LMH6732MA/NOPB [TI]

具有可调节带宽的高速运算放大器 | D | 8 | -40 to 85;
LMH6732MA/NOPB
型号: LMH6732MA/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节带宽的高速运算放大器 | D | 8 | -40 to 85

放大器 光电二极管 运算放大器
文件: 总34页 (文件大小:1937K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMH6732  
www.ti.com  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
LMH6732 High Speed Op Amp with Adjustable Bandwidth  
Check for Samples: LMH6732  
1
FEATURES  
APPLICATIONS  
2
Exceptional Performance at Any Supply  
Current:  
VS = ±5V, TA = 25°C, AV = +2V/V, VOUT = 2VPP  
Typical unless Noted:  
Battery Powered Systems  
Video Switching and Distribution  
Remote Site Instrumentation  
Mobile Communications Gear  
,
-3dB  
BW  
(MHz)  
DG/DP  
(%/deg.)  
PAL  
Slew  
Rate 1MHz  
(V/μs) (dBc)  
THD  
Output  
Current  
(mA)  
ICC  
(mA)  
DESCRIPTION  
The LMH6732 is a high speed op amp with a unique  
combination of high performance, low power  
consumption, and flexibility of application. The supply  
current is adjustable, over a continuous range of  
more than 10 to 1, with a single resistor, RP. This  
feature allows the device to be used in a wide variety  
of high performance applications including device turn  
on/ turn off (Enable/ Disable) for power saving or  
multiplexing. Typical performance at any supply  
current is exceptional. The LMH6732's design has  
been optimized so that the output is well behaved,  
eliminating spurious outputs on "Enable".  
1.0  
3.4  
9.0  
55  
0.20 / 0.036  
0.022 / 0.017  
0.025 / 0.010  
400  
2100  
2700  
-70.0  
-78.5  
-79.6  
9
180  
540  
45  
115  
Ultra High Speed (3dB BW) 1.5GHz  
(ICC = 10mA, 0.25VPP  
)
Single Resistor Adjustability of Supply Current  
Fast Enable/ Disable Capability 20ns  
(ICC = 9mA)  
"Popless" Output on "Enable" 15mV  
(ICC = 1mA)  
The LMH6732's combination of high performance,  
low power consumption, and large signal  
performance makes it ideal for a wide variety of  
remote site equipment applications such as battery  
powered test instrumentation and communications  
gear. Other applications include video switching  
matrices, ATE and phased array radar systems.  
Ultra Low Disable Current <1μA  
Unity Gain Stable  
Improved Replacement for CLC505 & CLC449  
The LMH6732 is available in the SOIC and SOT-23  
packages. To reduce design times and assist in  
board layout, the LMH6732 is supported by an  
evaluation board.  
1600  
0.6  
R
= 100W  
= +2  
L
0.4  
0.2  
0
9
6
1400  
A
V
OUTPUT  
0.25V  
PP  
R
= 700W  
F
1200  
1000  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
800  
600  
400  
I
= 9mA  
= +2  
CC  
CONTROL  
VOLTAGE  
A
V
3
0
R
R
= 700W  
= 100W  
2.0V  
F
L
PP  
LMH6732 ON  
200  
0
1V OUTPUT  
PP  
500MHz  
-1.2  
-1.4  
0
1
2
3
4
5
6
7
8
9 10 11 12  
0
10 20 30 40 50 60 70 80 90 100  
I
(mA)  
CC  
ns  
Figure 1. 3dB BW vs. ICC  
Figure 2. Turn-On/Off Characteristics  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2003–2013, Texas Instruments Incorporated  
LMH6732  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
Absolute Maximum Ratings(1)(2)  
VS  
±6.75V  
See(3)  
IOUT  
ICC  
14mA  
Common Mode Input Voltage  
Maximum Junction Temperature  
Storage Temperature Range  
Soldering Information  
Vto V+  
+150°C  
65°C to +150°C  
235°C  
Infrared or Convection (20 sec)  
Wave Soldering (10 sec)  
Human Body Model  
260°C  
ESD Tolerance(4)  
2000V  
Machine Model  
200V  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but specific performance is not ensured. For ensured specifications, see the Electrical  
Characteristics tables.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and  
specifications..  
(3) The maximum output current (IO) is determined by device power dissipation limitations.  
(4) Human body model: 1.5kin series with 100pF. Machine model: 0in series with 200pF.  
Operating Ratings(1)  
Thermal Resistance  
Package  
8-Pin SOIC  
θJC (°C/W)  
65°C/W  
θJA (°C/W)  
166°C/W  
198°C/W  
6-Pin SOT-23  
120°C/W  
Operating Temperature  
Nominal Supply Voltage  
Operating Supply Current  
40°C to +85°C  
±4.5V to ±6V  
0.5mA < ICC < 12mA  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but specific performance is not ensured. For ensured specifications, see the Electrical  
Characteristics tables.  
2
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6732  
LMH6732  
www.ti.com  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
Electrical Characteristics ICC = 9mA(1)  
AV = +2, RF = 700, VS = ±5V, RL = 100, RP = 39k; Unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min(2)  
Typ(2)  
Max(2)  
Units  
Frequency Domain Response  
SSBW  
LSBW  
GF0.1dB  
GFP  
-3dB Bandwidth  
VOUT = 2VPP  
540  
315  
MHz  
MHz  
MHz  
dB  
-3dB Bandwidth  
VOUT = 4.0VPP  
0.1dB Gain Flatness  
Frequency Response Peaking  
Frequency Response Rolloff  
Linear Phase Deviation  
VOUT = 2VPP  
180  
DC to 200MHz, VOUT = 2VPP  
DC to 200MHz, VOUT = 2VPP  
DC to 200MHz, VOUT = 2VPP  
DC to 140MHz, VOUT = 2VPP  
RL = 150, 4.43MHz  
RL = 150, 4.43MHz  
0.01  
0.15  
0.6  
GFR  
dB  
LPD  
deg  
0.1  
DG  
DP  
Differential Gain  
0.025  
0.010  
%
Differential Phase  
deg  
Time Domain Response  
TRS  
TRL  
TS  
Rise Time  
2V Step  
0.8  
0.9  
18  
ns  
Fall Time  
2V Step  
Settling Time to 0.04%  
Overshoot  
AV = 1, 2V Step  
2V Step  
5V Step, 40% to 60%(3)  
ns  
%
OS  
SR  
1
Slew Rate  
2700  
V/µs  
Distortion And Noise Response  
HD2  
HD3  
THD  
V N  
IN  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
