LMH9226 [TI]

具有集成平衡-非平衡变压器的单端至差分 2.3GHz 至 2.9GHz 低功耗射频增益块;
LMH9226
型号: LMH9226
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成平衡-非平衡变压器的单端至差分 2.3GHz 至 2.9GHz 低功耗射频增益块

变压器 射频
文件: 总20页 (文件大小:1013K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMH9226  
ZHCSKK7 DECEMBER 2019  
具有平衡-非平衡变压器的 LMH9226 单端至差分 2.3Ghz 2.9Ghz 射频放  
大器  
1 特性  
3 说明  
1
单通道、单端输入至差分输出射频增益块放大器  
LMH9226 是一款高性能、单通道、单端 50Ω 输入至  
差分 50Ω 100Ω 输出的射频增益块放大器,支持  
2.3GHz 2.9GHz 频段。该器件非常符合 5G m-  
MIMO 或小型蜂窝基站 应用的要求。该器件集成了具  
有无源平衡-非平衡变压器的单端输入和输出射频增益  
块功能,它主要用于接收器信号链末级,以驱动模拟至  
差分转换器 (ADC) 差分输入的满量程电压。  
支持 2.6GHz 中心频率,具有 400MHz1dB 带宽  
1dB 带宽下、匹配 ZLOAD = 50Ω 时,具有 17dB  
典型增益  
1dB 带宽下噪声系数 < 3dB  
2dBm 双音输出功率、匹配 ZLOAD = 50Ω 时,具  
35dBm OIP3  
匹配 ZLOAD = 50Ω 时,具有 17.5dBm 输出 P1dB  
3.3V 单电源供电,具有 275mW 功耗  
工作温度高达 TA = 105°C  
LMH9226 提供 17dB 的典型增益,且在 2.6GHz 下具  
35dBm 输出 IP3 的出色线性性能,而且噪声系数在  
整个 400MHz 1dB 带宽范围内低于 3dB。该器件的单  
端输入内部匹配 50Ω 阻抗。差分输出可轻松连接 50Ω  
阻抗,无需任何外部匹配电路。如需匹配 100Ω 阻  
抗,则需要外部匹配电路,这通常会在 2.6GHz 下产生  
0.3dB 增益损失。  
2 应用  
5G m-MIMO 基站  
有源天线系统,m-MIMO (AAS)  
小型蜂窝基站  
TDD/FDD 蜂窝基站  
无线基础设施  
该器件使用 3.3V 单电源供电,产生旁路功耗约  
275mW,因此适用于高密度 5G 大规模多输入多输出  
(MIMO) 应用。此外,该器件采用节省空间的 2mm ×  
2mm12 引脚 WQFN 封装。该器件的额定工作温度  
高达 105°C,可提供稳健的系统设计。符合 JEDEC 标  
准的 1.8V 断电引脚可为该器件快速断电和上电,适用  
于时分双工 (TDD) 系统。  
低成本无线电设备  
单端至差分转换  
平衡-非平衡变压器替代产品  
射频增益块  
适用于 GSPS ADC 的差分驱动器  
器件信息(1)  
器件型号  
LMH9226  
封装  
WQFN (12)  
封装尺寸(标称值)  
2.00mm × 2.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
LMH92262.3GHz 2.9GHz 单端输入至差分输出射频增益块放大器  
fCENTER = 2.6 GHz, f1dB BW = 400 MHz  
ZIN(DIFF) = 50 Ω  
Analog Front-End  
LNA  
LMH9226  
ADC  
ZOUT(DIFF) = 50 Ω  
ZIN = 50 Ω  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS964  
 
 
 
