5-MHz offset  
Phase noise at 20-MHz offset  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
–143.5  
–144  
–143  
–141  
–144  
–143  
–146  
–146  
–145  
–149.5  
–160.5  
–164.5  
–149  
–149  
phn5M  
–160  
–158  
phn20M  
–164  
–159  
Random jitter integrated from 10-kHz to 20-  
MHz offsets  
RJ  
96  
99  
99  
107  
119  
fs, RMS  
(1) Refer to Parameter Measurement Information for relevant test conditions.  
(2) Jitter specifications apply for differential output formats with low-jitter differential input clock or crystal input. Phase jitter measured with  
Agilent E5052 signal source analyzer using a differential-to-single-ended converter (balun or buffer).  
16  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
8.25 Typical 161.1328125-MHz Closed-Loop Output Phase Noise Characteristics(1)(2)  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V, VDDO_x = 1.8 V, 2.5 V, 3.3 V, TA = 25°C, Reference Input = 50 MHz,  
PFD = 100 MHz, Fractional-N PLL bandwidth = 400 kHz, VCO Frequency = 5.15625 GHz, Post Divider = 8, Output Divider =  
4, Output Type = AC-LVPECL/AC-LVDS/AC-CML/HCSL/LVCMOS  
OUTPUT TYPE  
PARAMETER  
UNIT  
AC-LVPECL AC-LVDS  
AC-CML  
–136  
–139  
–140  
–142  
–150  
–160  
–164  
HCSL  
–135  
–139  
–140  
–142  
–149  
–159  
–161  
LVCMOS  
–135  
phn10k  
phn50k  
phn100k  
phn500k  
phn1M  
Phase noise at 10-kHz offset  
Phase noise at 50-kHz offset  
Phase noise at 100-kHz offset  
Phase noise at 500-kHz offset  
Phase noise at 1-MHz offset  
Phase noise at 5-MHz offset  
Phase noise at 20-MHz offset  
–136  
–139  
–136  
–139  
–140  
–142  
–150  
–160  
–164  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
–139  
–140  
–140  
–142  
–142  
–150  
–149  
phn5M  
–160.5  
–164.5  
–158  
phn20M  
–159  
Random jitter integrated from 10-kHz to 20-  
MHz offsets  
RJ  
120  
122  
122  
130  
136  
fs, RMS  
(1) Refer to Parameter Measurement Information for relevant test conditions.  
(2) Jitter specifications apply for differential output formats with low-jitter differential input clock or crystal input. Phase jitter measured with  
Agilent E5052 signal source analyzer using a differential-to-single-ended converter (balun or buffer).  
(1)(2)(3)(4)  
8.26 Closed-Loop Output Jitter Characteristics  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V ± 5%, VDDO_x = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5%, TA = -40°C to  
85°C, Integer-N PLL with 4.8 GHz, 4.9152 GHz, 4.97664 GHz, 5 GHz or 5.1 GHz VCO, 400 kHz PLL bandwidth and doubler  
enabled or disabled, fractional-N PLL with 4.8 GHz, 4.9152 GHz, 4.944 GHz, 4.97664 GHz, 5 GHz, 5.15 GHz or 5.15625  
GHz VCO, 400 kHz bandwidth and doubler enabled or disabled, 1.8-V or 3.3-V LVCMOS output load of 2 pF to GND, AC-  
LVPECL/AC-LVDS/CML output pair AC-coupled to 100 Ω differential load, HCSL outputs with 50 Ω || 2 pF to GND.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RMS Phase Jitter  
(12 kHz – 20 MHz)  
(1 kHz – 5 MHz)  
19.2-MHz, 19.44-MHz, 25-MHz, 27-MHz,  
RJ  
RJ  
RJ  
RJ  
RJ  
38.88-MHz crystal, integer-N PLL, fOUT  
100 MHz, all differential output types  
120  
200  
fs RMS  
RMS Phase Jitter  
(12 kHz – 20 MHz)  
(1 kHz – 5 MHz)  
19.2 MHz, 19.44 MHz, 25 MHz, 27 MHz,  
38.8 MHz crystal, fractional-N PLL, fOUT  
100 MHz, all differential output types  
200  
100  
140  
350  
150  
210  
800  
fs RMS  
fs RMS  
fs RMS  
fs RMS  
RMS Phase Jitter  
(12 kHz – 20 MHz)  
(1 kHz – 5 MHz)  
50-MHz crystal, Integer-N PLL, fOUT  
=
156.25 MHz, all differential output types  
RMS Phase Jitter  
(12 kHz – 20 MHz)  
(1 kHz – 5 MHz)  
50-MHz crystal, Fractional-N PLL, fOUT  
=
155.52 MHz, all differential output types  
RMS Phase Jitter  
(12 kHz – 20 MHz) or  
(12 kHz – 5 MHz)  
fOUT 10 MHz, 1.8-V or 3.3-V LVCMOS  
output, integer-N or fractional-N PLL  
(1) Phase jitter measured with Agilent E5052 source signal analyzer using a differential-to-single-ended converter (balun or buffer) for  
differential outputs.  
(2) Verified with crystals specified for a load capacitance of CL = 9 pF. PCB stray capacitance was measured to be 1 pF. Crystals tested:  
19.2-MHz TXC (Part Number: 7M19272001), 19.44-MHz TXC (Part Number: 7M19472001), 25-MHz TXC (Part Number: 7M25072001),  
27-MHz TXC (Part Number: 7M27072001), 38.88-MHz TXC (Part Number: 7M38872001), 50-MHz TXC (Part Number: 7M50072001).  
(3) Refer to Parameter Measurement Information for relevant test conditions.  
(4) For output frequency < 40 MHz, integration band for RMS phase jitter is 12 kHz – 5 MHz.  
8.27 PCIe Clock Output Jitter  
VDD_IN / VDD_PLL1 / VDD_PLL2 / VDD_DIG = 3.3 V, VDDO_x = 1.8 V, 2.5 V, 3.3 V, TA = 25°C, Reference Input = 25-MHz  
crystal, OUT = 100-MHz HCSL  
PARAMETER  
TEST CONDITIONS  
TYP PCle Spec  
UNIT  
RJGEN3  
RJGEN4  
PCIe Gen 3 Common Clock  
PCIe Gen 4 Common Clock  
PCIe Gen 3 transfer function applied(1)  
PCIe Gen 4 transfer function applied(1)  
25  
25  
1000  
500  
fs RMS  
fs RMS  
(1) Excludes oscilloscope sampling noise  
Copyright © 2015–2018, Texas Instruments Incorporated  
17  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
8.28 Typical Power Supply Noise Rejection Characteristics(1)  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3 V, VDDO_x = 3.3 V, TA = 25°C, Reference Input = 50 MHz, PFD = 100  
MHz, PLL bandwidth = 400 kHz, VCO Ffrequency = 5 GHz, post divider = 8, output divider = 4, AC-LVPECL/AC-LVDS/CML  
output pair AC-coupled to 100-Ω differential load, HCSL outputs with 50 Ω || 2 pF to GND, sinusoidal noise injected in either  
of the following supply nodes: VDD_IN, VDD_PLL, VDD_DIG or VDDO_x.  
50 mV RIPPLE ON SUPPLY TYPE  
PARAMETER  
UNIT  
VDD_IN VDD_PLL VDD_LDO VDD_DIG VDDO_x  
PSNR50k  
50-kHz spur on 156.25-MHz output  
-86  
-85  
-87  
-91  
-87  
-86  
-89  
-92  
-87  
-86  
-89  
-92  
-110  
-110  
-110  
-110  
-103  
-98  
-97  
-94  
dBc  
dBc  
dBc  
dBc  
PSNR100k 100-kHz spur on 156.25-MHz output  
PSNR500k 500-kHz spur on 156.25-MHz output  
PSNR1M  
1-MHz spur on 156.25-MHz output  
(1) Refer to Parameter Measurement Information for relevant test conditions.  
8.29 Typical Power-Supply Noise Rejection Characteristics(1)  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG= 3.3 V, VDDO_x = 1.8 V, TA = 25°C, Reference Input = 50 MHz, PFD = 100 MHz,  
PLL bandwidth = 400 kHz, VCO frequency = 5 GHz, post divider = 8, output divider = 4, AC-LVPECL/AC-LVDS/CML output  
pair AC-coupled to 100-Ω differential load, HCSL outputs with 50 Ω || 2 pF to GND, sinusoidal noise injected in VDDO_x.  
50 mV RIPPLE ON SUPPLY TYPE  
PARAMETER  
UNIT  
VDD_IN VDD_PLL VDD_LDO VDD_DIG VDDO_x  
PSNR50k  
PSNR100k  
PSNR500k  
PSNR1M  
50-kHz spur on 156.25-MHz output  
100-kHz spur on 156.25-MHz output  
500-kHz spur on 156.25-MHz output  
1-MHz spur on 156.25-MHz output  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
-93  
-88  
-78  
-74  
dBc  
dBc  
dBc  
dBc  
(1) Refer to Parameter Measurement Information for relevant test conditions.  
8.30 Typical Closed-Loop Output Spur Characteristics(1)  
VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG = 3.3V, VDDO_x = 1.8 V, 2.5 V, 3.3 V, TA = –40°C to +85°C, 50 MHz reference  
input, 156.25 MHz or 125 MHz output with VCO frequency = 5 GHz, integer-N PLL, PLL bandwidth = 400 kHz, post divider =  
8, output divider = 4 or 5, 161.1328125 MHz output with VCO frequency = 5.15625 GHz, fractional-N PLL, PLL bandwidth =  
400 kHz, post divider = 8, output divider = 4, LVCMOS output load of 2 pF to GND, AC-LVPECL/AC-LVDS/AC-CML output  
pair AC-coupled to 100 Ω differential load, HCSL outputs with 50 Ω || 2 pF to GND  
OUTPUT TYPE  
PARAMETER  
CONDITION  
UNIT  
AC-  
AC-LVDS AC-CML HCSL LVCMOS  
LVPECL  
PFD/reference clock  
spurs  
PSPUR-PFD  
PSPUR-PFD  
PSPUR-FRAC  
156.25 ± 78.125 MHz  
–77  
–80  
–74  
–74  
–77  
–73  
–76  
–79  
–76  
–73  
–77  
–73  
–75  
–82  
–74  
dBc  
dBc  
dBc  
PFD/reference clock  
spurs  
161.1328125 ± 80.56640625  
MHz  
Largest fractional PLL  
spurs  
161.1328125 ± 80.56640625  
MHz  
fVICTIM = 156.25-MHz OUT4,  
fAGGR = 125-MHz OUT5, AC-  
LVPECL aggressor  
Output channel-to-  
channel isolation  
PSPUR-OUT  
PSPUR-OUT  
PSPUR-OUT  
PSPUR–OUT  
–73  
–76  
–78  
–72  
–70  
–74  
–74  
–70  
–70  
–75  
–75  
–71  
–67  
–71  
–72  
–66  
–74  
–79  
–77  
–73  
dBc  
dBc  
dBc  
dBc  
fVICTIM = 156.25-MHz OUT4,  
fAGGR = 125-MHz OUT5, AC-  
LVDS aggressor  
Output channel-to-  
channel isolation  
fVICTIM = 156.25-MHz OUT4,  
fAGGR = 125-MHz OUT5,  
HCSL aggressor  
Output channel-to-  
channel isolation  
fVICTIM = 156.25-MHz OUT4,  
fAGGR = 125-MHz OUT5,  
LVCMOS aggressor  
Output channel-to-  
channel isolation  
(1) Refer to Parameter Measurement Information for relevant test conditions.  
18  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
8.31 Typical Characteristics  
œ228.5  
œ229.0  
œ229.5  
œ230.0  
œ230.5  
œ231.0  
œ231.5  
œ110  
œ120  
œ130  
œ140  
œ150  
œ160  
œ170  
0
1
2
3
4
5
6
100  
1000  
10000  
100000 1000000 10000000  
Input Slew Rate (V/ns)  
Offset Frequency (Hz)  
D003  
D004  
Figure 1. PLL Figure of Merit (FOM) vs Slew Rate  
Figure 2. Closed-Loop Phase Noise of AC-LVPECL Outputs  
at 156.25 MHz With PLL Bandwidth at 1 MHz, Integer N PLL,  
50-MHz Crystal Input, 5-GHz VCO Frequency, Post Divider =  
8, Output Divider = 4  
œ110  
œ120  
œ130  
œ140  
œ150  
œ160  
œ170  
œ110  
œ120  
œ130  
œ140  
œ150  
œ160  
œ170  
100  
1000  
10000  
100000 1000000 10000000  
100  
1000  
10000  
100000 1000000 10000000  
Offset Frequency (Hz)  
Offset Frequency (Hz)  
D005  
D006  
Figure 3. Closed-Loop Phase Noise of AC-LVDS Outputs at  
156.25 MHz With PLL Bandwidth at 1 MHz, Integer N PLL,  
50-MHz Crystal Input, 5-GHz VCO Frequency, Post Divider =  
8, Output Divider = 4  
Figure 4. Closed-Loop Phase Noise of AC-CML Outputs at  
156.25 MHz With PLL Bandwidth at 1 MHz, Integer N PLL,  
50-MHz Crystal Input, 5-GHz VCO Frequency, Post Divider =  
8, Output Divider = 4  
œ110  
œ120  
œ130  
œ140  
œ150  
œ160  
œ170  
œ110  
œ120  
œ130  
œ140  
œ150  
œ160  
œ170  
100  
1000  
10000  
100000 1000000 10000000  
100  
1000  
10000  
100000 1000000 10000000  
Offset Frequency (Hz)  
Offset Frequency (Hz)  
D007  
D008  
Figure 5. Closed-Loop Phase Noise of HCSL Outputs at  
156.25 MHz With PLL Bandwidth at 1 MHz, Integer N PLL,  
50-MHz Crystal Input, 5-GHz VCO Frequency, Post Divider =  
8, Output Divider = 4  
Figure 6. Closed-Loop Phase Noise of AC-LVPECL Outputs  
at 161.1328125 MHz With PLL Bandwidth at 400 kHz,  
Fractional N PLL, 50-MHz Crystal Input, 5.15625-GHz VCO  
Frequency, Post Divider = 8, Output Divider = 4  
Copyright © 2015–2018, Texas Instruments Incorporated  
19  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
œ110  
œ110  
œ120  
œ130  
œ140  
œ150  
œ160  
œ170  
œ120  
œ130  
œ140  
œ150  
œ160  
œ170  
100  
1000  
10000  
100000 1000000 10000000  
100  
1000  
10000  
100000 1000000 10000000  
Offset Frequency (Hz)  
Offset Frequency (Hz)  
D009  
D010  
Figure 7. Closed-Loop Phase Noise of AC-LVDS Outputs at  
161.1328125 MHz With PLL Bandwidth at 400 kHz, Fractional  
N PLL, 50-MHz Crystal Input, 5-GHz VCO Frequency, Post  
Divider = 8, Output Divider = 4  
Figure 8. Closed-Loop Phase Noise of AC-CML Outputs at  
161.1328125 MHz With PLL Bandwidth at 400 kHz, Fractional  
N PLL, 50-MHz Crystal Input, 5-GHz VCO Frequency, Post  
Divider = 8, Output Divider = 4  
10  
œ110  
œ120  
œ130  
œ140  
œ150  
œ160  
œ170  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
78.125  
109.375  
140.625  
171.875  
203.125  
234.375  
100  
1000  
10000  
100000 1000000 10000000  
Frequency (MHz)  
D012  
Offset Frequency (Hz)  
D011  
Figure 10. 156.25 ± 78.125 MHz AC-LVPECL Output  
Spectrum With PLL Bandwidth at 1 MHz, Integer N PLL, 50-  
MHz Crystal Input, 5-GHz VCO Frequency, Post Divider = 8,  
Output Divider = 4  
Figure 9. Closed-Loop Phase Noise of HCSL Outputs at  
161.1328125 MHz With PLL Bandwidth at 400 kHz, Fractional  
N PLL, 50-MHz Crystal Input, 5-GHz VCO Frequency, Post  
Divider = 8, Output Divider = 4  
10  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
78.125  
109.375  
140.625  
171.875  
203.125  
234.375  
78.125  
109.375  
140.625  
171.875  
203.125  
234.375  
Frequency (MHz)  
Frequency (MHz)  
D013  
D014  
Figure 11. 156.25 ± 78.125 MHz AC-LVDS Output Spectrum  
With PLL Bandwidth at 1 MHz, Integer N PLL, 50-MHz  
Crystal Input, 5-GHz VCO Frequency, Post Divider = 8,  
Output Divider = 4  
Figure 12. 156.25 ± 78.125 MHz AC-CML Output Spectrum  
With PLL Bandwidth at 1 MHz, Integer N PLL, 50-MHz  
Crystal Input, 5 GHz VCO Frequency, Post Divider = 8,  
Output Divider = 4  
20  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Typical Characteristics (continued)  
10  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
78.125  
109.375  
140.625  
171.875  
203.125  
234.375  
80  
100  
120  
140  
160  
180  
200  
220  
240  
Frequency (MHz)  
Frequency (MHz)  
D015  
D016  
Figure 13. 156.25 ± 78.125 MHz HCSL Output Spectrum With  
PLL Bandwidth at 1 MHz, Integer N PLL, 50-MHz Crystal  
Input, 5-GHz VCO Frequency, Post Divider = 8, Output  
Divider = 4  
Figure 14. 161.1328125 ± 80.56640625 MHz AC-LVPECL  
Output Spectrum With PLL Bandwidth at 400 kHz, Fractional  
N PLL, 50-MHz Crystal Input, 5.15625-GHz VCO Frequency,  
Post Divider = 8, Output Divider = 4  
10  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
80  
100  
120  
140  
160  
180  
200  
220  
240  
80  
100  
120  
140  
160  
180  
200  
220  
240  
Frequency (MHz)  
Frequency (MHz)  
D017  
D018  
Figure 15. 161.1328125 ± 80.56640625 MHz AC-LVDS Output  
Spectrum With PLL Bandwidth at 400 kHz, Fractional N PLL,  
50-MHz Crystal Input, 5.15625-GHz VCO Frequency, Post  
Divider = 8, Output Divider = 4  
Figure 16. 161.1328125 ± 80.56640625 MHz AC-CML Output  
Spectrum With PLL Bandwidth at 400 kHz, Fractional N PLL,  
50-MHz Crystal Input, 5.15625-GHz VCO Frequency, Post  
Divider = 8, Output Divider = 4  
10  
0
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
80  
100  
120  
140  
160  
180  
200  
220  
240  
0
200  
400  
600  
800  
1000  
Frequency (MHz)  
Output Frequency (MHz)  
D019  
D020  
Figure 17. 161.1328125 ± 80.56640625 MHz HCSL Output  
Spectrum With PLL Bandwidth at 400 kHz, Fractional N PLL,  
50-MHz Crystal Input, 5.15625-GHz VCO Frequency, Post  
Divider = 8, Output Divider = 4  
Figure 18. AC-LVPECL Differential Output Swing vs  
Frequency  
Copyright © 2015–2018, Texas Instruments Incorporated  
21  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
0.9  
1.3  
1.25  
1.2  
0.8  
0.7  
0.6  
0.5  
1.15  
1.1  
1.05  
1
0.95  
0.9  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
Output Frequency (MHz)  
Output Frequency (MHz)  
D021  
D022  
Figure 19. AC-LVDS Differential Output Swing vs Frequency  
Figure 20. AC-CML Differential Output Swing vs Frequency  
1.5  
2
1.45  
1.4  
1.9  
1.8  
1.7  
1.6  
1.35  
1.3  
0
100  
200  
300  
400  
0
50  
100  
150  
200  
Output Frequency (MHz)  
Output Frequency (MHz)  
D023  
D024  
Figure 21. HCSL Differential Output Swing vs Frequency  
Figure 22. 1.8-V LVCMOS (on OUT[7:0]) Output Swing vs  
Frequency  
3.5  
3.4  
3.3  
3.2  
3.1  
3
2.9  
0
50  
100  
150  
200  
Output Frequency (MHz)  
D025  
Figure 23. 3.3-V LVCMOS (on STATUS[1:0]) Output Swing vs Frequency  
22  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
9 Parameter Measurement Information  
9.1 Test Configurations  
This section describes the characterization test setup of each block in the LMK03318.  
High impedance probe  
LVCMOS  
LMK03318  
Oscilloscope  
2 pF  
Figure 24. LVCMOS Output DC Configuration During Device Test  
Phase Noise/  
LVCMOS  
LMK03318  
Spectrum  
Analyzer  
Figure 25. LVCMOS Output AC Configuration During Device Test  
High impedance differential probe  
AC-LVPECL,  
LMK03318  
AC-LVDS,  
AC-CML  
Oscilloscope  
Figure 26. AC-LVPECL, AC-LVDS, AC-CML Output DC Configuration During Device Test  
High impedance differential probe  
HCSL  
LMK03318  
Oscilloscope  
HCSL  
50  
50 ꢀ  
Figure 27. HCSL Output DC Configuration During Device Test  
AC-LVPECL, AC-LVDS, AC-CML  
Phase Noise/  
Spectrum  
Analyzer  
Diff-to-SE  
Balun/Buffer  
LMK03318  
AC-LVPECL, AC-LVDS, AC-CML  
Figure 28. AC-LVPECL, AC-LVDS, AC-CML Output AC Configuration During Device Test  
Copyright © 2015–2018, Texas Instruments Incorporated  
23  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Test Configurations (continued)  
HCSL  
Phase Noise/  
Spectrum  
Analyzer  
Balun  
LMK03318  
HCSL  
50  
50 ꢀ  
Figure 29. HCSL Output AC Configuration During Device Test  
PRI_REF  
LVCMOS  
Signal  
Generator  
LMK03318  
Offset = VDD_IN/2  
Figure 30. LVCMOS Primary Input DC Configuration During Device Test  
125 ꢀ  
SEC_REF  
LVCMOS  
Signal  
LMK03318  
Generator  
Offset = VDD_IN/2  
375 ꢀ  
Figure 31. LVCMOS Secondary Input DC Configuration During Device Test  
Signal  
Generator  
LMK03318  
100  
LVDS  
Figure 32. LVDS Input DC Configuration During Device Test  
Signal  
Generator  
LVPECL  
LMK03318  
50  
50 ꢀ  
VDD_IN - 2  
Figure 33. LVPECL Input DC Configuration During Device Test  
24  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Test Configurations (continued)  
50  
Signal  
Generator  
LMK03318  
HCSL  
50 ꢀ  
Figure 34. HCSL Input DC Configuration During Device Test  
Signal  
Generator  
Differential  
LMK03318  
100  
Figure 35. Differential Input AC Configuration During Device Test  
Crystal  
LMK03318  
Figure 36. Crystal Reference Input Configuration During Device Test  
Sine wave  
Modulator  
Power Supply  
Phase Noise/  
Spectrum  
Analyzer  
Signal  
Generator  
LMK03318  
Device Output  
Balun  
Reference  
Input  
Figure 37. PSNR Test Setup  
Copyright © 2015–2018, Texas Instruments Incorporated  
25  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Test Configurations (continued)  
OUTx_P  
OUTx_N  
VOD  
80%  
VOUT,DIFF,PP = 2 x VOD  
0 V  
20%  
tR  
tF  
Figure 38. Differential Output Voltage and Rise/Fall Time  
80%  
VOUT,SE  
OUT_REFx/2  
20%  
tR  
tF  
Figure 39. Single-Ended Output Voltage and Rise/Fall Time  
OUTx_P  
OUTx_N  
OUTx_P  
OUTx_N  
Differential  
tSK,DIFF,INT  
Differential  
tSK,SE-DIFF,INT  
OUTx_P/N  
Single Ended  
tSK,SE,INT  
OUTx_P/N  
Single Ended  
Figure 40. Differential and Single-Ended Output Skew  
26  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10 Detailed Description  
10.1 Overview  
The LMK03318 generates eight outputs with less than 0.2 ps, rms maximum random jitter in integer PLL mode  
and less than 0.35 ps, rms maximum random jitter in fractional PLL mode with a crystal input or a clean external  
reference input.  
10.2 Functional Block Diagram  
C2  
VCC (x4)  
3.3 V  
VCCO (x6)  
1.8 / 2.5 / 3.3 V  
LF  
Power Conditioning  
Outputs  
SYNC  
Inputs  
REFSEL  
PRIREF  
OUT0  
OUT1  
Integer Div  
8-b  
R Div  
3-b  
PLL  
x1, x2  
x1, x2  
M Div  
5-b  
/2, /3, /4,  
/5, /6, /7, /8  
¥
OUT2  
OUT3  
SECREF  
XO  
Integer Div  
8-b  
VCO: 4.8 GHz ~ 5.4 GHz  
N Div  
MARGIN  
û fractional  
0
1
2
Integer Div  
8-b  
OUT4  
OUT5  
0
1
2
Integer Div  
8-b  
/4, /5  
0
1
2
Integer Div  
8-b  
Control  
Registers  
OUT6  
OUT7  
Integer Div  
/6 - /256  
SYNC  
EEPROM  
SDA od  
0
1
2
Integer Div  
8-b  
SCL od  
PDN  
Device Control  
and Status  
GPIO[5:0]  
3
STATUS1  
STATUS0  
3
= 3-level input  
CAP (x3)  
od = open-drain  
3.3-V LVCMOS  
Copyright © 2016, Texas Instruments Incorporated  
NOTE  
Input and control blocks are compatible with 1.8 V, 2.5 V, or 3.3 V I/O voltage levels.  
Copyright © 2015–2018, Texas Instruments Incorporated  
27  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.3 Feature Description  
10.3.1 Device Block-Level Description  
The LMK03318 includes an on-chip fractional PLL with integrated VCO that supports a frequency range of 4.8  
GHz to 5.4 GHz. The PLL block consists of an input selection MUX, a phase frequency detector (PFD), charge  
pump, on-chip passive loop filter that only needs an external capacitor to ground, a feedback divider that can  
support both integer and fractional values, and a delta-sigma engine for spur suppression in fractional PLL mode.  
The universal inputs support single-ended and differential clocks in the frequencies of 1 MHz to 300 MHz; the  
secondary input additionally supports crystals in the frequencies of 10 MHz to 52 MHz. When the PLL operates  
with the crystal as its reference, the output frequencies can be margined based on changing the on-chip  
capacitor loading on each leg of the crystal. Completing the device is the combination of integer output dividers  
and universal output buffers. The PLL is powered by on-chip low dropout (LDO) linear voltage regulators, and the  
regulated supply network is partitioned such that the sensitive analog supplies are running from separate LDOs  
than the digital supplies which use their own LDO. The LDOs provide isolation of the isolation of the PLL from  
any noise in the external power supply rail with a PSNR of better than –70 dBc at 50-kHz to 1-MHz ripple  
frequencies at 1.8-V output supplies and better than –80 dBc at 50-kHz to 1-MHz ripple frequencies at > 2.5-V  
output supplies. The regulator capacitor pins must each be connected to ground by 10-µF capacitors to ensure  
stability.  
10.3.2 Device Configuration Control  
Figure 41 shows the relationships between device states, the configuration pins, device initialization and  
configuration, and device operational modes. In hard-pin-configuration mode, the state of the configuration pins  
determines the configuration of the device as selected from all device states programmed in the on-chip ROM. In  
soft-pin-configuration mode, the state of the configuration pins determines the initialized state of the device as  
programmed in the on-chip EEPROM. In either mode, the host can update any device configuration after the  
device enables the host interface and the host writes a sequence that updates the device registers. Once the  
device configuration is set, the host can also write to the on-chip EEPROM for a new set of power-up defaults  
based on the configuration pin settings in the soft-pin-configuration mode. A system may transition a device from  
hard-pin mode to soft-pin mode by changing the state of the HW_SW_CTRL pin, then triggering a device power  
cycling via the PDN pin. In reset mode, the device disables the outputs so that unwanted sporadic activity  
associated with device initialization does not appear on the device outputs. Table 2 lists the functionality of the  
GPIO[5:0] pins during hard pin and soft pin modes.  
28  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Feature Description (continued)  
Power-on Internal Reset Pulse  
or PDN Pin  
0
1
Sample HW_SW_CTRL  
GPIO[5] is multi-state; GPIO[4]  
and GPIO[0] are 2-state;  
GPIO[3:1] are 3-state  
GPIO[5:0] are 2-state  
Hard pin mode  
Soft pin mode  
I2C enabled.  
I2C is still enabled, LSB of I2C  
address is 00  
Sample GPIO[5:0] for selecting 1 of 64  
pre-defined ROM settings  
Sample  
GPIO[3:2]  
Sample GPIO1  
GPIO[3:2] selects PLL and output types/divider/source  
for up to 6 EEPROM configurations. Leaving the pins  
floating bypasses EEPROM loading and register defaults  
are loaded. GPIO[5] selects one of eight crystal  
frequency margining offset settings and GPIO[4]  
enables/disables crystal frequency margining control.  
GPIO1  
determines 1 of 3  
I2C Addresses  
Save desired  
configuration  
into the  
corresponding  
EEPROM page  
User can operate from EEPROM loaded configurations or reprogram  
the device register via I2C  
Figure 41. LMK03318 Simplified Programming Flow  
Table 2. GPIO Pin Mapping for Hard Pin Mode and Soft Pin Mode  
PIN NAME  
HARD-PIN MODE  
FUNCTION  
SOFT-PIN MODE  
FUNCTION  
STATE  
STATE  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
ROM page select for hard pin  
mode  
2
2
2
2
2
2
Output synchronization (active low)  
I2C slave address LSB select  
2
3
3
3
2
8
EEPROM page select for soft pin mode  
or register default mode  
Frequency margining enable  
Frequency margining offset select  
10.3.2.1 Hard-Pin Mode (HW_SW_CTRL = 1)  
In this mode, the GPIO[5:0] pins allow hardware pin configuration of the PLL synthesizer, its input clock  
selection, and output frequency and type selection. I2C is still enabled, and the LSB of device address is set to  
00 . The GPIO pins are 2-state and are sampled or latched at POR — the combination selects one of 64 page  
settings that are predefined in on-chip ROM. In this mode, automatic output divider and PLL post divider  
synchronization is performed on power up or upon toggling PDN. Table 14, Table 15, Table 17, and Table 18  
show the predefined ROM configurations according to the GPIO[5:0] pin settings.  
Copyright © 2015–2018, Texas Instruments Incorporated  
29  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Following are the blocks that are configured by the GPIO[5:0] pins.  
10.3.2.1.1 PLL Block  
Sets the PLL synthesizer frequency and loop bandwidth by configuring registers related to the PLL dividers, input  
frequency doubler, and PLL power down.  
10.3.2.1.2 Output Buffer Auto Mute  
When the selected source of an output MUX is invalid (for example, the PLL is unlocked or selected reference  
input is not present), the individual output mute controls will determine output mute state per the ROM default  
settings (CH_x_MUTE=0x1, CHx_MUTE_LVL=0x3):  
1. In differential mode, the positive output node is driven to the internal regulator output voltage rail (when AC  
coupled to load), and the negative output node is driven to the GND rail.  
2. In LVCMOS mode, a DC connection to the receiver is assumed, so the output in a “mute” condition will be  
forced LOW.  
10.3.2.1.3 Input Block  
The input block sets the input type for primary and secondary inputs, selects input MUX type for the PLL, and  
selects R divider value for primary input to the input MUX.  
10.3.2.1.4 Channel Mux  
The channel mux controls the channel mux selection for each channel.  
10.3.2.1.5 Output Divider  
The output divider sets the 8-bit output divide value for each channel (/1 to /256).  
10.3.2.1.6 Output Driver Format  
The output driver format selects the output format for each driver pair, or disable channel.  
10.3.2.1.7 Status MUX, Divider and Slew Rate  
These blocks select the status pins as either 3.3-V LVCMOS PLL clock outputs or status outputs. When  
configured as LVCMOS clock outputs, these blocks select divider values and rise/fall time settings.  
10.3.2.2 Soft-Pin Programming Mode (HW_SW_CTRL = 0)  
In this mode, I2C is enabled and GPIO[3:2] are purposed as 3-state pins (tied to VDD_DIG, GND or VIM) and are  
used to select one of 6 EEPROM pages and one register default setting (2 of 9 states are invalid). GPIO[0] is  
also purposed as a 2-state output synchronization (active-low SYNCN) function, GPIO[1] is now purposed as a  
3-state I2C address function to change last 2 bits of I2C address (ADD; 0x0 is GND, 0x1 is VIM, and 0x3 is  
VDD_DIG). GPIO[5] is purposed as a multi-state input for the MARGIN function and GPIO[4] is purposed as an  
input that enables or disables hardware margining. The GPIO pins are sampled and latched at POR.  
NOTE  
No software reset or power cycling must occur during EEPROM programming or else it  
will be corrupted. Please refer to Programming for more details on the EEPROM  
programming.  
GPIO[3:2] allows hardware pin configuration for the PLL synthesizers, their respective input clock selection  
modes, the crystal input frequency margining option, all output channel blocks, comprised of channel muxes,  
dividers, and output drivers. The GPIO inputs[3:2] are sampled and latched at power-on reset (POR), and select  
one of 6 EEPROM pages, which are custom-programmable. When GPIO[3:2] are left floating, EEPROM is not  
used, and the hardware register default settings are loaded. Table 10, Table 11, Table 12 and Table 13 show the  
predefined EEPROM configurations according to the GPIO[3:2] pin settings.  
The following sections give a brief overview of the register settings for each block configured by the GPIO[3:2]  
pin modes.  
30  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.3.2.2.1 Device Config Space  
An 8-b for unique identifier programmed to EEPROM that can be used to distinguish between each EEPROM  
page.  
10.3.2.2.2 PLL Block  
The PLL block sets the PLL synthesizer frequency and loop bandwidth by configuring registers related to the PLL  
dividers, input frequency doubler, and PLL power down.  
10.3.2.2.3 Output Buffer Auto Mute  
When the selected source of an output MUX is invalid (for example, the PLL is unlocked or selected reference  
input is not present), the individual output mute controls determine output mute state per the EEPROM default  
settings (CH_x_MUTE=0x1, CHx_MUTE_LVL=0x3):  
1. In differential mode, the positive output node is driven to the internal regulator output voltage rail (when AC  
coupled to load), and the negative output node is driven to the GND rail.  
2. In LVCMOS mode, assuming there is a DC connection to the receiver, the output in a mute condition is  
forced LOW.  
10.3.2.2.4 Input Block  
The input block sets the input type for primary and secondary inputs, selects input MUX type for the PLL and  
selects R divider value for primary input to the input MUX.  
10.3.2.2.5 Channel Mux  
The channel mux controls the channel mux selection for each channel.  
10.3.2.2.6 Output Divider  
The output divider sets the 8-bit output divide value for each channel (/1 to /256).  
10.3.2.2.7 Output Driver Format  
The output driver format selects the output format for each driver pair, or disables channel.  
10.3.2.2.8 Status MUX, Divider and Slew Rate  
These blocks select the status pins as either 3.3-V LVCMOS PLL clock outputs or status outputs. When  
configured as LVCMOS clock outputs, these blocks select divider values and rise/fall time settings.  
10.3.2.3 Register File Reference Convention  
Figure 42 shows the method that this document employs to refer to an individual register bit or a grouping of  
register bits. If a drawing or text references an individual bit the format is to specify the register number first and  
the bit number second. The LMK03318 contains 124 registers that are 8 bits wide. The register addresses and  
the bit positions both begin with the number zero (0). A period separates the register address and bit address.  
The first bit in the register file is address ‘R0.0’ meaning that it is located in Register 0 and is bit position 0. The  
last bit in the register file is addressR31.7 referring to the 8th bit of register address 31 (the 32nd register in the  
device). Figure 42 lists specific bit positions as a number contained within a box. A box with the register address  
encloses the group of boxes that represent the bits relevant to the specific device circuitry in context.  
Reg5  
Bit Number (s)  
Register Number (s)  
5
4
3
2
R5.2  
Figure 42. LMK03318 Register Reference Format  
Copyright © 2015–2018, Texas Instruments Incorporated  
31  
 