Total Harmonic Distortion  
Input Referred Voltage Noise  
2VPP, 20MHz  
2VPP, 20MHz  
2VPP, 1MHz  
>1MHz  
60  
64  
79.6  
2.5  
dBc  
dBc  
dBc  
nV/Hz  
pA/Hz  
pA/Hz  
Input Referred Inverting Noise Current >1MHz  
9.7  
INN  
Input Referred Non-Inverting Noise  
Current  
>1MHz  
1.8  
SNF  
INV  
Noise Floor  
>1MHz  
154  
dBm1Hz  
Total Integrated Input Noise  
1MHz to 200MHz  
60  
μV  
(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very  
limited self-heating of the device such that TJ = TA. No ensured specification of parametric performance is indicated in the electrical  
tables under conditions of internal self-heating where TJ > TA. Min/Max ratings are based on production testing unless otherwise  
specified.  
(2) Typical numbers are the most likely parametric norm. Bold numbers refer to over temperature limits.  
(3) Slew Rate is the average of the rising and falling edges.  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LMH6732  
LMH6732  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
www.ti.com  
Electrical Characteristics ICC = 9mA(1) (continued)  
AV = +2, RF = 700, VS = ±5V, RL = 100, RP = 39k; Unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min(2)  
Typ(2)  
Max(2)  
Units  
Static, DC Performance  
VIO  
Input Offset Voltage  
±3.0  
±8.0  
mV  
9.9  
DVIO  
IBN  
Input Offset Voltage Average Drift  
Input Bias Current  
See(4)  
Non Inverting(5)  
16  
μV/°C  
μA  
2  
±11  
±12  
DIBN  
IBI  
Input Bias Current Average Drift  
Input Bias Current  
Non-Inverting(4)  
Inverting(5)  
5
nA/°C  
9  
±20  
μA  
± 30  
DIBI  
Input Bias Current Average Drift  
Inverting(4)  
14  
nA/°C  
dB  
+PSRR  
Positive Power Supply Rejection Ratio DC  
52  
62  
50  
PSRR  
CMRR  
ICC  
Negative Power Supply Rejection  
Ratio  
DC  
51  
48  
56  
52  
9.0  
<1  
dB  
dB  
mA  
μA  
Common Mode Rejection Ratio  
DC  
49  
46  
Supply Current  
RL = , RP = 39kΩ  
7.5  
6.6  
10.5  
11.7  
ICC  
I
Supply Current During Shutdown  
Miscellaneous Performance  
RIN  
Input Resistance  
Non-Inverting  
Non-Inverting  
Closed Loop  
RL = ∞  
4.7  
1.8  
MΩ  
pF  
CIN  
Input Capacitance  
Output Resistance  
Output Voltage Range  
ROUT  
VO  
32  
mΩ  
±3.60  
±3.75  
±3.55  
V
VOL  
RL = 100Ω  
±2.90  
±3.10  
±2.85  
CMIR  
IO  
Common Mode Input Range  
Output Current  
Common Mode  
±2.2  
V
Closed Loop  
±75  
±115  
mA  
40mV VO 40mV  
TON  
Turn-on Time  
Turn-off Time  
0.5VPP Sine Wave, 90% of Full  
Value  
20  
9
ns  
TOFF  
0.5VPP Sine Wave, <5% of Full  
Value  
VO glitch  
FDTH  
Turn-on Glitch  
Feed-Through  
50  
mV  
dB  
f = 10MHz, AV = +2, Off State  
61  
(4) Drift determined by dividing the change in parameter distribution average at temperature extremes by the total temperature change  
(5) Negative input current implies current flowing out of the device.  
4
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6732  
LMH6732  
www.ti.com  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
Electrical Characteristics ICC = 3.4mA(1)  
AV = +2, RF = 1k, VS = ±5V, RL = 100, RP = 137k; Unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
(2)  
(2)  
(2)  
Frequency Domain Response  
SSBW  
LSBW  
GF0.1dB  
GFP  
-3dB Bandwidth  
VOUT = 2VPP  
180  
100  
MHz  
MHz  
MHz  
dB  
-3dB Bandwidth  
VOUT = 4.0VPP  
0.1dB Gain Flatness  
Frequency Response Peaking  
Frequency Response Rolloff  
Linear Phase Deviation  
VOUT = 2VPP  
50  
DC to 75MHz, VOUT = 2VPP  
DC to 75MHz, VOUT = 2VPP  
DC to 55MHz, VOUT = 2VPP  
DC to 25MHz, VOUT = 2VPP  
RL = 150, 4.43MHz  
RL = 150, 4.43MHz  
0.15  
0.05  
0.5  
GFR  
dB  
LPD  
deg  
0.1  
DG  
DP  
Differential Gain  
0.022  
0.017  
%
Differential Phase  
deg  
Time Domain Response  
TRS  
TRL  
TS  
Rise Time  
2V Step  
1.7  
2.1  
18  
ns  
Fall Time  
2V Step  
Settling Time to 0.04%  
Overshoot  
AV = 1, 2V Step  
2V Step  
5V Step, 40% to 60%(3)  
ns  
%
OS  
SR  
2
Slew Rate  
2100  
V/µs  
Distortion And Noise Response  
HD2  
HD3  
THD  
V N  
IN  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
Total Harmonic Distortion  
Input Referred Voltage Noise  
2VPP, 10MHz  
2VPP, 10MHz  
2VPP, 1MHz  
>1MHz  
51  
65  
78.5  
4.1  
dBc  
dBc  
dBc  
nV/Hz  
pA/Hz  
pA/Hz  
Input Referred Inverting Noise Current >1MHz  
8.8  
INN  
Input Referred Non-Inverting Noise  
Current  
>1MHz  
1.1  
SNF  
INV  
Noise Floor  
>1MHz  
151  
dBm1Hz  
Total Integrated Input Noise  
1MHz to 100MHz  
60  
μV  
(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very  
limited self-heating of the device such that TJ = TA. No ensured specification of parametric performance is indicated in the electrical  
tables under conditions of internal self-heating where TJ > TA. Min/Max ratings are based on production testing unless otherwise  
specified.  
(2) Typical numbers are the most likely parametric norm. Bold numbers refer to over temperature limits.  
(3) Slew Rate is the average of the rising and falling edges.  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LMH6732  
LMH6732  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
www.ti.com  
Electrical Characteristics ICC = 3.4mA(1) (continued)  
AV = +2, RF = 1k, VS = ±5V, RL = 100, RP = 137k; Unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
(2)  
(2)  
(2)  
Static, DC Performance  
VIO  
Input Offset Voltage  
±2.5  
±7.0  
mV  
±8.5  
DVIO  
IBN  
Input Offset Voltage Average Drift  
Input Bias Current  
See(4)  
Non Inverting(5)  
10  
μV/°C  
μA  
0.4  
±4  
±6  