LMH9226  
ZHCSKK7 DECEMBER 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 10  
8.1 Application Information............................................ 10  
8.2 Typical Application ................................................. 10  
Power Supply Recommendations...................... 13  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description................................................... 9  
10 Layout................................................................... 14  
10.1 Layout Guidelines ................................................. 14  
10.2 Layout Example .................................................... 14  
11 器件和文档支持 ..................................................... 15  
11.1 文档支持................................................................ 15  
11.2 接收文档更新通知 ................................................. 15  
11.3 社区资源................................................................ 15  
11.4 ....................................................................... 15  
11.5 静电放电警告......................................................... 15  
11.6 Glossary................................................................ 15  
12 机械、封装和可订购信息....................................... 15  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2019 12 月  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
LMH9226  
www.ti.com.cn  
ZHCSKK7 DECEMBER 2019  
5 Pin Configuration and Functions  
RRL Package  
12-Pin WQFN  
Top View  
VSS  
INP  
1
2
3
4
10  
9
VSS  
OUTP  
OUTM  
VSS  
Thermal  
pad  
VSS  
VSS  
8
7
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
VSS  
INP  
1
Power  
Input  
Analog ground  
2
RF single-ended input into amplifier  
Analog ground  
3
VSS  
VSS  
VSS  
PD  
Power  
Power  
Power  
Input  
4
Analog ground  
5
Analog ground  
6
Power-down connection. PD = 0 V, normal operation; PD = 1.8 V, power off mode.  
Analog ground  
7
VSS  
OUTM  
OUTP  
VSS  
VDD  
NC  
Power  
Output  
Output  
Power  
Power  
8
RF single-ended output negative  
RF single-ended output positive  
Analog ground  
9
10  
11  
Positive supply voltage (3.3 V)  
12  
Do not connect this pin  
Thermal Pad  
Connect the thermal pad to ground (VSS).  
Copyright © 2019, Texas Instruments Incorporated  
3
LMH9226  
ZHCSKK7 DECEMBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
3.6  
UNIT  
V
Supply voltage  
VDD  
RF pins  
INP, OUTP, OUTM  
VDD  
25  
V
Continuous wave (CW) input  
Digital input pin  
fin = 2.6 GHz at INP  
dBm  
V
PD  
TJ  
–0.3  
–65  
VDD  
150  
150  
Junction temperature  
Storage temperature  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±1000  
ANSI/ESDA/JEDEC JS-001, allpins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specificationJESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.15  
–40  
–40  
NOM  
MAX  
3.45  
105  
UNIT  
V
VDD  
TA  
Supply voltage  
3.3  
Ambient temperature  
Junction temperature  
°C  
TJ  
125  
°C  
6.4 Thermal Information  
LMH9226  
THERMAL METRIC(1)  
RRL PKG  
12-PIN WQFN  
74.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
72.4  
37.1  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.2  
ΨJB  
37.1  
RθJC(bot)  
14.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2019, Texas Instruments Incorporated  
LMH9226  
www.ti.com.cn  
ZHCSKK7 DECEMBER 2019  
6.5 Electrical Characteristics  
TA = +25°C, VDD = 3.3 V, center frequency (fin) = 2.6 GHz, single-ended input impedance (ZIN) = 50 , differential output  
impedance (ZLOAD) = 50 , POUT(TOTAL) = 8 dBm into ZLOAD = 50 (unless otherwise noted)  
PARAMETER  
RF PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fRF  
RF frequency range  
1-dB bandwidth  
Gain  
2300  
2900  
MHz  
MHz  
dB  
BW1dB  
S21  
NF  
Center Frequency (fin) = 2.6 GHz  
fin = 2.6 GHz  
400  
17  
Noise figure  
Output P1dB  
fin = 2.6 GHz, RS = 50  
fin = 2.6 GHz, RLOAD = 50 Ω  
3
dB  
OIP1  
17.5  
dBm  
fin = 2.6 GHz ± 10 MHz spacing,  
POUT/TONE = 2 dBm  
OIP3  
Output IP3  
35  
dBm  
(1)  
Differential output gain imbalance  
0.5  
4
dB  
degree  
dB  
(1)  
Differential output phase imbalance  
Input return loss  
S11  
fin = 2.6 GHz, BW = 400 MHz  
fin = 2.6 GHz, BW = 400 MHz  
fin = 2.6 GHz  
–11  
50  
ZIN  
Single ended input reference impedance  
Differential output return loss  
Differential ouput reference impedance  
Reverse isolation  
S22  
–12  
50  
dB  
ZLOAD  
S12  
–35  
27  
dB  
(2)  
CMRR  
Common-mode rejection ratio  
dB  
SWITCHING AND DIGITAL INPUT CHARACTERISTICS  
tON  
tOFF  
VIH  
VIL  
IIH  
Turn-on time  
PD pin = 1.8 V to 0 V, fin = 2.6 GHz  
PD pin = 0 V to 1.8 V, fin = 2.6 GHz  
At the PD pin  
0.5  
0.2  
µs  
µs  
V
Turn-off time  
(3)  
(3)  
(3)  
(3)  
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
1.4  
At the PD pin  
0.5  
60  
30  
V
At the PD pin  
28  
10  
µA  
µA  
IIL  
At the PD pin  
DC CURRENT AND POWER CONSUMPTION  
(3)  
IVDD_ON  
IVDD_PD  
Pdis  
Supply current  
PD pin = 0 V  
PD pin = 1.8 V  
VDD = 3.3 V  
84  
100  
10  
mA  
mA  
mW  
(3)  
Power-down current  
Power dissipation  
275  
(1) Measured at fin = 2.6GHz, over the BW1dB  
(2) CMRR is calculated using (S21-S31)/(S21+S31) for receive (1 is input port, 2 and 3 are differential output ports)  
(3) 100% tested at TA = 25  
版权 © 2019, Texas Instruments Incorporated  
5
LMH9226  
ZHCSKK7 DECEMBER 2019  
www.ti.com.cn  
6.6 Typical Characteristics  
at TA = 25°C, VDD = 3.3 V, center frequency (fIN) = 2.6 GHz, single-ended input impedance (ZIN) = 50 Ω, differential output  
impedance (ZLOAD) = 50 Ω, and POUT(TOTAL) = 8 dBm into ZLOAD = 50 Ω (unless otherwise noted)  
20  
19  
18  
17  
16  
15  
14  
13  
12  
18  
17  
16  
15  
14  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 105èC  
VDD = 3.15 V  
VDD = 3.3 V  
VDD = 3.45 V  
2200 2300 2400 2500 2600 2700 2800 2900 3000  
Frequency (MHz)  
2200 2300 2400 2500 2600 2700 2800 2900 3000  
Frequency (MHz)  
POUT = 2 dBm  
POUT = 2 dBm  
1. Gain vs Frequency and Temperature  
2. Gain vs Frequency and Supply Voltage  
0
0
TA = -40èC  
TA = -40èC  
-2  
-2  
TA = 25èC  