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.4 Device Functional Modes  
The PLL in LMK03318 can be configured to accommodate various input and output frequencies either through  
I2C programming interface or in the absence of programming, the PLL can be configured by the ROM page,  
EEPROM page, or register default settings selected through the control pins. The PLL can be configured by  
setting its Smart Input MUX, Reference Divider, PLL Loop Filter, Feedback Divider, Prescaler Divider and Output  
Dividers.  
For the PLL to operate in closed-loop mode, the following condition in Equation 1 has to be met when using  
primary input or secondary input for the reference clock (FREF).  
FVCO = (FREF/R) × D × [(INT + NUM/DEN)/M]  
where  
FVCO: PLL/VCO Frequency  
FREF: Frequency of selected reference input clock  
D: PLL input frequency doubler, 1=Disabled, 2=Enabled  
INT: PLL feedback divider integer value (12 bits, 1 to 4095)  
NUM: PLL feedback divider fractional numerator value ( 22 bits, 0 to 4194303)  
DEN: PLL feedback divider fractional denominator value ( 22 bits, 1 to 4194303)  
R: Primary reference divider value (3 bits, 1 to 8); R = 1 for secondary reference  
M: PLL reference input divider value (5 bits, 1 to 32)  
(1)  
The output frequency is related to the PLL/VCO frequency or the reference input frequency (based on the output  
MUX selection) as given in Equation 2 and Equation 3:  
FOUT = FREF when reference input clock selected by OUTMUX  
FOUT = FVCO / (P × OUTDIV) when PLL is selected by OUTMUX  
(2)  
where  
OUTDIV: Output divider value (8 bits, 1 to 256)  
P: PLL post-divider value (2, 3, 4, 5, 6, 7, 8)  
(3)  
10.4.1 Smart Input MUX  
The PLL has a Smart Input MUX. The input selection mode of the PLL can be configured using the 3-state  
REFSEL pin or programmed through I2C. The Smart Input MUX supports auto-switching and manual-switching  
using control pin (or through register). The Smart Input MUX is designed such that glitches created during  
switching in both auto and manual modes are suppressed at the MUX output.  
In the automatic mode, the frequencies of both primary (PRIREF) and secondary (SECREF) input clocks have to  
be within 2000 ppm. The phase of the input clocks can be any. To minimize phase jump at the output, TI  
recommends setting very low PLL loop bandwidth, set R29.7 = 1 and R51.7 = 1; the outputs that are not muted  
should have its respective mute bypass bit in R20 and R21 be set to 0 to ensure that these outputs are available  
during an input switchover event. In the case that the primary reference is detected to be unavailable, the input  
MUX automatically switches from the primary reference to the secondary reference. When primary reference is  
detected to be available again, the input MUX switches back to the primary reference. When both primary and  
secondary references are detected as unavailable, the input MUX waits on secondary reference until either the  
primary or the secondary reference is detected as available again. When both the primary and secondary  
reference inputs are detected as unavailable, LOS is active, and the PLL outputs are automatically disabled. The  
timing diagram of an auto-switch at the input MUX is shown in Figure 43.  
PRI_REF  
SEC_REF  
1
2
3
4
1
2
Internal  
Reference Clock  
Figure 43. Smart Input MUX Auto-Switch Mode Timing Diagram  
32  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
 
 
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Device Functional Modes (continued)  
R50[1-0] are the register bits that control the smart input MUX for the PLL and can be programmed through I2C.  
Table 3 shows the input clock selection options for the PLL that are supported by the REFSEL pin or through I2C  
programming.  
Table 3. Input Clock Selection Through I2C Programming or REFSEL Pin  
R50.1  
R50.0  
REFSEL  
MODE  
Automatic  
Manual  
PLL REFERENCE  
PLL prefers primary  
PLL selects primary  
PLL selects secondary  
PLL prefers primary  
PLL selects primary  
PLL selects secondary  
0
0
0
0
1
1
0
1
1
1
0
1
X
0
VIM  
1
Manual  
Automatic  
Manual  
X
X
Manual  
For those applications requiring device start-up from a crystal on the secondary input, do a one-time-only  
switchover to the primary input once available and, when auto-switch on the PLL's smart MUX is enabled, R51.2  
can be set to 0 which automatically disables the secondary crystal input path after switchover to the primary input  
is complete. This removes coupling between the primary and secondary inputs and prevents input crosstalk  
components from appearing at the outputs. However, if the auto-switch between primary and secondary is  
desired at any point of normal device operation, R51.2 must be set to 1, PLL must be set to a very low loop  
bandwidth, and R20, R21, and R22 must be set to 0x0 to ensure minimal phase hit once PLL is relocked after  
switchover to either primary or secondary inputs. Figure 44 shows flowchart of events triggered when R51.2 is  
set to 1 or 0 .  
Copyright © 2015–2018, Texas Instruments Incorporated  
33  
 
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
no  
Is PLL‘s SMARTMUX set to  
Auto Select?  
yes  
R51.2  
1
0
Single auto-switch event  
Multiple auto-switch event  
Startup from XTAL (SECREF)  
Startup from XTAL (SECREF)  
PLL locked to SECREF  
PLL locked to SECREF  
no  
no  
Is PRIREF  
Valid?  
Is PRIREF  
Valid?  
SECREF turned on  
Auto switch to SECREF  
PLL unlocked momentarily  
(~ ms) and large phase hit  
Auto switch to SECREF  
Minimal phase hit during  
auto switch  
yes  
yes  
Auto switch to PRIREF  
SECREF turned off  
Auto switch to PRIREF  
SECREF left on  
no  
no  
PLL locked to PRIREF  
PLL locked to PRIREF  
No impact to phase noise/spurs from freq  
difference between PRIREF and SECREF  
since SECREF is turned off  
Onus on customer to minimize freq  
difference between PRIREF and SECREF  
Otherwise phase noise/spur impact  
yes  
yes  
Is PRIREF  
Valid?  
Is PRIREF  
Valid?  
Figure 44. Flowchart Describing Events When R51.2 is Set to 0 or 1  
34  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.4.2 Universal Input Buffer (PRI_REF, SEC_REF)  
The primary reference can support differential or single-ended clocks. The secondary reference can support  
differential or single-ended clocks or crystal. The differential input buffers on both primary and secondary support  
internal 50 Ω to ground or 100 Ω termination between P and N followed by on-chip AC-coupling capacitors to  
internal self-biased circuitry. Internal biasing is offered before the on-chip AC-coupling capacitors when the clock  
inputs are AC coupled externally, and this is enabled by setting R29.0 = 1 (for primary reference) or R29.1 = 1  
(for secondary reference). When the clock inputs are DC coupled, the internal biasing before the on-chip AC-  
coupling capacitors is disabled by settings R29.0 = 0 (for primary reference) or R29.1 = 0 (for secondary  
reference). Figure 45 shows the differential input buffer termination options implemented on both primary and  
secondary and the switches (SWLVDS, SWHCSL, SWAC) are controlled by R29[5-0]. Table 4 shows the primary  
and secondary buffer configuration matrix for LVPECL, CML, LVDS, HCSL and LVCMOS inputs.  
LMK03318  
Differential Input Control  
7 pF  
PRIREF_P /  
SECREF_P  
SWHCSL  
R29.4,  
R29.5  
50  
SWAC  
R29.0,  
R29.1  
SWLVDS  
R29.2,  
R29.3  
Vbb = 1.8 V  
(weak bias)  
50 ꢀ  
PRI_REF / SEC_REF  
SWAC  
R29.0,  
R29.1  
50 ꢀ  
PRIREF_N /  
SECREF_N  
SWHCSL  
R29.4,  
R29.5  
7 pF  
50 ꢀ  
R29  
5
4
3
2
1
0
Copyright © 2017, Texas Instruments Incorporated  
Figure 45. Differential Input Buffer Termination Options on Primary and Secondary Reference  
Table 4. Input Buffer Configuration Matrix on Primary and/or Secondary Reference(1)  
R50.5 / R50.7 R50.4 / R50.6 R29.4 / R29.5 R29.2 / R29.3 R29.0 / R29.1  
MODE  
EXTERNAL TERMINATIO  
BIASING  
COUPLING  
N
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
HCSL  
LVDS  
AC  
AC  
AC  
AC  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
LVPECL  
CML  
(1) When termination is set to External, internal on-chip termination of LMK03318 should be disabled.  
Copyright © 2015–2018, Texas Instruments Incorporated  
35  
 
 
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Table 4. Input Buffer Configuration Matrix on Primary and/or Secondary Reference() (continued)  
R50.5 / R50.7 R50.4 / R50.6 R29.4 / R29.5 R29.2 / R29.3 R29.0 / R29.1  
MODE  
EXTERNAL TERMINATIO  
BIASING  
COUPLING  
N
0
0
0
0
0
1
1
1
1
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
HCSL  
LVDS  
DC  
DC  
DC  
DC  
DC  
Internal  
Internal  
External  
External  
N/A  
External  
External  
External  
External  
N/A  
LVPECL  
CML  
LVCMOS  
Figure 46 through Figure 55 show recommendations for interfacing primary or secondary inputs of the  
LMK03318 with LVCMOS, LVPECL, LVDS, CML and HCSL drivers, respectively.  
NOTE  
The secondary reference accepts up to 2.6-V maximum swing when LVCMOS input  
option is selected.  
RS  
PRI_REF  
LVCMOS  
3.3-V LVCMOS  
Driver  
LMK03318  
Figure 46. Interfacing LMK03318 Primary Input With 3.3-V LVCMOS Signal  
125  
RS  
SEC_REF  
LVCMOS  
3.3-V LVCMOS  
Driver  
LMK03318  
375 ꢀ  
Figure 47. Interfacing LMK03318 Secondary Input With 3.3-V LVCMOS Signal  
LVPECL  
Driver  
LVPECL  
LMK03318  
50  
50 ꢀ  
VDDO - 2  
Figure 48. DC-Coupling LMK03318 Inputs With LVPECL Signal  
LMK03318  
100  
LVDS Driver  
LVDS  
Figure 49. DC-Coupling LMK03318 Inputs With LVDS Signal  
36  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
CML  
Driver  
CML  
LMK03318  
Figure 50. DC-Coupling LMK03318 Inputs With CML Signal  
50  
HCSL  
Driver  
LMK03318  
HCSL  
50 ꢀ  
Figure 51. DC-Coupling LMK03318 Inputs With HCSL Signal  
LVPECL Driver  
LVPECL  
LMK03318  
100  
RPD  
RPD  
Figure 52. AC-Coupling LMK03318 Inputs With LVPECL Signal (Internal Biasing Enabled)  
LMK03318  
100  
LVDS Driver  
LVDS  
Figure 53. AC-Coupling LMK03318 Inputs With LVDS Signal (Internal Biasing Enabled)  
CML  
Driver  
LMK03318  
CML  
100  
Figure 54. AC-Coupling LMK03318 Inputs With CML Signal (Internal Biasing Enabled)  
50  
HCSL  
Driver  
LMK03318  
HCSL  
100 ꢀ  
50 ꢀ  
Figure 55. AC-Coupling LMK03318 Inputs With HCSL Signal (Internal Biasing Enabled)  
Copyright © 2015–2018, Texas Instruments Incorporated  
37  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.4.3 Crystal Input Interface (SEC_REF)  
The LMK03318 implements an input crystal oscillator circuitry, known as the Pierce oscillator, shown in  
Figure 56. It is enabled when R50.7, R50.6, and R29.1 are set to 1, 0, and 1 respectively. The crystal oscillator  
circuitry includes programmable on-chip capacitances on each leg of the crystal and a damping resistor intended  
to minimize over-driven condition of the crystal. The recommended oscillation mode of operation for the input  
crystal is fundamental mode, and the recommended type of circuit for the crystal is parallel resonance with low or  
high pull-ability.  
A crystal’s load capacitance refers to all capacitances in the oscillator feedback loop. It is equal to the amount of  
capacitance seen between the terminals of the crystal in the circuit. For parallel resonant mode circuits, the  
correct load capacitance is necessary to ensure the oscillation of the crystal within the expected parameters. The  
LMK03318 has been characterized with 9 pF parallel resonant crystals with maximum motional resistance of 30  
Ω and maximum drive level of 300 µW.  
The normalized frequency error of the crystal, due to load capacitance mismatch, can be calculated as  
Equation 4:  
CS  
CS  
Dƒ  
ƒ
=
-
2(CL,R + C0 ) 2(CL,A + C0 )  
where  
CS is the motional capacitance of the crystal  
C0 is the shunt capacitance of the crystal  
CL,R is the rated load capacitance for the crystal  
CL,A is the actual load capacitance in the implemented PCB for the crystal  
Δƒ is the frequency error of the crystal  
ƒ is the rated frequency of the crystal.  
(4)  
The first 3 parameters can be obtained from the crystal vendor.  
SECREF_P  
SECREF_N  
LMK03318  
Crystal Input Control  
500  
Con-chip  
Con-chip  
R50  
R86  
R93  
R98  
R87  
R94  
R90  
R95  
R91  
R96  
R92  
R97  
7
6
R99 R100 R101 R102  
R29  
1
R103 R104 R105 R106  
Figure 56. Crystal Input Interface on Secondary Reference  
38  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
 
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
If reducing frequency error of the crystal is of utmost importance, a crystal with low pullability should be used. If  
frequency margining or frequency spiking is desired, a crystal with high pullability should be used to ensure that  
the desired frequency offset is added to the nominal oscillation frequency. A total of ±50 ppm pulling range is  
obtained with a crystal whose ratio of shunt capacitance to motional capacitance (C0/C1) is no more than 250.  
The programmable capacitors on LMK03318 can be tuned from 14 pF to 24 pF in steps of 14 fF using either an  
analog voltage on GPIO5 in soft pin mode or through I2C in soft pin or hard pin mode. When using crystals with  
low pullability, the preferred method is to program R86.3 = 1, R86.2 = 0, and program the appropriate binary  
code to R104 and R105, in this exact order, that sets the required on-chip load capacitance for least frequency  
error. GPIO4 pin must be tied to VDD, and GPIO5 pin should be floating when device is operating in soft-pin  
mode. Table 4 shows the binary code for on-chip load capacitance on each leg of crystal.  
When using crystals with high pullability, the same method as above can be repeated for setting a fixed  
frequency offset to the nominal oscillation frequency according to Equation 4. In case of a closed loop system  
where the crystal frequency can be dynamically changed based on a control signal, the LMK03318 must operate  
in soft-pin mode, the R86.3 must be programmed to 0, and the R86.2 must be programmed to 1. The GPIO5 pin  
is now configured as an 8-level input with a full-scale range of 0 V to 1.8 V, and every 200 mV corresponds to a  
frequency change according to Equation 4. There are three possibilities to enable margining feature with GPIO5:  
Programming R86.3 = 0 and R86.2 = 1. In this case, status of GPIO4 pin is ignored.  
When R86.3 = 0 and R86.2 = 0 is programmed, GPIO4 must be tied to GND. Tying GPIO4 to VDD disables  
GPIO5 for margining purposes and R94 and R95 determine the on-chip load capacitance for the crystal. If  
any frequency offset is desired at the output, the appropriate binary code should be programmed to R94 and  
R95.  
When R86.3 = 1 and R86.2 = 0 is programmed, GPIO4 must be tied to GND. Tying GPIO4 to VDD disables  
GPIO5 for margining purposes and R104 and R105 determine the on-chip load capacitance for the crystal. If  
any frequency offset is desired at the output, the appropriate binary code should be programmed to R104 and  
R105.  
There are two possibilities to drive the GPIO5 pin:  
The first method is to achieve the desired voltage between 0 V to 1.8 V according to Analog Input  
Characteristics (GPIO[5]). The pulldown resistor value sets the voltage on GPIO[5] pin that falls within one of  
eight settings whose pre-programmed on-chip crystal load capacitances are set by R88, R89, R90, R91, R92,  
R93, R94, R95, R96, R97, R98, R99, R100, R101, R102, and R103.  
The second method is using a low-pass filtered PWM signal to drive the 8-level GPIO5 pin as shown in  
Figure 57. The PWM signal could be generated from the frequency difference between a highly stable TCXO  
and the output of LMK03318 that is provided as a feedback into the GPIO5 pin and used to adjust the on-chip  
load capacitance on the crystal input to reduce frequency errors from the crystal. This is a quick alternative  
that produces a frequency error at the LMK03318's output and could be acceptable to any application when  
compared to a full-characterization with a chosen crystal to understand the exact load pulling required to  
minimize frequency error at the LMK03318's output. More details on frequency margining are provided in  
Application and Implementation.  
Copyright © 2015–2018, Texas Instruments Incorporated  
39  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
SECREF_P  
SECREF_N  
LMK03318  
Crystal Input Control  
500  
PWM  
GPIO5  
Con-chip  
Con-chip  
DSP  
Low Pass  
Filter  
Figure 57. Crystal Load Capacitance Compensation Using PWM Signal  
The incremental load capacitance for each step should be programmed to R88, R89, R90, R91, R92, R93, R94,  
R95, R96, R97, R98, R99, R100, R101, R102, and R103 according to the chosen crystal's trim sensitivity  
specifications. The least-significant bit programmed to any of the XO offset register corresponds to a load  
capacitance delta of about 0.02 pF on the crystal input pins.  
Good layout practices are fundamental to the correct operation and reliability of the oscillator. It is critical to  
locate the crystal components very close to the SECREF_P and SECREF_N pins to minimize routing distances.  
Long traces in the oscillator circuit are a very common source of problems. Don’t route other signals across the  
oscillator circuit, and make sure power and high-frequency traces are routed as far away as possible to avoid  
crosstalk and noise coupling. If drive level of the crystal should be reduced, a damping resistor (less than 500 Ω)  
should be accommodated in the layout between the crystal leg and SECREF_P pin. Vias in the oscillator circuit  
are recommended primarily for connections to the ground plane. Don’t share ground connections; instead, make  
a separate connection to ground for each component that requires grounding. If possible, place multiple vias in  
parallel for each connection to the ground plane. The layout must be designed to minimize stray capacitance  
across the crystal to less than 2 pF total under all circumstances to ensure proper crystal oscillation.  
10.4.4 Reference Doubler  
The primary and secondary references each have a frequency doubler that can be enabled by programming  
R57.4 = 1 for the primary reference and R72.4 = 1 for the secondary reference. Enabling the doubler allows a  
higher comparison frequency for the PLL and results in a 3-dB reduction in the in-band phase noise of the  
LMK03318 device’s outputs. However, enabling the doubler poses the requirement of less than 0.5% duty cycle  
distortion of its reference input to minimize high spurious signals in the LMK03318’s outputs. If the reference  
input duty cycle is requirement is not met, the higher order loop filter components (R3 and C3) of the PLL can be  
used to suppress the reference input spurs.  
10.4.5 Reference Divider (R)  
The reference (R) divider is a continuous 3-b counter that is present on the primary reference before the smart  
input MUX of the PLL. The output of the R divider sets the input frequency for the smart input MUX and the auto  
switch capability of the smart input MUX can then be employed as long as the secondary input frequency is no  
more than 2000 ppm different from the output of the R divider, which is programmed in R52 for the PLL.  
40  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.4.6 Input Divider (M)  
The input (M) divider is a continuous 5-b counter that is present after the smart input MUX of the PLL. The output  
of the M divider sets the PFD frequency to the PLL and should be in the range of 1 MHz to 150 MHz. The M  
divider is programmed in R53 for the PLL.  
10.4.7 Feedback Divider (N)  
The N divider of the PLL includes fractional compensation and can achieve any fractional denominator (DEN)  
from 1 to 4,194,303. The integer portion, INT, is the whole part of the N divider value and the fractional portion,  
NUM / DEN, is the remaining fraction. N, NUM, and DEN are programmed in R58, R59, R60, R61, R62, R63,  
R64, and R65 for the PLL. The total programmed N divider value, N, is determined by: N = INT + NUM / DEN.  
The output of the N divider sets the PFD frequency to the PLL and should be in the range of 1 MHz to 150 MHz.  
10.4.8 Phase Frequency Detector (PFD)  
The PFD of the PLL takes inputs from the input divider output and the feedback divider output and produces an  
output that is dependent on the phase and frequency difference between the two inputs. The allowable range of  
frequencies at the inputs of the PFD is from 1 MHz to 150 MHz.  
10.4.9 Charge Pump  
The PLL has charge pump slices of 0.4 mA, 0.8 mA, 1.6 mA, or 6.4 mA. These slices can be selected in the  
following combinations to vary the charge pump current from 0.4 mA to 6.4 mA by programming R57[3-0] for the  
PLL.  
10.4.10 Loop Filter  
The PLL supports programmable loop bandwidth from 200 Hz to 1 MHz. The loop filter components, R2, C1, R3,  
and C3, can be configured by programming R67, R68, R69, and R70 for the PLL. C2 for the PLL is an external  
component that is added on the LF pin. When the PLL is configured in the fractional mode, R69.0 should be set  
to 1 and R118[2-0] should be set to 0x7. When the PLL is configured in integer mode, R69.0 should be set to 0  
and R118[2-0] should be set to 0x3 for second-order (NOTE: R69 should be set to 0x0) or 0x7 for third-order,  
respectively. When the PLL's loop bandwidth is desired to be set to 200 Hz, R120.0 should be set to 0. Figure 58  
shows the loop filter structure of the PLL.  
It is important to set the PLL to best possible bandwidth to minimize output jitter. A high bandwidth (100 kHz)  
provides best input signal tracking and is therefore desired with a clean input reference (clock generator mode).  
A low bandwidth (1 kHz) is desired if the input signal quality is unknown (jitter cleaner mode). TI provides the  
WEBENCH Clock Architect that makes it easy to select the right loop filter components.  
Copyright © 2015–2018, Texas Instruments Incorporated  
41  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
C2  
LF  
LMK03318  
R2  
R3  
From PFD /  
Charge Pump  
>>  
>>  
C3  
C1  
Loop Filter Control  
R67 R68 R69 R70  
Figure 58. Loop Filter Structure of PLL  
10.4.11 VCO Calibration  
The PLL of the LMK03318 includes an LC VCO that is designed using high-Q monolithic inductor to oscillate  
between 4.8 GHz and 5.4 GHz and has low phase-noise characteristics. The VCO must be calibrated to ensure  
that the clock outputs deliver optimal phase noise performance. Fundamentally, a VCO calibration establishes an  
optimal operating point within the tuning range of the VCO. While transparent to the user, the LMK03318 and the  
host system perform the following steps comprising a VCO calibration sequence:  
1. Normal Operation - When the LMK03318 is in normal (operational) mode, the state of the power-down pin  
(PDN) is high.  
2. Entering the reset state - If the user wishes to initialize the selected pin mode default settings (from ROM,  
EEPROM, or register default) and initiate a VCO calibration sequence, then the host system must place the  
device in reset through the PDN pin, or through software reset (R12.7) through I2C, or by removing and  
restoring device power. Pulling the PDN pin low low or setting R12.7 = 0 places the device in the reset state.  
3. Exiting the reset state – The device calibrates the VCO either by exiting the device reset state or through  
the device reset command initiated through the host interface. Exiting the reset state occurs automatically  
after power is applied and/or the system restores the state of the PDN or R12.7 from the low to high state.  
Exiting the reset state using the PDN pin causes the selected pin mode defaults to be loaded/reloaded into  
the device register bank. Invoking software reset through R12.7 does not reinitialize the registers; rather, the  
device retains settings related to the current clock frequency plan. Using this method allows for a VCO  
calibration for a frequency plan other than the default state (that is,. the device calibrates the VCO based on  
the settings current register settings). The nominal state of this bit is high. Writing this bit to a low state and  
then returning it to the high state invokes a device reset without restoring the pin mode.  
4. Device stabilization – After exiting the reset state as described in Step 3, the device monitors internal  
voltages and starts a reset timer. Only after internal voltages are at the correct level and the reset time has  
expired will the device initiate a VCO calibration. This ensures that the device power supplies and reference  
inputs have stabilized prior to calibrating the VCO.  
5. VCO Calibration - The LMK03318 calibrates the VCO. During the calibration routine, the device mutes  
output channels configured with their respective auto-mute control enabled, so that they generate no  
spurious clock signals. After a successful calibration routine, the PLL will lock the VCO to the selected  
reference input.  
42  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.4.12 Fractional Circuitry  
The delta-sigma modulator is a key component of the fractional circuitry and is involved in noise shaping for  
better phase noise and spurs in the band of interest. The order of the delta sigma modulator is selectable from  
integer mode to third order and can be programmed in R66[1-0] for the PLL. There are also several dithering  
modes that are also programmed in R66[3-2] for the PLL.  
10.4.12.1 Programmable Dithering Levels  
If used appropriately, dithering may be used to reduce sub-fractional spurs, but if used inappropriately, it can  
actually create spurs and increase phase noise. Table 5 provides guidelines for the use of dithering based on the  
fractional denominator, after the fraction is reduced to lowest terms.  
Table 5. Dithering Recommendations  
FRACTION  
RECOMMENDATION  
COMMENTS  
Fractional Numerator = 0  
Disable Dithering  
This is often the worst case for spurs, and can actually be turned into  
the best case by disabling dithering. Performance is then similar to  
integer mode.  
Equivalent Denominator < 20  
Disable Dithering  
Disable Dithering  
Consider Dithering  
These fractions are not well randomized and dithering will likely  
create phase noise and spurs.  
Equivalent denominator is not  
divisible by 2 or 3  
There will be no sub-fractional spurs, so dithering is likely not to be  
very effective.  
Equivalent denominator > 200  
and is divisible by 2 or 3  
Dithering may help reduce the sub-fractional spurs, but understand it  
may degrade the PLL phase noise.  
10.4.12.2 Programmable Delta Sigma Modulator Order  
The programmable fractional modulator order gives the opportunity to better optimize phase noise and spurs.  
Theoretically, higher order modulators push out phase noise to farther offsets, as described in Table 6.  
Table 6. Delta Sigma Modulator Order Recommendations  
ORDER  
APPLICATIONS  
Integer Mode (Order = 0)  
If the fractional numerator is zero, it is best to run the PLL in integer mode to minimize phase  
noise and spurs.  
First Order Modulator  
When the equivalent fractional denominator is 6 or less, the first order modulator theoretically  
has lower phase noise and spurs, so it always makes sense in these situations. When the  
fractional denoninator is between 6 and about 20, consider using the first order modulator  
because the spurs might be far enough outside the loop bandwidth that they will be filtered.  
The first order modulator also does not create any sub-fractional spurs or phase noise.  
Second and Third Order Modulator  
The choice between 2nd and 3rd order modulator tends to be a little more application  
specific. If the fractional denominator is not divisible by 3, then the second and third order  
modulators will have spurs in the same offsets, so the third is generally better for spurs.  
However, if stronger levels of dithering is used, the third order modulator will create more  
close-in phase noise than the second order modulator.  
Copyright © 2015–2018, Texas Instruments Incorporated  
43  
 
 
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Figure 59 and Figure 60 give an idea of the theoretical impact of the delta sigma modulator order on the shaping  
of the phase noise and spurs. In terms of phase noise, this is what one would theoretically expect if strong  
dithering was used for a well-randomized fraction. Dithering can be set to different levels or even disabled and  
the noise can be eliminated. In terms of spurs, they can change based on fraction, but they will theoretically  
pushed out to higher phase detector frequencies. However, one must be aware that these are just  
THEORETICAL graphs and for offsets that are less than 5% of the phase detector frequency, other factors can  
impact the noise and spurs. In Figure 59, the curves all cross at 1/6th of the phase detector frequency and that  
this transfer function peaks at half of the phase detector frequency, which is assumed to be well outside the loop  
bandwidth. Figure 60 shows the impact of the phase detector frequency on the modulator noise.  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
1st Order Modulator  
2nd Order Modulator  
3rd Order Modulator  
-140  
-150  
1x106 2x106  
5x106 1x107 2x107  
Offset (Hz)  
5x107 1x108 2x108  
Figure 59. Theoretical Delta Sigma Noise Shaping for a 100 MHz Phase Detector Frequency  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
Fpd=10MHz  
Fpd=100 MHz  
Fpd=200 MHz  
-140  
-150  
1x106 2x106  
5x106 1x107 2x107  
Offset (Hz)  
5x107 1x108 2x108  
Figure 60. Theoretical Delta Sigma Noise Shaping for 3rd Order Modulator  
10.4.13 Post Divider  
Each PLL has a post divider that supports divide-by 2, 3, 4, 5, 6, 7, and 8 from the VCO frequency and  
distributed to the output section by programming R56[4-2] for PLL and R71[4-2] for PLL2.  
44  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.4.14 High-Speed Output MUX  
The output section is made up of four high-speed output MUX’s. Each of the four MUX able to select between  
primary reference, secondary reference or the divided PLLclock by programming R37[7-6], R39[7-6], R41[7-6],  
and R43[7-6]. Each of the four MUX’s distributes individually to outputs 4, 5, 6, and 7. When reference doubler is  
enabled and any output MUX selects that reference input, the output frequency will be the same as the reference  
frequency (non-doubled) but the output phase could be the same or complementary of the reference input.  
10.4.15 High-Speed Output Divider  
There are six high-speed output dividers and each supports divide values of 1 to 256. Outputs 0 and 1 share an  
output divider, as well as outputs 2 and 3. Outputs 4, 5, 6, and 7 have their own individual output dividers. The  
divide values are programmed in R33, R36, R38, R40, R42, and R44. These output dividers also support coarse  
frequency margining for all output divide values greater than 8 and can be enabled on any output channel by  
setting the appropriate bit in R24 to a 1. In such a use case, a dynamic change in the output divider value  
through I2C ensures that there are no glitches at the output irrespective of when the change is initiated.  
Depending on the VCO frequency and output divide values, as low as a 5% change can be initiated in the output  
frequency. An example case of coarse frequency margining on an output is shown in Figure 61.  
VCO Clock  
Output 1  
(output divider = 12)  
Output 2  
(original divider = 12  
new devider = 13)  
Delay from auto sync after new  
divider (no glitch)  
USER ACTION:  
Output 2 divider change from  
divide-by-12 to divide-by-13  
Output 3  
(original divider = 12  
new divider = 13)  
Delay from auto sync after new  
divider (no glitch and completes  
active pulse before change)  
USER ACTION:  
Output 3 divider change from  
divide-by-12 to divide-by-13  
Figure 61. Simplified Diagram for Coarse Frequency Margining  
10.4.16 High-Speed Clock Outputs  
Each output can be configured as AC-LVPECL, AC-LVDS, AC-CML, HCSL or LVCMOS by programming R31,  
R32, R34, R35, R37, R39, R41, and R43. Each output has the option to be muted or not, in case the source from  
which it is derived becomes invalid, by programming R22. An invalid source could be a primary or secondary  
reference that is no longer present or any PLL that is unlocked. When outputs are to be muted, R20 and R21  
must each be programmed to 0xFF. Outputs 0 and 1 share an output supply (VDDO_01), as well as outputs 2  
and 3 (VDDO_23). Outputs 4, 5, 6, 7 have individual output supplies (VDDO_4, VDDO_5, VDDO_6, VDDO_7).  
Each output supply can be independently set to 1.8 V, 2.5 V or 3.3 V. When a particular output is desired to be  
disabled, the bits [5:0] in the corresponding output control register (R31, R32, R34, R35, R37, R39, R41 or R43)  
must be set to 0x00. If any of outputs 4, 5, 6, and 7 and their output dividers are disabled; their corresponding  
supplies can be connected to GND.  
Copyright © 2015–2018, Texas Instruments Incorporated  
45  
 