DIBN  
IBI  
Input Bias Current Average Drift  
Input Bias Current  
Non-Inverting(4)  
Inverting(5)  
8
nA/°C  
1  
±12  
μA  
±16  
DIBI  
Input Bias Current Average Drift  
Inverting(4)  
3  
nA/°C  
dB  
+PSRR  
Positive Power Supply Rejection Ratio DC  
52  
64  
50  
PSRR  
CMRR  
ICC  
Negative Power Supply Rejection  
Ratio  
DC  
51  
50  
57  
55  
3.4  
<1  
dB  
dB  
mA  
μA  
Common Mode Rejection Ratio  
DC  
49  
48  
Supply Current  
RL = , RP = 137kΩ  
2.8  
2.6  
3.9  
4.1  
ICC  
I
Supply Current During Shutdown  
Miscellaneous Performance  
RIN  
Input Resistance  
Non-Inverting  
Non-Inverting  
Closed Loop  
RL = ∞  
15  
1.7  
MΩ  
pF  
CIN  
Input Capacitance  
Output Resistance  
Output Voltage Range  
ROUT  
VO  
50  
mΩ  
±3.60  
±3.78  
±3.55  
V
VOL  
RL = 100Ω  
±2.90  
±3.10  
±2.85  
CMIR  
IO  
Common Mode Input Range  
Output Current  
Common Mode  
±2.2  
±45  
V
Closed Loop  
±30  
mA  
20mV VO 20mV  
TON  
Turn-on Time  
Turn-off Time  
0.5VPP Sine Wave, 90% of Full  
Value  
42  
10  
ns  
TOFF  
0.5VPP Sine Wave, <5% of Full  
Value  
VO glitch  
FDTH  
Turn-on Glitch  
Feed-Through  
25  
mV  
dB  
f = 10MHz, AV = +2, Off State  
61  
(4) Drift determined by dividing the change in parameter distribution average at temperature extremes by the total temperature change  
(5) Negative input current implies current flowing out of the device.  
6
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6732  
LMH6732  
www.ti.com  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
Electrical Characteristics ICC = 1.0mA(1)  
AV = +2, RF = 1k, VS = ±5V, RL = 500, RP = 412k; Unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
(2)  
(2)  
(2)  
Frequency Domain Response  
SSBW  
LSBW  
GF0.1dB  
GFP  
-3dB Bandwidth  
VOUT = 2VPP  
55  
30  
MHz  
MHz  
MHz  
dB  
-3dB Bandwidth  
VOUT = 4.0VPP  
0.1dB Gain Flatness  
Frequency Response Peaking  
Frequency Response Rolloff  
Linear Phase Deviation  
VOUT = 2VPP  
20  
DC to 25MHz, VOUT = 2VPP  
DC to 25MHz, VOUT = 2VPP  
DC to 20MHz, VOUT = 2VPP  
DC to 14MHz, VOUT = 2VPP  
RL = 500, 4.43MHz  
RL = 500, 4.43MHz  
0.11  
0.05  
1
GFR  
dB  
LPD  
deg  
0.3  
DG  
DP  
Differential Gain  
0.020  
0.036  
%
Differential Phase  
deg  
Time Domain Response  
TRS  
TRL  
TS  
Rise Time  
2V Step  
3.7  
5.1  
18  
ns  
Fall Time  
2V Step  
Settling Time to 0.04%  
Overshoot  
AV = 1, 2V Step  
2V Step  
5V Step, 40% to 60%(3)  
ns  
%
OS  
SR  
2
Slew Rate  
400  
V/µs  
Distortion And Noise Response  
HD2  
HD3  
THD  
V N  
IN  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
Total Harmonic Distortion  
Input Referred Voltage Noise  
2VPP, 5MHz  
2VPP, 5MHz  
2VPP, 1MHz  
>1MHz  
43  
65  
70.0  
8.4  
dBc  
dBc  
dBc  
nV/Hz  
pA/Hz  
pA/Hz  
Input Referred Inverting Noise Current >1MHz  
9.0  
INN  
Input Referred Non-Inverting Noise  
Current  
>1MHz  
0.8  
SNF  
INV  
Noise Floor  
>1MHz  
147  
dBm1Hz  
Total Integrated Input Noise  
1MHz to 100MHz  
29  
μV  
(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very  
limited self-heating of the device such that TJ = TA. No ensured specification of parametric performance is indicated in the electrical  
tables under conditions of internal self-heating where TJ > TA. Min/Max ratings are based on production testing unless otherwise  
specified.  
(2) Typical numbers are the most likely parametric norm. Bold numbers refer to over temperature limits.  
(3) Slew Rate is the average of the rising and falling edges.  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LMH6732  
LMH6732  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
www.ti.com  
Electrical Characteristics ICC = 1.0mA(1) (continued)  
AV = +2, RF = 1k, VS = ±5V, RL = 500, RP = 412k; Unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
(2)  
(2)  
(2)  
Static, DC Performance  
VIO  
Input Offset Voltage  
±1.6  
±6.0  
mV  
±7.3  
DVIO  
IBN  
Input Offset Voltage Average Drift  
Input Bias Current  
See(4)  
Non Inverting(5)  
4
μV/°C  
μA  
0.04  
±2.0  
±2.5  
DIBN  
IBI  
Input Bias Current Average Drift  
Input Bias Current  
Non-Inverting(4)  
Inverting(5)  
1  
nA/°C  
0.1  
±6  
μA  
±8  
DIBI  
Input Bias Current Average Drift  
Inverting(4)  
3  
nA/°C  
dB  
+PSRR  
Positive Power Supply Rejection Ratio DC  
52  
64  
51  
PSRR  
CMRR  
ICC  
Negative Power Supply Rejection  
Ratio  
DC  
51  
49  
59  
55  
1.0  
<1  
dB  
dB  
mA  
μA  
Common Mode Rejection Ratio  
DC  
49  
47  
Supply Current  
RL = , RP = 412kΩ  
0.70  
0.66  
1.3  
1.4  
ICC  
I
Supply Current During Shutdown  
Miscellaneous Performance  
RIN  
Input Resistance  
Non-Inverting  
Non-Inverting  
Closed Loop  
RL = ∞  
46  
1.7  
MΩ  
pF  
CIN  
Input Capacitance  
Output Resistance  
Output Voltage Range  
ROUT  
VO  
100  
m Ω  
±3.60  
±3.78  
±3.55  
V
VOL  
RL = 500Ω  
±2.90  
±3.10  
±2.85  
CMIR  
IO  
Common Mode Input Range  
Output Current  
Common Mode  
±2.2  
±9  
V
Closed Loop  
±6  
mA  
15mV VO 15mV  
TON  
Turn-on Time  
Turn-off Time  
0.5VPP Sine Wave, 90% of Full  
Value  
95  
40  
ns  
TOFF  
0.5VPP Sine Wave, <5% of Full  
Value  
VO glitch  
FDTH  
Turn-on Glitch  
Feed-Through  
15  
mV  
dB  
f = 10MHz, AV = +2, Off State  
61  
(4) Drift determined by dividing the change in parameter distribution average at temperature extremes by the total temperature change  
(5) Negative input current implies current flowing out of the device.  
8
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6732  
 
