LMG5200MOFR [TI]

80V GaN 半桥功率级 | MOF | 9 | -40 to 125;
LMG5200MOFR
型号: LMG5200MOFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

80V GaN 半桥功率级 | MOF | 9 | -40 to 125

文件: 总28页 (文件大小:1465K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMG5200  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
LMG5200 80V10A GaN 半桥功率级  
1 特性  
3 说明  
1
集成 15mΩ GaN FET 和驱动器  
LMG5200 器件集成了 80V10A 驱动器和 GaN 半桥  
功率级,采用增强模式氮化镓 (GaN) FET 提供了一套  
集成功率级解决方案。该器件包含两个 80V GaN  
FET,它们由采用半桥配置的同一高频 GaN FET 驱动  
器提供驱动。  
80V 连续电压,100V 脉冲电压额定值  
封装经过优化,可实现简单的 PCB 布局,无需考  
虑底层填料、爬电和余隙要求  
超低共源电感可确保实现高压摆率开关,同时在硬  
开关拓扑中不会造成过度振铃  
GaN FET 在功率转换方面的优势显著,因为其反向恢  
复电荷几乎为零,输入电容 CISS 也非常小。所有器件  
均安装在一个完全无键合线的封装平台上,尽可能减少  
了封装寄生元件数。LMG5200 器件采用 6mm × 8mm  
× 2mm 无铅封装,可轻松安装在 PCB 上。  
非常适合隔离式和非隔离式 应用  
栅极驱动器支持高达 10MHz 的开关频率  
内部自举电源电压钳位可防止 GaN FET 过驱  
电源轨欠压锁定保护  
优异的传播延迟(典型值为 29.5ns)和匹配(典型  
值为 2ns)  
该器件的输入与 TTL 逻辑兼容,无论 VCC 电压如  
何,都能够承受高达 12V 的输入电压。专有的自举电  
压钳位技术确保了增强模式 GaN FET 的栅极电压处于  
安全的工作范围内。  
低功耗  
2 应用  
VIN 数兆赫兹同步降压转换器  
该器件配有用户友好型接口且更为出色,进一步提升了  
分立式 GaN FET 的优势。对于具有高频、高效操作及  
小尺寸要求的 应用 而言,该器件堪称理想的解决方  
案。与 TPS53632G 控制器搭配使用时,LMG5200 能  
够直接将 48V 电压转换为负载点电压 (0.5-1.5V)。  
D 类音频放大器  
适用于电信、工业和企业计算的 48V 负载点 (POL)  
转换器  
高功率密度单相和三相电机驱动  
器件信息(1)  
器件型号  
LMG5200  
封装  
封装尺寸(标称值)  
6.00mm × 8.00mm  
QFM (9)  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。已更正中的印刷错误  
简化框图  
HS  
3
HB  
2
LMG5200  
1
8
9
VIN  
HS  
HB  
HI  
LI  
4
5
HI  
LI  
HO  
LO  
SW  
GaN Driver  
VCC  
AGND  
PGND  
6
7
VCC  
AGND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNOSCY4  
 
 
 
 
 
 
LMG5200  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 12  
Application and Implementation ........................ 12  
9.1 Application Information............................................ 12  
9.2 Typical Application ................................................. 12  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information ................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Parameter Measurement Information .................. 8  
7.1 Propagation Delay and Mismatch Measurement...... 8  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagram ....................................... 10  
8.3 Feature Description................................................. 10  
9
10 Power Supply Recommendations ..................... 15  
11 Layout................................................................... 16  
11.1 Layout Guidelines ................................................. 16  
11.2 Layout Examples................................................... 16  
12 器件和文档支持 ..................................................... 20  
12.1 器件支持 ............................................................... 20  
12.2 文档支持 ............................................................... 20  
12.3 接收文档更新通知 ................................................. 20  
12.4 社区资源................................................................ 20  
12.5 ....................................................................... 20  
12.6 静电放电警告......................................................... 20  
12.7 Glossary................................................................ 20  
13 机械、封装和可订购信息....................................... 20  
13.1 封装信息................................................................ 20  
7
8
4 修订历史记录  
Changes from Revision C (December 2016) to Revision D  
Page  
通用编辑全局编写和 SDS 更新............................................................................................................................................... 1  
Changed Thermal Information table....................................................................................................................................... 5  
Changes from Revision B (January 2016) to Revision C  
Page  
已更改 “GaN 技术预览量产数据” ...................................................................................................................................... 1  
已添加 Device Functional Modes Section ........................................................................................................................... 12  
已添加 Typical Application Section ...................................................................................................................................... 12  
Updated Power Supply Recommendations Section ............................................................................................................ 15  
已添加 链接至开发支持部分 ............................................................................................................................................... 20  
Changes from Revision A (March 2015) to Revision B  
Page  
已更改 part number typographical error in 14.................................................................................................................. 16  
Changes from Original (March 2015) to Revision A  
Page  
简化框图  
...................................................................................................................................................................................... 1  
Corrected typographical error in 5 ..................................................................................................................................... 8  
Corrected typographical error in 10 ................................................................................................................................. 10  
Corrected typographical error in 11 ................................................................................................................................. 12  
2
Copyright © 2015–2017, Texas Instruments Incorporated  
 