 
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
The AC-LVDS, AC-CML, and AC-LVPECL output structure is given in Figure 62 where the tail currents can be  
programmed to either 4 mA, 6 mA, or 8 mA to generate output voltage swings that are compatible with LVDS,  
CML or LVPECL, respectively. Because this output structure is GND referenced, the output supplies can be  
operated from 1.8 V, 2.5 V or 3.3 V and offer lower power dissipation compared to traditional LVDS, CML, or  
LVPECL structures without any impact on jitter performance or other AC or DC specifications. Interfacing to  
LVDS, CML or LVPECL receivers are done with just an external AC-coupling capacitor for each output. No  
source termination is needed since the on-chip termination is automatically enabled when selecting AC-LVDS,  
AC-CML, or AC-LVPECL for good impedance matching to 50 Ω interconnects.  
1.8 V, 2.5 V, 3.3 V  
LDO  
4 mA  
I1  
P
N
P
N
Output Current can be programmed  
to 4 mA, 6 mA, or 8 mA  
(I1 + I2)  
IN  
OUT  
INb  
0, 2, 4 mA  
I2  
P
N
P
N
OUTb  
Figure 62. Structure of AC-LVDS, AC-CML, and AC-LVPECL Output Stage  
The HCSL output structure is open drain and can be direct coupled or AC coupled to HCSL receivers with  
appropriate termination scheme. This output strcture supports either on-chip 50 Ω termination or off-chip 50 Ω  
termination. The on-chip 50 Ω termination is provided primarily for convenience when driving short traces. In the  
case of driving long traces possibly through a connector, the on-chip termination should be disabled and a 50 Ω  
to GND termination at the receiver should be implemented. The output supplies can be operated from 1.8 V, 2.5  
V or 3.3 V without any impact on jitter performance or other AC or DC specifications.  
The LVCMOS outputs on each side (P and N) can be configured individually to be complementary or in-phase or  
can be turned off (high output impedance). The LVCMOS outputs are always at 1.8 V logic level irrespective of  
the output supply. In case 3.3-V LVCMOS outputs are needed, STATUS1 and/or STATUS0 can be configured as  
3.3-V LVCMOS outputs.  
Figure 63 through Figure 68 show recommendations for interfacing between LMK03318’s high-speed clock  
outputs and LVCMOS, LVPECL, LVDS, CML, and HCSL receivers, respectively.  
NOTE  
If 1.8-V LVCMOS signals from the high-speed clock outputs are desired to be interfaced  
with a 3.3-V LVCMOS receiver, a level-shifter like LSF0101 must be used to convert the  
1.8-V LVCMOS signal to a 3.3-V LVCMOS signal.  
46  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
LVCMOS  
1.8-V LVCMOS  
Receiver  
LMK03318  
Figure 63. Interfacing LMK03318’s 1.8-V LVCMOS Output With 1.8-V LVCMOS Receiver  
VrefB = 3.3 V  
VrefA = 1.8 V  
LVCMOS  
3.3-V LVCMOS  
Receiver  
LMK03318  
LSF0101  
Figure 64. Interfacing LMK03318’s 1.8-V LVCMOS Output With 3.3-V LVCMOS Receiver  
LVPECL  
Receiver  
LMK03318  
AC-LVPECL  
50  
50 ꢀ  
VDD_IN - 2  
Figure 65. Interfacing LMK03318’s AC-LVPECL Output With LVPECL Receiver  
LVDS  
Receiver  
LMK03318  
AC-LVDS  
100  
Figure 66. Interfacing LMK03318’s AC-LVDS Output With LVDS Receiver  
50  
CML  
Receiver  
LMK03318  
AC-CML  
50 ꢀ  
Figure 67. Interfacing LMK03318’s AC-CML Output With CML Receiver  
33 (optional)  
HCSL  
Receiver  
LMK03318  
HCSL  
33 (optional)  
50 ꢀ  
50 ꢀ  
Figure 68. Interfacing LMK03318’s Output With HCSL Receiver  
Copyright © 2015–2018, Texas Instruments Incorporated  
47  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.4.17 Output Synchronization  
All output dividers and the PLL post divider can be synchronized using the active-low SYNCN signal. This signal  
can come from the GPIO0 pin (in soft pin mode only) or from R12.6. The most common way to execute the  
output synchronization is to toggle the GPIO0 pin. When R56.1 is set to 1, to enable synchronization of outputs  
that is derived from the PLL, and GPIO0 pin is asserted (VGPIO0 VIL), the corresponding output driver(s) are  
muted and divider is reset.  
NOTE  
Output-to-output skew specification can only be assured when PLL post divider is greater  
than 2 and after an output synchronization event.  
The latency to reset VCO divider is a sum of:  
1. 2 to 3 negative edge of output clock cycles of the largest divided value + “x” nano seconds of asynchronous  
delay + 2 to 3 VCO clock cycle.  
2. If SYNCN happens after rising but before negative edge, sync delay is less 3 clock cycle and closer to 2  
clock cycle.  
3. The latency is deterministic and its variation is no more than 1 VCO clock cycle and an example scenario is  
illustrated in Figure 62.  
Table 7. Output Channel Synchronization  
GPIO0 / R12.6  
OUTPUT DIVIDER AND DRIVER STATE  
Output driver(s) is tri-stated and divider is reset  
Normal output driver/divider operation as configured  
0
1
Minimum SYNCN pulse width = 3 negative clock edge of slowest output clock cycle + “x” nano second of prop  
delay + 3 VCO clock cycle. The synchronization feature is particularly helpful in systems with multiple LMK03318  
devices. If SYNCN is released simultaneously for all devices, the total remaining output delay variation is ±1  
VCO clock cycles for all devices configured to identical output mux settings. Output enable/disable events are  
synchronous to minimize glitch/runt pulses. In Soft Pin Mode, the SYNCN control can also be used to disable  
any outputs to prevent output clocks from being distributed to down-stream devices, such as DSPs or FPGAs,  
until they are configured and ready to accept the incoming clock.  
PLL Clock or  
Reference Clock  
1
2
3
4
5
6
7
8
9
10  
11  
12  
One post-divider clock cycle  
uncertainty, of when the  
output turns on for one  
device in one particular  
configuration  
GPIO0 or  
R12.6  
OUT0  
Possibility (A)  
Output Low  
OUT0  
Possibility (B)  
Output Low  
Figure 69. SYNCN to Output Delay Variation  
10.4.18 Status Outputs  
The device vitals such as input signal quality, smart MUX input selection, PLL loss of lock can be monitored by  
reading device registers or by monitoring the status pins, STATUS1 and STATUS0. R27 and R28 allow  
customizing which of the vitals are mapped out to these two pins. Table 7 lists the events that can be mapped to  
each status pin and which can also be read in the register space. The polarity of the events mapped to the status  
pins can be selected by programming R15.  
48  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
A logic-high interrupt output (INTR) can also be selected on either status pins to indicate interrupt status from  
any of the device vitals listed in R16. To use this feature, R17.0 should be set to 1, R14[4:2] must be set to 0x7,  
and R14.0 must be set to 1. The interrupts listed in R16 can be combined in an AND or OR functionality by  
programming R17.1. If interrupts stemming from particular device vitals are to be ignored, the appropriate bits in  
R14 should be programmed as needed. The contents of R16 can be read back at any time irrespective of  
whether the INTR function is chosen in either status pins as long as R17.0 = 1 and the contents of R16 are self-  
cleared once the readback is complete. There also exists a “real-time” interrupt register, R13, which indicate  
interrupt status from the device vitals irrespective of the state of R17.0. The contents of R13 can be also read  
back at any time and are self-cleared once the readback is complete.  
10.4.18.1 Loss of Reference  
The primary and secondary references can be monitored for their input signal quality and appropriate register  
bits and status outputs, if enabled, are flagged if a loss of signal event is encountered. For differential inputs, a  
“loss of signal” event occurs when the differential input swing is lower than the threshold as programmed in  
R25[3-2] for secondary reference and in R25[1-0] for primary reference. For LVCMOS inputs, a loss of signal  
event can be triggered based on either a minimum threshold, programmed in R25[3-2] for secondary reference  
and in R25[1-0] for primary reference, or a minimum slew rate of 0.3 V/ns, rising edge or falling edge or both  
being monitored based on selections programmed in R25[7-6] for secondary reference and in R25[5-4] for  
primary reference.  
10.4.18.2 Loss of Lock  
The PLL’s loss of lock detection circuit is a digital circuit that detects any frequency error, even a single cycle  
slip. The PLL unlock is detected when a certain number of cycle slips have been exceeded, at which point the  
counter is reset. If the loss of lock is intended to toggle a system reset, an RC filter on the status output, which is  
programmed to indicate loss of lock, is recommended to avoid rare cycle slips from triggering an entire system  
reset.  
Table 8. Device Vitals Selection Matrix for STATUS[1:0]  
NUMBER  
SIGNAL  
PRIREF Loss of Signal (LOS)  
SECREF Loss of Signal (LOS)  
PLL Loss of Lock (LOL)  
0
1
2
3
PLL R Divider, divided by 2 (when R Divider is not bypassed)  
PLL N Divider, divided by 2  
RESERVED  
4
5
6
RESERVED  
7
RESERVED  
8
PLL VCO Calibration Active (CAL)  
RESERVED  
9
10  
11  
12  
13  
14  
15  
Interrupt (INTR)  
PLL M Divider, divided by 2 (when M Divider is not bypassed)  
RESERVED  
EEPROM Active  
PLL Secondary to Primary Switch in Automatic Mode  
RESERVED  
When the status pins are programmed as 3.3-V LVCMOS PLL clock outputs with fast output rise/fall time setting,  
they support up to 200 MHz operation and each output can independently be programmed to different  
frequencies. Each output has the option to be muted or not, in case the PLL from which it is derived loses lock,  
by programming R23 and when muted, the output is held at a static state depending on the programmed output  
type/polarity. in a loss-of-lock event. To reduce coupling onto the high-speed outputs, the output rise/fall time can  
be modified in R49 to support slower slew rates.  
Copyright © 2015–2018, Texas Instruments Incorporated  
49  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
NOTE  
When either status pin is set as a 3.3-V LVCMOS output, there is fairly significant mixing  
of these output frequencies into the high-speed outputs, especially outputs 4, 5, 6, and 7.  
If 3.3-V LVCMOS outputs are desired, proper care should be taken during frequency  
planning with the LMK03318 to ensure that the outputs, required with low jitter, are  
selected from either output 0, 1, 2, or 3. For best jitter performance, TI recommends using  
both status pins to generate complementary 3.3-V LVCMOS outputs at any time.  
10.5 Programming  
The host (DSP, Microcontroller, FPGA, etc) configures and monitors the LMK03318 through the I2C port. The  
host reads and writes to a collection of control/status bits called the register map. The device blocks can be  
controlled and monitored through a specific grouping of bits located within the register file. The host controls and  
monitors certain device-wide critical parameters directly through register control/status bits. In the absence of the  
host, the LMK03318 can be configured to operate in pin-mode either from its on-chip ROM or EEPROM  
depending on the state of HW_SW_CTRL pin. The EEPROM or ROM arrays are automatically copied to the  
device registers upon powerup. The user has the flexibility to re-write the contents of EEPROM from the SRAM  
up to a 100 times but the contents of ROM cannot be re-written.  
Within the device registers, there are certain bits that have read/write access. Other bits are read-only (an  
attempt to write to a read only bit will not change the state of the bit). Certain device registers and bits are  
reserved meaning that they must not be changed from their default reset state. Figure 70 shows interface and  
control blocks within LMK03318 and the arrows refer to read access from and write access to the different  
embedded memories (ROM, EEPROM, and SRAM).  
50  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Programming (continued)  
ROM (hard pin mode)  
1 of 64 images  
Reg89  
7
6
5
5
5
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
Reg88  
7
Reg87  
7
Reg86  
7
6
6
6
Reg3  
7
Reg2  
7
Reg1  
7
Reg 0  
7
6
6
6
6
5
5
5
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
STATUS0  
STATUS1  
PDN  
Device Registers  
Reg200  
7
Reg199  
6
6
6
6
5
5
5
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
GPIO5  
GPIO4  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
Control/  
Status Pins  
7
Reg29  
7
Reg28  
7
Device  
Control  
And  
Device  
Hardware  
Reg3  
7
Reg2  
7
Reg1  
7
Reg 0  
7
Status  
6
6
6
6
5
5
5
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
SCL  
SDA  
I2C  
Port  
HW_SW_CTRL  
Reg89  
7
Reg88  
Reg89  
7
Reg88  
6
6
6
6
5
5
5
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
6
6
6
6
5
5
5
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
7
Reg87  
7
Reg86  
7
7
Reg87  
7
Reg86  
7
Reg3  
7
Reg2  
7
Reg1  
7
Reg 0  
7
Reg3  
7
Reg2  
7
Reg1  
7
Reg 0  
7
6
6
6
6
5
5
5
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
6
6
6
6
5
5
5
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
SRAM (soft pin mode)  
1 of 6 images  
EEPROM (soft pin mode)  
1 of 6 images  
Figure 70. LMK03318 Interface and Control Block  
Copyright © 2015–2018, Texas Instruments Incorporated  
51  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Programming (continued)  
10.5.1 I2C Serial Interface  
The I2C port on the LMK03318 works as a slave device and supports both the 100 kHz standard mode and 400  
kHz fast-mode operations. Fast mode imposes a glitch tolerance requirement on the control signals. Therefore,  
the input receivers ignore pulses of less than 50-ns duration. The I2C timing is given in I2C-Compatible Interface  
Characteristics (SDA, SCL) I2C-Compatible Interface Characteristics (SDA, SCL). The timing diagram is given in  
Figure 71.  
STOP  
START  
ACK  
STOP  
tW(SCLL)  
tf(SM)  
tW(SCLH)  
tr(SM)  
VIH(SM)  
VIL(SM)  
SCL  
th(START)  
tSU(START)  
tBUS  
tSU(SDATA)  
tr(SM)  
th(SDATA)  
tSU(STOP)  
tf(SM)  
VIH(SM)  
VIL(SM)  
SDA  
Figure 71. I2C Timing Diagram  
In an I2C bus system, the LMK03318 acts as a slave device and is connected to the serial bus (data bus SDA  
and clock bus SCL). These are accessed through a 7-bit slave address transmitted as part of an I2C packet. Only  
the device with a matching slave address responds to subsequent I2C commands. In soft pin mode, the  
LMK03318 allows up to three unique slave devices to occupy the I2C bus based on the pin strapping of GPIO1  
(tied to VDD_DIG, GND or VIM). The device slave address is 10100xx (the two LSBs are determined by the  
GPIO1 pin).  
NOTE  
The PDN pin of LMK03318 should be high before any I2C communication on the bus. The  
first I2C transaction after power cycling LMK03318 should be ignored.  
During the data transfer through the I2C interface, one clock pulse is generated for each data bit transferred. The  
data on the SDA line must be stable during the high period of the clock. The high or low state of the data line can  
change only when the clock signal on the SCL line is low. The start data transfer condition is characterized by a  
high-to-low transition on the SDA line while SCL is high. The stop data transfer condition is characterized by a  
low-to-high transition on the SDA line while SCL is high. The start and stop conditions are always initiated by the  
master. Every byte on the SDA line must be eight bits long. Each byte must be followed by an acknowledge bit  
and bytes are sent MSB first. The I2C register structure of the LMK03318 is shown in Figure 72.  
I2C PROTOCOL  
7
1
8
8
A6 A5 A4 A3 A2 A1 A0  
I2C ADDRESS  
W/R  
REGISTER ADDRESS  
DATA BYTE  
Figure 72. I2C Register Structure  
52  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Programming (continued)  
The acknowledge bit (A) or non-acknowledge bit (A’) is the 9th bit attached to any 8-bit data byte and is always  
generated by the receiver to inform the transmitter that the byte has been received (when A = 0) or not (when A’  
= 0). A = 0 is done by pulling the SDA line low during the 9th clock pulse and A’ = 0 is done by leaving the SDA  
line high during the 9th clock pulse.  
The I2C master initiates the data transfer by asserting a start condition which initiates a response from all slave  
devices connected to the serial bus. Based on the 8-bit address byte sent by the master over the SDA line  
(consisting of the 7-bit slave address (MSB first) and an R/W’ bit), the device whose address corresponds to the  
transmitted address responds by sending an acknowledge bit. All other devices on the bus remain idle while the  
selected device waits for data transfer with the master.  
After the data transfer has occurred, stop conditions are established. In write mode, the master asserts a stop  
condition to end data transfer during the 10th clock pulse following the acknowledge bit for the last data byte  
from the slave. In read mode, the master receives the last data byte from the slave but does not pull SDA low  
during the 9th clock pulse. This is known as a non-acknowledge bit. By receiving the non-acknowledge bit, the  
slave knows the data transfer is finished and enters the idle mode. The master then takes the data line low  
during the low period before the 10th clock pulse, and high during the 10th clock pulse to assert a stop condition.  
A generic transation is shown in Figure 73.  
1
7
1
1
8
1
1
S
Slave Address  
R/W  
LSB  
A
Data Byte  
A
P
MSB  
MSB  
LSB  
S
Start Condition  
Sr Repeated Start Condition  
R/W 1 = Read (Rd) from slave; 0 = Write (Wr) to slave  
A
P
Acknowledge (ACK = 0 and NACK = 1)  
Stop Condition  
Master to Slave Transmission  
Slave to Master Transmission  
Figure 73. Generic Programming Sequence  
The LMK03318 I2C interface supports “Block Register Write/Read”, “Read/Write SRAM”, and “Read/Write  
EEPROM” operations. For “Block Register Write/Read” operations, the I2C master can individually access  
addressed registers that are made of an 8-bit data byte. The offset of the indexed register is encoded in R10 and  
part of the EEPROM, as described in Table 9 below. To change the most significant 5 bits of the I2C slave  
address from its default value, the EEPROM byte 11 can be re-written with the desired value and R10 provides a  
read-back of the new slave address.  
Table 9. I2C Slave Address  
Operating  
Mode  
R10.7  
R10.6  
R10.5  
R10.4  
R10.3  
R10.2  
R10.1  
Hard pin  
Soft pin  
1
1
0
0
1
1
0
0
0
0
0
0
Controlled by GPIO1 state.  
GPIO1  
R10[2-1]  
0
VIM  
1
0x0  
0x1  
0x3  
Copyright © 2015–2018, Texas Instruments Incorporated  
53  
 
 
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.5.2 Block Register Write  
The I2C Block Register Write transaction is illustrated in Figure 74 and consists of the following sequence:  
1. Master issues a Start Condition.  
2. Master writes the 7-bit Slave Address following by a Write bit.  
3. Master writes the 8-bit Register address as the CommandCode of the programming sequence.  
4. Master writes one or more Data Bytes each of which should be acknowledged by the slave. The slave  
increments the internal register address after each byte.  
5. Master issues a Stop Condition to terminate the transaction.  
1
7
1
1
8
1
S
Slave Address  
Wr  
A
CommandCode  
A
8
1
8
1
1
...  
Data Byte 0  
A
Data Byte N-1  
A
P
Figure 74. Block Register Write Programming Sequence  
10.5.3 Block Register Read  
The I2C Block Register Read transaction is illustrated in Figure 75 and consists of the following sequence:  
1. Master issues a Start Condition.  
2. Master writes the 7-bit Slave Address followed by a Write bit.  
3. Master writes the 8-bit Register address as the CommandCode of the programming sequence.  
4. Master issues a Repeated Start Condition.  
5. Master writes the 7-bit Slave Address following by a Read bit.  
6. Slave returns one or more Data Bytes as long as the Master continues to acknowledge them. The slave  
increments the internal register address after each byte.  
7. Master issues a Stop Condition to terminate the transaction.  
1
7
1
1
8
1
1
7
1
1
S
Slave Address  
Wr  
A
CommandCode  
A
Sr  
Slave Address  
Rd  
A
8
1
8
1
1
...  
Data Byte 0  
A
Data Byte N-1  
A
P
Figure 75. Block Register Read Programming Sequence  
10.5.4 Write SRAM  
The on-chip SRAM is a volatile, shadow memory array used to temporarily store register data, and is intended  
only for programming the non Volatile EEPROM array with one or more device start-up configuration settings  
(pages). The SRAM has the identical data format as the EEPROM map. The register configuration data can be  
transferred to the SRAM array through special memory access registers in the register map.  
The SRAM is made up of a base memory array and 6 pages of identical memory arrays. To successfully  
program the SRAM, the complete base array and at least one page should be written.  
The following details the programming sequence to transfer the device registers into the appropriate SRAM  
page.  
1. Program the device registers to match a desired setting.  
2. Write R145[3:0] with a valid SRAM page (0 to 5) to commit the current register data.  
3. Write a 1 to R137.6. This ensures that the device registers are copied to the desired SRAM page.  
4. If another device setting is desired to be written to a different SRAM page, repeat steps 1-3 and select an  
unused SRAM page.  
54  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
 
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
The SRAM can also be written with particular values according to the following programming sequence.  
1. Write the most significant 8th bit of the SRAM address in R139.0 and write the least significant 8 bits in  
R140.  
2. Write the desired data byte in R142 in the same I2C transaction and this data byte will be written to the  
address specified in the step above. Any additional access that is part of the same transaction will cause the  
SRAM address to be incremented and a write will take place to the next SRAM address. Access to SRAM  
will terminate at the end of current I2C transaction.  
3. Steps 1 and 2 need to be followed to change EEPROM bytes 11 and 12. Byte 11 denotes the I2C slave  
address of LMK03318 and Byte 12 denotes an 8-b user space that can be used as a device identifier among  
multiple LMK03318 instances with different EEPROM images.  
NOTE  
It is possible to increment SRAM address incorrectly when 2 successive accesses are  
made to R140.  
10.5.5 Write EEPROM  
The on-chip EEPROM is a non-volatile memory array used to permanently store register data for one or more  
device start-up configuration settings (pages), which can be selected to initialize registers upon power-up or  
POR. There are a total of 6 independent EEPROM pages of which each page is selected by the 3-level  
GPIO[3:2] pins, and each page is comprised of bits shown in the EEPROM Map. The transfer must first happen  
to the corresponding SRAM page and then to the EEPROM page. During “EEPROM write”, R137.2 is a 1 and  
the EEPROM contents cannot be accessed. The following details the programming sequence to transfer the  
entire contents of SRAM to EEPROM:  
1. Make sure the Write SRAM procedure (Write SRAM) was done to commit the register settings to the SRAM  
page(s) with start-up configurations intended for programming to the EEPROM array.  
2. Write 0xEA to R144. This provides basic protection from inadvertent programming of EEPROM.  
3. Write a 1 to R137.0. This programs the entire SRAM contents to EEPROM. Once completed, the contents in  
R136 will increment by 1. R136 contains the total number of EEPROM programming cycles that are  
successfully completed.  
4. Write 0x00 to R144 to protect against inadvertent programming of EEPROM.  
5. If an EEPROM write is unsuccessful, a readback of R137.5 results in a 1. In this case, the device will not  
function correctly and will be locked up. To unlock the device for correct operation, a new EEPROM write  
sequence should be initiated and successfully completed.  
10.5.6 Read SRAM  
The contents of the SRAM can be read out, one word at a time, starting with that of the requested address. The  
following details the programming sequence for an SRAM read by address.  
1. Write the most significant 9th bit of the SRAM address in R139.0 and write the least significant 8 bits of the  
SRAM address in R140.  
2. The SRAM data located at the address specified in the step above can be obtained by reading R142 in the  
same I2C transaction. Any additional access that is part of the same transaction will cause the SRAM  
address to be incremented and a read will take place of the next SRAM address. Access to SRAM will  
terminate at the end of current I2C transaction.  
NOTE  
It is possible to increment SRAM address incorrectly when 2 successive accesses are  
made to R140.  
Copyright © 2015–2018, Texas Instruments Incorporated  
55  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.5.7 Read EEPROM  
The contents of the EEPROM can be read out, one word at a time, starting with that of the requested address.  
The following details the programming sequence for an EEPROM read by address.  
1. Write the most significant 9th bit of the EEPROM address in R139.0 and write the least significant 8 bits of  
the EEPROM address in R140.  
2. The EEPROM data located at the address specified in the step above can be obtained by reading R141 in  
the same I2C transaction. Any additional access that is part of the same transaction will cause the EEPROM  
address to be incremented and a read will take place of the next EEPROM address. Access to EEPROM will  
terminate at the end of current I2C transaction.  
NOTE  
It is possible to increment EEPROM address incorrectly when 2 successive accesses are  
made to R140.  
10.5.8 Read ROM  
The contents of the ROM can be read out, one word at a time, starting with that of the requested address. The  
following details the programming sequence of a ROM read by address.  
1. Write the most significant 11th, 10th, 9th, and 8th bit of the ROM address in R139[3-0] and write the least  
significant 8 bits of the ROM address in R140.  
2. The ROM data located at the address specified in the step above can be obtained by reading R143 in the  
same I2C transaction. Any additional access that is part of the same transaction will cause the ROM address  
to be incremented and a read will take place of the next ROM address. Access to ROM will terminate at the  
end of current I2C transaction.  
56  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.5.9 Default Device Configurations in EEPROM and ROM  
Table 10 through Table 13 show the device default configurations stored in the on-chip EEPROM. Table 14 through Table 18 show the device default  
configurations stored in the on-chip ROM.  
Table 10. Default EEPROM Contents (HW_SW_CTRL = 0) – Input and Status Configuration(1)(2)  
STATUS1 /  
STATUS1 /  
PRI  
INPUT  
(MHz)  
SEC  
INPUT  
(MHz)  
STATUS0  
RISE /  
GPIO  
[3:2]  
PRI  
DOUBLER  
XO INT  
LOAD (pF) DOUBLER  
SEC  
STATUS1  
MUX  
STATUS0  
MUX  
STATUS0  
FREQ  
PRI TYPE  
SEC TYPE  
PREDIV  
DIV  
FALL TIME  
(ns)  
(MHz)  
VIM, VIM  
00  
25  
25  
25  
DIFF  
DIFF  
Enabled  
Enabled  
Enabled  
25  
25  
25  
XTAL  
XTAL  
XTAL  
9
9
9
Enabled  
Enabled  
Enabled  
LOL  
LOL  
LOL  
Disable  
PLL  
n/a  
4
n/a  
25  
25  
n/a  
n/a  
n/a / 50  
n/a / 50  
n/a / 2.1  
n/a / 2.1  
01  
LVCMOS  
PLL  
4
(1) 100-Ω internal termination enabled (if applicable)  
(2) Internal AC biasing enabled (if applicable)  
Copyright © 2015–2018, Texas Instruments Incorporated  
57  
 