LMH6732  
www.ti.com  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
CONNECTION DIAGRAMS  
1
8
N/C  
R
P
1
6
+
V
OUT  
2
3
4
7
6
5
+
-IN  
-
V
R
-
P
2
V
+IN  
OUT  
+
-
+
4
3
-
-IN  
+IN  
N/C  
V
Figure 3. 8-Pin SOIC (Top View)  
See Package Number D (R-PDSO-G8)  
Figure 4. 6-Pin SOT-23 (Top View)  
See Package Number DBV (R-PDSO-G6)  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LMH6732  
 
LMH6732  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS  
Frequency Response  
ICC = 9mA  
Frequency Response  
ICC = 3.4mA  
Frequency Response  
ICC = 1mA  
150  
100  
50  
1
0
1
0
150  
100  
50  
1
150  
100  
50  
A
= +2, R = 700W  
A
= +2, R = 1kW  
V
F
A
V
= +2  
V
F
GAIN  
GAIN  
GAIN  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-1  
-2  
-3  
-4  
PHASE  
PHASE  
0
0
0
A
V
= +6  
PHASE  
-50  
A
= +6, R = 500W  
F
-50  
-50  
V
A
= +6, R = 500W  
V
F
A
= +21  
V
-100  
-150  
-200  
-250  
-100  
-150  
-200  
-250  
-100  
-150  
-200  
-250  
A
= +21, R = 1kW  
A
V
= +21, R = 1kW  
V
F
F
I
= 1mA  
CC  
-5  
-6  
I
= 9mA  
= 2V  
I
= 3.4mA  
= 2V  
CC  
CC  
V
= 2V  
= 500W  
= 1kW  
OUT  
PP  
V
OUT  
V
OUT  
PP  
PP  
R
R
L
F
R
L
= 100W  
R
= 100W  
L
-7  
100k  
1M  
10M  
100M  
1G  
100k  
100k  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 5.  
Figure 6.  
Figure 7.  
Frequency Response  
ICC = 9mA  
Frequency Response  
ICC = 3.4mA  
Frequency Response  
ICC = 1mA  
-30  
-30  
1
0
1
-30  
1
A
= -2, R = 400W  
F
A
= -2, R = 450W  
V
V
F
GAIN  
= -1, R = 500W  
GAIN  
= -1, R = 750W  
A = -1  
V
GAIN  
-80  
-80  
0
-80  
0
A
V
F
A
V
F
-130  
-180  
-230  
-280  
-330  
-380  
-430  
-130  
-180  
-230  
-280  
-330  
-380  
-430  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-130  
-180  
-230  
-280  
-330  
-380  
-430  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
A
= -2  
V
PHASE  
PHASE  
PHASE  
A
= -6  
V
A
A
= -6, R = 200W  
F
A
V
= -6, R = 200W  
F
V
A
= -20  
V
= -20, R = 500W  
V
F
A
= -20, R = 500W  
V
F
I
= 1mA  
= 2V  
CC  
I
= 9mA  
= 2V  
I
= 3.4mA  
CC  
V
R
R
CC  
OUT  
PP  
V
V
= 2V  
OUT  
PP  
= 500W  
= 1kW  
OUT  
PP  
L
F
R
L
= 100W  
R
= 100W  
L
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 8.  
Figure 9.  
Figure 10.  
Frequency Response  
ICC = 9mA  
Frequency Response  
ICC = 3.4mA  
Frequency Response  
ICC = 1mA  
150  
100  
1
1
150  
100  
50  
1
150  
100  
50  
A
= +2, R = 1kW  
F
A
V
= +2, R = 700W  
A = +2  
V
V
GAIN  
F
GAIN  
GAIN  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
A
= +6  
V
50  
PHASE  
= +6  
PHASE  
PHASE  
0
0
0
A
V
-50  
A
= +6, R = 500W  
-50  
-50  
V
F
A
= +6, R = 500W  
V
F
A
= +21  
V
-100  
-150  
-200  
-250  
-100  
-150  
-200  
-250  
-100  
-150  
-200  
-250  
A
= +21, R = 1kW  
F
A
= +21, R = 1kW  
V
V
F
I
= 1mA  
CC  
I
= 9mA  
CC  
V
= 4V  
= 500W  
= 1kW  
I
= 3.4mA  
= 4V  
OUT  
PP  
CC  
V
= 4V  
OUT  
PP  
R
L
F
V
OUT  
PP  
R
= 100W  
L
R
R
= 100W  
L
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 11.  
Figure 12.  
Figure 13.  
10  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6732  
 