TA = 25èC  
TA = 85èC  
TA = 105èC  
TA = 85èC  
TA = 105èC  
-4  
-6  
-4  
-6  
-8  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
2200 2300 2400 2500 2600 2700 2800 2900 3000  
Frequency (MHz)  
2200 2300 2400 2500 2600 2700 2800 2900 3000  
Frequency (MHz)  
3. Input Return Loss vs Frequency  
4. Output Return Loss vs Frequency  
0
42  
TA = -40èC  
-5  
40  
38  
36  
34  
32  
30  
28  
26  
24  
TA = 25èC  
TA = 85èC  
TA = 105èC  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 105èC  
2200 2300 2400 2500 2600 2700 2800 2900 3000  
Frequency (MHz)  
2200 2300 2400 2500 2600 2700 2800 2900 3000  
Frequency (MHz)  
POUT/TONE = 2 dBm, ±1-MHz tone spacing  
5. Reverse Isolation vs Frequency  
6. Output IP3 vs Frequency and Temperature  
6
版权 © 2019, Texas Instruments Incorporated  
LMH9226  
www.ti.com.cn  
ZHCSKK7 DECEMBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 3.3 V, center frequency (fIN) = 2.6 GHz, single-ended input impedance (ZIN) = 50 Ω, differential output  
impedance (ZLOAD) = 50 Ω, and POUT(TOTAL) = 8 dBm into ZLOAD = 50 Ω (unless otherwise noted)  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 105èC  
VDD = 3.15 V  
VDD = 3.3 V  
VDD = 3.45 V  
2200 2300 2400 2500 2600 2700 2800 2900 3000  
Frequency (MHz)  
0
1
2
3
4
5
Output Power/Tone (dBm)  
6
7
8
POUT/TONE = 2 dBm, ±1-MHz tone spacing  
f = 2.6 GHz, ±1-MHz tone spacing  
7. Output IP3 vs Frequency and Supply Voltage  
8. Output IP3 vs Output Power per Tone  
42  
20  
19  
18  
17  
16  
15  
14  
13  
12  
40  
38  
36  
34  
32  
30  
28  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 105èC  
Tone Spacing = ê 1 MHz  
Tone Spacing = ê 10 MHz  
Tone Spacing = ê 100 MHz  
2200 2300 2400 2500 2600 2700 2800 2900 3000  
Frequency (MHz)  
2200 2300 2400 2500 2600 2700 2800 2900 3000  
Frequency (MHz)  
POUT/TONE = 2 dBm  
9. Output IP3 vs Frequency and Tone Spacing  
10. Output P1dB vs Frequency and Temperature  
20  
5
19  
18  
17  
16  
15  
14  
13  
12  
4
3
2
1
0
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 105èC  
VDD = 3.15 V  
VDD = 3.3 V  
VDD = 3.45 V  
2200 2300 2400 2500 2600 2700 2800 2900 3000  
Frequency (MHz)  
2200 2300 2400 2500 2600 2700 2800 2900 3000  
Frequency (MHz)  
ZSOURCE = 50 Ω  
11. Output P1dB vs Frequency and Supply Voltage  
12. Noise Figure vs Frequency and Temperature  
版权 © 2019, Texas Instruments Incorporated  
7
LMH9226  
ZHCSKK7 DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 3.3 V, center frequency (fIN) = 2.6 GHz, single-ended input impedance (ZIN) = 50 Ω, differential output  
impedance (ZLOAD) = 50 Ω, and POUT(TOTAL) = 8 dBm into ZLOAD = 50 Ω (unless otherwise noted)  
5
4
3
2
1
0
32  
30  
28  
26  
24  
22  
20  
18  
16  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = 105èC  
VDD = 3.15 V  
VDD = 3.3 V  
VDD = 3.45 V  
2200 2300 2400 2500 2600 2700 2800 2900 3000  
Frequency (MHz)  
2200 2300 2400 2500 2600 2700 2800 2900 3000  
Frequency (MHz)  
ZSOURCE = 50 Ω  
13. Noise Figure vs Frequency and Supply Voltage  
14. CMRR vs Frequency  
82  
82  
TA = -40èC  
TA = 25èC  
81  
81  
80  
79  
78  
77  
76  
TA = 85èC  
TA = 105èC  
80  
79  
78  
77  
VDD = 3.15 V  
VDD = 3.3 V  
VDD = 3.45 V  
76  
2200 2300 2400 2500 2600 2700 2800 2900 3000  
Frequency (MHz)  
2200 2300 2400 2500 2600 2700 2800 2900 3000  
Frequency (MHz)  
15. Quiescent Current vs Frequency and Temperature  
16. Quiescent Current vs Frequency and Supply Voltage  
8
版权 © 2019, Texas Instruments Incorporated  
LMH9226  
www.ti.com.cn  
ZHCSKK7 DECEMBER 2019  
7 Detailed Description  
7.1 Overview  
The LMH9226 is single-ended, 50-input to differential 50-or 100-output RF gain block amplifier used in  
2.3-GHz to 2.9-GHz, frequency-band, 5G, m-MIMO TDD receiver applications. The device provides a 17-dB fixed  
power gain with excellent linearity and noise performance across 400 MHz of the 1-dB bandwidth at the 2.6-GHz  
center frequency. The device is internally matched for a 50-input impedance at 2.6 GHz. The device  
differential output can be matched to the 50-impedance without external matching circuitry, or to the 100-Ω  
impedance with external matching circuitry (see the Application and Implementation section for details). The  
device is typically used in the final stage of a receive signal chain to drive the differential input of an analog-to-  
differential converter (ADC), while providing additional gain to a low-noise amplifier (LNA) to increase dynamic  
range and the required single-ended to differential conversion.  
The LMH9226 has an on-chip active bias circuitry to maintain device performance over a wide temperature and  
supply voltage range. The included power-down function allows the amplifier to shut down and save power when  
the amplifier is not needed. Fast shut-down and start-up enable the amplifier to be used in a host of time division  
duplex (TDD) applications.  
Operating on a single 3.3-V supply and consuming 84 mA of typical supply current, the device is available in a  
2-mm × 2-mm, 12-pin WQFN package.  
7.2 Functional Block Diagram  
AVDD = +3.3V  
Active Bias and  
Temperature  
Compensation  
Power Down (PD)  
Balanced RF OUTP (0)  
Single-Ended RF Input (INP)  
Balanced RF OUTM (180)  
ZIN = 50-Ω match  
AVSS (GND)  
ZOUT(DIFF) = 50-Ω match  
7.3 Feature Description  
As shown in 17, the LMH9226 integrates the functionality of a single-ended RF amplifier and passive balun in  
a traditional receive application, achieving a small form factor with good linearity and noise performance. The  
active balun implementation, along with a higher operating temperature of 105°C, allows for a more robust  
receiver system implementation compared to a passive balun that is prone to reliability failures at high  
temperatures. The high-temperature operation is achieved by the on-chip, active bias circuitry that maintains  
device performance over a wide temperature and supply voltage range.  
LMH9226  
INP  
OUTP  
OUTM  
GND  
17. Single-Ended Input to Differential Output, Active Balun Implementation  
版权 © 2019, Texas Instruments Incorporated  
9
 