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Table 11. Default EEPROM Contents (HW_SW_CTRL = 0) – PLL Configuration(1)  
GPIO PLL INPUT PLL INPUT  
PLL N DIV PLL N DIV PLL N DIV PLL FRAC PLL FRAC  
PLL VCO  
(MHz)  
PLL TYPE PLL R DIV PLL M DIV PLL N DIV  
PLL P DIV  
[3:2]  
MUX  
(MHz)  
INT  
NUM  
DEN  
ORDER  
DITHER  
Clock Gen  
Integer  
VIM, VIM  
REFSEL  
50  
1
1
1
1
1
1
102  
100  
100  
102  
0
1
n/a  
Disabled  
5100  
5000  
5000  
8
2
2
Clock Gen  
Integer  
00  
01  
REFSEL  
REFSEL  
50  
50  
100  
100  
0
0
4000000  
4000000  
n/a  
n/a  
Disabled  
Disabled  
Clock Gen  
Integer  
(1) When PLL is set as an integer-based clock generator, external loop filter component, C2, should be 3.3 nF and loop bandwidth is around 400 kHz. When PLL is set as a fractional-based  
clock generator, external loop filter component, C2, should be 33 nF and loop bandwidth is around 400 kHz.  
58  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
GPIO [3:2]  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Table 12. Default EEPROM Contents (HW_SW_CTRL = 0) – Outputs [0-3] Configuration  
OUT0-1 FREQ  
(MHz)  
OUT2-3 FREQ  
(MHz)  
OUT0-1 DIVIDER  
OUT0 TYPE  
OUT1 TYPE  
OUT2-3 DIVIDER  
OUT2 TYPE  
OUT3 TYPE  
VIM, VIM  
00  
n/a  
25  
25  
n/a  
100  
100  
Disable  
LVPECL  
Disable  
n/a  
25  
25  
n/a  
100  
100  
Disable  
Disable  
LVCMOS (+/-)  
LVCMOS (+/-)  
LVCMOS (+/-)  
LVCMOS (+/-)  
LVCMOS (+/-)  
LVCMOS (+/-)  
01  
LVCMOS (+/-)  
Copyright © 2015–2018, Texas Instruments Incorporated  
59  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Table 13. Default EEPROM Contents (HW_SW_CTRL = 0) – Outputs [4-7] Configuration  
OUT4  
FREQ  
(MHz)  
OUT4  
MUX  
SELECT  
OUT5  
FREQ  
(MHz)  
OUT5  
MUX  
SELECT  
OUT6  
FREQ  
(MHz)  
OUT6  
MUX  
SELECT  
OUT7  
FREQ  
(MHz)  
OUT7  
MUX  
SELECT  
GPIO OUT4  
OUT4  
TYPE  
OUT5  
DIV  
OUT5  
TYPE  
OUT6  
DIV  
OUT6  
TYPE  
OUT7  
DIV  
OUT7  
TYPE  
[3:2]  
DIV  
VIM, VIM  
00  
3
212.5  
PLL  
PLL  
LVPECL  
LVPECL  
3
212.5  
125  
PLL  
PLL  
LVPECL  
LVPECL  
6
106.25  
125  
PLL  
PLL  
LVPECL  
LVDS  
6
106.25  
25  
PLL  
PLL  
LVPECL  
LVPECL  
16  
156.25  
20  
20  
100  
LVCMOS  
(+/-)  
01  
25  
100  
PLL  
20  
125  
PLL  
LVDS  
20  
125  
PLL  
LVDS  
20  
125  
PLL  
LVDS  
60  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Table 14. Default ROM Contents (HW_SW_CTRL = 1) - Input Configuration  
GPIO[5:0] (decimal)  
PRI INPUT (MHz)  
PRI TYPE  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PRI DOUBLER  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Enabled  
Enabled  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
SEC INPUT (MHz)  
SEC TYPE  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
LVCMOS  
XTAL  
XO INT LOAD (pF)  
SEC DOUBLER  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Enabled  
Enabled  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
0
50  
50  
50  
50  
9
9
1
2
50  
50  
9
3
50  
50  
9
4
50  
50  
9
5
50  
50  
9
6
30.72  
19.2  
10  
30.72  
19.2  
10  
9
7
9
8
9
9
25  
25  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
50  
50  
9
25  
25  
9
50  
50  
9
25  
25  
9
50  
50  
9
25  
25  
9
50  
50  
9
25  
25  
9
50  
50  
9
25  
25  
9
50  
50  
9
19.44  
38.88  
25  
19.44  
38.88  
25  
9
9
9
50  
50  
9
19.44  
38.88  
25  
19.44  
38.88  
25  
9
9
n/a  
n/a  
9
25  
25  
25  
25  
50  
50  
9
25  
25  
n/a  
n/a  
9
25  
25  
25  
25  
Copyright © 2015–2018, Texas Instruments Incorporated  
61  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Table 14. Default ROM Contents (HW_SW_CTRL = 1) - Input Configuration (continued)  
GPIO[5:0] (decimal)  
PRI INPUT (MHz)  
PRI TYPE  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PRI DOUBLER  
Enabled  
Disabled  
Disabled  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
SEC INPUT (MHz)  
SEC TYPE  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XO INT LOAD (pF)  
SEC DOUBLER  
Enabled  
Disabled  
Disabled  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
50  
19.44  
38.88  
25  
50  
19.44  
38.88  
25  
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
50  
50  
19.44  
38.88  
19.44  
38.88  
19.44  
38.88  
25  
19.44  
38.88  
19.44  
38.88  
19.44  
38.88  
25  
50  
50  
25  
25  
50  
50  
25  
25  
50  
50  
25  
25  
50  
50  
25  
25  
50  
50  
19.44  
38.88  
25  
19.44  
38.88  
25  
25  
25  
25  
25  
50  
50  
25  
25  
50  
50  
25  
25  
62  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Table 15. Default ROM Contents (HW_SW_CTRL = 1) - Status Configuration  
STATUS1  
RISE/FALL  
TIME (ns)  
STATUS0  
RISE/FALL  
TIME (ns)  
GPIO[5:0]  
(decimal)  
STATUS1  
MUX  
STATUS0  
MUX  
STATUS1  
PREDIV  
STATUS1  
FREQ (MHz)  
STATUS0  
PREDIV  
STATUS0  
FREQ (MHz)  
STATUS1 DIV  
STATUS0 DIV  
0
LOL  
LOL  
PLL  
PLL  
n/a  
n/a  
n/a  
n/a  
n/a  
5
n/a  
n/a  
n/a  
n/a  
n/a  
40  
n/a  
n/a  
n/a  
n/a  
n/a  
25  
n/a  
n/a  
n/a  
n/a  
n/a  
2.1  
n/a  
n/a  
n/a  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
n/a  
n/a  
2.1  
2.1  
2.1  
2.1  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
5
20  
40  
50  
25  
2.1  
2.1  
n/a  
n/a  
n/a  
2.1  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
1
5
2
LOL  
LOR_PRI  
LOL  
LOR_PRI  
PLL  
n/a  
n/a  
n/a  
5
n/a  
n/a  
n/a  
40  
n/a  
n/a  
n/a  
25  
3
LOR_PRI  
LOL  
4
5
PLL  
6
LOR_PRI  
LOR_PRI  
LOR_PRI  
PLL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
n/a  
n/a  
n/a  
4
n/a  
n/a  
n/a  
51  
n/a  
n/a  
n/a  
25  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
PLL  
4
51  
25  
PLL  
5
30  
33.3333  
33.3333  
25  
PLL  
5
30  
PLL  
4
51  
PLL  
4
51  
25  
PLL  
4
51  
25  
PLL  
4
51  
25  
LOR_PRI  
LOR_PRI  
PLL  
n/a  
n/a  
5
n/a  
n/a  
40  
n/a  
n/a  
25  
PLL  
5
40  
25  
PLL  
5
40  
25  
PLL  
5
40  
25  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
Copyright © 2015–2018, Texas Instruments Incorporated  
63  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Table 15. Default ROM Contents (HW_SW_CTRL = 1) - Status Configuration (continued)  
STATUS1  
RISE/FALL  
TIME (ns)  
STATUS0  
RISE/FALL  
TIME (ns)  
GPIO[5:0]  
(decimal)  
STATUS1  
MUX  
STATUS0  
MUX  
STATUS1  
PREDIV  
STATUS1  
FREQ (MHz)  
STATUS0  
PREDIV  
STATUS0  
FREQ (MHz)  
STATUS1 DIV  
STATUS0 DIV  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
LOR_PRI  
PLL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
LOL  
n/a  
5
n/a  
15  
n/a  
66.6666  
66.6666  
66.6666  
66.6666  
n/a  
n/a  
2.1  
2.1  
2.1  
2.1  
n/a  
n/a  
n/a  
n/a  
2.1  
2.1  
2.1  
2.1  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
PLL  
5
15  
PLL  
5
15  
PLL  
5
15  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
PLL  
n/a  
n/a  
n/a  
n/a  
4
n/a  
n/a  
n/a  
n/a  
32  
n/a  
n/a  
n/a  
38.88  
38.88  
38.88  
38.88  
n/a  
PLL  
4
32  
PLL  
4
32  
PLL  
4
32  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
LOR_PRI  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
64  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Table 16. Default ROM Contents (HW_SW_CTRL = 1) – PLL Configuration(1)  
GPIO[5:0]  
(decimal)  
PLL IN  
MUX  
PLL IN  
(MHz)  
PLL R PLL M  
PLL N  
DIV INT  
PLL N DIV  
NUM  
PLL N  
DIV DEN  
PLL FRAC PLL FRAC  
PLL VCO  
(MHz)  
PLL TYPE  
PLL N DIV  
PLL P DIV  
DIV  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DIV  
1
1
1
1
1
1
24  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ORDER  
DITHER  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Disabled  
Disabled  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
0
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
50  
50  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Jitter Cleaner Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Fractional  
Clock Gen Integer  
Clock Gen Fractional  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
50  
50  
50  
0
1
n/a  
5000  
5000  
5000  
5000  
5000  
5000  
4915.2  
4915.2  
4915.2  
5100  
5100  
5000  
5000  
5100  
5100  
5100  
5100  
5000  
5000  
5000  
5000  
5000  
5000  
5000  
5000  
5000  
5000  
5000  
5000  
5000  
5000  
5
5
5
4
2
2
4
4
4
8
8
2
2
3
3
3
3
8
8
8
8
8
8
2
2
2
2
2
8
8
2
1
50  
0
1
n/a  
2
50  
50  
50  
0
1
n/a  
3
50  
50  
50  
0
1
n/a  
4
50  
50  
50  
0
1
n/a  
5
50  
50  
50  
0
1
n/a  
6
30.72  
19.2  
10  
3840  
3840  
256  
491  
102  
51  
0
1
n/a  
7
256  
0
1
n/a  
8
491.52  
1300000  
2500000  
Third  
n/a  
9
25  
102  
0
1
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
50  
51  
0
1
n/a  
25  
100  
100  
50  
0
1
n/a  
50  
50  
0
1
n/a  
25  
102  
102  
51  
0
1
n/a  
50  
51  
0
1
n/a  
25  
102  
102  
51  
0
1
n/a  
50  
51  
0
1
n/a  
25  
100  
100  
50  
0
1
n/a  
50  
50  
0
1
n/a  
25  
100  
50  
100  
50  
0
1
n/a  
50  
0
1
n/a  
19.44  
38.88  
25  
257.2016461  
128.600823  
100  
257  
128  
100  
50  
157536  
781250  
Third  
Third  
n/a  
469393  
781250  
0
1
50  
50  
0
1
n/a  
19.44  
38.88  
25  
257.2016461  
128.600823  
100  
257  
128  
100  
100  
100  
50  
157536  
781250  
Third  
Third  
n/a  
469393  
781250  
0
0
0
0
1
1
1
1
25  
100  
n/a  
25  
100  
n/a  
50  
50  
n/a  
(1) When PLL is set as an integer-based clock generator, external loop filter component, C2, should be 3.3nF and loop bandwidth is around 400kHz. When PLL is set as a fractional-based  
clock generator, external loop filter component, C2, should be 33nF and loop bandwidth is around 400kHz.  
Copyright © 2015–2018, Texas Instruments Incorporated  
65  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
PLL P DIV  
Table 16. Default ROM Contents (HW_SW_CTRL = 1) – PLL Configuration(1) (continued)  
GPIO[5:0]  
(decimal)  
PLL IN  
MUX  
PLL IN  
(MHz)  
PLL R PLL M  
PLL N  
DIV INT  
PLL N DIV  
NUM  
PLL N  
DIV DEN  
PLL FRAC PLL FRAC  
ORDER  
PLL VCO  
(MHz)  
PLL TYPE  
PLL N DIV  
DIV  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DIV  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DITHER  
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Disabled  
Disabled  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
REFSEL  
25  
25  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Fractional  
Clock Gen Fractional  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Fractional  
Clock Gen Integer  
Clock Gen Fractional  
Clock Gen Integer  
Clock Gen Fractional  
Clock Gen Fractional  
Clock Gen Fractional  
Clock Gen Integer  
Clock Gen Fractional  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Fractional  
Clock Gen Fractional  
Clock Gen Integer  
Clock Gen Fractional  
Clock Gen Fractional  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Integer  
Clock Gen Fractional  
100  
100  
100  
100  
100  
50  
0
1
n/a  
5000  
5000  
2
2
8
8
8
8
8
8
8
8
8
8
8
8
5
5
8
8
8
8
2
2
8
8
8
8
2
2
8
8
8
8
8
0
1
n/a  
25  
100  
0
1
n/a  
5000  
50  
50  
0
1
n/a  
5000  
19.44  
38.88  
25  
257.2016461  
128.600823  
100  
257  
128  
100  
50  
157536  
781250  
Third  
Third  
n/a  
5000  
469393  
781250  
5000  
0
1
5000  
50  
50  
0
1
n/a  
5000  
19.44  
38.88  
19.44  
38.88  
19.44  
38.88  
25  
257.2016461  
128.600823  
256  
257  
128  
256  
128  
256  
128  
100  
50  
157536  
781250  
Third  
Third  
n/a  
5000  
469393  
781250  
5000  
0
1
4976.64  
4976.64  
4976.64  
4976.64  
5000  
128  
0
1
n/a  
256  
0
1
n/a  
128  
0
1
n/a  
100  
0
1
n/a  
50  
50  
0
1
n/a  
5000  
25  
100  
100  
50  
0
1
n/a  
5000  
50  
50  
0
1
n/a  
5000  
25  
100  
100  
50  
0
1
n/a  
5000  
50  
50  
0
1
n/a  
5000  
25  
106.25  
53.125  
103.125  
51.5625  
265.2391976  
132.6195988  
100  
106  
53  
1000000  
4000000  
First  
First  
First  
First  
Third  
Third  
n/a  
5312.5  
5312.5  
5156.25  
5156.25  
5156.25  
5156.25  
5000  
50  
500000  
4000000  
25  
103  
51  
500000  
4000000  
50  
2250000  
4000000  
19.44  
38.88  
25  
265  
132  
100  
100  
100  
50  
597994  
2500000  
1548997  
2500000  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
25  
100  
n/a  
5000  
25  
100  
n/a  
5000  
50  
50  
n/a  
5000  
25  
100  
100  
50  
n/a  
5000  
50  
50  
n/a  
5000  
25  
100  
100  
n/a  
5000  
66  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Table 17. Default ROM Contents (HW_SW_CTRL = 1) - Outputs [0-4] Configuration  
GPIO[5:0]  
(decimal)  
OUT0-1  
DIVIDER  
OUT0-1 FREQ  
(MHz)  
OUT0  
TYPE  
OUT2-3  
DIVIDER  
OUT2-3 FREQ  
(MHz)  
OUT2  
TYPE  
OUT4 FREQ OUT4 MUX  
OUT1 TYPE  
OUT3 TYPE  
OUT4 DIV  
OUT4 TYPE  
(MHz)  
SELECT  
0
5
5
200  
LVDS  
LVDS  
LVDS  
LVDS  
10  
10  
10  
8
100  
LVDS  
LVDS  
LVDS  
LVDS  
1
1
n/a  
n/a  
Disable  
Disable  
LVDS  
1
200  
100  
n/a  
n/a  
2
10  
4
100  
LVDS  
LVDS  
100  
LVDS  
LVDS  
8
125  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
3
312.5  
125  
LVDS  
LVDS  
156.25  
156.25  
156.25  
245.76  
245.76  
245.76  
106.25  
106.25  
125  
LVPECL  
LVPECL  
LVPECL  
LVDS  
LVPECL  
LVPECL  
LVPECL  
LVDS  
10  
25  
16  
8
125  
LVDS  
4
20  
16  
4
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVDS  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVDS  
16  
16  
5
100  
LVPECL  
LVPECL  
LVDS  
5
156.25  
307.2  
307.2  
307.2  
106.25  
106.25  
156.25  
156.25  
106.25  
106.25  
425  
156.25  
153.6  
153.6  
153.6  
212.5  
212.5  
100  
6
7
4
5
LVPECL  
LVDS  
LVPECL  
LVDS  
8
LVDS  
8
4
5
8
LVDS  
9
6
6
LVPECL  
LVDS  
LVPECL  
LVDS  
3
LVPECL  
LVDS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
6
6
3
16  
16  
16  
16  
4
LVPECL  
LVDS  
LVPECL  
LVDS  
20  
20  
16  
16  
8
LVPECL  
LVDS  
LVPECL  
LVDS  
25  
25  
17  
17  
17  
17  
4
HCSL  
125  
100  
HCSL  
LVPECL  
LVDS  
LVPECL  
LVDS  
106.25  
106.25  
212.5  
212.5  
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
100  
LVPECL  
LVDS  
LVPECL  
LVDS  
100  
HCSL  
100  
HCSL  
LVPECL  
LVDS  
LVPECL  
LVDS  
LVPECL  
LVDS  
LVPECL  
LVDS  
100  
HCSL  
4
425  
8
100  
HCSL  
4
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
312.5  
156.25  
625  
LVPECL  
LVDS  
LVPECL  
LVDS  
4
LVPECL  
LVDS  
LVPECL  
LVDS  
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
100  
LVPECL  
LVDS  
4
4
4
4
LVPECL  
LVDS  
LVPECL  
LVDS  
4
LVPECL  
LVDS  
LVPECL  
LVDS  
4
LVPECL  
LVDS  
4
4
4
4
LVPECL  
LVDS  
LVPECL  
LVDS  
4
LVPECL  
LVDS  
LVPECL  
LVDS  
4
LVPECL  
LVDS  
4
4
4
16  
16  
16  
16  
16  
4
LVPECL  
LVDS  
LVPECL  
LVDS  
16  
16  
16  
16  
25  
4
LVPECL  
LVDS  
LVPECL  
LVDS  
25  
25  
25  
25  
50  
4
LVDS  
100  
LVDS  
LVPECL  
LVDS  
LVPECL  
LVDS  
LVPECL  
LVDS  
LVPECL  
LVDS  
100  
LVDS  
100  
LVDS  
LVPECL  
LVPECL  
LVPECL  
LVDS  
LVPECL  
LVPECL  
LVPECL  
LVDS  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
50  
LVPECL  
LVPECL  
LVPECL  
LVDS  
156.25  
156.25  
156.25  
156.25  
625  
156.25  
156.25  
156.25  
156.25  
100  
4
4
4
8
16  
16  
4
16  
16  
25  
16  
4
LVPECL  
LVDS  
LVPECL  
LVDS  
LVPECL  
LVDS  
Copyright © 2015–2018, Texas Instruments Incorporated  
67  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
OUT4 TYPE  
Table 17. Default ROM Contents (HW_SW_CTRL = 1) - Outputs [0-4] Configuration (continued)  
GPIO[5:0]  
(decimal)  
OUT0-1  
DIVIDER  
OUT0-1 FREQ  
(MHz)  
OUT0  
TYPE  
OUT2-3  
DIVIDER  
OUT2-3 FREQ  
(MHz)  
OUT2  
TYPE  
OUT4 FREQ OUT4 MUX  
OUT1 TYPE  
OUT3 TYPE  
OUT4 DIV  
(MHz)  
156.25  
156.25  
156.25  
156.25  
125  
SELECT  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
4
4
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
311.04  
311.04  
622.08  
622.08  
100  
LVPECL  
LVDS  
LVPECL  
LVDS  
4
4
156.25  
156.25  
156.25  
156.25  
125  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVDS  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVDS  
4
4
LVPECL  
LVDS  
4
LVPECL  
LVDS  
LVPECL  
LVDS  
4
4
LVPECL  
LVDS  
4
4
4
4
LVPECL  
LVDS  
LVPECL  
LVDS  
5
5
LVDS  
4
5
125  
LVDS  
LVDS  
5
125  
LVDS  
4
LVPECL  
LVDS  
LVPECL  
LVDS  
5
125  
HCSL  
HCSL  
5
125  
LVDS  
4
5
125  
LVDS  
LVDS  
5
125  
LVDS  
2
LVPECL  
LVDS  
LVPECL  
LVDS  
4
155.52  
155.52  
622.08  
622.08  
100  
LVDS  
LVDS  
4
155.52  
155.52  
155.52  
155.52  
250  
LVPECL  
LVDS  
2
4
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVDS  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVDS  
4
1
LVPECL  
LVDS  
LVPECL  
LVDS  
1
4
LVDS  
1
1
4
LVDS  
10  
10  
25  
25  
25  
25  
25  
25  
4
LVPECL  
LVDS  
LVPECL  
LVDS  
10  
10  
2
4
LVPECL  
LVDS  
100  
100  
4
250  
25  
LVPECL  
LVDS  
LVPECL  
LVDS  
312.5  
4
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
322.265625  
322.265625  
322.265625  
322.265625  
100  
LVPECL  
LVDS  
25  
2
312.5  
4
25  
LVPECL  
LVDS  
LVPECL  
LVDS  
4
156.25  
156.25  
106.25  
106.25  
161.1328125  
161.1328125  
161.1328125  
161.1328125  
156.25  
156.25  
312.5  
LVPECL  
LVDS  
LVPECL  
LVDS  
4
LVPECL  
LVDS  
25  
4
4
106.25  
106.25  
161.1328125  
161.1328125  
161.1328125  
161.1328125  
156.25  
156.25  
312.5  
LVPECL  
LVDS  
LVPECL  
LVDS  
25  
25  
4
LVPECL  
LVDS  
LVPECL  
LVDS  
17  
17  
2
LVPECL  
LVDS  
LVPECL  
LVDS  
LVPECL  
LVDS  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVDS  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVDS  
LVPECL  
LVDS  
4
4
2
4
LVPECL  
LVDS  
LVPECL  
LVDS  
4
2
LVPECL  
LVDS  
4
4
2
16  
16  
2
LVPECL  
LVDS  
LVPECL  
LVDS  
16  
16  
2
25  
25  
2
HCSL  
100  
HCSL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
312.5  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
2
312.5  
2
312.5  
2
312.5  
4
156.25  
156.25  
125  
4
156.25  
156.25  
125  
4
156.25  
156.25  
125  
4
4
4
5
5
5
68  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Table 18. Default ROM Contents (HW_SW_CTRL = 1) - Outputs [5-7] Configuration  
OUT5  
MUX  
SELECT  
GPIO[5:0]  
(decimal)  
OUT5 FREQ  
(MHz)  
OUT5  
TYPE  
OUT6 FREQ  
(MHz)  
OUT6 MUX  
SELECT  
OUT7 FREQ  
(MHz)  
OUT7 MUX  
SELECT  
OUT7  
TYPE  
OUT5 DIV  
OUT6 DIV  
OUT6 TYPE OUT7 DIV  
0
1
1
n/a  
n/a  
n/a  
Disable  
Disable  
LVDS  
1
1
n/a  
n/a  
n/a  
Disable  
Disable  
LVDS  
1
1
n/a  
n/a  
n/a  
Disable  
Disable  
LVDS  
1
n/a  
n/a  
n/a  
2
8
125  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
8
125  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
8
125  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
3
10  
20  
20  
8
125  
LVDS  
25  
16  
20  
10  
10  
10  
3
50  
LVDS  
25  
16  
20  
10  
10  
10  
3
50  
LVDS  
4
125  
LVPECL  
LVPECL  
LVDS  
156.25  
125  
LVPECL  
LVPECL  
LVDS  
156.25  
125  
LVPECL  
LVPECL  
LVDS  
5
125  
6
153.6  
153.6  
153.6  
212.5  
212.5  
100  
122.88  
122.88  
122.88  
212.5  
212.5  
25  
122.88  
122.88  
122.88  
212.5  
212.5  
25  
7
8
LVDS  
LVDS  
LVDS  
8
8
LVDS  
LVDS  
LVDS  
9
3
LVPECL  
LVDS  
LVPECL  
LVDS  
LVPECL  
LVDS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
3
3
3
25  
25  
17  
17  
34  
34  
4
HCSL  
100  
100  
17  
17  
3
LVDS  
100  
100  
17  
17  
16  
16  
5
LVCMOS  
LVCMOS  
HCSL  
100  
HCSL  
25  
LVDS  
25  
100  
HCSL  
100  
HCSL  
100  
100  
HCSL  
100  
HCSL  
100  
HCSL  
50  
LVDS  
566.67  
566.67  
125  
LVPECL  
LVPECL  
LVPECL  
LVDS  
106.25  
106.25  
125  
LVDS  
50  
LVDS  
3
LVDS  
156.25  
156.25  
125  
LVPECL  
LVDS  
5
LVPECL  
LVDS  
4
5
125  
5
125  
5
LVPECL  
LVDS  
5
125  
LVPECL  
LVDS  
5
125  
LVPECL  
LVDS  
5
125  
5
125  
5
125  
5
125  
LVPECL  
LVDS  
5
125  
LVPECL  
LVDS  
5
125  
LVPECL  
LVDS  
5
125  
5
125  
5
125  
25  
25  
25  
25  
20  
4
100  
LVDS  
20  
20  
20  
20  
25  
4
125  
LVDS  
20  
20  
20  
20  
100  
25  
25  
20  
100  
125  
LVDS  
100  
LVDS  
125  
LVDS  
125  
LVDS  
100  
LVDS  
125  
LVDS  
125  
LVDS  
100  
LVDS  
125  
LVDS  
125  
LVDS  
125  
LVPECL  
LVPECL  
LVCMOS  
LVDS  
100  
LVCMOS  
LVPECL  
LVCMOS  
LVDS  
25  
LVCMOS  
LVCMOS  
LVCMOS  
LVDS  
156.25  
25  
156.25  
25  
25  
25  
8
25  
25  
25  
25  
312.5  
100  
100  
125  
25  
HCSL  
100  
HCSL  
25  
LVPECL  
Copyright © 2015–2018, Texas Instruments Incorporated  
69  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Table 18. Default ROM Contents (HW_SW_CTRL = 1) - Outputs [5-7] Configuration (continued)  
OUT5  
MUX  
SELECT  
GPIO[5:0]  
(decimal)  
OUT5 FREQ  
(MHz)  
OUT5  
TYPE  
OUT6 FREQ  
(MHz)  
OUT6 MUX  
SELECT  
OUT7 FREQ  
(MHz)  
OUT7 MUX  
SELECT  
OUT7  
TYPE  
OUT5 DIV  
OUT6 DIV  
OUT6 TYPE OUT7 DIV  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
25  
4
100  
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
156.25  
155.52  
155.52  
155.52  
155.52  
250  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
LVDS  
LVPECL  
LVDS  
25  
5
100  
125  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
LVDS  
LVDS  
25  
5
100  
125  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
LVDS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVDS  
4
5
125  
LVDS  
5
125  
4
LVPECL  
LVDS  
5
125  
LVDS  
5
125  
4
5
125  
LVDS  
5
125  
4
LVPECL  
LVDS  
5
125  
LVDS  
5
125  
4
5
125  
LVDS  
5
125  
4
LVPECL  
LVDS  
5
125  
LVDS  
5
125  
4
5
125  
LVDS  
5
125  
4
LVPECL  
LVDS  
8
77.76  
77.76  
77.76  
77.76  
25  
LVDS  
8
77.76  
77.76  
77.76  
77.76  
66.67  
66.67  
312.5  
312.5  
125  
4
8
LVDS  
8
LVDS  
4
LVDS  
8
LVDS  
8
LVDS  
4
LVDS  
8
LVDS  
8
LVDS  
4
LVPECL  
LVDS  
40  
40  
5
LVCMOS  
LVCMOS  
LVPECL  
LVDS  
15  
15  
2
LVCMOS  
LVCMOS  
LVPECL  
LVDS  
4
250  
25  
10  
10  
5
62.5  
LVPECL  
LVDS  
125  
62.5  
5
125  
2
125  
LVPECL  
LVDS  
5
125  
LVPECL  
LVDS  
5
LVPECL  
LVDS  
5
125  
5
125  
5
125  
17  
17  
2
156.25  
156.25  
322.265625  
322.265625  
322.265625  
322.265625  
100  
LVPECL  
LVDS  
17  
17  
2
156.25  
156.25  
322.265625  
322.265625  
322.265625  
322.265625  
100  
LVPECL  
LVDS  
17  
17  
2
156.25  
156.25  
322.265625  
322.265625  
322.265625  
322.265625  
100  
LVPECL  
LVDS  
LVPECL  
LVDS  
LVPECL  
LVDS  
LVPECL  
LVDS  
2
2
2
2
LVPECL  
LVDS  
2
LVPECL  
LVDS  
2
LVPECL  
LVDS  
2
2
2
25  
25  
2
HCSL  
25  
25  
2
HCSL  
25  
25  
2
HCSL  
100  
HCSL  
100  
HCSL  
100  
HCSL  
312.5  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
312.5  
312.5  
156.25  
156.25  
125  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
312.5  
312.5  
156.25  
156.25  
125  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
2
312.5  
2
2
4
156.25  
156.25  
125  
4
4
4
4
4
5
5
5
70  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.6 Register Maps  
The register map is shown in the table below. The registers occupy a single unified address space and all registers are accessible at any time. A total of  
103 registers are present in the LMK03318.  
Name  
Address Reset  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
VNDRID_BY1  
VNDRID_BY0  
PRODID  
0
1
2
3
4
8
0x10  
0x0B  
0x33  
0x02  
0x01  
0x00  
VNDRID[15:8]  
VNDRID[7:0]  
PRODID[7:0]  
REVID[7:0]  
PRTID[7:0]  
REVID  
PARTID  
PINMODE_SW  
HW_SW_CTR GPIO32_SW_MODE[2:0]  
L_MODE  
RSRVD  
PINMODE_HW  
SLAVEADR  
EEREV  
9
0x00  
0x50  
0x00  
0xD9  
GPIO_HW_MODE[5:0]  
SLAVEADR_GPIO1_SW[7:1]  
EEREV[7:0]  
RSRVD  
10  
11  
12  
RSRVD  
DEV_CTL  
RESETN_SW SYNCN_SW  
RSRVD  
SYNC_AUTO  
SYNC_MUTE  
AONAFTER  
LOCK  
PLLSTRTMODE AUTOSTRT  
INT_LIVE  
13  
14  
0x00  
0x00  
LOL  
LOS  
CAL  
RSRVD  
RSRVD  
SECTOPRI  
RSRVD  
RSRVD  
INT_MASK  
LOL_MASK  
LOS_MASK  
CAL_MASK  
SECTOPRI_  
MASK  
INT_FLAG_POL 15  
0x00  
0x00  
LOL_POL  
LOL_INTR  
RSRVD  
LOS_POL  
LOS_INTR  
CAL_POL  
CAL_INTR  
RSRVD  
RSRVD  
SECTOPRI_  
POL  
RSRVD  
RSRVD  
INT_EN  
INT_FLAG  
16  
SECTOPRI_  
INTR  
INTCTL  
17  
18  
0x00  
0x00  
INT_AND_OR  
OSCCTL2  
RISE_VALID_ FALL_VALID_  
SEC  
RISE_VALID_  
PRI  
FALL_VALID_  
PRI  
RSRVD  
SEC  
STATCTL  
19  
0x00  
RSRVD  
STAT1_SHOOT_ STAT0_SHOOT_ RSRVD  
THRU_LIMIT THRU_LIMIT  
STAT1_OPEND STAT0_OPEND  
MUTELVL1  
MUTELVL2  
OUT_MUTE  
20  
21  
22  
0x55  
0x55  
0xFF  
0x02  
CH3_MUTE_LVL[1:0]  
CH7_MUTE_LVL[1:0]  
CH2_MUTE_LVL[1:0]  
CH6_MUTE_LVL[1:0]  
CH1_MUTE_LVL[1:0]  
CH5_MUTE_LVL[1:0]  
CH0_MUTE_LVL[1:0]  
CH4_MUTE_LVL[1:0]  
CH_7_MUTE  
RSRVD  
CH_6_MUTE  
CH_5_MUTE  
CH_4_MUTE  
CH_3_MUTE  
CH_2_MUTE  
CH_1_MUTE  
CH_0_MUTE  
STATUS_MUTE 23  
STATUS1_  
MUTE  
STATUS0_  
MUTE  
DYN_DLY  
24  
0x00  
RSRVD  
DIV_7_DYN_  
DLY  
DIV_6_DYN_  
DLY  
DIV_5_DYN_  
DLY  
DIV_4_DYN_  
DLY  
DIV_23_DYN_  
DLY  
DIV_01_DYN_  
DLY  
REFDETCTL  
STAT0_INT  
STAT1  
25  
27  
28  
0x55  
0x58  
0x28  
DETECT_MODE_SEC[1:0]  
STAT0_SEL[3:0]  
DETECT_MODE_PRI[1:0]  
LVL_SEL_SEC[1:0]  
STAT0_POL  
LVL_SEL_PRI[1:0]  
RSRVD  
RSRVD  
STAT1_SEL[3:0]  
STAT1_POL  
Copyright © 2015–2018, Texas Instruments Incorporated  
71  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Register Maps (continued)  
Name  
Address Reset  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
OSCCTL1  
29  
0x06  
DETECT_BYP RSRVD  
TERM2GND_  
SEC  
TERM2GND_  
PRI  
DIFFTERM_SEC DIFFTERM_PRI AC_MODE_SEC AC_MODE_PRI  
PWDN  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
0x00  
0xB0  
0x30  
0x01  
0xB0  
0x30  
0x03  
0x18  
0x02  
0x18  
0x02  
0x18  
0x05  
0x18  
0x05  
0x0A  
0x00  
0x00  
0x95  
0x03  
RSRVD  
RSRVD  
RSRVD  
CMOSCHPWDN CH7PWDN  
OUT_0_SEL[1:0]  
CH6PWDN  
CH5PWDN  
CH4PWDN  
CH23PWDN  
CH01PWDN  
RSRVD  
OUTCTL_0  
OUTCTL_1  
OUTDIV_0_1  
OUTCTL_2  
OUTCTL_3  
OUTDIV_2_3  
OUTCTL_4  
OUTDIV_4  
OUTCTL_5  
OUTDIV_5  
OUTCTL_6  
OUTDIV_6  
OUTCTL_7  
OUTDIV_7  
OUT_0_MODE1[1:0]  
OUT_1_MODE1[1:0]  
OUT_0_MODE2[1:0]  
OUT_1_MODE2[1:0]  
OUT_1_SEL[1:0]  
RSRVD  
OUT_0_1_DIV[7:0]  
RSRVD  
RSRVD  
OUT_2_SEL[1:0]  
OUT_3_SEL[1:0]  
OUT_2_MODE1[1:0]  
OUT_3_MODE1[1:0]  
OUT_2_MODE2[1:0]  
OUT_3_MODE2[1:0]  
RSRVD  
RSRVD  
OUT_2_3_DIV[7:0]  
CH_4_MUX[1:0]  
OUT_4_DIV[7:0]  
CH_5_MUX[1:0]  
OUT_5_DIV[7:0]  
CH_6_MUX[1:0]  
OUT_6_DIV[7:0]  
CH_7_MUX[1:0]  
OUT_7_DIV[7:0]  
RSRVD  
OUT_4_SEL[1:0]  
OUT_5_SEL[1:0]  
OUT_6_SEL[1:0]  
OUT_7_SEL[1:0]  
PLLCMOSPREDIV[1:0]  
OUT_4_MODE1[1:0]  
OUT_4_MODE2[1:0]  
OUT_5_MODE1[1:0]  
OUT_6_MODE1[1:0]  
OUT_7_MODE1[1:0]  
STATUS1MUX[1:0]  
OUT_5_MODE2[1:0]  
OUT_6_MODE2[1:0]  
OUT_7_MODE2[1:0]  
STATUS0MUX[1:0]  
CMOSDIVCTRL 45  
CMOSDIV0 46  
STATUS_SLEW 49  
CMOSDIV0[7:0]  
RSRVD  
STATUS1SLEW[1:0]  
RSRVD  
STATUS0SLEW[1:0]  
INSEL_PLL[1:0]  
IPCLKSEL  
IPCLKCTL  
50  
51  
SECBUFSEL[1:0]  
PRIBUFSEL[1:0]  
CLKMUX_  
BYPASS  
RSRVD  
SECONSWITCH SECBUFGAIN  
PRIBUFGAIN  
PLL_RDIV  
PLL_MDIV  
PLL_CTRL0  
PLL_CTRL1  
52  
53  
56  
57  
0x00  
0x00  
0x1E  
0x18  
0x00  
0x66  
0x00  
RSRVD  
PLLRDIV[2:0]  
RSRVD  
PLLMDIV[4:0]  
RSRVD  
PLL_P[2:0]  
PRI_D  
PLL_SYNC_EN PLL_PDN  
RSRVD  
PLL_CP[3:0]  
PLL_NDIV_BY1 58  
PLL_NDIV_BY0 59  
RSRVD  
PLL_NDIV[11:8]  
PLL_NDIV[7:0]  
RSRVD  
PLL_  
FRACNUM_BY2  
60  
61  
62  
PLL_NUM[21:16]  
PLL_  
FRACNUM_BY1  
0x00  
0x00  
PLL_NUM[15:8]  
PLL_NUM[7:0]  
PLL_  
FRACNUM_BY0  
72  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Register Maps (continued)  
Name  
Address Reset  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
PLL_  
FRACDEN_BY2  
63  
64  
65  
66  
0x00  
0x00  
0x00  
0x0C  
RSRVD  
PLL_DEN[21:16]  
PLL_  
FRACDEN_BY1  
PLL_DEN[15:8]  
PLL_DEN[7:0]  
RSRVD  
PLL_  
FRACDEN_BY0  
PLL_  
PLL_DTHRMODE[1:0]  
PLL_ORDER[1:0]  
MASHCTRL  
PLL_LF_R2  
PLL_LF_C1  
PLL_LF_R3  
67  
68  
69  
0x24  
0x00  
0x00  
RSRVD  
RSRVD  
RSRVD  
PLL_LF_R2[5:0]  
PLL_LF_C1[2:0]  
PLL_LF_R3[5:0]  
PLL_LF_INT_FR  
AC  
PLL_LF_C3  
SEC_CTRL  
70  
72  
0x00  
0x18  
0x00  
0x00  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
PLL_LF_C3[2:0]  
SEC_D  
RSRVD  
MARGIN_OPTION[1:0]  
XO_MARGINING 86  
MARGIN_DIG_STEP[2:0]  
RSRVD  
RSRVD  
XO_OFFSET_  
GPIO5_STEP_1  
_BY1  
88  
89  
90  
91  
92  
93  
94  
95  
XOOFFSET_STEP1[9:8]  
XOOFFSET_STEP2[9:8]  
XOOFFSET_STEP3[9:8]  
XOOFFSET_STEP4[9:8]  
XO_OFFSET_  
GPIO5_STEP_1  
_BY0  
0xDE  
0x01  
0x18  
0x01  
0x4B  
0x01  
0x86  
XOOFFSET_STEP1[7:0]  
RSRVD  
XO_OFFSET_  
GPIO5_STEP_2  
_BY1  
XO_OFFSET_  
GPIO5_STEP_2  
_BY0  
XOOFFSET_STEP2[7:0]  
RSRVD  
XO_OFFSET_  
GPIO5_STEP_3  
_BY1  
XO_OFFSET_  
GPIO5_STEP_3  
_BY0  
XOOFFSET_STEP3[7:0]  
RSRVD  
XO_OFFSET_  
GPIO5_STEP_4  
_BY1  
XO_OFFSET_  
GPIO5_STEP_4  
_BY0  
XOOFFSET_STEP4[7:0]  
Copyright © 2015–2018, Texas Instruments Incorporated  
73  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Register Maps (continued)  
Name  
Address Reset  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
XO_OFFSET_  
GPIO5_STEP_5  
_BY1  
96  
0x01  
0xBE  
0x01  
0xFE  
0x02  
0x47  
0x02  
0x9E  
RSRVD  
XOOFFSET_STEP5[9:8]  
XOOFFSET_STEP6[9:8]  
XOOFFSET_STEP7[9:8]  
XOOFFSET_STEP8[9:8]  
XOOFFSET_SW[9:8]  
XO_OFFSET_  
GPIO5_STEP_5  
_BY0  
97  
XOOFFSET_STEP5[7:0]  
RSRVD  
XO_OFFSET_  
GPIO5_STEP_6  
_BY1  
98  
XO_OFFSET_  
GPIO5_STEP_6  
_BY0  
99  
XOOFFSET_STEP6[7:0]  
RSRVD  
XO_OFFSET_  
GPIO5_STEP_7  
_BY1  
100  
101  
102  
103  
XO_OFFSET_  
GPIO5_STEP_7  
_BY0  
XOOFFSET_STEP7[7:0]  
RSRVD  
XO_OFFSET_  
GPIO5_STEP_8  
_BY1  
XO_OFFSET_  
GPIO5_STEP_8  
_BY0  
XOOFFSET_STEP8[7:0]  
XO_OFFSET_  
SW_BY1  
104  
105  
117  
0x00  
0x00  
0x00  
RSRVD  
XO_OFFSET_  
SW_BY0  
XOOFFSET_SW[7:0]  
PLL_CTRL2  
PLL_STRETC RSRVD  
H
PLL_CTRL3  
118  
119  
0x03  
0x01  
RSRVD  
RSRVD  
PLL_DISABLE_4TH[2:0]  
PLL_CLSDWAIT[1:0] PLL_VCOWAIT[1:0]  
PLL_  
CALCTRL0  
PLL_  
120  
0x00  
RSRVD  
PLL_LOOPBW  
CALCTRL1  
NVMSCRC  
NVMCNT  
135  
136  
137  
138  
139  
0x00  
0x00  
0x10  
0x00  
0x00  
NVMSCRC[7:0]  
NVMCNT[7:0]  
NVMCTL  
RSRVD  
REGCOMMIT  
NVMCRCERR  
NVMAUTOCRC NVMCOMMIT  
MEMADR[11:8]  
NVMBUSY  
RSRVD  
NVMPROG  
NVMLCRC  
MEMADR_BY1  
NVMLCRC[7:0]  
RSRVD  
74  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Register Maps (continued)  
Name  
Address Reset  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
MEMADR_BY0  
NVMDAT  
RAMDAT  
ROMDAT  
NVMUNLK  
140  
141  
142  
143  
144  
145  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
MEMADR[7:0]  
NVMDAT[7:0]  
RAMDAT[7:0]  
ROMDAT[7:0]  
NVMUNLK[7:0]  
RSRVD  
REGCOMMIT_  
PAGE  
REGCOMMIT_PG[3:0]  
XOCAPCTRL_  
BY1  
199  
200  
0x00  
0x00  
RSRVD  
XO_CAP_CTRL[9:8]  
XOCAPCTRL_  
BY0  
XO_CAP_CTRL[7:0]  
Copyright © 2015–2018, Texas Instruments Incorporated  
75  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.6.1 VNDRID_BY1 Register; R0  
The VNDRID_BY1 and VNDRID_BY0 registers are used to store the unique 16-bit Vendor Identification number  
assigned to I2C vendors.  
Bit # Field  
Type Reset  
0x10  
EEPRO Description  
M
[7:0] VNDRID[15:8]  
R
N
Vendor Identification Number Byte 1. The Vendor Identification Number is a  
unique 16-bit identification number assigned to I2C vendors.  
10.6.2 VNDRID_BY0 Register; R1  
The VNDRID_BY0 register is described in the following table.  
Bit # Field  
Type Reset  
0x0B  
EEPROM Description  
N Vendor Identification Number Byte 0.  
[7:0] VNDRID[7:0]  
R
10.6.3 PRODID Register; R2  
The PRODID register is used to identify the LMK03318 device.  
Bit # Field  
Type Reset  
0x33  
EEPROM Description  
Product Identification Number. The Product Identification Number is a unique 8-  
bit identification number used to identify the LMK03318.  
[7:0] PRODID[7:0]  
R
N
10.6.4 REVID Register; R3  
The REVID register is used to identify the LMK03318 mask revision.  
Bit # Field  
Type Reset  
0x02  
EEPROM Description  
Device Revision Number. The Device Revision Number is used to identify the  
LMK03318 die revision  
[7:0] REVID[7:0]  
R
N
10.6.5 PARTID Register; R4  
Each LMK03318 device can be identified by a unique 8-bit number stored in the PARTID register. This register is  
always initialized from on-chip EEPROM.  
Bit # Field  
Type Reset EEPROM Description  
[7:0] PRTID[7:0]  
R
0x01  
Y
Part Identification Number. The Part Identification Number is a unique 8-bit  
number which is used to serialize individual LMK03318 devices. The Part  
Identification Number is factory programmed and cannot be modified by the user.  
76  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.6.6 PINMODE_SW Register; R8  
The PINMODE_SW register records the device configuration setting. The configuration setting is registered when  
the reset is deasserted.  
Bit # Field  
[7] HW_SW_CTRL_M  
ODE  
Type Reset EEPROM  
Description  
R
0
N
HW_SW_CTRL Pin Configuration. The HW_SW_CTRL_MODE field reflects the  
values sampled on the HW_SW_CTRL pin on the most recent device reset.  
HW_SW_CTRL_MOD HW_SW_CTRL  
E
0
1
Soft Pin Mode  
Hard Pin Mode  
[6:4] GPIO32_SW_MO  
DE[2:0]  
R
0x0  
N
GPIO32_SW Pin Configuration Mode. The GPIO_SW_MODE field reflects the  
values sampled on the GPIO[3:2] pins when HW_SW_CTRL is 0 on the most  
recent device reset. When HW_SW_CTRL is 1 this field reads back 0x0.  
GPIO_SW_MODE  
0 (0x0)  
GPIO[3]  
GPIO[2]  
0
0
0
1
1
1
0
Z
1
0
Z
1
1 (0x1)  
2 (0x2)  
3 (0x3)  
4 (0x4)  
5 (0x5)  
[3:0] RSRVD  
-
-
N
Reserved.  
10.6.7 PINMODE_HW Register; R9  
The PINMODE_HW register records the device configuration setting. The configuration setting is registered when  
the reset is deasserted.  
Bit # Field  
Type Reset EEPROM  
R 0x00 N  
Description  
[7:2] GPIO_HW_MOD  
E[5:0]  
GPIO_HW[5:0] Pin Configuration Mode. The GPIO_HW_MODE field reflects the  
values sampled on pins GPIO[5:0] when HW_SW_CTRL is 1 on the most recent  
device reset. When HW_SW_CTRL is 0 this field reads back 0x0.  
GPIO_HW_MODE  
0 (0x00)  
1 (0x01)  
2 (0x02)  
..  
GPIO[5:0]  
0x00  
0x01  
0x02  
..  
..  
..  
61 (0x3D)  
62 (0x3E)  
63 (0x3F)  
Reserved.  
0x3D  
0x3E  
0x3F  
[1:0] RSRVD  
-
-
N
10.6.8 SLAVEADR Register; R10  
The SLAVEADR register reflects the 7-bit I2C Slave Address value initialized from on-chip EEPROM.  
Bit # Field  
Type Reset EEPROM  
R 0x50 Y  
Description  
[7:1] SLAVEADR_GPI  
O1_SW[7:1]  
I2C Slave Address. This field holds the 7-bit Slave Address used to identify this  
device during I2C transactions. When HW_SW_CTRL is 0 the two least significant  
bits of the address can be configured using GPIO[1] as shown. When  
HW_SW_CTRL is 1 then the two least significant bits are 00.  
SLAVEADR_GPIO1_SW[2:1]  
GPIO[1]  
0 (0x0)  
0
1 (0x1)  
VIM  
1
3 (0x3)  
[0]  
RSRVD  
-
-
N
Reserved.  
Copyright © 2015–2018, Texas Instruments Incorporated  
77  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.6.9 EEREV Register; R11  
The EEREV register provides EEPROM/ROM image revision record and is initialized from EEPROM or ROM.  
Bit # Field  
Type Reset EEPROM Description  
[7:0] EEREV[7:0]  
R
0x0  
Y
EEPROM Image Revision ID. EEPROM Image Revision is automatically retrieved  
from EEPROM and stored in the EEREV register after a reset or after a EEPROM  
commit operation.  
10.6.10 DEV_CTL Register; R12  
The DEV_CTL register holds the control functions described in the following table.  
Bit Field  
#
Type Reset EEPROM Description  
[7] RESETN_SW  
RW  
RW  
1
1
N
Software Reset ALL functions (active low). Writing a 0 will cause the device to return  
to its power-up state apart from the I2C registers and the configuration controller.  
The configuration controller is excluded to prevent a re-transfer of EEPROM data to  
on-chip registers.  
[6] SYNCN_SW  
N
Software SYNC Assertion (active low). Writing a 0 to this bit is equivalent to  
asserting the GPIO0 pin.  
[5] RSRVD  
-
-
N
Y
Reserved.  
[4] SYNC_AUTO  
RW  
1
Automatic Synchronization at startup. When SYNC_AUTO is 1 at device startup a  
synchronization sequence is initiated automatically after PLL lock has been  
achieved.  
[3] SYNC_MUTE  
RW  
1
0
Y
Synchronization Mute Control. The SYNC_MUTE field determines whether or not  
the output drivers are muted during a Synchronization event.  
SYNC_MUTE  
SYNC Mute Behaviour  
0
1
Do not mute any outputs during SYNC  
Mute all outputs during SYNC  
[2] AONAFTERLOCK RW  
Y
Always On Clock behaviour after Lock. If AONAFTERLOCK is 0 then the system  
clock is switched from the Always On Clock to the VCO Clock after lock and the  
Always On Clock oscillator is disabled. If AONAFTERLOCK is 1 then the Always on  
Clock will remain as the digital system clock regardless of the PLL Lock state. TI  
recommends setting the AONAFTERLOCK to 1.  
[1] RSRVD  
RW  
RW  
0
1
Y
Y
Reserved.  
[0] AUTOSTRT  
Autostart. If AUTOSTRT is set to 1 the device will automatically attempt to achieve  
lock and enable outputs after a device reset. A device reset can be triggered by the  
power-on-reset, RESETn pin or by writing to the RESETN_SW bit. If AUTOSTRT is  
0 then the device will halt after the configuration phase, a subsequent write to set  
the AUTOSTRT bit to 1 will trigger the PLL Lock sequence.  
10.6.11 INT_LIVE Register; R13  
The INT_LIVE register reflects the current status of the interrupt sources, regardless of the state of the INT_EN  
bit.  
Bit # Field  
Type Reset EEPROM Description  
[7]  
[6]  
LOL  
LOS  
R
R
0
0
N
N
Loss of lock on PLL.  
Loss of input signal to PLL. If input signal to PLL is lost and as a result PLL is  
unlocked, LOS will take precedence over LOL and only LOS will be set to 1.  
[5]  
CAL  
R
-
0
-
N
N
N
N
VCO calibration active on PLL.  
[4:2] RSRVD  
Reserved.  
[1]  
[0]  
SECTOPRI  
RSRVD  
R
-
0
-
Switch from secondary reference to primary reference in automatic mode for PLL.  
Reserved.  
78  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.6.12 INT_MASK Register; R14  
The INT_MASK register allows masking of the interrupt sources.  
Bit # Field  
Type Reset EEPROM Description  
[7]  
[6]  
[5]  
LOL_MASK  
RW  
RW  
RW  
RW  
0
0
0
Y
Y
Y
Mask loss of lock on PLL. When LOL_MASK is 1 then the LOL interrupt source is  
masked and will not cause the interrupt signal to be activated.  
LOS_MASK  
CAL_MASK  
Mask loss of input signal to PLL. When LOS_MASK is 1 then the LOS interrupt  
source is masked and will not cause the interrupt signal to be activated.  
Mask VCO calibration active on PLL. When CAL_MASK is 1 then the CAL interrupt  
source is masked and will not cause the interrupt signal to be activated.  
[4:2] RSRVD  
0
0
Y
Y
Reserved.  
[1]  
SECTOPRI_MAS RW  
K
Mask switch from secondary reference to primary reference for PLL. When  
SECTOPRI_MASK is 1 then the SECTOPRI interrupt source is masked and will not  
cause the interrupt signal to be activated.  
[0]  
RSRVD  
RW  
0
Y
Reserved.  
10.6.13 INT_FLAG_POL Register; R15  
The INT_FLAG_POL register controls the signal polarity that sets the Interrupt Flags.  
Bit # Field  
Type Reset EEPRO  
M
Description  
[7]  
[6]  
[5]  
LOL_POL  
RW  
RW  
RW  
RW  
0
0
0
Y
Y
Y
LOL Flag Polarity. When LOL_POL is 1 then a rising edge on LOL will set the  
LOL_INTR bit of the INTERRUPT_FLAG register. When LOL_POL is 0 then a falling  
edge on LOL will set the LOL_INTR bit.  
LOS_POL  
CAL_POL  
LOS Flag Polarity. When LOS_POL is 1 then a rising edge on LOS will set the  
LOS_INTR bit of the INTERRUPT_FLAG register. When LOS_POL is 0 then a falling  
edge on LOS will set the LOS_INTR bit.  
CAL Flag Polarity. When CAL_POL is 1 then a rising edge on CAL will set the  
CAL_INTR bit of the INTERRUPT_FLAG register. When CAL_POL is 0 then a falling  
edge on CAL1 will set the CAL_INTR bit.  
[4:2] RSRVD  
0
0
Y
Y
Reserved.  
[1]  
SECTOPRI_POL RW  
SECTOPRI Flag Polarity. When SECTOPRI_POL is 1 then a rising edge on  
SECTOPRI will set the SECTOPRI_INTR bit of the INTERRUPT_FLAG register.  
When SECTOPRI_POL is 0 then a falling edge on SECTOPRI will set the  
SECTOPRI_INTR bit.  
[0]  
RSRVD  
RW  
0
Y
Reserved.  
10.6.14 INT_FLAG Register; R16  
The INT_FLAG register records rising or falling edges on the interrupt sources. The polarity is controlled by the  
INT_FLAG_POL register. This register is only updated if the INT_EN register bit is set to 1.  
Bit # Field  
Type Reset EEPRO  
M
Description  
[7]  
[6]  
[5]  
LOL_INTR  
R
R
R
0
0
0
N
N
N
LOL Interrupt. The LOL_INTR bit is set when an edge of the correct polarity is  
detected on the LOL interrupt source. The LOL_INTR bit is cleared by writing a 0.  
LOS_INTR  
CAL_INTR  
LOS Interrupt. The LOS_INTR bit is set when an edge of the correct polarity is  
detected on the LOS interrupt source. The LOS_INTR bit is cleared by writing a 0.  
CAL Interrupt. The CAL_INTR bit is set when an edge of the correct polarity is  
detected on the CAL interrupt source. The CAL_INTR bit is cleared by writing a 0.  
[4:2] RSRVD  
R
R
0
0
N
N
Reserved.  
[1]  
SECTOPRI_INTR  
SECTOPRI Interrupt. The SECTOPRI_INTR bit is set when an edge of the correct  
polarity is detected on the SECTOPRI interrupt source. The SECTOPRI_INTR bit is  
cleared by writing a 0.  
[0]  
RSRVD  
R
0
N
Reserved.  
Copyright © 2015–2018, Texas Instruments Incorporated  
79  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.6.15 INTCTL Register; R17  
The INTCTL register allows configuration of the Interrupt operation.  
Bit # Field  
Type Reset EEPROM Description  
[7:2] RSRVD  
-
-
N
Y
Reserved.  
[1]  
INT_AND_OR  
RW  
0
Interrupt AND/OR Combination. If INT_AND_OR is 1 then the interrupts are  
combined in an AND structure. In which case ALL un mAsked interrupt flags must be  
active to generate the interrupt. If INT_AND_OR is 0 then the interrupts are  
combined in an OR structure. In which case ANY un mAsked interrupt flags can  
generate the interrupt  
INT_AND_OR  
Interrupt Function  
0
1
OR  
AND  
[0]  
INT_EN  
RW  
0
Y
Interrupt Enable. If INT_EN is 1 then the interrupt circuit is enabled, if INT_EN is 0  
the interrupt circuit is disabled. When INT_EN is 0, interrupts cannot be signalled on  
the STATUS pins and the INT_FLAG registers will not be updated, however the  
INT_LIVE register will still reflect the current state of the internal interrupt signals.  
10.6.16 OSCCTL2 Register; R18  
The OSCCTL2 register provides access to input reference status signals  
Bit Field  
#
Type Rese EEPROM Description  
t
[7] RISE_VALID_SEC  
[6] FALL_VALID_SEC  
[5] RISE_VALID_PRI  
[4] FALL_VALID_PRI  
R
R
R
R
-
0
0
0
0
-
N
N
N
N
N
Secondary Input Rising Valid Indicator from Slew Rate Detector.  
Secondary Input Falling Valid Indicator from Slew Rate Detector.  
Primary Input Rising Valid Indicator from Slew Rate Detector.  
Primary Input Falling Valid Indicator from Slew Rate Detector.  
Reserved.  
[3:0 RSRVD  
]
10.6.17 STATCTL Register; R19  
The STATCTL register provides to STATUS0/1 output driver control signals.  
Bit # Field  
Type Reset EEPROM Description  
[7:6] RSRVD  
-
-
N
Y
Reserved.  
[5]  
STAT1_SHOOT_ RW  
THRU_LIMIT  
0
STATUS1 Output Shoot Through Current Limit. When  
STAT1_SHOOT_THRU_LIMIT is 1 then the transient current spikes are minimized,  
the performance of the STATUS1 output is degraded in this mode.  
[4]  
STAT0_SHOOT_ RW  
THRU_LIMIT  
0
Y
STATUS0 Output Shoot Through Current Limit. When  
STAT0_SHOOT_THRU_LIMIT is 1 then the transient current spikes are minimized,  
the performance of the STATUS0 output is degraded in this mode.  
[3:2] RSRVD  
RW 0x0  
Y
Y
Reserved.  
[1]  
STAT1_OPEND  
RW  
0
STATUS1 Open Drain Enable. When STAT1_OPEND is 1 the STATUS1 output is  
configured as an open drain output driver.  
[0]  
STAT0_OPEND  
RW  
0
Y
STATUS0 Open Drain Enable. When STAT0_OPEND is 1 the STATUS0 output is  
configured as an open drain output driver.  
80  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.6.18 MUTELVL1 Register; R20  
The MUTELVL1 register determines the Output Driver during mute for output drivers 0 to 3.  
Bit # Field  
Type Res EEPROM Description  
et  
[7:6] CH3_MUTE_LVL RW 0x1  
[1:0]  
Y
Y
Y
Channel 3 Output Driver Mute Level. CH3_MUTE_LVL determines the configuration of  
the CH3 Output Driver during mute as shown in the following table and is  
recommended to be set to 0x3. CH3_MUTE_LVL does not determine whether the  
CH3 driver is muted or not, instead this is determined by the CH_3_MUTE register bit.  
CH3_MUTE_LVL  
0 (0x0)  
DIFF MODE  
CMOS MODE  
CH3 Mute Bypass  
CH3 Mute Bypass  
1 (0x1)  
Powerdown, output goes to Out_P Normal Operation,  
Vcm  
Out_N Force Output Low  
2 (0x2)  
3 (0x3)  
Force output High  
Out_P Force Output Low,  
Out_N Normal Operation  
Force the positive output  
node to the internal  
Out_P Force Output Low,  
Out_N Force Output Low  
regulator output voltage rail  
(when AC coupled to load)  
and the negative output  
node to the GND rail  
[5:4] CH2_MUTE_LVL RW 0x1  
[1:0]  
Channel 2 Output Driver Mute Level. CH2_MUTE_LVL determines the configuration of  
the CH2 Output Driver during mute as shown in the following table and is  
recommended to be set to 0x3. CH2_MUTE_LVL does not determine whether the  
CH2 driver is muted or not, instead this is determined by the CH_2_MUTE register bit.  
CH2_MUTE_LVL  
0 (0x0)  
DIFF MODE  
CMOS MODE  
CH2 Mute Bypass  
CH2 Mute Bypass  
1 (0x1)  
Powerdown, output goes to Out_P Normal Operation,  
Vcm  
Out_N Force Output Low  
2 (0x2)  
3 (0x3)  
Force output High  
Out_P Force Output Low,  
Out_N Normal Operation  
Force the positive output  
node to the internal  
Out_P Force Output Low,  
Out_N Force Output Low  
regulator output voltage rail  
(when AC coupled to load)  
and the negative output  
node to the GND rail  
[3:2] CH1_MUTE_LVL RW 0x1  
[1:0]  
Channel 1 Output Driver Mute Level. CH1_MUTE_LVL determines the configuration of  
the CH1 Output Driver during mute as shown in the following table and is  
recommended to be set to 0x3. CH1_MUTE_LVL does not determine whether the  
CH1 driver is muted or not, instead this is determined by the CH_1_MUTE register bit.  
CH1_MUTE_LVL  
0 (0x0)  
DIFF MODE  
CMOS MODE  
CH1 Mute Bypass  
CH1 Mute Bypass  
1 (0x1)  
Powerdown, output goes to Out_P Normal Operation,  
Vcm  
Out_N Force Output Low  
2 (0x2)  
3 (0x3)  
Force output High  
Out_P Force Output Low,  
Out_N Normal Operation  
Force the positive output  
node to the internal  
Out_P Force Output Low,  
Out_N Force Output Low  
regulator output voltage rail  
(when AC coupled to load)  
and the negative output  
node to the GND rail  
Copyright © 2015–2018, Texas Instruments Incorporated  
81  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Bit # Field  
Type Res EEPROM Description  
et  
[1:0] CH0_MUTE_LVL RW 0x1  
[1:0]  
Y
Channel 0 Output Driver Mute Level. CH0_MUTE_LVL determines the configuration of  
the CH0 Output Driver during mute as shown in the following table and is  
recommended to be set to 0x3. CH0_MUTE_LVL does not determine whether the  
CH0 driver is muted or not, instead this is determined by the CH_0_MUTE register bit.  
CH0_MUTE_LVL  
0 (0x0)  
DIFF MODE  
CMOS MODE  
CH0 Mute Bypass  
CH0 Mute Bypass  
1 (0x1)  
Powerdown, output goes to Out_P Normal Operation,  
Vcm  
Out_N Force Output Low  
2 (0x2)  
3 (0x3)  
Force output High  
Out_P Force Output Low,  
Out_N Normal Operation  
Force the positive output  
node to the internal  
Out_P Force Output Low,  
Out_N Force Output Low  
regulator output voltage rail  
(when AC coupled to load)  
and the negative output  
node to the GND rail  
10.6.19 MUTELVL2 Register; R21  
The MUTELVL2 register determines the Output Driver during mute for output drivers 4 to 7.  
Bit # Field  
Type Reset EEPROM Description  
[7:6] CH7_MUTE_LV RW 0x1  
L[1:0]  
Y
Channel 7 Output Driver Mute Level. CH7_MUTE_LVL determines the configuration  
of the CH7 Output Driver during mute as shown in the following table and is  
recommended to be set to 0x3. CH7_MUTE_LVL does not determine whether the  
CH7 driver is muted or not, instead this is determined by the CH_7_MUTE register  
bit.  
CH7_MUTE_LVL  
0 (0x0)  
DIFF MODE  
CMOS MODE  
CH7 Mute Bypass  
CH7 Mute Bypass  
1 (0x1)  
Powerdown, output goes to Out_P Normal Operation,  
Vcm  
Out_N Force Output Low  
2 (0x2)  
3 (0x3)  
Force output High  
Out_P Force Output Low,  
Out_N Normal Operation  
Force the positive output  
node to the internal  
Out_P Force Output Low,  
Out_N Force Output Low  
regulator output voltage rail  
(when AC coupled to load)  
and the negative output  
node to the GND rail  
[5:4] CH6_MUTE_LV RW 0x1  
L[1:0]  
Y
Channel 6 Output Driver Mute Level. CH6_MUTE_LVL determines the configuration  
of the CH6 Output Driver during mute as shown in the following table and is  
recommended to be set to 0x3. CH6_MUTE_LVL does not determine whether the  
CH6 driver is muted or not, instead this is determined by the CH_6_MUTE register  
bit.  
CH6_MUTE_LVL  
0 (0x0)  
DIFF MODE  
CMOS MODE  
CH6 Mute Bypass  
CH6 Mute Bypass  
1 (0x1)  
Powerdown, output goes to Out_P Normal Operation,  
Vcm  
Out_N Force Input Low  
2 (0x2)  
3 (0x3)  
Force output High  
Out_P Force Output Low,  
Out_N Normal Operation  
Force the positive output  
node to the internal  
Out_P Force Output Low,  
Out_N Force Output Low  
regulator output voltage rail  
(when AC coupled to load)  
and the negative output  
node to the GND rail  
82  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
Bit # Field  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Type Reset EEPROM Description  
[3:2] CH5_MUTE_LV RW 0x1  
L[1:0]  
Y
Channel 5 Output Driver Mute Level. CH5_MUTE_LVL determines the configuration  
of the CH5 Output Driver during mute as shown in the following table and is  
recommended to be set to 0x3. CH5_MUTE_LVL does not determine whether the  
CH5 driver is muted or not, instead this is determined by the CH_5_MUTE register  
bit.  
CH5_MUTE_LVL  
0 (0x0)  
DIFF MODE  
CMOS MODE  
CH5 Mute Bypass  
CH5 Mute Bypass  
1 (0x1)  
Powerdown, output goes to Out_P Normal Operation,  
Vcm  
Out_N Force Output Low  
2 (0x2)  
3 (0x3)  
Force output High  
Out_P Force Output Low,  
Out_N Normal Operation  
Force the positive output  
node to the internal  
Out_P Force Output Low,  
Out_N Force Output Low  
regulator output voltage rail  
(when AC coupled to load)  
and the negative output  
node to the GND rail  
[1:0] CH4_MUTE_LV RW 0x1  
L[1:0]  
Y
Channel 4 Output Driver Mute Level. CH4_MUTE_LVL determines the configuration  
of the CH4 Output Driver during mute as shown in the following table and is  
recommended to be set to 0x3. CH4_MUTE_LVL does not determine whether the  
CH4 driver is muted or not, instead this is determined by the CH_4_MUTE register  
bit.  
CH4_MUTE_LVL  
0 (0x0)  
DIFF MODE  
CMOS MODE  
CH4 Mute Bypass  
CH4 Mute Bypass  
1 (0x1)  
Powerdown, output goes to Out_P Normal Operation,  
Vcm  
Out_N Force Output Low  
2 (0x2)  
3 (0x3)  
Force output High  
Out_P Force Output Low,  
Out_N Normal Operation  
Force the positive output  
node to the internal  
Out_P Force Output Low,  
Out_N Force Output Low  
regulator output voltage rail  
(when AC coupled to load)  
and the negative output  
node to the GND rail  
Copyright © 2015–2018, Texas Instruments Incorporated  
83  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.6.20 OUT_MUTE Register; R22  
Output Channel Mute Control  
Bit # Field  
CH_7_MUTE  
Type Reset EEPROM Description  
Channel 7 Mute Control. When CH_7_MUTE is set to 1 Output Channel 7 is  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
1
1
1
1
1
1
1
1
Y
Y
Y
Y
Y
Y
Y
Y
automatically disabled when the selected clock source is invalid. When  
CH_7_MUTE_7 is 0 Channel 7 will continue to operate regardless of the state of the  
selected clock source.  
CH_6_MUTE  
CH_5_MUTE  
CH_4_MUTE  
CH_3_MUTE  
CH_2_MUTE  
CH_1_MUTE  
CH_0_MUTE  
Channel 6 Mute Control. When CH_6_MUTE is set to 1 Output Channel 6 is  
automatically disabled when the selected clock source is invalid. When  
CH_6_MUTE_6 is 0 Channel 6 will continue to operate regardless of the state of the  
selected clock source.  
Channel 5 Mute Control. When CH_5_MUTE is set to 1 Output Channel 5 is  
automatically disabled when the selected clock source is invalid. When  
CH_5_MUTE_5 is 0 Channel 5 will continue to operate regardless of the state of the  
selected clock source.  
Channel 4 Mute Control. When CH_4_MUTE is set to 1 Output Channel 4 is  
automatically disabled when the selected clock source is invalid. When  
CH_4_MUTE_4 is 0 Channel 4 will continue to operate regardless of the state of the  
selected clock source.  
Channel 3 Mute Control. When CH_3_MUTE is set to 1 Output Channel 3 is  
automatically disabled when the selected clock source is invalid. When CH_3_MUTE  
is 0 Channel 3 will continue to operate regardless of the state of the selected clock  
source.  
Channel 2 Mute Control. When CH_2_MUTE is set to 1 Output Channel 2 is  
automatically disabled when the selected clock source is invalid. When CH_2_MUTE  
is 0 Channel 2 will continue to operate regardless of the state of the selected clock  
source.  
Channel 1 Mute Control. When CH_1_MUTE is set to 1 Output Channel 1 is  
automatically disabled when the selected clock source is invalid. When CH_1_MUTE  
is 0 Channel 1 will continue to operate regardless of the state of the selected clock  
source.  
Channel 0 Mute Control. When CH_0_MUTE is set to 1 Output Channel 0 is  
automatically disabled when the selected clock source is invalid. When CH_0_MUTE  
is 0 Channel 0 will continue to operate regardless of the state of the selected clock  
source.  
10.6.21 STATUS_MUTE Register; R23  
Status CMOS Output Mute Control  
Bit # Field  
Type Reset EEPROM Description  
[7:2] RSRVD  
-
-
N
Y
Reserved.  
[1]  
STATUS1_MUTE RW  
1
STATUS 1 Mute Control. When the STATUS1 output is configuted to provide a  
CMOS Clock and the STATUS1_MUTE bit is set to 1 then the STATUS1 Output is  
automatically disabled when the selected clock source is invalid. When  
STATUS1_MUTE is 0 the STATUS1 Output will continue to operate regardless of the  
state of the selected clock source. If the STATUS1 output is not configured to provide  
a Clock then it will continue to operate regardless of the STATUS1_MUTE bit value.  
[0]  
STATUS0_MUTE RW  
0
Y
STATUS 0 Mute Control. When the STATUS0 output is configuted to provide a  
CMOS Clock and the STATUS0_MUTE bit is set to 1 then the STATUS0 Output is  
automatically disabled when the selected clock source is invalid. When  
STATUS0_MUTE is 0 the STATUS0 Output will continue to operate regardless of the  
state of the selected clock source. If the STATUS0 output is not configured to provide  
a Clock then it will continue to operate regardless of the STATUS0_MUTE bit value.  
84  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.6.22 DYN_DLY Register; R24  
Output Divider Dynamic Delay Control  
Bit # Field  
Type Reset EEPROM Description  
[7:6] RSRVD  
-
-
N
Y
Reserved.  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
DIV_7_DYN_DL RW  
Y
0
Channel 7 Divider Dynamic Delay Control. Enables coarse frequency margining for  
divide value > 8  
DIV_6_DYN_DL RW  
Y
0
0
0
0
0
Y
Y
Y
Y
Y
Channel 6 Divider Dynamic Delay Control. Enables coarse frequency margining for  
divide value > 8  
DIV_5_DYN_DL RW  
Y
Channel 5 Divider Dynamic Delay Control. Enables coarse frequency margining for  
divide value > 8  
DIV_4_DYN_DL RW  
Y
Channel 4 Divider Dynamic Delay Control. Enables coarse frequency margining for  
divide value > 8  
DIV_23_DYN_D RW  
LY  
Channel 23 Divider Dynamic Delay Control. Enables coarse frequency margining for  
divide value > 8  
DIV_01_DYN_D RW  
LY  
Channel 01 Divider Dynamic Delay Control. Enables coarse frequency margining for  
divide value > 8  
Copyright © 2015–2018, Texas Instruments Incorporated  
85  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.6.23 REFDETCTL Register; R25  
The REFDETCTL register provides control over input reference clock detect features.  
Bit # Field  
Type Reset EEPROM Description  
[7:6] DETECT_MOD RW 0x1  
E_SEC[1:0]  
Y
Secondary Input Energy Detector Mode Control. The DETECT_MODE_SEC field  
determines the method for Energy Detection on a single-ended signal on the  
Secondary Input as follows. When rising and/or falling slew rate detector is enabled,  
the reference input should meet the following conditions for correct operation: VIH  
<
1.7 V and VIL > 0.2 V. When VIH/VIL level detector is enabled, the reference input  
should meet the following conditions for correct operation: VIH < 1.5 V and VIL > 0.4  
V.  
DETECT_MODE_SEC  
0 (0x0)  
Energy Detection Method  
Rising Slew Rate Detector  
Rising and Falling Slew Rate Detector  
Falling Slew Rate Detector  
VIH/VIL Level Detector  
1 (0x1)  
2 (0x2)  
3 (0x3)  
[5:4] DETECT_MOD RW 0x1  
E_PRI[1:0]  
Y
Primary Input Energy Detector Mode Control. The DETECT_MODE_PRI field  
determines the method for Energy Detection on a single-ended signal on the Primary  
Input as follows. When rising and/or falling slew rate detector is enabled, the  
reference input should meet the following conditions for correct operation: VIH < 1.7 V  
and VIL > 0.2 V. When VIH/VIL level detector is enabled, the reference input should  
meet the following conditions for correct operation: VIH < 1.5 V and VIL > 0.4 V.  
DETECT_MODE_PRI  
0 (0x0)  
Energy Detection Method  
Rising Slew Rate Detector  
Rising and Falling Slew Rate Detector  
Falling Slew Rate Detector  
VIH/VIL Level Detector  
1 (0x1)  
2 (0x2)  
3 (0x3)  
[3:2] LVL_SEL_SEC[ RW 0x1  
1:0]  
Y
Secondary Input Comparator Level Selection. The LVL_SEL_SEC fields determines  
the levels on a differential signal for the Secondary Input Energy Detection block as  
follows.  
LVL_SEL_SEC  
0 (0x0)  
Comparator Levels  
200 mV Differential  
300 mV Differential  
400 mV Differential  
RESERVED  
1 (0x1)  
2 (0x2)  
3 (0x3)  
[1:0] LVL_SEL_PRI[1 RW 0x1  
:0]  
Y
Primary Input Comparator Level Selection. The LVL_SEL_PRI field determines the  
levels on a differential signal for the Primary Input Energy Detection block as follows.  
LVL_SEL_PRI  
0 (0x0)  
Comparator Levels  
200 mV Differential  
300 mV Differential  
400 mV Differential  
RESERVED  
1 (0x1)  
2 (0x2)  
3 (0x3)  
86  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.6.24 STAT0_INT Register; R27  
The STAT0_INT register provides control of the STATUS0 output and Interrupt configuration. The STATUS0 pin  
is also used for test and diagnostic functions. The test configuration registers override the STAT0_INT register.  
Bit # Field  
Type Reset EEPROM Description  
[7:4] STAT0_SEL[3:0] RW 0x5  
Y
STATUS0 Indicator Signal Select.  
STAT0CFG  
0 (0x0)  
STATUS0 Information  
PRIREF Loss of Signal (LOS)  
SECREF Loss of Signal (LOS)  
PLL Loss of Lock (LOL)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
PLL R Divider, divided by 2 (when R Divider is  
not bypassed)  
4 (0x4)  
5 (0x5)  
6 (0x6)  
7 (0x7)  
8 (0x8)  
9 (0x9)  
10 (0xA)  
PLL N Divider, divided by 2  
Reserved  
Reserved  
Reserved  
PLL VCO Calibration Active (CAL)  
Reserved  
Interrupt (INTR). Derived from INT_FLAG  
register bits.  
11 (0xB)  
PLL M Divider, divided by 2 (when M Divider is  
not bypassed)  
12 (0xC)  
13 (0xD)  
14 (0xE)  
Reserved  
EEPROM Active  
PLL Secondary to Primary Switch in Automatic  
Mode  
15 (0xF)  
Reserved  
The polarity of STATUS0 is set by the STAT0POL bit.  
Copyright © 2015–2018, Texas Instruments Incorporated  
87  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Bit # Field  
Type Reset EEPROM Description  
[3]  
STAT0_POL  
RW  
1
Y
STATUS0 Output Polarity. The STAT0_POL bit defines the polarity of information  
presented on the STATUS0 output. If STAT0_POL is set to 1 then STATUS0 is active  
high, if STAT0_POL is 0 then STATUS0 is active low.  
[2:0] RSRVD  
-
-
N
Reserved.  
10.6.25 STAT1 Register; R28  
The STAT1_INT register provides control of the STATUS1 output. The STATUS1 pin is also used for test and  
diagnostic functions. The test configuration registers override the STAT0 register.  
Bit # Field  
Type Reset EEPROM Description  
[7:4] STAT1_SEL[3:0] RW 0x2  
Y
STATUS1 Indicator Signal Select. The STAT1_SEL field determines what  
information is presented on the STATUS1 output as follows.  
STAT1CFG  
0 (0x0)  
STATUS1 Information  
PRIREF Loss of Signal (LOS)  
SECREF Loss of Signal (LOS)  
PLL Loss of Lock (LOL)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
PLL R Divider, divided by 2 (when R Divider is  
not bypassed)  
4 (0x4)  
5 (0x5)  
6 (0x6)  
7 (0x7)  
8 (0x8)  
9 (0x9)  
10 (0xA)  
11 (0xB)  
PLL N Divider, divided by 2  
Reserved  
Reserved  
Reserved  
PLL VCO Calibration Active (CAL)  
Reserved  
Interrupt (INTR)  
PLL M Divider, divided by 2 (when M Divider is  
not bypassed)  
12 (0xC)  
13 (0xD)  
14 (0xE)  
Reserved  
EEPROM Active  
PLL Secondary to Primary Switch in Automatic  
Mode  
15 (0xF)  
Reserved  
The polarity of STATUS1 is set by the STAT1POL bit.  
[3]  
STAT1_POL  
RW  
-
1
-
Y
N
STATUS1 Output Polarity. The STAT1_POL bit defines the polarity of information  
presented on the STATUS1 output. If STAT1_POL is set to 1 then STATUS1 is  
active high, if STAT1_POL is 0 then STATUS1 is active low.  
[2:0] RSRVD  
Reserved.  
88  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.6.26 OSCCTL1 Register; R29  
The OSCCTL1 register provides control over input reference clock features.  
Bit # Field  
Type Reset EEPROM  
Description  
[7]  
DETECT_BYP RW  
0
Y
Signal Detector Bypass. When DETECT_BYP is 1 the output of the Signal Detector's,  
both Primary and Secondary are ingored and the inputs are always considered to be  
valid by the PLL control state machines. The DETECT_BYP bit has no effect on the  
Interrupt register or STATUS output's.  
[6]  
[5]  
RSRVD  
-
-
N
Y
Reserved.  
TERM2GND_S RW  
EC  
0
Differential Termination to GND Control for Secondary Input. When  
TERM2GND_SEC is 1 an internal 50 Ω termination to GND is selected on the  
Secondary input in differential mode.  
[4]  
TERM2GND_P RW  
RI  
0
Y
Differential Termination to GND Control for Primary Input. When TERM2GND_PRI is  
1 an internal 50 Ω termination to GND is selected on the Primary input in differential  
mode.  
[3]  
[2]  
[1]  
DIFFTERM_SE RW  
C
0
1
1
Y
Y
Y
Differential Termination Control for Secondary Input. When DIFFTERM_SEC is 1 an  
internal 100 Ω termination is selected on the Secondary input in differential mode.  
DIFFTERM_PRI RW  
Differential Termination Control for Primary Input. When DIFFTERM_PRI is 1 an  
internal 100 Ω termination is selected on the Primary input in differential mode.  
AC_MODE_SE RW  
C
AC Coupling Mode for Secondary Input. When AC_MODE_SEC is 1, this enables the  
internal input biasing to support an externally AC coupled input signal on the  
SECREF inputs. When AC_MODE_SEC is 0, the internal input bias is not used.  
[0]  
AC_MODE_PRI RW  
0
Y
AC Coupling Mode for Primary Input. When AC_MODE_PRI is 1, this enables the  
internal input biasing to support an externally AC coupled input signal on the PRIREF  
inputs. When AC_MODE_PRI is 0, the internal input bias is not used.  
10.6.27 PWDN Register; R30  
The PWDN register is described in the following table.  
Bit # Field  
Type Res EEPROM  
et  
Description  
[7]  
[6]  
RSRVD  
-
-
N
Y
Reserved.  
CMOSCHPWD RW  
N
0
CMOS Output Channel Powerdown.  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
CH7PWDN  
CH6PWDN  
CH5PWDN  
CH4PWDN  
CH23PWDN  
CH01PWDN  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
0
Y
Y
Y
Y
Y
Y
Output Channel 7 Powerdown. When CH7PWDN is 1, the MUX and divider of channel  
7 will be disabled. To shut down entire output path (output MUX, divider and buffer),  
R43[5:4] should be set to 0x0 irrespective of R30.5.  
Output Channel 6 Powerdown. When CH6PWDN is 1, the MUX and divider of channel  
6 will be disabled. To shut down entire output path (output MUX, divider and buffer),  
R41[5:4] should be set to 0x0 irrespective of R30.4.  
Output Channel 5 Powerdown. When CH5PWDN is 1, the MUX and divider of channel  
5 will be disabled. To shut down entire output path (output MUX, divider and buffer),  
R39[5:4] should be set to 0x0 irrespective of R30.3.  
Output Channel 4 Powerdown. When CH4PWDN is 1, the MUX and divider of channel  
4 will be disabled. To shut down entire output path (output MUX, divider and buffer),  
R37[5:4] should be set to 0x0 irrespective of R30.2.  
Output Channel 23 Powerdown. When CH23PWDN is 1, the MUX and divider of  
channels 2 and 3 will be disabled. To shut down entire output paths (output MUX,  
divider and buffers), R35[6:5] and R34[6:5] should be set to 0x0 irrespective of R30.1.  
Output Channel 01 Powerdown. When CH01PWDN is 1, the MUX and divider of  
channels 0 and 1 will be disabled. To shut down entire output paths (output MUX,  
divider and buffers), R32[6:5] and R31[6:5] should be set to 0x0 irrespective of R30.0.  
Copyright © 2015–2018, Texas Instruments Incorporated  
89  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.6.28 OUTCTL_0 Register; R31  
The OUTCTL_0 register provides control over Output 0.  
Bit # Field  
[7] RSRVD  
Type Reset EEPROM Description  
RW  
1
Y
Y
Reserved. TI recommends setting it to "0".  
[6:5] OUT_0_SEL[1:0 RW 0x1  
]
Channel 0 Output Driver Format Select. The OUT_0_SEL field controls the Channel 0  
Output Driver as shown below.  
OUT_0_SEL  
OUTPUT OPERATION  
Disabled  
0 (0x0)  
1 (0x1)  
AC-LVDS/AC-CML/AC-LVPECL  
HCSL  
2 (0x2)  
3 (0x3)  
LVCMOS  
[4:3] OUT_0_MODE1 RW 0x2  
[1:0]  
Y
Y
N
Channel 0 Output Driver Mode1 Select.  
OUT_0_MODE1 Diff-Mode, Itail  
CMOS-Mode, Out_P  
Powerdown, tristate  
0 (0x0)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
4 mA (AC-LVDS)  
6 mA (AC-CML)  
Powerdown, low  
8 mA (AC-LVPECL)  
Powerup, negative polarity  
Powerup, positive polarity  
16 mA (HCSL) or 8 mA  
(AC-LVPECL)  
[2:1] OUT_0_MODE2 RW 0x0  
[1:0]  
Channel 0 Output Driver Mode2 Select.  
OUT_0_MODE2 Diff-Mode, RLOAD in HCSL CMOS=Mode, Out_N  
mode  
0 (0x0)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
Reserved.  
Tristate  
50 Ω  
Powerdown, tristate  
Powerdown, low  
100 Ω  
200 Ω  
Powerup, negative polarity  
Powerup, positive polarity  
[0]  
RSRVD  
-
-
10.6.29 OUTCTL_1 Register; R32  
The OUTCTL_1 register provides control over Output 1.  
Bit # Field  
[7] RSRVD  
Type Reset EEPROM  
Description  
-
-
N
Y
Reserved.  
[6:5] OUT_1_SEL[1: RW 0x1  
0]  
Channel 1 Output Driver Format Select. The OUT_1_SEL field controls the Channel  
1 Output Driver as shown below.  
OUT_1_SEL  
OUTPUT OPERATION  
Disabled  
0 (0x0)  
1 (0x1)  
AC-LVDS/AC-CML/AC-LVPECL  
HCSL  
2 (0x2)  
3 (0x3)  
LVCMOS  
[4:3] OUT_1_MODE RW 0x2  
1[1:0]  
Y
Y
N
Channel 1 Output Driver Mode1 Select.  
OUT_1_MODE1 Diff-Mode, Itail  
CMOS-Mode, Out_P  
Powerdown, tristate  
0 (0x0)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
4 mA (AC-LVDS)  
6 mA (AC-CML)  
Powerdown, low  
8 mA (AC-LVPECL)  
Powerup, negative polarity  
Powerup, positive polarity  
16 mA (HCSL) or 8 mA  
(AC-LVPECL)  
[2:1] OUT_1_MODE RW 0x0  
2[1:0]  
Channel 1 Output Driver Mode2 Select.  
OUT_1_MODE2 Diff-Mode, Rload in HCSL CMOS=Mode, Out_N  
mode  
0 (0x0)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
Reserved.  
Tristate  
50 Ω  
Powerdown, tristate  
Powerdown, low  
100 Ω  
200 Ω  
Powerup, negative polarity  
Powerup, positive polarity  
[0]  
RSRVD  
-
-
90  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.6.30 OUTDIV_0_1 Register; R33  
Channel [1:0] Output Divider  
Bit # Field  
Type Reset EEPROM  
Description  
[7:0] OUT_0_1_DIV RW 0x01  
[7:0]  
Y
Channel's 0 and 1 Output Divider. The Channel 0 and 1 Divider, OUT_0_1_DIV, is a  
8-bit divider. The valid values for OUT_0_1_DIV range from 1 to 256 as shown below.  
OUT_0_1_DIV  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
DIVIDE RATIO  
1
2
3
255 (0xFF)  
256  
10.6.31 OUTCTL_2 Register; R34  
The OUTCTL_2 register provides control over Output 2.  
Bit # Field  
[7] RSRVD  
Type Reset EEPROM  
Description  
RW  
1
Y
Y
Reserved. TI recommends setting it to 0.  
[6:5] OUT_2_SEL[1: RW 0x1  
0]  
Channel 2 Output Driver Format Select. The OUT_2_SEL field controls the Channel 2  
Output Driver as shown below.  
OUT_2_SEL  
OUTPUT OPERATION  
Disabled  
0 (0x0)  
1 (0x1)  
AC-LVDS/AC-CML/AC-LVPECL  
HCSL  
2 (0x2)  
3 (0x3)  
LVCMOS  
[4:3] OUT_2_MODE RW 0x2  
1[1:0]  
Y
Y
N
Channel 2 Output Driver Mode1 Select.  
OUT_2_MODE1 Diff-Mode, Itail  
CMOS-Mode, Out_P  
Powerdown, tristate  
0 (0x0)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
4 mA (AC-LVDS)  
6 mA (AC-CML)  
Powerdown, low  
8 mA (AC-LVPECL)  
Powerup, negative polarity  
Powerup, positive polarity  
16 mA (HCSL) or 8 mA  
(AC-LVPECL)  
[2:1] OUT_2_MODE RW 0x0  
2[1:0]  
Channel 2 Output Driver Mode2 Select.  
OUT_2_MODE2 Diff-Mode, Rload in HCSL  
mode  
CMOS=Mode, Out_N  
0 (0x0)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
Reserved.  
Tristate  
50 Ω  
Powerdown, tristate  
Powerdown, low  
100 Ω  
200 Ω  
Powerup, negative polarity  
Powerup, positive polarity  
[0]  
RSRVD  
-
-
Copyright © 2015–2018, Texas Instruments Incorporated  
91  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.6.32 OUTCTL_3 Register; R35  
The OUTCTL_3 register provides control over Output 3.  
Bit # Field  
Type Rese EEPROM  
t
Description  
[7] RSRVD  
-
-
N
Y
Reserved.  
[6:5] OUT_3_SEL[1: RW  
0]  
0x1  
Channel 3 Output Driver Format Select. The OUT_3_SEL field controls the Channel 3  
Output Driver as shown below.  
OUT_3_SEL  
OUTPUT OPERATION  
Disabled  
0 (0x0)  
1 (0x1)  
AC-LVDS/AC-CML/AC-LVPECL  
HCSL  
2 (0x2)  
3 (0x3)  
LVCMOS  
[4:3] OUT_3_MODE RW  
1[1:0]  
0x2  
0x0  
-
Y
Y
N
Channel 3 Output Driver Mode1 Select.  
OUT_3_MODE1 Diff-Mode, Itail  
CMOS-Mode, Out_P  
Powerdown, tristate  
0 (0x0)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
4 mA (AC-LVDS)  
6 mA (AC-CML)  
Powerdown, low  
8 mA (AC-LVPECL)  
Powerup, negative polarity  
Powerup, positive polarity  
16 mA (HCSL) or 8 mA  
(AC-LVPECL)  
[2:1] OUT_3_MODE RW  
2[1:0]  
Channel 3 Output Driver Mode2 Select.  
OUT_3_MODE2 Diff-Mode, Rload in HCSL  
mode  
CMOS=Mode, Out_N  
0 (0x0)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
Reserved.  
Tristate  
50 Ω  
Powerdown, tristate  
Powerdown, low  
100 Ω  
200 Ω  
Powerup, negative polarity  
Powerup, positive polarity  
[0]  
RSRVD  
-
10.6.33 OUTDIV_2_3 Register; R36  
Channel [3:2] Output Divider  
Bit # Field  
Type Reset EEPROM  
Description  
[7:0] OUT_2_3_DIV RW 0x03  
[7:0]  
Y
Channel's 2 and 3 Output Divider. The Channel 2 and 3 Divider, OUT_2_3_DIV, is a  
8-bit divider. The valid values for OUT_2_3_DIV range from 1 to 256 as shown below.  
OUT_2_3_DIV  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
DIVIDE RATIO  
1
2
3
255 (0xFF)  
256  
92  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.6.34 OUTCTL_4 Register; R37  
The OUTCTL_4 register provides control over Output 4  
Bit # Field  
Type Reset EEPROM  
Description  
[7:6] CH_4_MUX[1: RW 0x0  
0]  
Y
Channel 4 Clock Source Mux Control.  
CH_4_MUX  
0 (0x0)  
CH4 Clock Source  
PLL  
1 (0x1)  
Reserved  
2 (0x2)  
PRIMARY REFERENCE  
SECONDARY REFERENCE  
3 (0x3)  
When the doubler is enabled the Primary and Secondary Reference options will  
reflect the frequency doubled reference. If the Primary or Secondary Reference  
options are selected the output divider is by-passed.  
[5:4] OUT_4_SEL[1: RW 0x1  
0]  
Y
Y
Y
Channel 4 Output Driver Format Select. The OUT_4_SEL field controls the Channel 4  
Output Driver as shown below.  
OUT_1_SEL  
OUTPUT OPERATION  
Disabled  
0 (0x0)  
1 (0x1)  
AC-LVDS/AC-CML/AC-LVPECL  
HCSL  
2 (0x2)  
3 (0x3)  
LVCMOS  
[3:2] OUT_4_MODE RW 0x2  
1[1:0]  
Channel 4 Output Driver Mode1 Select.  
OUT_4_MODE1  
0 (0x0)  
Diff-Mode, Itail  
CMOS-Mode, Out_P  
Powerdown, tristate  
Powerdown, low  
4 mA (AC-LVDS)  
6 mA (AC-CML)  
8 mA (AC-LVPECL)  
1 (0x1)  
2 (0x2)  
Powerup, negative polarity  
3 (0x3)  
16 mA (HCSL) or 8 mA Powerup, positive polarity  
(AC-LVPECL)  
[1:0] OUT_4_MODE RW 0x0  
2[1:0]  
Channel 4 Output Driver Mode2 Select.  
OUT_4_MODE2  
Diff-Mode, Rload in  
CMOS=Mode, Out_N  
HCSL mode  
Tristate  
50 Ω  
0 (0x0)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
Powerdown, tristate  
Powerdown, low  
100 Ω  
Powerup, negative polarity  
Powerup, positive polarity  
200 Ω  
10.6.35 OUTDIV_4 Register; R38  
Channel 4 Output Divider  
Bit # Field  
Type Reset EEPROM  
Description  
[7:0] OUT_4_DIV[7: RW 0x02  
0]  
Y
Channel 4 Output Divider. The Channel 4 Divider, OUT_4_DIV, is a 8-bit divider. The  
valid values for OUT_4_DIV range from 1 to 256 as shown below. The divider only  
operates on Channel 4 when the clock source is PLL or PLL2.  
OUT_4_DIV  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
DIVIDE RATIO  
1
2
3
255 (0xFF)  
256  
Copyright © 2015–2018, Texas Instruments Incorporated  
93  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.6.36 OUTCTL_5 Register; R39  
The OUTCTL_5 register provides control over Output 5.  
Bit # Field  
Type Reset EEPROM  
Description  
[7:6] CH_5_MUX[1 RW 0x0  
:0]  
Y
Channel 5 Clock Source Mux Control.  
CH_5_MUX  
0 (0x0)  
CH5 Clock Source  
PLL  
1 (0x1)  
Reserved  
2 (0x2)  
PRIMARY REFERENCE  
SECONDARY REFERENCE  
3 (0x3)  
When the doubler is enabled the Primary and Secondary Reference options will  
reflect the frequency doubled reference. If the Primary or Secondary Reference  
options are selected the output divider is by-passed.  
[5:4] OUT_5_SEL[ RW 0x1  
1:0]  
Y
Channel 5 Output Driver Format Select. The OUT_5_SEL field controls the Channel 5  
Output Driver as shown below.  
OUT_1_SEL  
0 (0x0)  
OUTPUT OPERATION  
Disabled  
1 (0x1)  
AC-LVDS/AC-CML/AC-  
LVPECL  
2 (0x2)  
HCSL  
3 (0x3)  
LVCMOS  
[3:2] OUT_5_MOD RW 0x2  
E1[1:0]  
Y
Channel 5 Output Driver Mode1 Select.  
OUT_5_MODE1  
0 (0x0)  
Diff-Mode, Itail  
CMOS-Mode, Out_P  
Powerdown, tristate  
4 mA (AC-LVDS)  
6 mA (AC-CML)  
8 mA (AC-LVPECL)  
1 (0x1)  
Powerdown, low  
2 (0x2)  
Powerup, negative polarity  
Powerup, positive polarity  
3 (0x3)  
16 mA (HCSL) or 8 mA  
(AC-LVPECL)  
[1:0] OUT_5_MOD RW 0x0  
E2[1:0]  
Y
Channel 5 Output Driver Mode2 Select.  
OUT_5_MODE2  
Diff-Mode, Rload in HCSL  
CMOS=Mode, Out_N  
mode  
Tristate  
50 Ω  
0 (0x0)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
Powerdown, tristate  
Powerdown, low  
100 Ω  
200 Ω  
Powerup, negative polarity  
Powerup, positive polarity  
10.6.37 OUTDIV_5 Register; R40  
Channel 5 Output Divider  
Bit # Field  
Type Reset EEPROM  
Description  
[7:0] OUT_5_DIV[7: RW 0x02  
0]  
Y
Channel 5 Output Divider. The Channel 5 Divider, OUT_5_DIV, is a 8-bit divider. The  
valid values for OUT_5_DIV range from 1 to 256 as shown below. The divider only  
operates on Channel 5 when the clock source is PLL or PLL2.  
OUT_5_DIV  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
DIVIDE RATIO  
1
2
3
255 (0xFF)  
256  
94  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.6.38 OUTCTL_6 Register; R41  
The OUTCTL_6 register provides control over Output 6.  
Bit # Field  
Type Reset EEPROM  
Description  
[7:6] CH_6_MUX[1 RW 0x0  
:0]  
Y
Channel 6 Clock Source Mux Control.  
CH_6_MUX  
0 (0x0)  
CH6 Clock Source  
PLL  
1 (0x1)  
Reserved  
2 (0x2)  
PRIMARY REFERENCE  
SECONDARY REFERENCE  
3 (0x3)  
When the doubler is enabled the Primary and Secondary Reference options will reflect  
the frequency doubled reference. If the Primary or Secondary Reference options are  
selected the output divider is by-passed.  
[5:4] OUT_6_SEL[ RW 0x1  
1:0]  
Y
Y
Y
Channel 6 Output Driver Format Select. The OUT_6_SEL field controls the Channel 6  
Output Driver as shown below.  
OUT_1_SEL  
OUTPUT OPERATION  
Disabled  
0 (0x0)  
1 (0x1)  
AC-LVDS/AC-CML/AC-LVPECL  
HCSL  
2 (0x2)  
3 (0x3)  
LVCMOS  
[3:2] OUT_6_MOD RW 0x2  
E1[1:0]  
Channel 6 Output Driver Mode1 Select.  
OUT_6_MODE1  
0 (0x0)  
Diff-Mode, Itail  
CMOS-Mode, Out_P  
Powerdown, tristate  
4 mA (AC-LVDS)  
6 mA (AC-CML)  
8 mA (AC-LVPECL)  
1 (0x1)  
Powerdown, low  
2 (0x2)  
Powerup, negative polarity  
Powerup, positive polarity  
3 (0x3)  
16 mA (HCSL) or 8 mA  
(AC-LVPECL)  
[1:0] OUT_6_MOD RW 0x0  
E2[1:0]  
Channel 6 Output Driver Mode2 Select.  
OUT_6_MODE2  
Diff-Mode, Rload in HCSL  
CMOS=Mode, Out_N  
mode  
Tristate  
50 Ω  
0 (0x0)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
Powerdown, tristate  
Powerdown, low  
100 Ω  
200 Ω  
Powerup, negative polarity  
Powerup, positive polarity  
10.6.39 OUTDIV_6 Register; R42  
Channel 6 Output Divider  
Bit # Field  
Type Reset EEPROM  
Description  
[7:0] OUT_6_DIV[ RW 0x05  
7:0]  
Y
Channel 6 Output Divider. The Channel 6 Divider, OUT_6_DIV, is a 8-bit divider. The  
valid values for OUT_6_DIV range from 1 to 256 as shown below. The divider only  
operates on Channel 6 when the clock source is PLL or PLL2.  
OUT_6_DIV  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
DIVIDE RATIO  
1
2
3
255 (0xFF)  
256  
Copyright © 2015–2018, Texas Instruments Incorporated  
95  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.6.40 OUTCTL_7 Register; R43  
The OUTCTL_7 register provides control over Output 7.  
Bit # Field  
Type Reset EEPROM  
Description  
[7:6] CH_7_MUX[ RW  
1:0]  
0x0  
Y
Channel 7 Clock Source Mux Control.  
CH_7_MUX  
0 (0x0)  
CH7 Clock Source  
PLL  
1 (0x1)  
Reserved  
2 (0x2)  
PRIMARY REFERENCE  
SECONDARY REFERENCE  
3 (0x3)  
When the doubler is enabled the Primary and Secondary Reference options will  
reflect the frequency doubled reference. If the Primary or Secondary Reference  
options are selected the output divider is by-passed.  
[5:4] OUT_7_SEL[ RW  
1:0]  
0x1  
Y
Channel 7 Output Driver Format Select. The OUT_7_SEL field controls the Channel  
7 Output Driver as shown below.  
OUT_1_SEL  
0 (0x0)  
OUTPUT OPERATION  
Disabled  
1 (0x1)  
AC-LVDS/AC-CML/AC-  
LVPECL  
2 (0x2)  
HCSL  
3 (0x3)  
LVCMOS  
[3:2] OUT_7_MO RW  
DE1[1:0]  
0x2  
Y
Channel 7 Output Driver Mode1 Select.  
OUT_7_MODE1  
0 (0x0)  
Diff-Mode, Itail  
CMOS-Mode, Out_P  
Powerdown, tristate  
Powerdown, low  
4 mA (AC-LVDS)  
6 mA (AC-CML)  
8 mA (AC-LVPECL)  
1 (0x1)  
2 (0x2)  
Powerup, negative polarity  
3 (0x3)  
16 mA (HCSL) or 8 mA (AC- Powerup, positive polarity  
LVPECL)  
[1:0] OUT_7_MO RW  
DE2[1:0]  
0x0  
Y
Channel 7 Output Driver Mode2 Select.  
OUT_7_MODE2  
Diff-Mode, Rload in HCSL  
CMOS=Mode, Out_N  
mode  
Tristate  
50 Ω  
0 (0x0)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
Powerdown, tristate  
Powerdown, low  
100 Ω  
200 Ω  
Powerup, negative polarity  
Powerup, positive polarity  
10.6.41 OUTDIV_7 Register; R44  
Channel 7 Output Divider  
Bit # Field  
Type Reset EEPROM  
Description  
[7:0] OUT_7_DIV[ RW  
7:0]  
0x05  
Y
Channel 7 Output Divider. The Channel 7 Divider, OUT_7_DIV, is a 8-bit divider. The  
valid values for OUT_7_DIV range from 1 to 256 as shown below. The divider only  
operates on Channel 7 when the clock source is PLL or PLL2.  
OUT_7_DIV  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
DIVIDE RATIO  
1
2
3
255 (0xFF)  
256  
96  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.6.42 CMOSDIVCTRL Register; R45  
CMOS Output Divider Control. The CMOS Clock Outputs provided on STATUS0 and STATUS1 can come from  
either CMOS Divider0 or CMOS Divider1. Additionally the clock source routed to the CMOS Dividers can come  
from either the PLL LVCMOS Pre-Divider or the PLL2 LVCMOS Pre-Divider.  
Bit # Field  
Type Reset EEPROM  
Description  
[7:6] RSRVD  
RW 0x0  
Y
Y
Reserved.  
[5:4] PLLCMOSPR RW 0x0  
EDIV[1:0]  
PLL LVCMOS Pre-Divider Selection. The PLLCMOSPREDIV field selects the divider  
value for the PLL pre-divider that drives the CMOS Dividers.  
PLLCMOSPREDIV  
0 (0x0)  
Divider Value  
Disabled  
1 (0x1)  
4
2 (0x2)  
5
3 (0x3)  
Reserved  
[3:2] STATUS1MU RW 0x2  
X[1:0]  
Y
STATUS1 Mux Selection. The STATUS1MUX field controls the signal source for the  
STATUS1 Pin as described below.  
STATUS1MUX  
0 (0x0)  
STATUS1 OPERATION  
LVCMOS Clock, from STATUS0 Divider  
LVCMOS Clock, from STATUS1 Divider  
Normal Status Operation  
1 (0x1)  
2 (0x2)  
3 (0x3)  
STATUS1 Disabled  
[1:0] STATUS0MU RW 0x2  
X[1:0]  
Y
STATUS0 Mux Selection. The STATUS0MUX field controls the signal source for the  
STATUS0 Pin as described below.  
STATUS0MUX  
0 (0x0)  
STATUS0 OPERATION  
LVCMOS Clock, from STATUS0 Divider  
LVCMOS Clock, from STATUS1 Divider  
Normal Status Operation  
1 (0x1)  
2 (0x2)  
3 (0x3)  
STATUS0 Disabled  
10.6.43 CMOSDIV0 Register; R46  
CMOS Output Divider 0  
Bit # Field  
Type Reset EEPROM  
Description  
[7:0] CMOSDIV0[7 RW 0x00  
:0]  
Y
CMOS Output Divider 0. The CMOS Divider0, CMOSDIV0, is a 8-bit divider that  
divides the clock source from the PLL LVCMOS Pre-Divider output. The valid values  
for CMOSDIV0 range from 1 to 256 as shown below.  
CMOSDIV0  
0 (0x00)  
DIVIDE RATIO  
Disabled  
6
1 (0x01), 2 (0x02), 3 (0x03), 4  
(0x04), 5 (0x05)  
6 (0x06)  
7 (0x07)  
...  
7
8
255 (0xFF)  
256  
Copyright © 2015–2018, Texas Instruments Incorporated  
97  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.6.44 STATUS_SLEW Register; R49  
Status CMOS Output Slew Control  
Bit # Field  
Type Reset EEPROM  
Description  
[7:4] RSRVD  
-
-
N
Y
Reserved.  
[3:2] STATUS1SL RW 0x0  
EW[1:0]  
STATUS1 Slew Control. The STATUS1SLEW field controls the slew rate of the  
STATUS1 output as shown below.  
STATUS1SLEW  
0 (0x0)  
STATUS1 Rise/Fall Time  
Fast (0.35 ns)  
1 (0x1)  
RESERVED  
2 (0x2)  
Slow (2.1 ns)  
3 (0x3)  
RESERVED  
[1:0] STATUS0SL RW 0x0  
EW[1:0]  
Y
STATUS0 Slew Control. The STATUS0SLEW field controls the slew rate of the  
STATUS0 output as shown below.  
STATUS0SLEW  
0 (0x0)  
STATUS0 Rise/Fall Time  
Fast (0.35 ns)  
1 (0x1)  
RESERVED  
2 (0x2)  
Slow (2.1 ns)  
3 (0x3)  
RESERVED  
10.6.45 IPCLKSEL Register; R50  
Input Clock Select  
Bit # Field  
Type Reset EEPROM  
Description  
[7:6] SECBUFSEL RW 0x2  
[1:0]  
Y
Secondary Input Buffer Selection. SECBUFSEL configures the Secondary Input Buffer  
as follows.  
SECBUFSEL  
0 (0x0)  
Mode  
Single-ended Input  
Differential Input  
Crystal Input  
Disabled  
1 (0x1)  
2 (0x2)  
3 (0x3)  
[5:4] PRIBUFSEL[ RW 0x1  
1:0]  
Y
Primary Input Buffer Selection. PRIBUFSEL configures the Primary Input Buffer as  
follows.  
PRIBUFSEL  
0 (0x0)  
Mode  
Single-ended Input  
Differential Input  
Disabled  
1 (0x1)  
2 (0x2)  
3 (0x3)  
Disabled  
[3:2] RSRVD  
RW 0x1  
Y
Y
Reserved.  
[1:0] INSEL_PLL[1 RW 0x1  
:0]  
Reference Input Selection for PLL. INSEL_PLL Determines the input select for PLL as  
follows.  
INSEL_PLL  
0 (0x0)  
Input Mode  
Automatic, Primary is preferred.  
Determined by external pin, REFSEL.  
Primary Input Selected.  
1 (0x1)  
2 (0x2)  
3 (0x3)  
Secondary Input Selected.  
When INSEL_PLL is equal to b01 the REFSEL pin determines the reference clock  
source for PLL as follows.  
REFSEL  
PLL Reference Clock  
0
PLL Reference is Primary input  
PLL Reference is Secondary input  
PLL Input MUX is set to Automatic Mode  
VIM  
1
98  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.6.46 IPCLKCTL Register; R51  
Input Clock Control  
Bit # Field  
[7] CLKMUX_BY RW  
PASS  
Type Reset EEPROM  
Description  
0
Y
Clock Mux Bypass. Controls whether the glitch-less clock mux on the the Primary and  
Secondary Reference paths is enabled. When CLKMUX_BYPASS is 1 then the clock  
mux is by-passed.  
[6:3] RSRVD  
RW 0x0  
Y
Y
Reserved.  
[2]  
SECONSWIT RW  
0
1
1
Secondary Crystal Input Buffer On after Switch. Determines whether the Secondary  
Crystal Input Buffer remains on after a switch back to the Primary Input. If  
SECONSWITCH is 0 then the Secomdary Crystal Input Buffer is disabled after a  
switch back to the Primary input. If SECONSWITCH is 1 then the Secondary Crystal  
Input Buffer remains active after a switch back to the Primary input.  
CH  
[1]  
[0]  
SECBUFGAI RW  
N
Y
Y
Secondary Input Buffer Gain.  
SECBUFGAIN  
GAIN  
0
Minimum  
Maximum  
1
PRIBUFGAI RW  
N
Primary Input Buffer Gain.  
PRIBUFGAIN  
GAIN  
0
1
Minimum  
Maximum  
10.6.47 PLL_RDIV Register; R52  
R Divider for PLL  
Bit # Field  
Type Reset EEPROM  
Description  
[7:3] RSRVD  
-
-
N
Y
Reserved.  
[2:0] PLLRDIV[2:0 RW 0x0  
]
PLL R Divider. PLL R Divider ratio is set by PLLRDIV.  
PLLRDIV  
0 (0x0)  
1 (0x1)  
...  
PLL R-Divider Value  
Bypass  
2
...  
8
7 (0x7)  
10.6.48 PLL_MDIV Register; R53  
M Divider for PLL  
Bit # Field  
Type Reset EEPROM  
Description  
[7:5] RSRVD  
-
-
N
Y
Reserved.  
[4:0] PLLMDIV[4:0 RW 0x00  
]
PLL M Divider. PLL M Divider ratio is set by PLLMDIV.  
PLLMDIV  
0 (0x00)  
1 (0x01)  
...  
PLL M-Divider Value  
Bypass  
2
...  
32  
31 (0x1F)  
Copyright © 2015–2018, Texas Instruments Incorporated  
99  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.6.49 PLL_CTRL0 Register; R56  
The PLL_CTRL0 register provides control of PLL. The PLL_CTRL0 register fields are described in the following  
table.  
Bit # Field  
Type Reset EEPROM  
Description  
[7:5] RSRVD  
[4:2] PLL_P[2:0]  
-
-
N
Y
Reserved.  
RW 0x7  
PLL Post-Divider. The PLL_P field selects the PLL post-divider value as follows.  
PLL_P  
0 (0x0)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
4 (0x4)  
5 (0x5)  
6 (0x6)  
7 (0x7)  
Post Divider Value  
2
2
3
4
5
6
7
8
[1]  
[0]  
PLL_SYNC_ RW  
EN  
1
Y
Y
PLL SYNC Enable. If PLL_SYNC_EN is 1 then a SYNC event will cause all channels  
which use PLL as a clock source to be re-synchronized.  
PLL_PDN  
RW  
0
PLL Powerdown. The PLL_PDN bit determines whether PLL is automatically enabled  
and calibrated after a hardware reset. If the PLL_PDN bit is set to 1 during normal  
operation then PLL is disabled and the calibration circuit is reset. When PLL_PDN is  
then cleared to 0 PLL is re-enabled and the calibration sequence is automatically  
restarted.  
PLL_PDN  
PLL STATE  
PLL Enabled  
PLL Disabled  
0
1
10.6.50 PLL_CTRL1 Register; R57  
The PLL_CTRL1 register provides control of PLL. The PLL_CTRL1 register fields are described in the following  
table.  
Bit # Field  
Type Reset EEPROM  
Description  
Reserved.  
Reserved.  
[7:6] RSRVD  
-
-
N
Y
Y
[5]  
[4]  
RSRVD  
PRI_D  
RW  
RW  
0
1
Primary Reference Doubler Enable. If PRI_D is 1 the Primary Input Frequency Doubler  
is enabled.  
[3:0] PLL_CP[3:0 RW 0x8  
]
Y
PLL Charge Pump Gain. The PLL_CP sets the chargepump current as follows.  
PLL_CP  
1 (0x1)  
2 (0x2)  
3 (0x3)  
4 (0x4)  
5 (0x5)  
6 (0x6)  
7 (0x7)  
8 (0x8)  
Icp (mA)  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
6.4  
100  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.6.51 PLL_NDIV_BY1 Register; R58  
The 12-bit N integer divider value for PLL is set by the PLL_NDIV_BY1 and PLL_NDIV_BY0 registers.  
Bit # Field  
Type Res EEPROM  
et  
Description  
[7:4] RSRVD  
-
-
N
Y
Reserved.  
[3:0] PLL_NDIV[ RW 0x0  
11:8]  
PLL N Divider Byte 1. PLL Integer N Divider bits 11 to 8.  
PLL_NDIV  
0 (0x000)  
1 (0x001)  
...  
DIVIDER RATIO  
1
1
...  
4095 (0xFFF)  
4095  
10.6.52 PLL_NDIV_BY0 Register; R59  
The PLL_NDIV_BY0 register is described in the following table.  
Bit Field  
#
Type Reset EEPROM  
Description  
PLL N Divider Byte 0. PLL Integer N Divider bits 7 to 0.  
[7:0 PLL_NDIV[7 RW  
:0]  
0x66  
Y
]
10.6.53 PLL_FRACNUM_BY2 Register; R60  
The Fractional Divider Numerator value for PLL is set by registers PLL_FRACNUM_BY2, PLL_FRACNUM_BY1  
and PLL_FRACNUM_BY0.  
Bit Field  
#
Type Reset EEPROM  
Description  
[7:6 RSRVD  
]
-
-
N
Y
Reserved.  
[5:0 PLL_NUM[2 RW  
1:16]  
0x00  
PLL Fractional Divider Numerator Byte 2. Bits 21 to 16.  
]
10.6.54 PLL_FRACNUM_BY1 Register; R61  
The PLL_FRACNUM_BY1 register is described in the following table.  
Bit Field  
#
Type Reset EEPROM  
Description  
[7:0 PLL_NUM[15 RW 0x00  
:8]  
Y
PLL Fractional Divider Numerator Byte 1. Bits 15 to 8.  
]
10.6.55 PLL_FRACNUM_BY0 Register; R62  
The PLL_FRACNUM_BY0 register is described in the following table.  
Bit Field  
#
Type Reset EEPROM  
Description  
[7:0 PLL_NUM[7: RW 0x00  
0]  
Y
PLL Fractional Divider Numerator Byte 0. Bits 7 to 0.  
]
10.6.56 PLL_FRACDEN_BY2 Register; R63  
The Fractional Divider Denominator value for PLL is set by registers PLL_FRACDEN_BY2, PLL_FRACDEN_BY1  
and PLL_FRACDEN_BY0.  
Bit # Field  
Type Reset EEPROM  
Description  
[7:6] RSRVD  
-
-
N
Y
Reserved.  
[5:0] PLL_DEN[2 RW 0x00  
1:16]  
PLL Fractional Divider Denominator Byte 2. Bits 21 to 16.  
Copyright © 2015–2018, Texas Instruments Incorporated  
101  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.6.57 PLL_FRACDEN_BY1 Register; R64  
The PLL_FRACDEN_BY1 register is described in the following table.  
Bit # Field  
Type Reset EEPROM  
Description  
[7:0] PLL_DEN[1 RW 0x00  
5:8]  
Y
PLL Fractional Divider Denominator Byte 1. Bits 15 to 8.  
10.6.58 PLL_FRACDEN_BY0 Register; R65  
The PLL_FRACDEN_BY0 register is described in the following table.  
Bit # Field  
Type Reset EEPROM Description  
[7:0] PLL_DEN[7 RW 0x00  
:0]  
Y
PLL Fractional Divider Denominator Byte 0. Bits 7 to 0.  
10.6.59 PLL_MASHCTRL Register; R66  
The PLL_MASHCTRL register provides control of the fractional divider for PLL.  
Bit # Field  
Type Reset  
EEPROM Description  
[7:4] RSRVD  
-
-
N
Y
Reserved.  
[3:2] PLL_DTH RW 0x3  
Mash Engine dither mode control.  
RMODE[1:  
0]  
DITHERMODE  
0 (0x0)  
Dither Configuration  
Weak  
1 (0x1)  
Medium  
2 (0x2)  
Strong  
3 (0x3)  
Dither Disabled  
[1:0] PLL_ORD RW 0x0  
ER[1:0]  
Y
Mash Engine Order.  
ORDER  
Order Configuration  
Integer Mode Divider  
1st order  
0 (0x0)  
1 (0x1)  
2 (0x2)  
2nd order  
3 (0x3)  
3rd order  
10.6.60 PLL_LF_R2 Register; R67  
The PLL_LF_R2 register controls the value of the PLL Loop Filter R2.  
Bit # Field  
Type Reset EEPROM  
Description  
[7:6] RSRVD  
-
-
N
Y
Reserved.  
[5:0] PLL_LF_R2 RW 0x24  
[5:0]  
PLL Loop Filter R2. NOTE: Table below lists commonly used R2 values but more  
selections are available.  
PLL_LF_R2[5:0]  
1 (0x01)  
R2 (Ω)  
236  
2 (0x02)  
336  
4 (0x04)  
536  
8 (0x08)  
735  
32 (0x20)  
48 (0x30)  
1636  
2418  
10.6.61 PLL_LF_C1 Register; R68  
The PLL_LF_C1 register controls the value of the PLL Loop Filter C1.  
Bit # Field  
Type Reset  
EEPROM  
Description  
[7:3] RSRVD  
-
-
N
Y
Reserved.  
[2:0] PLL_LF_C RW 0x0  
1[2:0]  
PLL Loop Filter C1. The value in pF is given by 5 + 50 * PLL_LF_C1 (in binary).  
102  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.6.62 PLL_LF_R3 Register; R69  
The PLL_LF_R3 register controls the value of the PLL Loop Filter R3.  
Bit # Field  
[7] RSRVD  
Type Reset  
EEPROM  
Description  
-
-
N
Y
Reserved.  
[6:1] PLL_LF_R RW 0x0  
3[5:0]  
PLL Loop Filter R3. NOTE: Table below lists commonly used R3 values but more  
selections are available.  
PLL_LF_R3[5:0]  
0 (0x00)  
R3 (Ω)  
18  
2 (0x02)  
318  
4 (0x04)  
518  
8 (0x08)  
717  
16 (0x10)  
32 (0x20)  
64 (0x40)  
854  
1654  
3254  
[0]  
PLL_LF_I RW  
NT_FRAC  
0
Y
PLL Loop Filter Setting. Set to 0 for integer PLL and to 1 for fractional PLL.  
10.6.63 PLL_LF_C3 Register; R70  
The PLL_LF_C3 register controls the value of the PLL Loop Filter C3.  
Bit # Field  
Type Reset  
EEPROM  
Description  
[7:3] RSRVD  
-
-
N
Y
Reserved.  
[2:0] PLL_LF_C RW 0x0  
3[2:0]  
PLL Loop Filter C3. The value in pF is given by 5 * PLL_LF_C3 (in binary).  
10.6.64 SEC_CTRL Register; R72  
The SEC_CTRL register controls the value of the Secondary Reference Doubler.  
Bit # Field  
Type Reset EEPROM  
Description  
Reserved.  
Reserved.  
[7:6] RSRVD  
-
-
N
Y
Y
[5]  
[4]  
RSRVD  
SEC_D  
RW  
RW  
0
1
Secondary Reference Doubler Enable. If SEC_D is 1 the Secondary Input Frequency  
Doubler is enabled.  
[3:0] RSRVD  
RW 0x8  
Y
Reserved.  
Copyright © 2015–2018, Texas Instruments Incorporated  
103  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.6.65 XO_MARGINING Register; R86  
Margin Control  
Bit # Field  
Type Reset EEPROM  
Description  
[7]  
RSRVD  
-
-
N
N
Reserved.  
[6:4] MARGIN  
_DIG_ST  
R
0x0  
Margin Digital Step. MARGIN_DIG_STEP allows the current level of the margin selection  
pin (GPIO[5]) to be read.  
EP[2:0]  
MARGIN_DIG_STEP  
0 (0x0)  
Value  
STEP1  
1 (0x1)  
STEP2  
2 (0x2)  
STEP3  
3 (0x3)  
STEP4. (Nominal loading for zero frequency offset  
4 (0x4)  
STEP5  
STEP6  
STEP7  
STEP8  
5 (0x5)  
6 (0x6)  
7 (0x7)  
[3:2] MARGIN RW 0x0  
Y
Margin Option Select. The MARGIN_OPTION field defines the operation of the Frequency  
Margining as follows.  
_OPTIO  
N[1:0]  
MARGIN_OPTIONS  
0 (0x0)  
MARGIN Mode  
Margining Enabled when GPIO4 pin is low. GPIO5 pin  
selects the frequency offset setting (STEP1 to STEP8).  
When GPIO4 pin is high, STEP4 offset value is selected  
to use the nominal crystal loading.  
1 (0x1)  
Margining Enabled. GPIO5 pin selects the frequency  
offset setting (STEP1 to STEP8). GPIO4 pin state is  
ignored.  
2 (0x2)  
N
Margining Enabled. Frequency offset is controlled by  
XOOFFSET_SW register bits (R104 and R105).  
[1:0] RSRVD  
-
-
Reserved.  
10.6.66 XO_OFFSET_GPIO5_STEP_1_BY1 Register; R88  
XO Margining Step 1 Offset Value (bits 9-8)  
Bit # Field  
Type Reset  
EEPROM  
Description  
[7:2] RSRVD  
-
-
N
Y
Reserved.  
[1:0] XOOFFSET_ST RW 0x00  
EP1[9:8]  
XO Margining Step 1 Offset Value.  
10.6.67 XO_OFFSET_GPIO5_STEP_1_BY0 Register; R89  
XO Margining Step 1 Offset Value (bits 7-0)  
Bit # Field  
Type Reset  
EEPROM  
Description  
[7:0] XOOFFSET_ST RW 0xDE  
EP1[7:0]  
Y
XO Margining Step 1 Offset Value.  
10.6.68 XO_OFFSET_GPIO5_STEP_2_BY1 Register; R90  
XO Margining Step 1 Offset Value (bits 9-8)  
Bit # Field  
Type Reset  
EEPROM  
Description  
[7:2] RSRVD  
-
-
N
Y
Reserved.  
[1:0] XOOFFSET_ST RW 0x01  
EP2[9:8]  
XO Margining Step 2 Offset Value.  
104  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.6.69 XO_OFFSET_GPIO5_STEP_2_BY0 Register; R91  
XO Margining Step 2 Offset Value (bits 7-0)  
Bit # Field  
Type Reset  
EEPROM  
Description  
[7:0] XOOFFSET_ST RW 0x18  
EP2[7:0]  
Y
XO Margining Step 2 Offset Value.  
10.6.70 XO_OFFSET_GPIO5_STEP_3_BY1 Register; R92  
XO Margining Step 3 Offset Value (bits 9-8)  
Bit # Field  
Type Reset EEPROM  
Description  
[7:2] RSRVD  
-
-
N
Y
Reserved.  
[1:0] XOOFFSET_ST RW  
EP3[9:8]  
0x01  
XO Margining Step 3 Offset Value.  
10.6.71 XO_OFFSET_GPIO5_STEP_3_BY0 Register; R93  
XO Margining Step 3 Offset Value (bits 7-0)  
Bit # Field  
Type Reset  
EEPROM  
Description  
[7:0] XOOFFSET_ST RW 0x4B  
EP3[7:0]  
Y
XO Margining Step 3 Offset Value.  
10.6.72 XO_OFFSET_GPIO5_STEP_4_BY1 Register; R94  
XO Margining Step 4 Offset Value (bits 9-8)  
Bit # Field  
Type Reset  
EEPROM  
Description  
[7:2] RSRVD  
-
-
N
Y
Reserved.  
[1:0] XOOFFSET_ST RW 0x1  
EP4[9:8]  
XO Margining Step 4 Offset Value.  
10.6.73 XO_OFFSET_GPIO5_STEP_4_BY0 Register; R95  
XO Margining Step 4 Offset Value (bits 7-0)  
Bit # Field  
Type Reset EEPROM  
Description  
[7:0] XOOFFSET_ST RW 0x86  
EP4[7:0]  
Y
XO Margining Step 4 Offset Value.  
10.6.74 XO_OFFSET_GPIO5_STEP_5_BY1 Register; R96  
XO Margining Step 5 Offset Value (bits 9-8)  
Bit # Field  
Type Reset EEPROM  
Description  
[7:2] RSRVD  
-
-
N
Y
Reserved.  
[1:0] XOOFFSET_ST RW 0x1  
EP5[9:8]  
XO Margining Step 5 Offset Value.  
10.6.75 XO_OFFSET_GPIO5_STEP_5_BY0 Register; R97  
XO Margining Step 5 Offset Value (bits 7-0)  
Bit # Field  
Type Reset EEPROM Description  
[7:0] XOOFFSET_ST RW  
EP5[7:0]  
0xBE  
Y
XO Margining Step 5 Offset Value.  
Copyright © 2015–2018, Texas Instruments Incorporated  
105  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.6.76 XO_OFFSET_GPIO5_STEP_6_BY1 Register; R98  
XO Margining Step 6 Offset Value (bits 9-8)  
Bit # Field  
Type Reset EEPROM Description  
[7:2] RSRVD  
-
-
N
Y
Reserved.  
[1:0] XOOFFSET_ST RW 0x1  
EP6[9:8]  
XO Margining Step 6 Offset Value.  
10.6.77 XO_OFFSET_GPIO5_STEP_6_BY0 Register; R99  
XO Margining Step 6 Offset Value (bits 7-0)  
Bit # Field  
Type Reset EEPROM Description  
[7:0] XOOFFSET_ST RW 0xFE  
EP6[7:0]  
Y
XO Margining Step 6 Offset Value.  
10.6.78 XO_OFFSET_GPIO5_STEP_7_BY1 Register; R100  
XO Margining Step 7 Offset Value (bits 9-8)  
Bit # Field  
Type Reset EEPROM Description  
[7:2] RSRVD  
-
-
N
Y
Reserved.  
[1:0] XOOFFSET_ST RW 0x2  
EP7[9:8]  
XO Margining Step 7 Offset Value.  
10.6.79 XO_OFFSET_GPIO5_STEP_7_BY0 Register; R101  
XO Margining Step 7 Offset Value (bits 7-0)  
Bit # Field  
Type Reset EEPROM Description  
[7:0] XOOFFSET_ST RW  
EP7[7:0]  
0x47  
Y
XO Margining Step 7 Offset Value.  
10.6.80 XO_OFFSET_GPIO5_STEP_8_BY1 Register; R102  
XO Margining Step 8 Offset Value (bits 9-8)  
Bit # Field  
Type Reset EEPRO Description  
M
[7:2] RSRVD  
-
-
N
Y
Reserved.  
[1:0] XOOFFSET_ST RW  
EP8[9:8]  
0x2  
XO Margining Step 8 Offset Value.  
10.6.81 XO_OFFSET_GPIO5_STEP_8_BY0 Register; R103  
XO Margining Step 8 Offset Value (bits 7-0)  
Bit # Field  
Type Reset EEPRO Description  
M
[7:0] XOOFFSET_ST RW  
EP8[7:0]  
0x9E  
Y
XO Margining Step 8 Offset Value.  
10.6.82 XO_OFFSET_SW_BY1 Register; R104  
Software Controlled XO Margining Offset Value (bits 9-8).  
Bit # Field  
Type Reset EEPRO Description  
M
[7:2] RSRVD  
-
-
N
Y
Reserved.  
[1:0] XOOFFSET_S  
W[9:8]  
RW  
0x0  
XO Margining Software Controlled Offset Value.  
106  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.6.83 XO_OFFSET_SW_BY0 Register; R105  
Software Controlled XO Margining Offset Value (bits 7-0).  
Bit # Field  
Type Reset EEPRO Description  
M
[7:0] XOOFFSET_S  
W[7:0]  
RW  
0x00  
Y
XO Margining Software Controlled Offset Value.  
10.6.84 PLL_CTRL2 Register; R117  
The PLL_CTRL2 register provides control of PLL. The PLL_CTRL2 register fields are described in the following  
table.  
Bit # Field  
[7] PLL_STRET RW  
CH  
Type Reset EEPROM Description  
0
Y
Stretch PFD minimum pump width in fractional mode. A value of 0 is recommended for  
Integer-N PLL and sets the phase detector pulse width to 200 ps. A value of 1 is  
recommended for Fractional-N PLL and stretches the pulse width to roughly 600 ps.  
[6:0] RSRVD  
-
-
N
Reserved.  
10.6.85 PLL_CTRL3 Register; R118  
The PLL_CTRL3 register provides control of PLL. The PLL_CTRL3 register fields are described in the following  
table.  
Bit # Field  
Type Reset EEPROM Description  
[7:3] RSRVD  
-
-
N
Y
Reserved.  
[2:0] PLL_DISABL RW  
E_4TH[2:0]  
0x3  
PLL Loop Filter Settings.  
PLL_DISABLE_4TH[2:0]  
0 (0x0), 1 (0x1), 2 (0x2)  
3 (0x3)  
MODE  
RESERVED  
2nd Order Loop Filter Recommended Setting  
for Integer PLL Mode.  
4 (0x4), 5 (0x5), 6 (0x6)  
7 (0x7)  
RESERVED  
3rd Order Loop Filter Recommended Setting  
for Fractional PLL Mode.  
10.6.86 PLL_CALCTRL0 Register; R119  
The PLL_CALCTRL0 register is described in the following table.  
Bit # Field  
Type Reset EEPROM Description  
[7:4] RSRVD  
-
-
N
Y
Reserved.  
[3:2] PLL_CLSDW RW  
AIT[1:0]  
0x0  
Closed Loop Wait Period. The CLSDWAIT field sets the closed loop wait period, in  
periods of the always on clock as follows. Use 0x1 for clock generator mode (> 10 kHz  
loop bandwidth) and 0x3 for jitter cleaner mode (< 1 kHz loop bandwidth).  
CLSDWAIT  
Analog closed loop VCO stabilization time  
0 (0x0)  
30 µs  
1 (0x1)  
300 µs  
30 ms  
300 ms  
2 (0x2)  
3 (0x3)  
[1:0] PLL_VCOWA RW  
IT[1:0]  
0x1  
Y
VCO Wait Period. Use 0x1 for all modes.  
VCOWAIT  
0 (0x0)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
VCO stabilization time  
20 µs  
400 µs  
8000 µs  
200000 µs  
Copyright © 2015–2018, Texas Instruments Incorporated  
107  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.6.87 PLL_CALCTRL1 Register; R120  
The PLL_CALCTRL1 register is described in the following table.  
Bit # Field  
Type Reset EEPROM Description  
[7:1] RSRVD  
-
-
N
Y
Reserved.  
[0]  
PLL_LOOPB RW  
W
0
PLL Loop bandwidth Control. When PLL_LOOPBW is 1 the loop bandwidth of PLL is  
reduced to 200 Hz (jitter cleaner mode). When PLL_LOOPBW is 0 the loop bandwidth of  
PLL is set to its normal range (clock generator mode). NOTE: Proper PLL settings must  
be used (PFD, charge pump, loop filter) with setting the desired value for  
PLL_LOOPBW.  
10.6.88 NVMCNT Register; R136  
The NVMCNT register is intended to reflect the number of on-chip EEPROM Erase/Program cycles that have  
taken place in EEPROM. The count is automatically incremented by hardware and stored in EEPROM.  
Bit # Field  
Type Reset EEPROM Description  
0x00  
[7:0] NVMCNT[7:0  
]
R
Y
EEPROM Program Count. The NVMCNT increments automatically after every EEPROM  
Erase/Program Cycle. The NVMCNT value is retreived automatically after reset, after a  
EEPROM Commit operation or after a Erase/Program cycle. The NVMCNT register will  
increment until it reaches its maximum value of 255 after which no further increments will  
take place.  
10.6.89 NVMCTL Register; R137  
The NVMCTL register allows control of the on-chip EEPROM Memories.  
Bit # Field  
Type Reset EEPROM Description  
[7]  
[6]  
RSRVD  
-
-
N
N
Reserved.  
REGCOMMI RWS  
T
0
REG Commit to EEPROM SRAM Array. The REGCOMMIT bit is used to initiate a  
transfer from the on-chip registers back to the corresponding location in the EEPROM  
SRAM Array. The REGCOMMIT bit is automatically cleared to 0 when the transfer is  
complete. The particular page of SRAM used as the destination for the transfer is  
selected by the REGCOMMIT_PAGE register.  
C
[5]  
[4]  
[3]  
NVMCRCE  
RR  
R
0
1
0
N
N
N
EEPROM CRC Error Indication. The NVMCRCERR bit is set to 1 if a CRC Error has  
been detected when reading back from on-chip EEPROM during device configuration.  
NVMAUTO RW  
CRC  
EEPROM Automatic CRC. When NVMAUTOCRC is 1 then the EEPROM Stored CRC  
byte is automatically calculated whenever an EEPROM program takes place.  
NVMCOMM RWS  
IT  
EEPROM Commit to Registers. The NVMCOMMIT bit is used to initiate a transfer of the  
on-chip EEPROM contents to internal registers. The transfer happens automatically after  
reset or when NVMCOMMIT is set to 1. The NVMCOMMIT bit is automatically cleared to  
0. The I2C registers cannot be read while a EEPROM Commit operation is taking place.  
The NVMCOMMIT operation can only carried out when the Always On Clock is active.  
The Always On Clock can be kept running after lock by setting the AONAFTERLOCK bit.  
C
[2]  
[1]  
[0]  
NVMBUSY  
RSRVD  
R
0
0
0
N
N
N
EEPROM Program Busy Indication. The NVMBUSY bit is 1 during an on-chip EEPROM  
Erase/Program cycle. While NVMBUSY is 1 the on-chip EEPROM cannot be accessed.  
RWS  
C
Reserved.  
NVMPROG RWS  
C
EEPROM Program Start. The NVMPROG bit is used to begin an on-chip EEPROM  
Erase/Program cycle. The Erase/Program cycle is only initiated if the immediately  
preceding I2C transaction was a write to the NVMUNLK register with the appropriate  
code. The NVMPROG bit is automatically cleared to 0. The EEPROM Erase/Program  
operation takes around 230 ms.  
10.6.90 NVMLCRC Register; R138  
The NVMLCRC register holds the Live CRC byte that has been calculated while reading on-chip EEPROM.  
Bit # Field  
Type Reset EEPROM Description  
0x00 EEPROM Live CRC.  
[7:0] NVMLCRC[  
7:0]  
R
N
108  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.6.91 MEMADR_BY1 Register; R139  
The MEMADR_BY1 register holds the MSB of the starting address for on-chip SRAM or EEPROM access.  
Bit # Field  
Type Reset EEPROM Description  
[7:4] RSRVD  
-
-
N
N
Reserved.  
[3:0] MEMADR[1 RW  
1:8]  
0x0  
Memory Address. The MEMADR value determines the starting address for access to the  
on-chip memories. The on-chip memories and the corresponding address ranges are  
listed below. The data from the selected address is then accessed using one of the data  
registers listed below.  
MEMORY  
MEMADR Range  
Data Register  
NVMDAT  
EEPROM EEPROM- MEMADR[8:0]  
Array  
EEPROM SRAM-  
Array  
MEMADR[8:0]  
RAMDAT  
ROMDAT  
ROM-Array  
MEMADR[11:0]  
10.6.92 MEMADR_BY0 Register; R140  
The MEMADR_BY0 register holds the lower 8-bits of the starting address for on-chip SRAM or EEPROM access.  
Bit # Field  
Type Reset EEPROM Description  
[7:0] MEMADR[7: RW  
0]  
0x00  
N
Memory Address.  
10.6.93 NVMDAT Register; R141  
The NVMDAT register returns the on-chip EEPROM contents from the starting address specified by the  
MEMADR register.  
Bit # Field  
Type Reset EEPROM Description  
0x00  
[7:0] NVMDAT[7:  
0]  
R
N
EEPROM Read Data. The first time an I2C read transaction accesses the NVMDAT  
register address, either because it was explicitly targeted or because the address was  
auto-incremented, the read transaction will return the EEPROM data located at the  
address specified by the MEMADR register. Any additional read's which are part of the  
same transaction will cause the EEPROM address to be incremented and the next  
EEPROM data byte will be returned. The I2C address will no longer be auto-  
incremented, that is, the I2C address will be locked to the NVMDAT register after the first  
access. Access to the NVMDAT register will terminate at the end of the current I2C  
transaction.  
10.6.94 RAMDAT Register; R142  
The RAMDAT register provides read and write access to the SRAM that forms part of the on-chip EEPROM  
module.  
Bit #  
Field  
Type Reset EEPRO Description  
M
[7:0]  
RAMDAT[7: RW  
0]  
0x00  
N
RAM Read/Write Data. The first time an I2C read or write transaction accesses the  
RAMDAT register address, either because it was explicitly targeted or because the  
address was auto-incremented, a read transaction will return the RAM data located at the  
address specified by the MEMADR register and a write transaction will cause the current  
I2C data to be written to the address specified by the MEMADR register. Any additional  
accesses which are part of the same transaction will cause the RAM address to be  
incremented and a read or write access will take place to the next SRAM address. The  
I2C address will no longer be auto-incremented, that is, the I2C address will be locked to  
the RAMDAT register after the first access. Access to the RAMDAT register will  
terminate at the end of the current I2Cs transaction.  
Copyright © 2015–2018, Texas Instruments Incorporated  
109  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
10.6.95 ROMDAT Register; R143  
The romdat register provides read to the on-chip ROM module.  
Bit #  
Field  
Type Reset EEPRO Description  
M
[7:0]  
ROMDAT[7:  
0]  
R
0x00  
N
ROM Read Data. The first time an I2C read or write transaction accesses the romdat  
register address, either because it was explicitly targeted or because the address was  
auto-incremented, a read transaction will return the ROM data located at the address  
specified by the MEMADR register. Any additional accesses which are part of the same  
transaction will cause the ROM address to be incremented and a read access will take  
place to the next ROM address. The I2C address will no longer be auto-incremented, that  
is, the I2C address will be locked to the romdat register after the first access. Access to  
the ROMDAT register will terminate at the end of the current I2C transaction.  
10.6.96 NVMUNLK Register; R144  
The NVMUNLK register provides a rudimentary level of protection to prevent inadvertent programming of the on-  
chip EEPROM.  
Bit #  
Field  
Type Reset EEPRO Description  
M
[7:0]  
NVMUNLK[ RW  
7:0]  
0x0  
N
EEPROM Prog Unlock. The NVMUNLK register must be written immediately prior to  
setting the NVMPROG bit of register NVMCTL, otherwise the Erase/Program cycle will  
not be triggered. NVMUNLK must be written with a value of 0xEA.  
10.6.97 REGCOMMIT_PAGE Register; R145  
The REGCOMMIT_PAGE register determines the region of the EEPROM/SRAM array that is populated by the  
REGCOMMIT operation.  
Bit #  
Field  
Type Reset EEPRO Description  
M
[7:4]  
[3:0]  
RSRVD  
-
-
N
N
Reserved.  
REGCOMM RW  
IT_PG[3:0]  
0x0  
Register Commit Page (1 of 6 available pages that can be selected by the GPIO[3:2] pins  
for default powerup state. NOTE: Valid page values are 0 to 5. Do not use other values.)  
10.6.98 XOCAPCTRL_BY1 Register; R199  
The XOCAPCTRL_BY1 and XOCAPCTRL_BY0 registers allow read-back of the XOCAPCTRL value that  
displays the on-chip load capacitance selected for the crystal.  
Bit #  
Field  
Type Reset EEPRO  
M
Description  
[7:2]  
[1:0]  
RSRVD  
-
-
N
N
Reserved.  
XO_CAP_  
CTRL[9:8]  
R
0x0  
XO CAP CTRL register.  
10.6.99 XOCAPCTRL_BY0 Register; R200  
The XOCAPCTRL_BY1 and XOCAPCTRL_BY0 registers allow read-back of the XOCAPCTRL value that  
displays the on-chip load capacitance selected for the crystal.  
Bit #  
Field  
Type Reset EEPRO  
M
Description  
[7:0]  
XO_CAP_C  
TRL[7:0]  
R
0x00  
N
XO CAP CTRL register.  
110  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
10.6.100 EEPROM Map  
The EEPROM map is shown in the table below. There are 6 EEPROM pages and the common EEPROM bits are shown first. Any bit that is labeled as  
"RSRVD" should be written with a 0.  
Byte #  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
1
1
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
NVMSCRC[0]  
NVMCNT[0]  
RSRVD  
2
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
3
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
4
NVMSCRC[7]  
NVMCNT[7]  
NVMSCRC[6]  
NVMCNT[6]  
NVMSCRC[5]  
NVMCNT[5]  
NVMSCRC[4]  
NVMCNT[4]  
NVMSCRC[3]  
NVMCNT[3]  
NVMSCRC[2]  
NVMCNT[2]  
NVMSCRC[1]  
NVMCNT[1]  
RSRVD  
5
11  
SLAVEADR_GPIO SLAVEADR_GPIO1_ SLAVEADR_GPIO1_ SLAVEADR_GPIO1_ SLAVEADR_GPIO1_ RSRVD  
1_SW[7]  
EEREV[7]  
SYNC_AUTO  
1
SW[6]  
SW[5]  
SW[4]  
SW[3]  
12  
13  
14  
15  
EEREV[6]  
SYNC_MUTE  
1
EEREV[5]  
AONAFTERLOCK  
1
EEREV[4]  
EEREV[3]  
AUTOSTRT  
1
EEREV[2]  
EEREV[1]  
LOS_MASK  
LOS_POL  
INT_EN  
EEREV[0]  
CAL_MASK  
CAL_POL  
PLLSTRTMODE  
SECTOPRI_MASK  
SECTOPRI_POL  
LOL_MASK  
LOL_POL  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
INT_AND_OR  
STAT1_SHOOT_T  
HRU_LIMIT  
16  
17  
18  
STAT0_SHOOT_T RSRVD  
HRU_LIMIT  
RSRVD  
STAT1_OPEND  
STAT0_OPEND  
CH3_MUTE_LVL[1] CH3_MUTE_LVL[0] CH2_MUTE_LVL[1  
]
CH2_MUTE_LVL[0 CH1_MUTE_LVL[1] CH1_MUTE_LVL[0] CH0_MUTE_LVL[1] CH0_MUTE_LVL[0] CH7_MUTE_LVL[1] CH7_MUTE_LVL[0] CH6_MUTE_LVL[1  
]
]
CH6_MUTE_LVL[0 CH5_MUTE_LVL[1] CH5_MUTE_LVL[0] CH4_MUTE_LVL[1] CH4_MUTE_LVL[0] CH_7_MUTE  
]
CH_6_MUTE  
CH_5_MUTE  
19  
20  
CH_4_MUTE  
CH_3_MUTE  
CH_2_MUTE  
CH_1_MUTE  
CH_0_MUTE  
STATUS1_MUTE  
STATUS0_MUTE  
DIV_7_DYN_DLY  
DIV_6_DYN_DLY DIV_5_DYN_DLY  
DIV_4_DYN_DLY  
DIV_23_DYN_DLY  
DIV_01_DYN_DLY  
DETECT_MODE_SE DETECT_MODE_SE DETECT_MODE_  
C[1]  
C[0]  
PRI[1]  
21  
22  
23  
24  
25  
26  
DETECT_MODE_ LVL_SEL_SEC[1]  
PRI[0]  
LVL_SEL_SEC[0]  
RSRVD  
LVL_SEL_PRI[1]  
LVL_SEL_PRI[0]  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
XOOFFSET_STEP1[ XOOFFSET_STEP1[ XOOFFSET_STEP1[ XOOFFSET_STEP1[ XOOFFSET_STEP  
9] 8] 7] 6] 1[5]  
XOOFFSET_STEP XOOFFSET_STEP1[ XOOFFSET_STEP1[ XOOFFSET_STEP1[ XOOFFSET_STEP1[ XOOFFSET_STEP2[ XOOFFSET_STEP2[ XOOFFSET_STEP  
1[4] 3] 2] 1] 0] 9] 8] 2[7]  
XOOFFSET_STEP XOOFFSET_STEP2[ XOOFFSET_STEP2[ XOOFFSET_STEP2[ XOOFFSET_STEP2[ XOOFFSET_STEP2[ XOOFFSET_STEP2[ XOOFFSET_STEP  
2[6] 5] 4] 3] 2] 1] 0] 3[9]  
XOOFFSET_STEP XOOFFSET_STEP3[ XOOFFSET_STEP3[ XOOFFSET_STEP3[ XOOFFSET_STEP3[ XOOFFSET_STEP3[ XOOFFSET_STEP3[ XOOFFSET_STEP  
3[8] 7] 6] 5] 4] 3] 2] 3[1]  
XOOFFSET_STEP XOOFFSET_STEP5[ XOOFFSET_STEP5[ XOOFFSET_STEP5[ XOOFFSET_STEP5[ XOOFFSET_STEP5[ XOOFFSET_STEP5[ XOOFFSET_STEP  
3[0] 9] 8] 7] 6] 5] 4] 5[3]  
Copyright © 2015–2018, Texas Instruments Incorporated  
111  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Byte #  
Bit7  
XOOFFSET_STEP XOOFFSET_STEP5[ XOOFFSET_STEP5[ XOOFFSET_STEP6[ XOOFFSET_STEP6[ XOOFFSET_STEP6[ XOOFFSET_STEP6[ XOOFFSET_STEP  
5[2] 1] 0] 9] 8] 7] 6] 6[5]  
XOOFFSET_STEP XOOFFSET_STEP6[ XOOFFSET_STEP6[ XOOFFSET_STEP6[ XOOFFSET_STEP6[ XOOFFSET_STEP7[ XOOFFSET_STEP7[ XOOFFSET_STEP  
6[4] 3] 2] 1] 0] 9] 8] 7[7]  
XOOFFSET_STEP XOOFFSET_STEP7[ XOOFFSET_STEP7[ XOOFFSET_STEP7[ XOOFFSET_STEP7[ XOOFFSET_STEP7[ XOOFFSET_STEP7[ XOOFFSET_STEP  
7[6] 5] 4] 3] 2] 1] 0] 8[9]  
XOOFFSET_STEP XOOFFSET_STEP8[ XOOFFSET_STEP8[ XOOFFSET_STEP8[ XOOFFSET_STEP8[ XOOFFSET_STEP8[ XOOFFSET_STEP8[ XOOFFSET_STEP  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
27  
28  
29  
30  
31  
32  
8[8]  
7]  
6]  
5]  
4]  
3]  
2]  
8[1]  
XOOFFSET_STEP XOOFFSET_SW[9]  
8[0]  
XOOFFSET_SW[8]  
XOOFFSET_SW[7]  
XOOFFSET_SW[6]  
XOOFFSET_SW[5]  
XOOFFSET_SW[4]  
XOOFFSET_SW[3  
]
XOOFFSET_SW[2 XOOFFSET_SW[1]  
]
XOOFFSET_SW[0]  
RSRVD  
RSRVD  
1
RSRVD  
1
33  
34  
35  
36  
37  
38  
1
RSRVD  
RSRVD  
RSRVD  
1
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
1
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
1
1
1
1
RSRVD  
1
RSRVD  
RSRVD  
RSRVD  
RSRVD  
1
1
1
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
EEPROM_PAGE=0, 1, 2, 3, 4, 5  
39, 90,  
141, 192,  
243, 294  
RSRVD  
OUT_0_SEL[1]  
OUT_0_SEL[0]  
OUT_1_MODE1[0]  
OUT_0_1_DIV[2]  
OUT_2_MODE2[1]  
OUT_2_3_DIV[7]  
CH_4_MUX[1]  
OUT_0_MODE1[1]  
OUT_1_MODE2[1]  
OUT_0_1_DIV[1]  
OUT_2_MODE2[0]  
OUT_2_3_DIV[6]  
CH_4_MUX[0]  
OUT_0_MODE1[0]  
OUT_1_MODE2[0]  
OUT_0_1_DIV[0]  
OUT_3_SEL[1]  
OUT_0_MODE2[1]  
OUT_0_1_DIV[7]  
RSRVD  
OUT_0_MODE2[0]  
OUT_0_1_DIV[6]  
OUT_2_SEL[1]  
OUT_1_SEL[1]  
40, 91,  
142, 193,  
244, 295  
OUT_1_SEL[0]  
OUT_0_1_DIV[4]  
OUT_1_MODE1[1]  
OUT_0_1_DIV[3]  
OUT_0_1_DIV[5]  
OUT_2_SEL[0]  
41, 92,  
143, 194,  
245, 296  
42, 93,  
144, 195,  
246, 297  
OUT_2_MODE1[1] OUT_2_MODE1[0]  
OUT_3_MODE2[1] OUT_3_MODE2[0]  
OUT_3_SEL[0]  
OUT_2_3_DIV[4]  
OUT_4_SEL[0]  
OUT_4_DIV[4]  
OUT_3_MODE1[1]  
OUT_2_3_DIV[3]  
OUT_4_MODE1[1]  
OUT_4_DIV[3]  
OUT_3_MODE1[0]  
OUT_2_3_DIV[2]  
OUT_4_MODE1[0]  
OUT_4_DIV[2]  
43, 94,  
145, 196,  
247, 298  
OUT_2_3_DIV[5]  
OUT_4_SEL[1]  
44, 95,  
146, 197,  
248, 299  
OUT_2_3_DIV[1]  
OUT_2_3_DIV[0]  
45, 96,  
OUT_4_MODE2[1] OUT_4_MODE2[0]  
OUT_4_DIV[7]  
OUT_4_DIV[6]  
OUT_4_DIV[5]  
147, 198,  
249, 300  
112  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Byte #  
Bit7  
OUT_4_DIV[1]  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
46, 97,  
OUT_4_DIV[0]  
CH_5_MUX[1]  
CH_5_MUX[0]  
OUT_5_SEL[1]  
OUT_5_SEL[0]  
OUT_5_MODE1[1]  
OUT_5_MODE1[0]  
148, 199,  
250, 301  
47, 98,  
149, 200,  
251, 302  
OUT_5_MODE2[1] OUT_5_MODE2[0]  
OUT_5_DIV[7]  
CH_6_MUX[1]  
OUT_6_DIV[7]  
CH_7_MUX[1]  
OUT_7_DIV[7]  
RSRVD  
OUT_5_DIV[6]  
CH_6_MUX[0]  
OUT_6_DIV[6]  
CH_7_MUX[0]  
OUT_7_DIV[6]  
RSRVD  
OUT_5_DIV[5]  
OUT_6_SEL[1]  
OUT_6_DIV[5]  
OUT_7_SEL[1]  
OUT_7_DIV[5]  
OUT_5_DIV[4]  
OUT_6_SEL[0]  
OUT_6_DIV[4]  
OUT_7_SEL[0]  
OUT_7_DIV[4]  
OUT_5_DIV[3]  
OUT_5_DIV[2]  
OUT_6_MODE1[0]  
OUT_6_DIV[2]  
OUT_7_MODE1[0]  
OUT_7_DIV[2]  
STATUS1MUX[0]  
CMOSDIV0[2]  
RSRVD  
48, 99,  
150, 201,  
252, 303  
OUT_5_DIV[1]  
OUT_5_DIV[0]  
OUT_6_MODE1[1]  
OUT_6_DIV[3]  
49, 100, OUT_6_MODE2[1] OUT_6_MODE2[0]  
151, 202,  
253, 304  
50, 101, OUT_6_DIV[1]  
152, 203,  
254, 305  
OUT_6_DIV[0]  
OUT_7_MODE1[1]  
OUT_7_DIV[3]  
51, 102, OUT_7_MODE2[1] OUT_7_MODE2[0]  
153, 204,  
255, 306  
52, 103, OUT_7_DIV[1]  
154, 205,  
256, 307  
OUT_7_DIV[0]  
STATUS0MUX[0]  
CMOSDIV0[0]  
RSRVD  
PLLCMOSPREDIV[1 PLLCMOSPREDIV[0 STATUS1MUX[1]  
]
]
53, 104, STATUS0MUX[1]  
155, 206,  
257, 308  
CMOSDIV0[7]  
RSRVD  
CMOSDIV0[6]  
RSRVD  
CMOSDIV0[5]  
CMOSDIV0[4]  
CMOSDIV0[3]  
RSRVD  
54, 105, CMOSDIV0[1]  
156, 207,  
258, 309  
RSRVD  
RSRVD  
55, 106, RSRVD  
157, 208,  
259, 310  
CH_7_PREDRVR  
STATUS1SLEW[1]  
RSRVD  
CH_6_PREDRVR  
STATUS1SLEW[0]  
RSRVD  
CH_5_PREDRVR  
STATUS0SLEW[1]  
INSEL_PLL[1]  
PRIBUFGAIN  
PLLMDIV[0]  
CH_4_PREDRVR  
STATUS0SLEW[0]  
INSEL_PLL[0]  
PLLRDIV[2]  
CH_3_PREDRVR  
SECBUFSEL[1]  
CLKMUX_BYPASS  
PLLRDIV[1]  
CH_2_PREDRVR  
SECBUFSEL[0]  
RSRVD  
56, 107, CH_1_PREDRVR CH_0_PREDRVR  
158, 209,  
260, 311  
57, 108, PRIBUFSEL[1]  
159, 210,  
261, 312  
PRIBUFSEL[0]  
RSRVD  
58, 109, RSRVD  
160, 211,  
262, 313  
RSRVD  
SECBUFGAIN  
PLLMDIV[1]  
PLLRDIV[0]  
59, 110, PLLMDIV[4]  
161, 212,  
PLLMDIV[3]  
PLLMDIV[2]  
RSRVD  
RSRVD  
RSRVD  
263, 314  
Copyright © 2015–2018, Texas Instruments Incorporated  
113  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Byte #  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
60, 111, RSRVD  
162, 213,  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
PLL_P[2]  
PLL_P[1]  
PLL_P[0]  
264, 315  
61, 112, PLL_SYNC_EN  
163, 214,  
265, 316  
PLL_PDN  
RSRVD  
PRI_D  
PLL_CP[3]  
PLL_CP[2]  
PLL_CP[1]  
PLL_CP[0]  
PLL_NDIV[4]  
PLL_NUM[18]  
PLL_NUM[10]  
PLL_NUM[2]  
PLL_DEN[16]  
PLL_DEN[8]  
PLL_DEN[0]  
PLL_LF_R2[2]  
PLL_LF_R3[4]  
RSRVD  
62, 113, PLL_NDIV[11]  
164, 215,  
266, 317  
PLL_NDIV[10]  
PLL_NDIV[2]  
PLL_NUM[16]  
PLL_NUM[8]  
PLL_NUM[0]  
PLL_DEN[14]  
PLL_DEN[6]  
PLL_NDIV[9]  
PLL_NDIV[1]  
PLL_NUM[15]  
PLL_NUM[7]  
PLL_DEN[21]  
PLL_DEN[13]  
PLL_DEN[5]  
PLL_NDIV[8]  
PLL_NDIV[0]  
PLL_NUM[14]  
PLL_NUM[6]  
PLL_DEN[20]  
PLL_DEN[12]  
PLL_DEN[4]  
PLL_ORDER[0]  
PLL_LF_C1[1]  
PLL_LF_R3[0]  
1
PLL_NDIV[7]  
PLL_NUM[21]  
PLL_NUM[13]  
PLL_NUM[5]  
PLL_DEN[19]  
PLL_DEN[11]  
PLL_DEN[3]  
PLL_LF_R2[5]  
PLL_LF_C1[0]  
PLL_LF_C3[2]  
RSRVD  
PLL_NDIV[6]  
PLL_NUM[20]  
PLL_NUM[12]  
PLL_NUM[4]  
PLL_DEN[18]  
PLL_DEN[10]  
PLL_DEN[2]  
PLL_LF_R2[4]  
PLL_LF_R3[6]  
PLL_LF_C3[1]  
SEC_D  
PLL_NDIV[5]  
PLL_NUM[19]  
PLL_NUM[11]  
PLL_NUM[3]  
PLL_DEN[17]  
PLL_DEN[9]  
PLL_DEN[1]  
PLL_LF_R2[3]  
PLL_LF_R3[5]  
PLL_LF_C3[0]  
RSRVD  
63, 114, PLL_NDIV[3]  
165, 216,  
267, 318  
64, 115, PLL_NUM[17]  
166, 217,  
268, 319  
65, 116, PLL_NUM[9]  
167, 218,  
269, 320  
66, 117, PLL_NUM[1]  
168, 219,  
270, 321  
67, 118, PLL_DEN[15]  
169, 220,  
271, 322  
68, 119, PLL_DEN[7]  
170, 221,  
272, 323  
69, 120, PLL_DTHRMODE[ PLL_DTHRMODE[0] PLL_ORDER[1]  
171, 222, 1]  
273, 324  
70, 121, PLL_LF_R2[1]  
172, 223,  
274, 325  
PLL_LF_R2[0]  
PLL_LF_R3[2]  
RSRVD  
PLL_LF_C1[2]  
PLL_LF_R3[1]  
RSRVD  
71, 122, PLL_LF_R3[3]  
173, 224,  
275, 326  
72, 123, RSRVD  
174, 225,  
RSRVD  
276, 327  
73, 124, RSRVD  
175, 226,  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
277, 328  
114  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Byte #  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
74, 125, RSRVD  
176, 227,  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
278, 329  
75, 126, RSRVD  
177, 228,  
279, 330  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
76, 127, RSRVD  
178, 229,  
280, 331  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
77, 128, RSRVD  
179, 230,  
281, 332  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
78, 129, RSRVD  
180, 231,  
282, 333  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
79, 130, RSRVD  
181, 232,  
283, 334  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
80, 131, RSRVD  
182, 233,  
284, 335  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
81, 132, RSRVD  
183, 234,  
285, 336  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
82, 133, RSRVD  
184, 235,  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
286, 337  
83, 134, RSRVD  
185, 236,  
287, 338  
MARGIN_OPTION[1] MARGIN_OPTION[0] STAT0_SEL[3]  
STAT0_SEL[2]  
STAT1_POL  
CMOSCHPWDN  
STAT0_SEL[1]  
DETECT_BYP  
CH7PWDN  
STAT0_SEL[0]  
TERM2GND_SEC  
CH6PWDN  
STAT0_POL  
TERM2GND_PRI  
CH5PWDN  
84, 135, STAT1_SEL[3]  
186, 237,  
288, 339  
STAT1_SEL[2]  
DIFFTERM_PRI  
CH23PWDN  
STAT1_SEL[1]  
AC_MODE_SEC  
CH01PWDN  
STAT1_SEL[0]  
AC_MODE_PRI  
PLL_STRETCH  
PLL_LOOPBW  
85, 136, DIFFTERM_SEC  
187, 238,  
289, 340  
86, 137, CH4PWDN  
188, 239,  
290, 341  
PLL_DISABLE_4TH[ PLL_DISABLE_4TH[ PLL_DISABLE_4TH[ PLL_CLSDWAIT[1]  
2]  
1]  
0]  
87, 138, PLL_CLSDWAIT[0] PLL_VCOWAIT[1]  
PLL_VCOWAIT[0]  
RSRVD  
RSRVD  
1
1
189, 240,  
291, 342  
Copyright © 2015–2018, Texas Instruments Incorporated  
115  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Byte #  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
XOOFFSET_STEP4[ XOOFFSET_STEP4[ XOOFFSET_STEP  
9] 8] 4[7]  
Bit1  
Bit0  
88, 139, RSRVD  
190, 241,  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
292, 343  
89, 140, XOOFFSET_STEP XOOFFSET_STEP4[ XOOFFSET_STEP4[ XOOFFSET_STEP4[ XOOFFSET_STEP4[ XOOFFSET_STEP4[ XOOFFSET_STEP4[ SECONSWITCH  
191, 242, 4[6]  
293, 344  
5]  
4]  
3]  
2]  
1]  
0]  
116  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
11 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
11.1 Application Information  
The LMK03318 is an ultra-low jitter clock generator that can be used to provide reference clocks for high-speed  
serial links resulting in improved system performance. The LMK03318 also supports a variety of features that  
aids the hardware designer during the system debug and validation phase.  
11.2 Typical Applications  
11.2.1 Application Block Diagram Examples  
25 MHz (buffered)  
CPLD  
Low-jitter PHY  
ref clocks  
156.25 MHz  
10G  
PHY  
125 MHz  
1G  
PHY  
PLL  
5 GHz  
CLK  
Dist.  
100 MHz  
33 MHz  
PCIe  
25-MHz  
crystal  
Osc  
CPU/  
NPU  
Up to ±50 ppm  
frequency  
margining with  
pullable crystal  
Figure 76. 10 Gb Ethernet Switch/Router Line Card  
Low-jitter PHY ref  
clocks  
156.25 MHz (4x)  
10G PHY  
PLL  
5 GHz  
CLK  
Dist.  
25-MHz  
crystal  
25 MHz  
Osc  
CPLD  
Up to ±50 ppm  
frequency  
33 MHz  
CPU  
margining with  
pullable crystal  
Figure 77. 10-Gb Ethernet Switch  
Copyright © 2015–2018, Texas Instruments Incorporated  
117  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Typical Applications (continued)  
25 MHz  
CPLD  
10G  
10G  
156.25 MHz (2x)  
106.25 MHz (2x)  
132.8125 MHz (2x)  
PHY  
25-MHz  
crystal  
8
8G  
FC  
CLK  
Dist.  
Osc  
PLL (Frac)  
5.3125 GHz  
Up to ±50 ppm  
frequency  
G  
16G  
FC  
margining with  
pullable crystal  
Low-jitter PHY  
ref clocks  
Figure 78. Storage Area Network With Fibre Channel Over Ethernet (FCoE)  
Low-jitter PHY ref  
clocks  
19.44-MHz  
Backplane  
From DPLL  
155.52 MHz (4x)  
PLL  
4.97664 GHz  
CLK  
Dist.  
STM-  
64  
Figure 79. SDH Line Card  
11.2.2 Jitter Considerations in Serdes Systems  
Jitter-sensitive applications such as 10 Gbps or 100 Gbps Ethernet, deploy a serial link utilizing a serializer in the  
transmit section (TX) and a De-serializer in the receive section (RX). These SERDES blocks are typically  
embedded in an ASIC or FPGA. Estimating the clock jitter impact on the link budget requires understanding of  
the TX PLL bandwidth and the RX CDR bandwidth.  
As can be seen in Figure 80, the pass band region between the TX low pass cutoff and RX high pass cutoff  
frequencies is the range over which the reference clock jitter adds without any attenuation to the jitter budget of  
the link. Outside of these frequencies, the SERDES link will attenuate the reference clock jitter with a 20 dB/dec  
or even steeper roll-off. Modern ASIC or FPGA designs have some flexibility on deciding the optimal RX CDR  
bandwidth and TX PLL bandwidth. These bandwidths are typically set based on what is achievable in the ASIC  
or FPGA process node, without increasing design complexity, and on any jitter tolerance or wander specification  
that must be met, as related to the RX CDR bandwidth.  
The overall allowable jitter in a serial link is dictated by IEEE or other relevant standards. For example,  
IEEE802.3ba states that the maximum transmit jitter (peak-peak) for 10 Gbps Ethernet should be no more than  
0.28 * UI and this equates to a 27.1516 ps, p-p for the overall allowable transmit jitter.  
The jitter contributing elements are made up of the reference clock, generated potentially from a device like  
LMK03318, the transmit medium, transmit driver etc. Only a portion of the overall allowable transmit jitter is  
allocated to the reference clock, typically 20% or lower. Therefore, the allowable reference clock jitter, for a 20%  
clock jitter budget, is 5.43 ps, p-p.  
Jitter in a reference clock is made up of deterministic jitter (arising from spurious signals due to supply noise or  
mixing from other outputs or from the reference input) and random jitter (usually due to thermal noise and other  
uncorrelated noise sources). A typical clock tree in a serial link system consists of clock generators and fanout  
buffers. The allowable reference clock jitter of 5.43 ps, p-p is needed at the output of the fanout buffer. Modern  
fanout buffers have low additive random jitter (less than 100 fs, rms) with no substantial contribution to the  
deterministic jitter. Therefore, the clock generator and fanout buffer contribute to the random jitter while the  
primary contributor to the deterministic jitter is the clock generator. Rule of thumb, for modern clock generators, is  
to allocate 25% of allowable reference clock jitter to the deterministic jitter and 75% to the random jitter. This  
118  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Typical Applications (continued)  
amounts to an allowable deterministic jitter of 1.36 ps, p-p and an allowable random jitter of 4.07 ps, p-p. For  
serial link systems that need to meet a BER of 10–12, the allowable random jitter in root-mean-square is 0.29 ps,  
rms. This is calculated by dividing the p-p jitter by 14 for a BER of 10–12. Accounting for random jitter from the  
fanout buffer, the random jitter needed from the clock generator is 0.27 ps, rms. This is calculated by the root-  
mean-square subtraction from the desired jitter at the fanout buffer's output assuming 100 fs, rms of additive jitter  
from the fanout buffer.  
With careful frequency planning techniques, like spur optimization (covered in the Spur Mitigation Techniques  
section) and on-chip LDOs to suppress supply noise, the LMK03318 is able to generate clock outputs with  
deterministic jitter that is below 1 ps, p-p and random jitter that is below 0.2 ps, rms. This gives the serial link  
system with additional margin on the allowable transmit jitter resulting in a BER better than 10–12  
.
Copyright © 2015–2018, Texas Instruments Incorporated  
119  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Typical Applications (continued)  
TX  
RX  
Parallel  
Serializer  
Data  
Parallel  
Data  
Sampler  
Serialized clock/data  
Recovered  
Clock  
TX PLL  
Ref Clk  
CDR  
Deserializer  
Jitter Transfer (on clock)  
Jitter Tolerance (on data)  
Jitter Transfer (on clock)  
F1 = TX_PLL_BWmax  
F2 = RX_CDR_BWmin  
F2 = RX_CDR_BWmin  
Jitter Tolerance (on data)  
F2  
SoC trend:  
Increase stop band  
Less % of jitter budget  
Jitter Transfer (on clock)  
F2  
F1  
SoC trend:  
Decrease stop band  
Improved LO design  
Figure 80. Dependence of Clock Jitter in Serial Links  
120  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Typical Applications (continued)  
11.2.3 Frequency Margining  
11.2.3.1 Fine Frequency Margining  
IEEE802.3 dictates that Ethernet frames stay compliant to the standard specifications when clocked with a  
reference clock that is within ±100 ppm of its nominal frequency. In the worst case, an RX node with its local  
reference clock at –100 ppm from its nominal frequency should be able to work seamlessly with a TX node that  
has its own local reference clock at +100 ppm from its nominal frequency. Without any clock compensation on  
the RX node, the read pointer will severely lag behind the write pointer and cause FIFO overflow errors. On the  
contrary, when the RX node’s local clock operates at 100 ppm from its nominal frequency and the TX node’s  
local clock operates at –100 ppm from its nominal frequency, FIFO underflow errors occur without any clock  
compensation.  
To prevent such overflow and underflow errors from occuring, modern ASICs and FGPAs include a clock  
compensation scheme that introduces elastic buffers. Such a system, shown in Figure 80, is validated thoroughly  
during the validation phase by interfacing slower nodes with faster ones and ensuring compliance to IEEE802.3.  
The LMK03318 provides the ability to fine tune the frequency of its outputs based on changing its on-chip load  
capacitance when operated with a crystal input. This fine tuning can be done through I2C or through the GPIO5  
pin as described in Crystal Input Interface (SEC_REF). A total of ±50 ppm frequency tuning is achievable when  
using pullable crystals whose C0/C1 ratio is less than 250. The change in load capacitance is implemented in a  
manner such that the outputs of the LMK03318 undergo a smooth monotic change in frequency.  
TX  
RX  
Post Processing  
w/ clock  
compensation  
Serializer  
TX PLL  
Sampler  
Serialized clock/data  
Parallel  
Data  
Parallel  
Data  
Recovered  
Clock  
+/- 100 ppm  
CDR  
Ref Clk  
+/- 100 ppm  
Ref Clk  
Deserializer  
Elastic Buffer  
(clock compensation)  
FIFO  
circular  
Latency  
Read  
Pointer  
Write  
Pointer  
Figure 81. System Implementation with Clock Compensation for Standards Compliance  
11.2.3.2 Coarse Frequency Margining  
Certain systems require the processors to be tested at clock frequencies that are slower or faster by 5% or 10%.  
The LMK03318 offers the ability to change its output dividers for the desired change from its nominal output  
frequency without resulting in any glitches (as explained in High-Speed Output Divider).  
Copyright © 2015–2018, Texas Instruments Incorporated  
121  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Typical Applications (continued)  
11.2.4 Design Requirements  
Consider a typical wired communications application, like a top-of-rack switch, which needs to clock high data  
rate 10 Gbps or 100 Gbps Ethernet PHYs and other macros like PCI Express, Fast Ethernet and CPLD. For  
such asynchronous systems, the reference input can be a crystal. In such systems, the clocks are expected to  
be available upon powerup without the need for any device-level programming. An example of the clock input  
and output requirements is :  
Clock Input:  
25-MHz crystal  
Clock Outputs:  
2x 156.25-MHz clock for uplink 10.3125 Gbps, LVPECL  
2x 125-MHz clock for downlink 3.125 Gbps, LVPECL  
2x 100-MHz clock for PCI Express, HCSL  
1x 25-MHz clock for Fast Ethernet, LVDS  
2x 33.3333-MHz clock for CPLD, 1.8-V LVCMOS  
The section below describes the detailed design procedure to generate the required output frequencies for the  
above scenario using LMK03318.  
11.2.4.1 Detailed Design Procedure  
Design of all aspects of the LMK03318 is quite involved, and software support is available to assist in part  
selection, part programming, loop filter design, and phase-noise simulation. This design procedure will give a  
quick outline of the process.  
1. Device Selection  
The first step to calculate the specified VCO frequency given required output frequencies. The device  
must be able to produce the VCO frequency that can be divided down to the required output frequencies.  
The WEBENCH Clock Architect Tool from TI will aid in the selection of the right device that meets the  
customer's output frequencies and format requirements.  
2. Device Configuration  
There are many device configurations to achieve the desired output frequencies from a device. However  
there are some optimizations and trade-offs to be considered.  
The WEBENCH Clock Architect Tool attempts to maximize the phase detector frequency, use smallest  
dividers, and maximizes PLL charge pump current.  
These guidelines below may be followed when configuring PLL related dividers or other related registers:  
For lowest possible in-band PLL flat noise, maximize phase detector frequency to minimize N divide  
value.  
For lowest possible in-band PLL flat noise, maximize charge pump current. The highest value charge  
pump currents often have similar performance due to diminishing returns.  
To reduce loop filter component sizes, increase N value and/or reduce charge pump current.  
For fractional divider values, keep the denominator at highest value possible to minimize spurs. It is  
also best to use higher order modulator wherever possible for the same reason.  
As a rule of thumb, keeping the phase detector frequency approximately between 10 × PLL loop  
bandwidth and 100 × PLL loop bandwidth. A phase detector frequency less than 5 * PLL bandwidth  
may be unstable and a phase detector frequency > 100 * loop bandwidth may experience increased  
lock time due to cycle slipping.  
3. PLL Loop Filter Design  
TI recommends using the WEBENCH Clock Architect Tool to design your loop filter.  
Optimal loop filter design and simulation can be achieved when custom reference phase noise profiles  
are loaded into the software tool.  
While designing the loop filter, adjusting the charge pump current or N value can help with loop filter  
component selection. Lower charge pump currents and larger N values result in smaller component  
values but may increase impacts of leakage and reduce PLL phase noise performance.  
For a more detailed understanding of loop filter design can be found in Dean Banerjee's PLL  
122  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Typical Applications (continued)  
Performance, Simulation, and Design (www.ti.com/tool/pll_book).  
4. Clock Output Assignment  
At the time of writing this datasheet, the design software does not take into account frequency  
assignment to specific outputs except to ensure that the output frequencies can be achieved. It is best to  
consider proximity of the clock outputs to each other and other PLL circuitry when choosing final clock  
output locations. Here are some guidelines to help achieve optimal performance when assigning outputs  
to specific clock output pins.  
Group common frequencies together.  
PLL charge pump circuitry can cause crosstalk at the charge pump frequency. Place outputs sharing  
charge pump frequency or lower priority outputs not sensitive to charge pump frequency spurs  
together.  
Clock output MUXes can create a path for noise coupling. Factor in frequencies which may have  
some bleedthrough from non-selected mux inputs.  
If possible, use outputs 0, 1, 2 or 3 since they don’t have MUX in the clock path and have limited  
opportunity for cross coupled noise.  
5. Device Programming  
The EVM programming software tool CodeLoader can be used to program the device with the desired  
configuration.  
11.2.4.1.1 Device Selection  
Use the WEBENCH Clock Architect Tool. Enter the required frequencies and formats into the tool. To use this  
device, find a solution using the LMK03318.  
11.2.4.1.1.1 Calculation Using LCM  
In this example, the LCM (156.25 MHz, 125 MHz, 100 MHz, 33.3333 MHz, 25 MHz) = 2500 MHz. Valid VCO  
frequency for LMK03318 is 5 GHz (2500 × 2).  
11.2.4.1.2 Device Configuration  
For this example, when using the WEBENCH Clock Architect Tool, the reference would have been manually  
entered as 25 MHz according to input frequency requirements. Enter the desired output frequencies and click on  
'Generate Solutions'. Select LMK03318 from the solution list.  
From the simulation page of the WEBENCH Clock Architect Tool, it can be seen that to maximize phase detector  
frequencies, the PLL's R and M dividers are set to 1, doublers are disabled and N divider is set to 200. This  
results in a VCO frequency of 5 GHz. The tool also tries to select maximum possible value for the PLL post  
divider and for this example, it is set to 2. At this point the design meets all input and output frequency  
requirements and it is possible to design a loop filter for system and simulate performance on the clock outputs.  
However, consider also the following:  
At the time of release of this datasheet, the WEBENCH Clock Architect Tool doesn't assign outputs  
strategically for minimizing cross-coupled spurs and jitter.  
11.2.4.1.3 PLL Loop Filter Design  
The WEBENCH Clock Architect Tool allows loading a custom phase noise plot for reference inputs. For  
improved accuracy in simulation and optimum loop filter design, be sure to load these custom noise profiles.  
After loading a phase noise plot, user should recalculate the recommended loop filter design. The WEBENCH  
Clock Architect Tool will return solutions with high reference or phase detector frequencies by default. In the  
WEBENCH Clock Architect Tool the user may increase the reference divider to reduce the frequency if desired.  
The next section will discuss PLL loop filter design specific to this example using default phase noise profiles.  
Copyright © 2015–2018, Texas Instruments Incorporated  
123  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Typical Applications (continued)  
NOTE  
The WEBENCH Clock Architect Tool provides optimal loop filters upon selecting a solution  
from the solution list to simulate for the first time. Anytime PLL related inputs change, like  
input phase noise, charge pump current, divider values, and so forth, it is best to use the  
tool to re-calculate the optimal loop filter component values.  
11.2.4.1.3.1 PLL Loop Filter Design  
In the WEBENCH Clock Architect Tool simulator, click on the PLL loop filter design button, then press  
recommend design. For the PLL loop filter, maximum phase detector frequency and maximum charge pump  
current are typically used. The tool recommends a loop filter that is designed to minimize jitter. The integrated  
loop filters’ components are minimized with this recommendation as to allow maximum flexibility in achieving  
wide loop bandwidths for low PLL noise. With the recommended loop filter calculated, this loop filter is ready to  
be simulated.  
The PLL loop filter’s bode plot can additionally be viewed and adjustments can be made to the integrated  
components. The effective loop bandwidth and phase margin with the updated values is then calculated. The  
integrated loop filter components are good to use when attempting to eliminate certain spurs. The recommended  
procedure is to increase C3 capacitance, then R3 resistance. Large R3 resistance can result in degraded VCO  
phase noise performance.  
11.2.4.1.4 Clock Output Assignment  
At this time the WEBENCH Clock Architect Tool does not assign output frequencies to specific output ports on  
the device with the intention to minimize cross-coupled spurs and jitter. The user may wish to make some  
educated re-assignment of outputs when using the EVM programming tool to configure the device registers  
appropriately.  
In an effort to optimize device configuration for best jitter performance, consider the following guidelines:  
Because the clock outputs, intended to be used to clock high data rates, are needed with lowest possible  
jitter, it is best to assign 156.25 MHz to outputs 0, 1 and assign 125 MHz to outputs 2, 3.  
Coupling between outputs at different frequencies appear as spurs at offsets that is at the frequency  
difference between the outputs and its harmonics. Typical SerDes reference clocks need to have low  
integrated jitter upto an offset of 20 MHz and thus, to minimize cross coupling between output 3 and output 4,  
it is best to assign 100 MHz to outputs 4 and 5.  
The 25 MHz can then be assigned to output 6.  
The 1.8-V LVCMOS clock at 33.3333 MHz is assigned to output 7 and it is best to select complementary  
LVCMOS operation. This helps to minimize coupling from this output channel to other outputs.  
11.2.4.2 Spur Mitigation Techniques  
The LMK03318 offers several programmable features for optimizing fractional spurs. To get the best out of these  
features, it makes sense to understand the different kinds of spurs as well as their behaviors, causes, and  
remedies. Although optimizing spurs may involve some trial and error, there are ways to make this process more  
systematic.  
11.2.4.2.1 Phase Detector Spurs  
The phase detector spur occurs at an offset from the carrier equal to the phase detector frequency, fPD. To  
minimize this spur, a lower phase detector frequency should be considered. In some cases where the loop  
bandwidth is very wide relative to the phase detector frequency, some benefit might be gained from using a  
narrower loop bandwidth or adding poles to the loop filter by using R3 and C3 if previously unused, but otherwise  
the loop filter has minimal impact. Bypassing at the supply pins and board layout can also have an impact on this  
spur, especially at higher phase detector frequencies.  
124  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Typical Applications (continued)  
11.2.4.2.2 Integer Boundary Fractional Spurs  
This spur occurs at an offset equal to the difference between the VCO frequency and the closest integer channel  
for the VCO. For instance, if the phase detector frequency is 100 MHz and the VCO frequency is 5003 MHz,  
then the integer boundary spur would be at 3 MHz offset. This spur can be either PLL or VCO dominated. If it is  
PLL dominated, decreasing the loop bandwidth and some of the programmable fractional words may impact this  
spur. If the spur is VCO dominated, then reducing the loop filter will not help, but rather reducing the phase  
detector and having good slew rate and signal integrity at the selected reference input will help.  
11.2.4.2.3 Primary Fractional Spurs  
These spurs occur at multiples of fPD/DEN and are not integer boundary spurs. For instance, if the phase  
detector frequency is 100 MHz and the fraction is 3/100, the primary fractional spurs would be at 1 MHz, 2 MHz,  
4 MHz, 5 MHz, 6 MHz etc. These are impacted by the loop filter bandwidth and modulator order. If a small  
frequency error is acceptable, then a larger equivalent fraction may improve these spurs. This larger  
unequivalent fraction pushes the fractional spur energy to much lower frequencies where they do not significantly  
impact the system peformance.  
11.2.4.2.4 Sub-Fractional Spurs  
These spurs appear at a fraction of fPD/DEN and depend on modulator order. With the first order modulator, there  
are no sub-fractional spurs. The second order modulator can produce 1/2 sub-fractional spurs if the denominator  
is even. A third order modulator can produce sub-fractional spurs at 1/2, 1/3, or 1/6 of the offset, depending if it is  
divisible by 2 or 3. For instance, if the phase detector frequency is 100 MHz and the fraction is 3/100, no sub-  
fractional spurs for a first order modulator or sub-fractional spurs at multiples of 1.5 MHz for a second or third  
order modulator would be expected. Aside from strategically choosing the fractional denominator and using a  
lower order modulator, another tactic to eliminate these spurs is to use dithering and express the fraction in  
larger equivalent terms. Since dithering also adds phase noise, its level must be managed to achieve acceptable  
phase noise and spurious performance.  
Table 19 gives a summary of the spurs discussed so far and techniques to mitigate them.  
Table 19. Spurs and Mitigation Techniques  
SPUR TYPE  
OFFSET  
WAYS TO REDUCE  
TRADE-OFFS  
Phase Detector  
fPD  
Reduce Phase Detector  
Frequency.  
Although reducing the phase  
detector frequency does improve  
this spur, it also degrades phase  
noise.  
Integer Boundary  
fVCO mod fPD  
Methods for PLL Dominated  
Spurs  
Reducing the loop bandwidth  
may degrade the total integrated  
noise if the bandwidth is too  
narrow.  
-Avoid the worst case VCO  
frequencies if possible.  
-Ensure good slew rate and  
signal integrity at reference input.  
-Reduce loop bandwidth or add  
more filter poles to suppress out  
of band spurs.  
Methods for VCO Dominated  
Spurs  
Reducing the phase detector  
may degrade the phase noise.  
-Avoid the worst case VCO  
frequencies if possible.  
-Reduce Phase Detector  
Frequency.  
-Ensure good slew rate and  
signal integrity at reference input.  
Primary Fractional  
fPD/DEN  
-Decrease Loop Bandwidth.  
-Change Modulator Order.  
use Larger Unequivalent  
Fractions.  
Decreasing the loop bandwidth  
may degrade in-band phase  
noise. Also, larger unequivalent  
fractions don’t always reduce  
spurs.  
Copyright © 2015–2018, Texas Instruments Incorporated  
125  
 