LMG5200  
www.ti.com.cn  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
5 Pin Configuration and Functions  
MOF Package  
9-Pin QFM  
Top View  
1 VIN  
2
3
4
5
HI  
LI  
9 PGND  
LMG5200  
7
6
SW  
8
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
AGND  
HB  
NO.  
7
G
P
I
Analog ground. Ground of driver device.  
High-side gate driver bootstrap rail.  
High-side gate driver control input  
High-side GaN FET source connection  
Low-side driver control input  
2
HI  
4
HS  
3
P
I
LI  
5
PGND  
SW  
9
G
P
P
P
Power ground. Low-side GaN FET source. Electrically shorted to AGND pin.  
Switching node. Electrically shorted to HS pin. Ensure low capacitance at this node on PCB.  
5-V positive gate drive supply  
8
VCC  
VIN  
6
1
Input voltage pin. Electrically connected to high-side GaN FET drain.  
(1) I = Input, O = Output, G = Ground, P = Power  
Copyright © 2015–2017, Texas Instruments Incorporated  
3
LMG5200  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
MIN  
MAX  
80  
UNIT  
V
VIN to PGND  
0
VIN to PGND (pulsed, 100-ms maximum duration)(2)  
HB to AGND  
100  
86  
V
–0.3  
–5  
V
HS to AGND  
80  
V
HI to AGND  
–0.3  
–0.3  
–0.3  
–0.3  
0
12  
V
LI to AGND  
12  
V
VCC to AGND  
6
V
HB to HS  
6
V
HB to VCC  
80  
V
SW to PGND  
–5  
80  
V
IOUT from SW pin  
Junction temperature, TJ  
Storage temperature, Tstg  
10  
A
–40  
–40  
125  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Device can withstand 1000 pulses up to 100 V of 100-ms duration and less than 1% duty cycle over its lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1000  
V
V(ESD)  
Electrostatic discharge  
Charged-device model (CDM), per JEDEC specification  
JESD22-C101(2)  
±500  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
V
VCC  
4.75  
5
5.25  
LI or HI Input  
0
0
12  
V
VIN  
80  
80  
V
HS, SW  
–5  
V
HB  
VHS + 4  
VHS + 5.25  
50  
V
HS, SW slew rate(1)  
V/ns  
°C  
Junction temperature, TJ  
–40  
125  
(1) This parameter is ensured by design. Not tested in production.  
4
Copyright © 2015–2017, Texas Instruments Incorporated  
 