LMH9226  
ZHCSKK7 DECEMBER 2019  
www.ti.com.cn  
7.4 Device Functional Modes  
The LMH9226 features a PD pin that must be connected to GND for normal operation. For power-down mode,  
connect the PD pin to a logic high voltage of 1.8 V.  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LMH9226 is a single-ended, 50-input to differential 50-or 100-output RF gain block amplifier, used in  
the receive path of a 2.6-GHz center frequency, 5G, TDD m-MIMO or small cell base station. The device  
replaces the traditional single-ended RF amplifier and passive balun offering a smaller footprint solution to the  
customer. TI recommends following good RF layout and grounding techniques to maximize the device  
performance.  
8.2 Typical Application  
The LMH9226 is typically used in a four transmit and four receive (4T/4R) array of active antenna system for 5G,  
TDD, wireless base station applications. Such a system is shown in 18, where the LMH9226 is used in the  
receive path as the final stage differential driver to an ADC input. TI typically recommends reducing the trace  
distance between the LMH9226 output and the ADC input to minimize amplitude and phase imbalance during the  
single-to-differential conversion.  
Transceiver Board  
LMH9226  
LNA  
DC-DC Converter  
LDO  
+3.3 V  
LMH9226  
LNA  
Tx AFE  
PA  
fO = 2.6 GHz, f-1dB = 400 MHz  
Tx AFE  
PA  
f-1dB  
Analog Front End  
PA  
fO  
Tx AFE  
Tx AFE  
PA  
LNA  
LMH9226  
DC-DC Converter  
LDO  
+3.3 V  
LNA  
LMH9226  
18. LMH9226 in a 4T/4R 5G Active Antenna System  
10  
版权 © 2019, Texas Instruments Incorporated  
 