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Typical Applications (continued)  
Table 19. Spurs and Mitigation Techniques (continued)  
SPUR TYPE  
OFFSET  
WAYS TO REDUCE  
TRADE-OFFS  
Sub-Fractional  
fPD/DEN/k k=2,3, or 6  
use Dithering.  
Dithering and larger fractions  
use Larger Equivalent Fractions. may increase phase noise.  
use Larger Unequivalent  
Fractions.  
-Reduce Modulator Order.  
-Eliminate factors of 2 or 3 in  
denominator.  
126  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
12 Power Supply Recommendations  
12.1 Device Power Up Sequence  
Figure 82 shows the power up sequence of the LMK03318 in both the hard pin mode and soft pin mode.  
Power on  
Reset  
tnot  
PDN = 1?  
(all outputs are disabled)  
HW_SW_CTRL  
0
1
Soft Pin Mode  
Hard Pin Mode  
(activate I2C IF)  
(activate I2C IF)  
Latch GPIO[5:0] to select 1 of 64  
device settings from ROM codes  
Latch GPIO[3:1] to select 1 of 6  
device settings from EEPROM  
Registers programmable via I2C.  
Latch GPIO1 for LSB of I2C  
address.  
Enter pin mode specified by  
GPIO  
Configure all device settings  
wait for selected reference input  
signal (PRI/SEC) to become valid  
wait for selected reference input  
signal (PRI/SEC) to become valid  
Disable outputs  
Calibrate VCO  
Auto-synchronize outputs  
Mute outputs till PLL locks and  
outputs are synchronized  
Enable outputs  
Disable outputs  
Calibrate VCO  
Auto-synchronize outputs  
Mute outputs till PLL locks and  
outputs are synchronized  
Enable outputs  
Clear R12.6, R56.1  
(default enabled)  
Normal device operation in Hard  
Pin Mode. Host can reprogram  
device via I2C.  
tnot  
yes  
GPIO0 pin or  
R12.6 = 1?  
PDN = 1?  
yes  
Disable  
all  
outputs  
Synchronize outputs while  
outputs are muted  
Enable all outputs  
Clear R12.6, R56.1  
Normal device operation in Soft  
Pin Mode. Host can reprogram  
device via I2C and can be written  
to on-chip EEPROM.  
no  
GPIO0 pin or  
R12.6 = 1?  
yes  
yes  
PDN = 1?  
no  
Disable  
all  
outputs  
Figure 82. Flow Chart for Device Power Up and Configuration  
Copyright © 2015–2018, Texas Instruments Incorporated  
127  
 