LMH6732  
www.ti.com  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Frequency Response  
ICC = 9mA  
Frequency Response  
ICC = 3.4mA  
Frequency Response  
ICC = 1mA  
-30  
1
1
-30  
A
= -2, R = 400W  
V
F
A = -1  
V
GAIN  
0
GAIN  
-80  
-80  
0
A
= -1, R = 500W  
F
V
-130  
-180  
-230  
-280  
-330  
-380  
-430  
-1  
-2  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-130  
-180  
-230  
-280  
-330  
-380  
-430  
A
V
= -2  
PHASE  
PHASE  
A
V
= -6  
-3  
-4  
A
= -6, R = 200W  
F
V
A
= -20  
V
A
= -20, R = 500W  
V
F
I
= 1mA  
= 4V  
CC  
-5  
-6  
-7  
V
R
R
I
= 9mA  
= 4V  
OUT  
PP  
CC  
= 500W  
= 1kW  
V
L
F
OUT  
PP  
R
L
= 100W  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 14.  
Figure 15.  
Figure 16.  
Noise  
ICC = 9mA  
Noise  
ICC = 3.4mA  
Noise  
ICC = 1mA  
100  
10  
100  
100  
I
= 3.4mA  
CC  
I
= 1mA  
I
= 9mA  
CC  
CC  
IN-  
IN-  
IN-  
en  
10  
10  
IN+  
e
n
1
e
n
IN+  
IN+  
0.1  
1
1
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17.  
Figure 18.  
Figure 19.  
CMRR and PSRR  
ICC = 9mA  
CMRR and PSRR  
ICC = 3.4mA  
CMRR and PSRR  
ICC = 1mA  
70  
60  
50  
70  
70  
60  
50  
-PSRR  
60  
50  
-PSRR  
-PSRR  
+PSRR  
CMRR  
+PSRR  
+PSRR  
CMRR  
40  
30  
40  
30  
40  
30  
CMRR  
20  
10  
20  
10  
20  
10  
I
= 1mA  
I
= 9mA  
I
= 3.4mA  
CC  
CC  
CC  
INPUT REFERRED  
100k  
INPUT REFERRED  
INPUT REFERRED  
100k  
0
0
0
100k  
10M  
10M  
10M  
10k  
1M  
100M  
10k  
1M  
100M  
100 1k  
10k  
1M  
100M  
100 1k  
100 1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20.  
Figure 21.  
Figure 22.  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LMH6732  
LMH6732  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
2nd Distortion vs. Output Amplitude  
ICC = 9mA  
2nd Distortion vs. Output Amplitude  
ICC = 3.4mA  
2nd Distortion vs. Output Amplitude  
ICC = 1mA  
-20  
-30  
-40  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
I
= 9mA  
20MHz  
CC  
50MHz  
20MHz  
-20  
-30  
-40  
-50  
-60  
-70  
R
R
= 700W  
F
50MHz  
= 100W  
L
V
10MHz  
20MHz  
A
= +2  
-50  
-60  
-70  
50MHz  
5MHz  
10MHz  
5MHz  
10MHz  
I = 1mA  
CC  
I
= 3.4mA  
CC  
-80  
R
R
= 1kW  
R
R
= 1kW  
F
F
5MHz  
-80  
-80  
1MHz  
= 500W  
= 100W  
L
V
L
V
-90  
1MHz  
-90  
-90  
1MHz  
A
= +2  
A
= +2  
-100  
-100  
-100  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
V
(V  
)
V
(V )  
OUT PP  
OUT PP  
V
(V )  
OUT PP  
Figure 23.  
Figure 24.  
Figure 25.  
3rd Distortion vs. Output Amplitude  
ICC = 9mA  
3rd Distortion vs. Output Amplitude  
ICC = 3.4mA  
3rd Distortion vs. Output Amplitude  
ICC = 1mA  
0
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
50MHz  
20MHz  
50MHz  
20MHz  
20MHz  
50MHz  
-40  
5MHz  
10MHz  
5MHz  
-60  
-70  
-80  
10MHz  
10MHz  
5MHz  
-60  
I
= 1mA  
CC  
-80  
I
= 9mA  
CC  
I
= 3.4mA  
= 1kW  
CC  
R
R
= 1kW  
F
R
R
A
= 700W  
F
L
R
R
A
F
L
-80  
= 500W  
-100  
-120  
L
V
= 100W  
= 100W  
= +2  
-90  
-90  
A
= +2  
= +2  
1MHz  
V
1MHz  
1MHz  
V
6
-100  
-100  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
7
8
V
(V  
OUT PP  
)
V
(V )  
OUT PP  
V
(V )  
OUT PP  
Figure 26.  
Figure 27.  
Figure 28.  
Frequency Response for Various CL  
ICC = 9mA  
Frequency Response for Various CL  
ICC = 3.4mA  
Frequency Response for Various CL  
ICC = 1mA  
I
= 9mA, A = +2, R = 1kW  
I = 3.4mA, A = +2, R = 1kW  
CC V L  
CC  
V
L
C
R
= 10pF  
L
= 4W  
S
C
R
= 100pF,  
L
= 27W  
S
C
R
= 33pF,  
L
= 51W  
S
I
= 1mA,  
= +2,  
CC  
C
= 56pF,  
L
A
V
R
S
= 36W  
R
L
= 1kW  
20 MHz/DIV  
20 MHz/DIV  
5 MHz/DIV  
Figure 29.  
Figure 30.  
Figure 31.  
12  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6732  
LMH6732  
www.ti.com  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Small Signal Step Response  
ICC = 9mA  
Small Signal Step Response  
ICC = 3.4mA  
Small Signal Step Response  
ICC = 1mA  
1.5  
1
1.5  
1
1.5  
1
A
V
= -1  
0.5  
0.5  
0.5  
A
= +2  
= -1  
A
= -1  
A
= +2  
= -1  
V
V
V
I
= 1mA  
CC  
R
= 500W  
I
= 9mA  
L
CC  
0
-0.5  
-1  
0
0
R
= 100W  
L
I
= 3.4mA  
CC  
A
-0.5  
V
A
-0.5  
V
R
= 100W  
L
A
= +2  
V
-1  
-1  
-1.5  
0
-1.5  
-1.5  
5
10  
TIME (ns)  
15  
20  
0
10  
20  
40  
50  
60  
30  
0
10  
20  
30  
40  
50  
TIME (ns)  
TIME (ns)  
Figure 32.  
Figure 33.  
Figure 34.  
Large Signal Step Response  
ICC = 9mA  
Large Signal Step Response  
ICC = 3.4mA  
Large Signal Step Response  
ICC = 1mA  
3
2
3
2
3
2
A
V
= -1  
A
= +2  
A
= -1  
V
A
V
= -1  
V
A
= +2  
V
A
= +2  
1
1
1
V
0
0
0
I
= 9mA  
CC  
R
L
= 100W  
I
= 3.4mA  
I
= 1mA  
CC  
CC  
-1  
-1  
-1  
R
L
= 100W  
R
= 500W  
A
V
= +2  
L
A = -1  
V
A
= -1  
V
-2  
-3  
-2  
-3  
-2  
-3  
0
10  
20  
40  
50  
0
10  
20  
40  
50  
30  
30  
0
20  
40  
TIME (ns)  
80  
100  
60  
TIME (ns)  
TIME (ns)  
Figure 35.  
Figure 36.  
Figure 37.  
Output Glitch  
ICC = 9mA  
Output Glitch  
ICC = 3.4mA  
Output Glitch  
ICC = 1mA  
I
= 1mA  
10  
10  
10  
I
= 9mA  
I
= 3.4mA  
CC  
CC  
CC  
0.04  
0.04  
0.04  
0.02  
0
R
= 100W  
L
R
= 100W  
R
= 100W  
9
8
L
L
OUTPUT  
0.02  
0
0.02  
0
OUTPUT  
OUTPUT  
7
6
-0.02  
-0.02  
-0.02  
5
5
0
5
0
-0.04  
-0.06  
4
3
2
1
-0.04  
-0.06  
-0.04  
-0.06  
LMH6732 ON  
LMH6732 ON  
LMH6732 ON  
-0.08  
-0.1  
-0.08  
-0.1  
-0.08  
-0.1  
0
0
10 20 30 40 50 60 70 80 90 100  
0
20 40 60 80 100 120 140160 180 200  
ns  
0
50 100 150 200 250 300 350 400 450 500  
ns  
ns  
Figure 38.  
Figure 39.  
Figure 40.  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LMH6732  
LMH6732  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Turn-On/Off Characteristics  
ICC = 9mA  
Turn-On/Off Characteristics  
ICC = 3.4mA  
Turn-On/Off Characteristics  
ICC = 1mA  
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
200MHz, 0.8VPP OUTPUT  
50MHz, 0.9VPP OUTPUT  
9
6
9
6
9
6
OUTPUT  
OUTPUT  
OUTPUT  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
I
= 9mA  
= +2  
CC  
CONTROL  
VOLTAGE  
CONTROL  
VOLTAGE  
CONTROL  
VOLTAGE  
A
I
= 3.4mA  
A = +2  
V
I
= 1mA  
V
CC  
CC  
3
0
3
0
3
0
R
R
= 700W  
= 100W  
A
V
= +2  
F
L
LMH6732 ON  
R
= 1kW  
R
= 1kW  
= 100W  
LMH6732 ON  
F
L
F
LMH6732 ON  
1V OUTPUT  
PP  
500MHz  
R
= 100W  
-1.2  
-1.4  
-1.2  
-1.4  
-1.2  
-1.4  
R
L
0
10 20 30 40 50 60 70 80 90 100  
0
20 40 60 80 100 120 140 160 180 200  
0
50 100 150 200 250 300 350 400 450 500  
ns  
ns  
ns  
Figure 41.  
ICC vs. RP  
Figure 42.  
IP vs. ICC  
Figure 43.  
Max Output Current vs. ICC  
10  
9
140  
120  
25°C  
V
= 0V  
OUT  
-40°C  
8
7
100  
80  
6
5
4
3
2
1
0
85°C  
60  
40  
20  
0
0
2
4
I
6
8
10  
10  
100  
1k  
(mA)  
CC  
R
(kW)  
P
Figure 44.  
Figure 45.  
BW vs. ICC  
Figure 46.  
BW vs. ICC for Various Temperature  
Slew Rate vs. ICC  
1000  
1000  
3000  
2500  
A
V
= +2  
25°C  
V
A
= +2  
V
-40°C  
= 2V  
PP  
OUT  
A
= +2  
V
2000  
A
V
= +6  
85°C  
100  
100  
1500  
1000  
500  
0
V
= 2V  
PP  
OUT  
10  
10  
0
2
4
I
6
8
10  
0
2
4
I
6
8
10  
0
2
4
6
8
10  
(mA)  
CC  
(mA)  
CC  
I
(mA)  
CC  
Figure 47.  
Figure 48.  
Figure 49.  
14  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6732  
 