LMH9226  
www.ti.com.cn  
ZHCSKK7 DECEMBER 2019  
Typical Application (接下页)  
The 4T/4R system is easily scaled to 16T/16R, 64T/64R, or higher antenna arrays that result in proportional  
scaling of the overall system power dissipation. As a result of the proportional scaling factor for multiple channels  
in a system, the individual device power consumption must be reduced to dissipate less overall heat in the  
system. Operating on a single 3.3-V supply, the LMH9226 consumes only 275 mW and therefore provides power  
saving to the customer. Multiple LMH9226 devices can be powered from a single DC/DC converter or a low-  
dropout regulator (LDO) operating on a 3.3-V supply. A DC/DC converter provides the most power efficient way  
of generating the 3.3-V supply. However, care must be taken when using the DC/DC converter to minimize the  
switching noise using inductor chokes and adequate isolation must be provided between the analog and digital  
supplies.  
8.2.1 Design Requirements  
1 shows example design requirements for an RF amplifier in a typical 5G, active antenna TDD system. The  
LMH9226 meets these requirements.  
1. Design Parameters  
DESIGN PARAMETERS  
Frequency range and 1-dB BW  
Configuration  
EXAMPLE VALUE  
2300 MHz to 2900 MHz with 400 MHz of 1-dB BW  
Single-ended 50-input to differential 50-output  
Power gain  
> 15 dB  
> 32 dBm  
< 4 dB  
Output IP3 at POUT/TONE = 2 dBm  
Noise figure at Zin = 50 Ω  
Output P1dB  
< 17 dBm  
< 350 mW  
< 1 µs  
Power consumption  
Turn-on time  
Package size  
2 mm × 2 mm2  
8.2.2 Detailed Design Procedure  
The LMH9226 is a single-to-differential RF gain block amplifier for a 2.6-GHz center frequency application with  
400 MHz of the 1-dB bandwidth. 19 shows a single receive channel consisting of a low-noise amplifier (LNA)  
that sits close to the antenna and drives the signal into a single-ended, 50-coaxial cable that then connects to  
a transceiver board. The LMH9226 that sits at the transceiver board input converts this single-ended signal  
received from the coax cable into a differential signal, thereby offering low noise and distortion performance while  
interfacing with the receiver analog front-end (AFE). The LMH9226 input impedance must be matched to 50 to  
prevent any signal reflections resulting from the coax cable. The device differential output interfaces directly with  
the differential input of an AFE. The output matching is optimized for a 50-output at the 2.6-GHz center  
frequency with 400 MHz of the 1-dB bandwidth. The AFE input impedance must be matched to 50 at 2.6 GHz  
as well to prevent any ripple in the frequency response.  
f-1dB  
fO = 2.6 GHz, f-1dB = 400 MHz  
fO  
ZIN(DIFF) = 50 Ω match  
Analog Front-End  
LNA  
ADC  
LMH9226  
C1  
ZOUT(DIFF) = 50 Ω match  
ZIN = 50 Ω match  
19. LMH9226 in a Receive Application Driving an AFE (ZOUT(DIFF) = 50 )  
版权 © 2019, Texas Instruments Incorporated  
11  
 