 
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
12.2 Device Power Up Timing  
Before the outputs are enabled after power up, the LMK03318 goes through the initialization routine given in  
Table 20.  
Table 20. LMK03318 Power Up Initialization Routine  
Parameter  
Definition  
Duration  
Comments  
TPWR  
Step 1: Power up ramp  
Depends on customer  
supply ramp time  
The POR monitor holds the device in power-  
down/reset until the core supply voltages reaches 2.72  
V (min) to 2.95 V (max) and VDDO_01 reaches 1.7 V  
(min).  
TXO  
Step 2: XO startup (if  
crystal is used)  
Depends on XTAL. Could This step assumes PDN=1. The XTAL startup time is  
be several ms; For TXC  
25 MHz typical XTAL  
startup time measures  
100 µs.  
the time it takes for the XTAL to oscillate with sufficient  
amplitude. The LMK03318 has a built-in amplitude  
detection circuit, and halts the PLL lock sequence until  
the XTAL stage has sufficient swing.  
TCAL-PLL  
Step 3: Closed loop  
Programmable cycles of  
This counter is needed for the PLL loop to stabilize. It  
calibration period for PLL internal 10 MHz oscillator. can also be used to provide additional delay time for  
the selected PLL reference input to stabilize, in case  
the reference detection circuit validates the input too  
soon. The duration can range from 30 µs to 300 ms  
and programmed in R119[3-2]. Recommended  
duration for PLL as clock generator (loop bandwidth >  
10 kHz) is 300 µs and for PLL as jitter cleaner (loop  
bandwidth < 1 kHz) is 300 ms.  
TVCO  
Step 4: VCO wait period  
Step 5: PLL lock time  
Programmable cycles of  
This counter is needed for the VCO to stabilize. The  
internal 10 MHz oscillator. duration can range from 20 µs to 200 ms and  
programmed in R119[1-0]. Recommended duration for  
VCO1 is 400 µs.  
TLOCK-PLL  
~4/LBW of PLL  
The Outputs turn on immediately after calibration. A  
small frequency error remains for the duration of  
~4/LBW (so in clock generator mode typically 10 µs for  
a PLL bandwidth of 400 kHz). The initial output  
frequency will be lower than the target output  
frequency, as the loop filter starts out initially  
discharged.  
TLOL-PLL  
Step 6: PLL LOL indicator ~1 PFD clock cycle  
low  
The PLL loss of lock indicator if selected on STATUS0  
or STATUS1 will go low after 1 PFD clock cycle to  
indicate PLL is now locked.  
128  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
The LMK03318 start-up time for the PLL is defined as the time taken, from the moment the core supplies reach  
2.72 V and VDDO_01 reaches 1.7 V, for the PLL to be locked and valid outputs are available at the outputs with  
no more than ±300 ppm error. Start-up time for the PLL can be calculated as Equation 5  
TPLL-SU = TXO + TCAL-PLL + TVCO + TLOCK-PLL  
(5)  
12.3 Power Down  
The PDN pin (active low) can be used both as device power-down pin and to initialize the device. When this pin  
is pulled low, the entire device is powered down. When it is pulled high, the power-on reset (POR) sequence is  
triggered and causes all registers to be set to an initial state. The initial state is determined by the device control  
pins as described in the Device Configuration Control section. When PDN is pulled low, I2C is disabled. When  
PDN is pulled high, the device power-up sequence is initiated as described in Device Power Up Sequence and  
Device Power Up Timing.  
Table 21. PDN Control  
PDN Pin State  
Device operation  
Device is disabled  
Normal operation  
0
1
12.4 Power Rail Sequencing, Power Supply Ramp Rate, and Mixing Supply Domains  
12.4.1 Mixing Supplies  
The LMK03318 incorporates flexible power supply architecture. TI recommends driving the VDD_IN, VDD_PLL,  
VDD_LDO, and VDD_DIG supplies by the same 3.3-V supply rail, but the individual VDDO_x supplies can be  
driven from separate 1.8-V, 2.5-V, or 3.3-V supply rails. Lowest power consumption can be realized by operating  
the VDD_IN, VDD_PLL, VDD_LDO, and VDD_DIG supplies from a 3.3-V rail and the VDDO_x supplies from a  
1.8-V rail.  
12.4.2 Power-On Reset  
The LMK03318 integrates a built-in power-on reset (POR) circuit, that holds the device in reset until all of the  
following conditions have been met:  
the VDD_IN, VDD_PLL, VDD_LDO, or VDD_DIG supplies have reached at least 2.72 V  
the VDDO_01 supply has reached at least 1.7 V  
the PDN pin has reached at least 1.2 V  
After this POR release, device internal counters start (see Device Power Up Timing) followed by device  
calibration.  
12.4.3 Powering Up From Single-Supply Rail  
If the VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG, and VDDO supplies are driven by the same 3.3-V supply rail  
that ramp in a monotonic manner from 0 V to 3.135 V, irrespective of the ramp time, then there is no requirement  
to add a capacitor on the PDN pin to externally delay the device power-up sequence. As shown in Figure 83, the  
PDN pin can be left floating, pulled up externally to VDD, or otherwise driven by a host controller for meeting the  
clock sequencing requirements in the system.  
Copyright © 2015–2018, Texas Instruments Incorporated  
129  
 