 
 
LMH6732  
www.ti.com  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
3dB BW vs. ICC  
VOS, IBI & IBN VS. ICC  
Output Impedance vs. Frequency  
1600  
5
4.5  
4
0
100  
I
BN  
R
= 100W  
L
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
3.4mA  
1400  
A
V
= +2  
0.25V  
PP  
R
= 700W  
F
1200  
1000  
10  
3.5  
3
I
BI  
1mA  
2.5  
2
9mA  
800  
600  
400  
1
V
OS  
1.5  
1
2.0V  
PP  
0.1  
0.5  
0
A TYPICAL DEVICE  
200  
0
0
2
4
I
6
8
10  
(mA)  
0.01  
CC  
0
1
2
3
4
5
6
7
8
9
10 11 12  
100k  
1M  
10M  
100M  
1G  
I
(mA)  
CC  
FREQUENCY (Hz)  
Figure 50.  
Transimpedance  
Figure 51.  
Figure 52.  
Recommended RS vs. CL  
Settling Time  
120  
110  
100  
90  
220  
60  
50  
40  
30  
20  
1
0.1  
GAIN  
R
= 100W  
L
A
V
= -1  
V
200  
180  
160  
140  
120  
100  
80  
= 2V  
OUT  
PP  
9mA  
1mA  
80  
3.4mA  
1mA  
70  
I
= 1mA  
CC  
60  
PHASE  
3.4mA  
50  
9mA  
3.4mA  
1mA  
0.01  
0.001  
40  
60  
30  
40  
I
= 9mA  
CC  
10  
0
20  
20  
9mA  
I
= 3.4mA  
1k  
100k  
1M  
10M  
100M  
1G  
CC  
FREQUENCY (Hz)  
0
50 100 150 200 250 300 350  
(pF)  
1
10  
100  
ts (ns)  
10k  
C
L
Figure 53.  
Figure 54.  
Figure 55.  
DG/DP  
ICC = 9mA  
DG/DP for Various RL  
ICC = 9mA  
DG/DP for Various RL  
ICC = 3.4mA  
0.03  
0.015  
0
0.01  
0.005  
0
0.1  
0.1  
0.08  
0.06  
0.04  
0.02  
0
4.43MHz  
I
= 9mA  
CC  
4.43MHz  
DP  
A
= +2  
DP  
V
0.05  
0
DP  
R
= 700W  
F
DG  
-0.05  
-0.1  
DG  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-0.015  
-0.005  
I
= 9mA  
= 150W  
= 700W  
CC  
R
L
F
I
= 3.4mA  
= +2  
CC  
DG  
R
A
-0.15  
-0.2  
V
-0.03  
-0.01  
1.5  
R = 1kW  
F
-1.5  
-0.75  
0
0.75  
4.43MHz  
V
(V)  
OUT  
0
1
2
3
4
5
4
0
2
3
1
NUMBER OF 150W LOADS  
NUMBER OF 150W LOADS  
Figure 56.  
Figure 57.  
Figure 58.  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LMH6732  
LMH6732  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
www.ti.com  
APPLICATION INFORMATION  
+5V  
6.8µF  
PIN NUMBERS SHOWN  
FOR SOIC PACKAGE  
R
R
F
A
V
= 1 +  
0.1µF  
8
G
R
P
V
7
-5V  
IN  
3
2
C
100pF  
+
P
LMH6732  
V
OUT  
6
-
4
R
F
NOTE: C MAY ALSO  
P
BE CONNECTED FROM  
PIN 8 TO GROUND  
0.1µF  
6.8µF  
R
G
-5V  
Figure 59. Recommended Non-Inverting Gain Circuit  
+5V  
6.8µF  
PIN NUMBERS SHOWN  
FOR SOIC PACKAGE  
R
R
F
A
V
=
0.1µF  
8
G
R
P
7
-5V  
3
2
C
100pF  
+
P
LMH6732  
V
OUT  
6
-
4
V
R
IN  
F
NOTE: C MAY ALSO  
P
BE CONNECTED FROM  
PIN 8 TO GROUND  
R
G
0.1µF  
6.8µF  
-5V  
Figure 60. Recommended Inverting Gain Circuit  
DESCRIPTION  
The LMH6732 is an adjustable supply current, current-feedback operational amplifier. Supply current and  
consequently dynamic performance can be easily adjusted by selecting the value of a single external resistor  
(RP).  
NOTE  
The following discussion uses the SOIC package pin numbers. For the corresponding  
SOT-23 package pin numbers, please refer to the Connection Diagrams section.  
SELECTING AN OPERATING POINT  
The operating point is determined by the supply current which in turn is determined by current (IP) flowing out of  
pin 8. As the supply current is increased, the following effects will be observed:  
16  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6732  
 