LMG5200  
www.ti.com.cn  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
6.4 Thermal Information  
LMG5200  
(1) (2)  
THERMAL METRIC  
MOF (QFM)  
UNIT  
9 PINS  
35  
R θJA  
R θJC(top)  
R θJB  
ψ JT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
18  
16  
1.8  
16  
ψ JB  
Junction-to-board characterization parameter  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator .  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
SUPPLY CURRENTS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ICC  
VCC quiescent current  
Total VCC operating current  
HB quiescent current  
HB operating current  
LI = HI = 0 V, VCC = 5 V, HB-HS = 4.6 V  
f = 500 kHz  
0.08  
3
0.125  
5
mA  
mA  
mA  
mA  
ICCO  
IHB  
LI = HI = 0 V, VCC = 5 V, HB-HS = 4.6 V  
f = 500 kHz, 50% Duty cycle, VDD = 5 V  
0.09  
1.5  
0.15  
2.5  
IHBO  
INPUT PINS  
VIH  
High-level input voltage  
threshold  
Rising edge  
Falling edge  
1.87  
1.48  
2.06  
1.66  
2.22  
1.76  
V
V
VIL  
Low-level input voltage  
threshold  
VHYS  
RI  
Hysteresis between rising and  
falling threshold  
400  
200  
mV  
Input pulldown resistance  
100  
3.2  
2.5  
300  
4.5  
3.9  
k  
UNDERVOLTAGE PROTECTION  
VCCR VCC Rising edge threshold  
VCC(hyst) VCC UVLO threshold hysteresis  
Rising  
Rising  
3.8  
200  
3.2  
V
mV  
V
VHBR  
HB Rising edge threshold  
VHB(hyst)  
HB UVLO threshold hysteresis  
200  
mV  
BOOTSTRAP DIODE  
VDL  
VDH  
RD  
Low-current forward voltage  
IVDD-HB = 100 µA  
IVDD-HB = 100 mA  
IVDD-HB = 100 mA  
Regulation Voltage  
0.45  
0.9  
1.85  
5
0.65  
1.0  
V
V
V
High current forward voltage  
Dynamic resistance  
HB-HS clamp  
2.8  
4.65  
5.2  
Bootstrap diode reverse  
recovery time  
tBS  
IF = 100 mA, IR = 100 mA  
VVIN = 50 V  
40  
2
ns  
Bootstrap diode reverse  
recovery charge  
QRR  
nC  
(1) Parameters that show only a typical value are ensured by design and may not be tested in production.  
Copyright © 2015–2017, Texas Instruments Incorporated  
5
LMG5200  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
POWER STAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RDS(ON)H High-side GaN FET on-  
LI = 0 V, HI = VCC=5 V, HB-HS = 5 V,  
VIN-SW = 10 A, TJ = 25  
15  
15  
2
20  
20  
mΩ  
mΩ  
V
resistance  
S
Low-side GaN FET on-  
RDS(ON)LS  
LI = VCC = 5V, HI = 0 V, HB-HS = 5 V,  
SW-PGND = 10 A, TJ = 25℃  
resistance  
VSD  
GaN 3rd quadrant conduction  
drop  
ISD = 500 mA, VIN floating, VVCC = 5 V, HI  
= LI = 0 V  
Leakage from VIN to SW when  
IL-VIN-SW the high-side GaN FET and low-  
side GaN FET are off  
VIN = 80 V, HI = LI = 0 V, VVCC = 5 V, TJ=  
25℃  
25  
25  
150  
150  
µA  
µA  
pF  
Leakage from SW to GND when  
IL-SW-GND the high-side GaN FET and low-  
side GaN FET are off  
SW = 80 V, HI = LI = 0 V, VVCC = 5V, TJ =  
25℃  
Output capacitance of high-side  
COSS  
GaN FET and low-side GaN  
FET  
VDS=40 V, VGS= 0V (HI = LI = 0 V)  
266  
QG  
Total gate charge  
Output charge  
VDS=40 V, ID= 10A, VGS= 5 V  
VDS=40 V, ID= 10 A  
3.8  
21  
nC  
nC  
QOSS  
Source-to-drain reverse  
recovery charge  
Not including internal driver bootstrap  
diode  
QRR  
0
29.5  
29.5  
29.5  
29.5  
2
nC  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LI = 0 V, VCC = 5 V, HB-HS = 5 V, VIN =  
30 V  
tHIPLH  
tHIPHL  
tLPLH  
tLPHL  
tMON  
tMOFF  
tPW  
Propagation delay: HI rising(2)  
Propagation delay: HI falling(2)  
Propagation delay: LI rising(2)  
Propagation delay: LI falling(2)  
50  
50  
50  
50  
8
LI = 0 V, VCC = 5 V, HB-HS = 5 V, VIN =  
30 V  
HI = 0 V, VCC = 5 V, HB-HS = 5 V, VIN =  
30 V  
HI = 0 V, VCC = 5 V, HB-HS = 5 V, VIN =  
30 V  
Delay matching: LI high and HI  
low(2)  
Delay matching: LI low and HI  
high(2)  
2
8
Minimum input pulse width that  
changes the output  
10  
(2) See Propagation Delay and Mismatch Measurement.  
6
版权 © 2015–2017, Texas Instruments Incorporated  
 