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Power Rail Sequencing, Power Supply Ramp Rate, and Mixing Supply Domains (continued)  
VDD_PLL, VDD_LDO,  
3.135 V  
VDD_IN, VDD_DIG,  
VDDO_01, PDN  
Decision Point 3:  
VDD_PLL/VDD_LDO/  
VDD_IN/VDD_DIG  
2.72 V  
VDDO_01  
Decision Point 2:  
VDDO_01 1.7 V  
200 k  
Decision Point 1:  
PDN ≥ 1.2 V  
0 V  
Figure 83. Recommendations for Power Up From Single-Supply Rail  
12.4.4 Powering Up From Split-Supply Rails  
If the VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG, and VDDO supplies are driven from different supply rails, TI  
recommends starting the device POR sequence after all core and output supplies have reached their minimum  
voltage tolerances (VDD 3.135 V and VDDO 1.71 V). This can be realized by delaying the PDN low-to-high  
transition. The PDN input incorporates a 200-kΩ resistor to VDDO_01 and as shown in Figure 84, a capacitor  
from the PDN pin to GND can be used to form a R-C time constant with the internal pullup resistor or an external  
pullup resistor. This R-C time constant can be designed to delay the low-to-high transition of PDN until all core  
and output supplies have reached their minimum voltage tolerances. Alternatively, the delayed PDN low-to-high  
transition could be controlled by a logic output of a host controller (CPLD/FPGA/CPU) or power sequencer.  
VDD_PLL,  
VDD_LDO,  
VDD_IN,  
3.135 V  
Decision Point 3  
VDD_PLL/VDD_LDO/  
VDD_IN/VDD_DIG  
VDD_DIG  
VDDO_01  
2.72 V  
VDDO_01,  
VDDO_x,  
PDN  
Decision Point 2:  
VDDO_01 1.7 V  
200 kΩ  
PDN  
Decision Point 1:  
PDN ≥ 1.2 V  
CPDN  
Delay  
0 V  
Figure 84. Recommendations for Power Up From Split-Supply Rails  
12.4.5 Slow Power-Up Supply Ramp  
In case the VDD_IN, VDD_PLL, VDD_LDO, and VDD_DIG, and VDDO supplies ramp slowly with a ramp time  
over 100 ms, TI recommends starting the device POR sequence after all core and output supplies have reached  
their minimum voltage tolerances (VDD 3.135 V and VDDO 1.71 V). This can be realized by delaying the  
PDN low-to-high transition in a manner similar to the condition detailed in Powering Up From Split-Supply Rails  
and shown in Figure 84.  
130  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
Power Rail Sequencing, Power Supply Ramp Rate, and Mixing Supply Domains (continued)  
If a VDD supply cannot reach 3.135 V before the PDN low-to-high transition, TI recommends toggling the PDN  
pin again or chip soft reset bit in R12.7 after all VDD and VDDO supplies reached their minimum tolerances to  
re-trigger the device POR sequence for normal chip operation.  
If only VDDO supplies ramp after the PDN low-to-high transition, issuing a channel reset on any PLL-driven  
output channel with its PLL SYNC enabled (PLL_SYNC_EN=1) is recommended to ensure normal output divider  
operation without requiring a full chip reset (through PDN pin or soft reset). A local channel reset can be issued  
by toggling the corresponding power-down bit(s) in R30 after its VDDO supply has reached 1.71 V. Alternatively,  
an output SYNC can be issued to reset any SYNC-enabled channel (see Output Synchronization).  
12.4.6 Non-Monotonic Power-Up Supply Ramp  
In case the VDD_IN, VDD_PLL, VDD_LDO, VDD_DIG, and VDDO supplies ramp in a non-monotonic manner, TI  
recommends starting the device POR sequence after all core and output supplies have reached their minimum  
voltage tolerances (VDD 3.135 V and VDDO 1.71 V). This can be realized by delaying the PDN low-to-high  
transition in a manner similar to the condition detailed in Powering Up From Split-Supply Rails and shown in  
Figure 84.  
12.4.7 Slow Reference Input Clock Startup  
If the reference input clock is direct coupled to the LMK03318 and has a very slow startup time of over 10 ms, as  
defined from the time power supply reaches acceptable operating voltage for the reference input generator,  
which is typically 2.97 V for a 3.3-V supply, to the time when the reference input has a stable clock output, take  
additional care to prevent unsuccessful PLL calibration. In the case of the reference input building up its  
amplitude slowly, TI recommends setting the input buffer to differential irrespective of the input type (LVCMOS or  
differential). In case of LVCMOS inputs, TI also recommends enabling on-chip termination by setting R29.4 (for  
primary input) and/or R29.5 (for secondary input) to 1. There is one of two additional steps that need to be taken.  
The first approach is to add a capacitor to GND on the PDN pin that forms a R-C time constant with the internal  
200-kΩ pullup resistor. This R-C time constant can be designed to delay the low-to-high transition of PDN, until  
after the reference input clock is stable. The second approach is to program a larger PLL closed loop delay in  
R119[3-2] that is longer than the time taken for the reference input clock to be stable.  
12.5 Power Supply Bypassing  
Figure 85 shows two conceptual layouts detailing recommended placement of power supply bypass capacitors. If  
the capacitors are mounted on the back side, 0402 components can be employed; however, soldering to the  
Thermal Dissipation Pad can be difficult. For component side mounting, use 0201 body size capacitors to  
facilitate signal routing. Keep the connections between the bypass capacitors and the power supply on the  
device as short as possible. Ground the other side of the capacitor using a low impedance connection to the  
ground plane.  
Copyright © 2015–2018, Texas Instruments Incorporated  
131  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Power Supply Bypassing (continued)  
Figure 85. Conceptual Placement of Power Supply Bypass Capacitors (NOT Representative of LMK03318  
Supply Pin Locations)  
132  
Copyright © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
13 Layout  
13.1 Layout Guidelines  
The following section provides the layout guidelines to ensure good thermal and electrical performance for the  
LMK03318.  
13.1.1 Ensure Thermal Reliability  
The LMK03318 is a high performance device. Therefore, pay careful attention to device configuration and  
printed-circuit board (PCB) layout with respect to device power consumption and thermal considerations.  
Employing a thermally-enhanced PCB layout can insure good thermal dissipation from the device to the PCB  
layers. Observing good thermal layout practices enables the thermal slug, or die attach pad (DAP), on the bottom  
of the 48-pin WQFN package to provide a good thermal path between the die contained within the package and  
the ambient air through the PCB interface. This thermal pad also serves as the singular ground connection the  
device; therefore, a low-inductance connection to multiple PCB ground layers (both internal and external) is  
essential.  
13.1.2 Support for PCB Temperature up to 105°C  
The LMK03328 can maintain a safe junction temperature below the recommended maximum value of 125°C  
even when operated on a PCB with a maximum board temperature (Tb) of 105°C . This can shown by the  
following example calculation, assuming a worst-case device current consumption from Electrical Characteristics  
- Power Supply and the thermal data in Thermal Information using a 4-layer JEDEC test board with no airflow.  
TJ = Tb+ (ψjb × Pdmax) = 117.6°C  
where  
Tb = 105°C  
ψjb = 4.02°C/W  
Pdmax = IDD × VDD = 952 mA × 3.3 V = 3.14 W  
(6)  
13.2 Layout Example  
Figure 86 shows a PCB layout example showing the application of thermal design practices and low-inductance  
ground connection between the device DAP and the PCB. Connecting a 6 x 6 thermal via pattern and using  
multiple PCB ground layers (for example, 8- or 10-layer PCB) can help to reduce the junction-to-ambient thermal  
resistance, as indicated in the Thermal Information section. The 6 × 6 filled via pattern facilitates both  
considerations.  
Copyright © 2015–2018, Texas Instruments Incorporated  
133  
LMK03318  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
www.ti.com.cn  
Layout Example (continued)  
Figure 86. 4-Layer PCB Thermal Layout Example for LMK03318 (8+ Layers Recommended)  
134  
版权 © 2015–2018, Texas Instruments Incorporated  
LMK03318  
www.ti.com.cn  
ZHCSEN4E SEPTEMBER 2015REVISED APRIL 2018  
14 器件和文档支持  
14.1 器件支持  
14.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
14.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。单击右上角的通知我 进行注册,即可每  
周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
14.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
14.4 商标  
PLLATINUM, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
14.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
14.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
15 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请参阅左侧的导航栏。  
版权 © 2015–2018, Texas Instruments Incorporated  
135  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMK03318RHSR  
LMK03318RHST  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RHS  
RHS  
48  
48  
2500 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
K03318A  
K03318A  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
27-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMK03318RHSR  
LMK03318RHST  
WQFN  
WQFN  
RHS  
RHS  
48  
48  
2500  
250  
330.0  
178.0  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
1.3  
1.3  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
27-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMK03318RHSR  
LMK03318RHST  
WQFN  
WQFN  
RHS  
RHS  
48  
48  
2500  
250  
356.0  
208.0  
356.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
MECHANICAL DATA  
RHS0048B  
SQA48B (Rev A)  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LMK03328