 
LMH9226  
ZHCSKK7 DECEMBER 2019  
www.ti.com.cn  
For interfacing with a 100-differential input AFE, as shown in 20, an external matching circuitry is needed  
close to the LMH9226 output. 2 lists example recommended component values when transforming the  
LMH9226 output impedance from 50 to 100 . The component values must be tweaked on the board,  
depending on the trace length between the matching circuitry and the AFE input to maintain 400 MHz of the 1-dB  
BW at the 2.6-GHz center frequency. LC component values must be selected with Q(min) > 30 that have a self  
resonant frequency (SRF) sufficiently higher than the desired frequency of operation. 21 and 22 provide a  
comparison of device performance when interfacing with a 50-output matching as compared to a 100-output  
matching. As depicted in 21, the forward path gain (SDS21) is slightly lower for the 100-differential output  
impedance because of the extra loss in the external matching circuitry.  
f-1dB  
fO = 2.6 GHz, f-1dB = 400 MHz  
fO  
ZOUT(DIFF) = 50 Ω  
ZIN(DIFF) = 100 Ω  
Analog Front-End  
C2  
LNA  
ADC  
LMH9226  
C1  
L2  
L1  
C3  
ZOUT(DIFF) = 100 Ω  
ZIN = 50 Ω match  
Output Matching  
Network  
20. LMH9226 in a Receive Application Driving an AFE (ZOUT(DIFF) = 100 )  
2. Output Matching Network Component Values  
COMPONENT  
VALUE  
2.2 pF  
C2, C3  
L1  
6.2 nH  
L2  
Do not install (DNI)  
Following the recommended RF layout with good quality RF components and local DC bypass capacitors  
ensures optimal performance is achieved. TI provides various support materials including S-parameter and ADS  
models to allow the design to be optimized to the application-specific performance needs.  
8.2.3 Application Curves  
20  
19  
18  
17  
16  
15  
14  
13  
12  
0
-2  
ZLOAD = 50 W  
ZLOAD = 100 W  
ZLOAD = 50 W  
ZLOAD = 100 W  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
2200 2300 2400 2500 2600 2700 2800 2900 3000  
Frequency (MHz)  
2200 2300 2400 2500 2600 2700 2800 2900 3000  
Frequency (MHz)  
21. Power Gain vs Frequency and ZLOAD  
22. Output Return Loss vs Frequency and ZLOAD  
12  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
LMH9226  
www.ti.com.cn  
ZHCSKK7 DECEMBER 2019  
9 Power Supply Recommendations  
The LMH9226 operates on a common nominal 3.3-V supply voltage. The supply voltage is recommended to be  
isolated through the decoupling capacitors placed close to the device. Select capacitors with a self-resonant  
frequency near the application frequency. When multiple capacitors are used in parallel to create a broadband  
decoupling network, place the capacitor with the higher self-resonant frequency closer to the device.  
The LMH9226 can be powered from a DC/DC converter or an LDO operating on a 3.3-V supply. A DC/DC  
converter provides the most power efficient way of generating the 3.3-V supply. However, care must be taken  
when using the DC/DC converter to minimize the switching noise from inductor chokes and adequate isolation  
must be provided between the analog and digital supplies.  
版权 © 2019, Texas Instruments Incorporated  
13  
LMH9226  
ZHCSKK7 DECEMBER 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
When dealing with an RF amplifier with relatively high gain and a center frequency of 2.6 GHz, certain board  
layout precautions must be taken to ensure stability and optimum performance. TI recommends that the  
LMH9226 board be multi-layered to improve thermal performance, grounding, and power-supply decoupling. 图  
23 shows a good layout example. In 23, only the top signal layer and its adjacent ground reference plane are  
shown.  
Excellent electrical connection from the thermal pad to the board ground is essential. Use the recommended  
footprint, solder the pad to the board, and do not include a solder mask under the pad.  
Connect the pad ground to the device terminal ground on the top board layer.  
Verify that the return DC and RF current path have a low impedance ground plane directly under the package  
and that the RF signal traces into and out of the amplifier.  
Ensure that ground planes on the top and any internal layers are well stitched with vias.  
Do not route RF signal lines over breaks in the reference ground plane.  
Avoid routing clocks and digital control lines near RF signal lines.  
Do not route RF or DC signal lines over noisy power planes. Ground is the best reference, although clean  
power planes can serve where necessary.  
Place supply decoupling close to the device.  
The differential output traces must be symmetrical in order to achieve the best linearity performance.  
A board layout software package can simplify the trace thickness design to maintain impedances for controlled  
impedance signals. To isolate the affect of board parasitic on frequency response, TI recommends placing the  
external output matching resistors close to the amplifier output pins. See the LMH9226 Evaluation Module user  
guide for more details on board layout and design.  
10.2 Layout Example  
Supply Bypass Caps  
close to the device  
Device  
Matched  
Differential trace  
Output Matching  
LC Network  
Stitched Vias  
23. Supply Bypass and Output Matching  
14  
版权 © 2019, Texas Instruments Incorporated  
 