LMH6732  
www.ti.com  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
Table 1. Device Parameters Related to Supply Current  
Specification  
Bandwidth  
Effect as ICC Increases  
Increases  
Rise Time  
Decreases  
Enable/ Disable Speed  
Output Drive  
Increases  
Increases  
Input Bias Current  
Input Impedance  
Increases  
Decreases (see Source impedance Discussion)  
Both the Electrical Characteristics pages and the TYPICAL PERFORMANCE CHARACTERISTICS section  
illustrate these effects to help make the supply current vs. performance trade-off. The supply current is adjustable  
over a continuous range of more than 10 to 1 with a single resistor, RP, allowing for easy trade-off between  
power consumption and speed. Performance is specified and tested at ICC = 1mA, 3.4mA, and 9mA. (Note:  
Some test conditions and especially the load resistances are different for the three supply current settlings.) The  
performance plots show typical performance for all three supply currents levels.  
When making the supply current vs. performance trade-off, it is first a good idea to see if one of the standard  
operating points (ICC = 1mA, 3.4mA, or 9mA) fits the application. If it does, performance ensured on the  
specification pages will apply directly to your application. In addition, the value of RP may be obtained directly  
from the Electrical Characteristics pages.  
BEYOND 1GHz BANDWIDTH  
As stated above, the LMH6732 speed can be increased by increasing the supply current. The 3dB Bandwidth  
can even reach the unprecedented value of 1.5GHz (AV = +2, VOUT = 0.25VPP). Of course, this comes at the  
expense of power consumption (i.e. supply current). The relationship between 3dB BW and supply current is  
shown in Figure 48 to Figure 50. The supply current would nominally have to be set to around 10mA to achieve  
this speed. The absolute maximum supply current setting for the LMH6732 is 14mA. Beyond this value, the  
operation may become unpredictable.  
The following discussion will assist in selecting ICC for applications that cannot operate at one of the  
specified supply current settlings.  
Use the typical performance plots for critical specifications to select the best ICC. For parameters containing  
Min/Max ratings in the data sheet tables, interpolate between the values of ICC in the plots & specification tables  
to estimate the max/min values in the application.  
The simplified schematic for the supply current setting path (IP) is shown below in Figure 61.  
+
+
V
5kW  
-
V
-
I
P
R
P
Figure 61. Supply Current Control's Simplified Schematic  
The terminal marked "RP" is tied to a potential through a resistor RP. The current flowing through RP (IP) sets the  
LMH6732's supply current. Throughout the data sheet, the voltages applied to RP and Vare both considered to  
be 5V. However, the two potentials do not necessarily have to be the same. This is beneficial in applications  
where non-standard supply voltages are used or when there is a need to power down the op amp via digital logic  
control.  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LMH6732  
 
LMH6732  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
www.ti.com  
The relationship between ICC and IP is given by:  
lP = ICC/57 (approximate ratio at ICC = 3.4mA; consult Figure 45 for relationship at any ICC).  
Knowing IP leads to a direct calculation of RP.  
RP + 5k= [(V+ -1.6)-V]/ IP  
RP+ 5k= =8.4 /IP (for V+ = 5V and V= 5V).  
First, an operating point needs to be determined from the plots & specifications as discussed above. From this, IP  
is obtained. Knowing IP and the potential RP is tied to, RP can be calculated.  
EXAMPLE  
An application requires that VS = ±3V and performance in the 1mA operating point range. The required IP can  
therefore be determined as follows:  
IP=21μA  
RP is connected from pin 8 to V. Calculate RP under these conditions:  
RP+ 5k= [(V+ -1.6)-V] / IP  
RP+ 5k= [(3V-1.6V) - (-3V)] / 21μA  
RP = 205kΩ  
The LMH6732 will have performance similar to RP = 412kshown on the datasheet, but with 40% less power  
dissipation due to the reduced supply voltages. The op amp will also have a more restricted common-mode  
range and output swing.  
DYNAMIC SHUTDOWN CAPABILITY  
The LMH6732 may be powered on and off very quickly by controlling the voltage applied to RP. If RP is  
connected between pin 8 and the output of a CMOS gate powered from ±5V supplies, the gate can be used to  
turn the amplifier on and off. This is shown in Figure 62 below:  
PIN NUMBERS SHOWN  
* EXPERIMENTALLY  
FOR SOIC PACKAGE  
ADJUSTED VALUE  
ö 5pF*  
R
P
TO PIN 8 OF  
LMH6732  
CMOS LOGIC GATE  
(WITH ±5V OUTPUT SWING)  
Figure 62. Dynamic Control of Power Consumption Using CMOS Logic  
When the gate output is switched from high to low, the LMH6732 will turn on. In the off state, the supply current  
typically reduces to 1μA or less. The LMH6732's "off state" supply current is reduced significantly compared to  
the CLC505. This extremely low supply current in the "off state" is quite advantageous since it allows for  
significant power saving and minimizes feed-through. To improve switching time, a speed up capacitor from the  
gate output to pin 8 is recommended. The value of this capacitor will depend on the RP value used and is best  
established experimentally. Turn-on and turn-off times of <20ns (ICC = 9mA) are achievable with ordinary CMOS  
gates.  
EXAMPLE  
An open collector logic device is used to dynamically control the power dissipation of the circuit. Here, the  
desired connection for RP is from pin 8 to the open collector logic device.  
18  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6732  
 
LMH6732  
www.ti.com  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
PIN NUMBERS SHOWN  
FOR SOIC PACKAGE  
R
P
TO PIN 8 OF  
LMH6732  
OPEN COLLECTOR  
TTL GATE  
Figure 63. Controlling Power On State with TTL Logic (Open Collector Output)  
When the logic gate goes low, the LMH6732 is turned on. The LMH6732 V+ connection would be to +5V supply.  
Performance desired is that given for ICC = 3.4mA under standard conditions. From the ICC vs. IP plot, IP = 61μA.  
Then calculating RP:  
RP + 5k= [(5V-1.6V)- 0] / 61μA  
RP = 51kΩ  
"POPLESS OUTPUT" & OFF CONDITION OUTPUT STATE  
The LMH6732 has been especially designed to have minimum glitches during turn-on and turn-off. This is  
advantageous in situations where the LMH6732 output is fed to another stage which could experience false auto-  
ranging, or even worse reset operation, due to these transient glitches. Example of this application would be an  
AGC circuit or an ADC with multiple ranges set to accommodate the largest input amplitude. For the LMH6732,  
these sorts of transients are typically less than 50mV in amplitude (see Electrical Characteristics Tables for  
Typical values). Applications designed to utilize the CLC505's low output glitch would benefit from using the  
LMH6732 instead since the LMH6732's output glitch is improved to be even lower than the CLC505's. In the "Off  
State", the output stage is turned off and is in effect put into a high-Z state. In this sate, output can be forced by  
other active devices. No significant current will flow through the device output pin in this mode of operation.  
MUX APPLICATION  
Since The LMH6732's output is essentially open in the “off” state, it is a good candidate for a fast 2:1 MUX.  
Figure 64 shows one such application along with the output waveform in Figure 65 displaying the switching  
between a continuous triangle wave and a single cycle sine wave (signals trigger locked to each other for stable  
scope photo). Switching speed of the MUX will be less than 50 ns and is governed by the “Ton" and “Toff” times  
for U1 and U2 at the supply current set by RP1 and RP2. Note that the “Control” input is a 5V CMOS logic level.  
1.3 kW  
1.3 kW  
R
R
F1  
G1  
2
3
-
LMH6732  
U1  
6
V
IN1  
CONTROL  
3
+
8
50W  
+5V  
R
P1  
1
V
OUT  
2
47 kW  
IN2  
8
3
2
V
= ±5V  
S
-
LMH6732  
V
FOR LMH6732  
1/4 CD4049  
1/4 CD4049  
U2  
6
5
50W  
+
8
4
R
R
F2  
G2  
1.3 kW  
1.3 kW  
R
P2  
47 kW  
Figure 64. 50 ns 2:1 MUX Schematic  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LMH6732  
 