LMG5200  
www.ti.com.cn  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
6.6 Typical Characteristics  
All the curves are based on measurements made on a PCB design with dimensions of 3.2 inches (W) × 2.7 inches (L) ×  
0.062 inch (T) and 4 layers of 2 oz copper.  
The safe operating area (SOA) curves displays the temperature boundaries within an operating system by incorporating the  
thermal resistance and system power loss. A buck converter is used for measuring the SOA. 2 outlines the temperature  
and airflow conditions required for a given load current. The area under the curve dictates the SOA for different airflow  
conditions.  
90  
80  
70  
60  
50  
40  
30  
20  
100  
10  
1
400 LFM  
200 LFM  
100 LFM  
Natural convection  
No Load  
10k  
0.1  
0
1
2
3
4
5
6
1
10  
100  
1k  
Output Current (A)  
Frequency (kHz)  
D001  
D001  
VIN = 48 V  
VOUT = 5 V  
2. Safe Operating Area  
fSW = 1 MHz  
VDD = 5 V  
1. VDD Supply Current vs Switching Frequency  
12  
10  
8
25  
23  
21  
19  
17  
15  
13  
11  
9
6
4
2
7
5
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125 140  
Junction Temperature (°C)  
0
0.5  
1
1.5  
2
2.5  
3
Source-to-Drain Voltage (V)  
D001  
D001  
.
GaN third quadrant conduction.  
3. Source-to-Drain Current vs Source-to-Drain Voltage  
4. GaN FET On-Resistance vs Junction Temperature  
版权 © 2015–2017, Texas Instruments Incorporated  
7
 
LMG5200  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Propagation Delay and Mismatch Measurement  
5 shows the typical test setup used to measure the propagation mismatch. As the gate drives are not  
accessible, pullup and pulldown resistors in this test circuit are used to indicate when the low-side GaN FET  
turns ON and the high-side GaN FET turns OFF and vice versa to measure the tMON and tMOFF parameters.  
Resistance values used in this circuit for the pullup and pulldown resistors are in the order of 1 kΩ; the current  
sources used are 2 A.  
6 through 9 show propagation delay measurement waveforms. For turnon propagation delay  
measurements, the current sources are not used. For turnoff time measurements, the current sources are set to  
2 A, and a voltage clamp limit is also set, referred to as VIN(CLAMP). When measuring the high-side component  
turnoff delay, the current source across the high-side FET is turned on, the current source across the low-side  
FET is off, HI transitions from high-to-low, and output voltage transitions from VIN to VIN(CLAMP). Similarly, for low-  
side component turnoff propagation delay measurements, the high-side component current source is turned off,  
and the low-side component current source is turned on, LI transitions from high to low and the output transitions  
from GND potential to VIN(CLAMP). The time between the transition of LI and the output change is the propagation  
delay time.  
3
2
HB  
HS  
VIN  
1
8
4
5
HI  
LI  
Pattern  
Generator  
SW  
LMG5200  
VOUT  
PGND  
9
VCC  
6
AGND  
7
(A)  
Delay Measurement  
5. Propagation Delay and Propagation Mismatch Measurement  
8
版权 © 2015–2017, Texas Instruments Incorporated  
 