具有两个独立 PLL 的超低抖动时钟发生器系列
TI

LMK03328RHSR

具有两个独立 PLL 的超低抖动时钟发生器系列 | RHS | 48 | -40 to 85
TI

LMK03328RHST

具有两个独立 PLL 的超低抖动时钟发生器系列 | RHS | 48 | -40 to 85
TI

LMK03806

Ultra Low Jitter Clock Generator with 14 Programmable Outputs
TI

LMK03806BISQ

Ultra Low Jitter Clock Generator with 14 Programmable Outputs
TI

LMK03806BISQ/NOPB

具有 14 路输出的超低抖动时钟发生器 | NKD | 64 | -40 to 85
TI

LMK03806BISQE

Ultra Low Jitter Clock Generator with 14 Programmable Outputs
TI

LMK03806BISQE/NOPB

具有 14 路输出的超低抖动时钟发生器 | NKD | 64 | -40 to 85
TI

LMK03806BISQX

Ultra Low Jitter Clock Generator with 14 Programmable Outputs
TI

LMK03806BISQX/NOPB

具有 14 路输出的超低抖动时钟发生器 | NKD | 64 | -40 to 85
TI

LMK03806_12

Ultra Low Jitter Clock Generator with 14 Programmable Outputs
TI

LMK04000

Low-Noise Clock Jitter Cleaner with Cascaded PLLs
NSC