LMH6732  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
www.ti.com  
OUTPUT  
R
F
= R = 1.3 kW  
G
V
S
= ±5V  
0V  
CONTROL  
2 µs/DIV  
Figure 65. MUX “VOUT” and “Control” Waveform  
DIFFERENTIAL GAIN AND PHASE  
Differential gain and phase are measurements useful primarily in composite video channels. They are measured  
by monitoring the gain and phase changes of a high frequency carrier (3.58MHz for NTSC and 4.43MHz for PAL  
systems) as the output of the amplifier is swept over a range of DC voltages. Specifications for the LMH6732  
include differential gain and phase. Test signals used are based on a 1VPP video level. Test conditions used are  
the following:  
DC sweep range: 0 to 100 IRE units (black to white)  
Carrier: 4.43MHz at 40 IRE units peak to peak  
AV = +2, RL = 75+ 75Ω  
SOURCE IMPEDANCE  
For best results, source impedance in the non-inverting circuit configuration (see Figure 59) should be kept below  
5k.  
Above 5kit is possible for oscillation to occur, depending on other circuit board parasitics. For high signal  
source impedances, a resistor with a value of less than 5kmay be used to terminate the non-inverting input to  
ground.  
FEEDBACK RESISTOR  
In current-feedback op amps, the value of the feedback resistor plays a major role in determining amplifier  
dynamics. It is important to select the correct value. The LMH6732 provides optimum performance with feedback  
resistors as shown in Table 2 below. Selection of an incorrect value can lead to severe roll-off in frequency  
response, (if the resistor value is too large) or , peaking or oscillation (if the value is too low).  
Table 2. Feedback Resistor Selection for Various Gain Settings and ICC’s  
Gain (V/V)  
ICC (mA)  
3.4  
Unit  
9
1
AV = +1  
700  
700  
500  
400  
500  
200  
1k  
1k  
1k  
1k  
1k  
1k  
1k  
1k  
1k  
1k  
AV = +2  
AV = 1  
AV = 2  
AV = +6  
AV = 6  
AV = +21  
AV = 20  
1k  
750  
450  
500  
200  
1k  
500  
500  
20  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6732  
 
LMH6732  
www.ti.com  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
For ICC > 9mA at any closed loop gain setting, a good starting point for RF would be the 9mA value stated in  
Table 2 above. This value could then be readjusted, if necessary, to achieve the desired response.  
PRINTED CIRCUIT LAYOUT & EVALUATION BOARDS  
Generally, a good high frequency layout will keep power supply and ground traces away from the inverting input  
and output pins. Parasitic capacitances on these nodes to ground will cause frequency response peaking and  
possible circuit oscillations (see Application Note OA-15 (SNOA367) for more information).  
Use the following evaluation boards as a guide for high frequency layout and as an aid in device testing and  
characterization:  
Evaluation Board  
Device  
Package  
Part Number  
LMH730216  
LMH730227  
LMH6732MF  
LMH6732MA  
SOT-23  
SOIC  
The supply current adjustment resistor, RP, in both evaluation boards should be tied to the appropriate potential  
to get the desired supply current. To do so, leave R2 (LMH730216) [ R5 (LMH730227) ] uninstalled. Jumper  
"Dis" connector to V. Install R1 (LMH730216) [ R4 (LMH730227) ] to set the supply current.  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LMH6732  
 
LMH6732  
SNOSA47B FEBRUARY 2003REVISED MARCH 2013  
www.ti.com  
REVISION HISTORY  
Changes from Revision A (March 2013) to Revision B  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 21  
22  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6732  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH6732MA/NOPB  
ACTIVE  
SOIC  
D
8
95  
RoHS & Green  
SN  
Level-1-260C-UNLIM  
-40 to 85  
LMH67  
32MA  
LMH6732MF/NOPB  
LMH6732MFX/NOPB  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
DBV  
DBV  
6
6
1000 RoHS & Green  
3000 RoHS & Green  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
A97A  
A97A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMH6732MF/NOPB  
LMH6732MFX/NOPB  
SOT-23  
SOT-23  
DBV  
DBV  
6
6
1000  
3000  
178.0  
178.0  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
4.0  
4.0  
8.0  
8.0  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMH6732MF/NOPB  
LMH6732MFX/NOPB  
SOT-23  
SOT-23  
DBV  
DBV  
6
6
1000  
3000  
208.0  
208.0  
191.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
SOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LMH6732MA/NOPB  
D
8
95  
495  
8
4064  
3.05  
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

LMH6732MAX

High Speed Op Amp with Adjustable Bandwidth
NSC

LMH6732MF

High Speed Op Amp with Adjustable Bandwidth
NSC

LMH6732MF/NOPB

具有可调节带宽的高速运算放大器 | DBV | 6 | -40 to 85
TI

LMH6732MFX

High Speed Op Amp with Adjustable Bandwidth
NSC

LMH6732MFX/NOPB

具有可调节带宽的高速运算放大器 | DBV | 6 | -40 to 85
TI

LMH6733

Single Supply, 1.0 GHz, Triple Operational Amplifier
NSC

LMH6733

单电源、1.0 GHz、三路运算放大器
TI

LMH6733MQ

Single Supply, 1.0 GHz, Triple Operational Amplifier
NSC

LMH6733MQ

3 CHANNEL, VIDEO AMPLIFIER, PDSO16, SSOP-16
ROCHESTER

LMH6733MQ/NOPB

单电源、1.0 GHz、三路运算放大器 | DBQ | 16 | -40 to 85
TI

LMH6733MQX

Single Supply, 1.0 GHz, Triple Operational Amplifier
NSC

LMH6733MQX/NOPB

3 CHANNEL, VIDEO AMPLIFIER, PDSO16, SSOP-16
ROCHESTER