LMG5200  
www.ti.com.cn  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
Propagation Delay and Mismatch Measurement (接下页)  
50%  
50%  
HI  
LI  
V
2
IN  
V
IN  
SW  
10%  
V
2
IN  
10%  
SW  
GND  
Time  
Time  
6. High-Side Gate Driver Turnon  
7. Low-Side Gate Driver Turnon  
HI  
LI  
50%  
50%  
V
IN(clamp)  
V
IN  
SW  
10%  
V
SW  
10%  
IN(clamp)  
GND  
Time  
9. Low-Side Gate Driver Turnoff  
.
8. High-Side Gate Driver Turnoff  
8 Detailed Description  
8.1 Overview  
10 shows the LMG5200, half-bridge, GaN power stage with highly integrated high-side and low-side gate  
drivers, which includes built-in UVLO protection circuitry and an overvoltage clamp circuitry. The clamp circuitry  
limits the bootstrap refresh operation to ensure that the high-side gate driver overdrive does not exceed 5.4 V.  
The device integrates two, 15-mGaN FETs in a half-bridge configuration. The device can be used in many  
isolated and non-isolated topologies allowing very simple integration. The package is designed to minimize the  
loop inductance while keeping the PCB design simple. The drive strengths for turnon and turnoff are optimized to  
ensure high voltage slew rates without causing any excessive ringing on the gate or power loop.  
版权 © 2015–2017, Texas Instruments Incorporated  
9
LMG5200  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
www.ti.com.cn  
8.2 Functional Block Diagram  
10 shows the functional block diagram of the LMG5200 device with integrated high-side and low-side GaN  
FETs.  
LMG5200  
2
1
HB  
UVLO and  
Clamp  
VIN  
Level  
Shifter  
VCC  
HI  
6
4
3
8
HS  
UVLO  
SW  
LI  
5
9
7
PGND  
AGND  
10. Functional Block Diagram  
8.3 Feature Description  
The LMG5200 device brings ease of designing high power density boards without the need for underfill while  
maintaining creepage and clearance requirements. The propagation delays between the high-side gate driver  
and low-side gate driver are matched to allow very tight control of dead time. Controlling the dead time is critical  
in GaN-based applications to maintain high efficiency. HI and LI can be independently controlled to minimize the  
third quadrant conduction of the low-side FET for hard switched buck converters. A very small propagation  
mismatch between the HI and LI to the drivers for both the falling and rising thresholds ensures dead times of <  
10 ns. Co-packaging the GaN FET half-bridge with the driver ensures minimized common source inductance.  
This minimized inductance has a significant performance impact on hard-switched topologies.  
The built-in bootstrap circuit with clamp prevents the high-side gate drive from exceeding the GaN FETs  
maximum gate-to-source voltage (Vgs) without any additional external circuitry. The built-in driver has an  
undervoltage lockout (UVLO) on the VDD and bootstrap (HB-HS) rails. When the voltage is below the UVLO  
threshold voltage, the device ignores both the HI and LI signals to prevent the GaN FETs from being partially  
turned on. Below UVLO, if there is sufficient voltage (VVCC > 2.5 V), the driver actively pulls the high-side and  
low-side gate driver output low. The UVLO threshold hysteresis of 200 mV prevents chattering and unwanted  
turnon due to voltage spikes. Use an external VCC bypass capacitor with a value of 0.1 µF or higher. TI  
recommends a size of 0402 to minimize trace length to the pin. Place the bypass and bootstrap capacitors as  
close as possible to the device to minimize parasitic inductance.  
8.3.1 Control Inputs  
The LMG5200's inputs pins are independently controlled with TTL input thresholds and can withstand voltages  
up to 12V regardless of the VDD voltage. This allows the inputs to be directly connected to the outputs of an  
analog PWM controller with up to 12V power supply, eliminating the need for a buffer stage.  
In order to allow flexibility to optimize deadtime according to design needs, the LMG5200 does not implement an  
overlap protection functionality. If both HI and LI are asserted, both the high-side and low-side GaN FETs are  
turned on. Careful consideration must be applied to the control inputs in order to avoid a shoot-through condition.  
10  
版权 © 2015–2017, Texas Instruments Incorporated  
 