LMH9226  
www.ti.com.cn  
ZHCSKK7 DECEMBER 2019  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)LMH9226 评估模块》 用户指南  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
15  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH9226IRRLR  
ACTIVE  
WQFN  
RRL  
12  
3000 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
-40 to 105  
22GO  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
RRL0012A  
WQFN - 0.8 mm max height  
S
C
A
L
E
5
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 0.5  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
(0.3) TYP  
7
5
6
4
2X 1.5  
SYMM  
13  
0.8 0.1  
8X 0.5  
10  
1
0.3  
0.2  
12X  
12  
11  
PIN 1 ID  
0.1  
C A B  
0.35  
0.25  
12X  
0.05  
4224942/A 04/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RRL0012A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
0.8)  
SYMM  
12  
SEE SOLDER MASK  
DETAIL  
12X (0.5)  
11  
10  
12X (0.25)  
1
SYMM  
(1.9)  
13  
8X (0.5)  
(R0.05) TYP  
4
7
(
0.2) TYP  
VIA  
6
5
(1.9)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224942/A 04/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RRL0012A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
0.76)  
11  
12X (0.5)  
12  
12X (0.25)  
10  
1
SYMM  
(1.9)  
13  
8X (0.5)  
4
7
(R0.05) TYP  
5
6
SYMM  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 13  
90% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4224942/A 04/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

LMH9226IRRLR

具有集成平衡-非平衡变压器的单端至差分 2.3GHz 至 2.9GHz 低功耗射频增益块 | RRL | 12 | -40 to 105
TI

LMH9235

具有集成平衡-非平衡变压器的 3.3GHz 至 4.2GHz 单端至差分放大器
TI

LMH9235IRRLR

具有集成平衡-非平衡变压器的 3.3GHz 至 4.2GHz 单端至差分放大器 | RRL | 12 | -40 to 105
TI

LMI201210A-2R2M

Moiding power lnducto rs
LEIDITECH

LMI201608A-1R0M

Moiding power lnducto rs
LEIDITECH

LMI201608A-1R5M

Moiding power lnducto rs
LEIDITECH

LMI201608A-R47M

Moiding power lnducto rs
LEIDITECH

LMI201610A-1R0M

Moiding power lnducto rs
LEIDITECH

LMI201610A-1R5M

Moiding power lnducto rs
LEIDITECH

LMI201610A-2R2M

Moiding power lnducto rs
LEIDITECH

LMI201610A-R24M

Moiding power lnducto rs
LEIDITECH

LMI201610A-R47M

Moiding power lnducto rs
LEIDITECH