LMG5200  
www.ti.com.cn  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
Feature Description (接下页)  
8.3.2 Start-up and UVLO  
The LMG5200 has an UVLO on both the VCC and HB (bootstrap) supplies. When the VCC voltage is below the  
threshold voltage of 3.8 V, both the HI and LI inputs are ignored, to prevent the GaN FETs from being partially  
turned on. Also, if there is insufficient VCC voltage, the UVLO actively pulls the high- and low-side GaN FET gates  
low. When the HB to HS bootstrap voltage is below the UVLO threshold of 3.2 V, only the high-side GaN FET  
gate is pulled low. Both UVLO threshold voltages have 200 mV of hysteresis to avoid chattering.  
1. VCC UVLO Feature Logic Operation  
CONDITION (VHB-HS > VHBR for all cases below)  
VCC - VSS < VCCR during device start-up  
HI  
H
L
LI  
L
SW  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
VCC - VSS < VCCR during device start-up  
H
H
L
VCC - VSS < VCCR during device start-up  
H
L
VCC - VSS < VCCR during device start-up  
VCC - VSS < VCCR - VCC(hyst) after device start-up  
VCC - VSS < VCCR - VCC(hyst) after device start-up  
VCC - VSS < VCCR - VCC(hyst) after device start-up  
VCC - VSS < VCCR - VCC(hyst) after device start-up  
H
L
L
H
H
L
H
L
2. VHB-HS UVLO Feature Logic Operation  
CONDITION (VCC > VCCR for all cases below)  
HI  
H
L
LI  
L
SW  
Hi-Z  
VHB-HS < VHBR during device start-up  
VHB-HS < VHBR during device start-up  
H
H
L
PGND  
PGND  
Hi-Z  
VHB-HS < VHBR during device start-up  
H
L
VHB-HS < VHBR during device start-up  
VHB-HS < VHBR - VHB(hyst) after device start-up  
VHB-HS < VHBR - VHB(hyst) after device start-up  
VHB-HS < VHBR - VHB(hyst) after device start-up  
VHB-HS < VHBR - VHB(hyst) after device start-up  
H
L
L
Hi-Z  
H
H
L
PGND  
PGND  
Hi-Z  
H
L
8.3.3 Bootstrap Supply Voltage Clamping  
The high-side bias voltage is generated using a bootstrap technique and is internally clamped at 5 V (typical).  
This clamp prevents the gate voltage from exceeding the maximum gate-source voltage rating of the  
enhancement-mode GaN FETs.  
8.3.4 Level Shift  
The level-shift circuit is the interface from the high-side input HI to the high-side driver stage, which is referenced  
to the switch node (HS). The level shift allows control of the high-side GaN FET gate driver output, which is  
referenced to the HS pin and provides excellent delay matching with the low-side driver.  
版权 © 2015–2017, Texas Instruments Incorporated  
11  
 
LMG5200  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
www.ti.com.cn  
8.4 Device Functional Modes  
The LMG5200 operates in normal mode and UVLO mode. See Start-up and UVLO for information on UVLO  
operation mode. In the normal mode, the output state is dependent on the states of the HI and LI pins. 3 lists  
the output states for different input pin combinations. Note that when both HI and LI are asserted, both GaN  
FETs in the power stage are turned on. Careful consideration must be applied to the control inputs in order to  
avoid this state, as it will result in a shoot-through condition, which can permanently damage the device.  
3. Truth Table  
HI  
L
LI  
L
HIGH-SIDE GaN FET  
LOW-SIDE GaN FET  
SW  
Hi-Z  
PGND  
VIN  
OFF  
OFF  
ON  
OFF  
ON  
L
H
L
H
H
OFF  
ON  
H
ON  
- - -  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LMG5200 GaN power stage is a versatile building block for various types of high-frequency, switch-mode  
power applications. The high-performance gate driver IC integrated in the package helps minimize the parasitics  
and results in extremely fast switching of the GaN FETs. The device design is highly optimized for synchronous  
buck converters and other half-bridge configurations.  
9.2 Typical Application  
11 shows a synchronous buck converter application with VCC connected to a 5-V supply. It is critical to  
optimize the power loop (loop impedance from VIN capacitor to PGND). Having a high power loop inductance  
causes significant ringing in the SW node and also causes the associated power loss. Refer to the Layout  
Guidelines section for information on how to minimize this power loop.  
3
2
HB  
HS  
VIN  
1
8
4
5
HI  
LI  
VOUT  
PWM  
Controller  
SW  
LMG5200  
PGND  
9
VCC  
6
AGND  
7
5-V VIN  
11. Typical Connection Diagram For a Synchronous Buck Converter  
12  
版权 © 2015–2017, Texas Instruments Incorporated  
 
 
LMG5200  
www.ti.com.cn  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
Typical Application (接下页)  
9.2.1 Design Requirements  
When designing a synchronous buck converter application that incorporates the LMG5200 power stage, some  
design considerations must be evaluated first to make the most appropriate selection. Among these  
considerations are the input voltages, passive components, operating frequency, and controller selection.4  
shows some sample values for a typical application. See Power Supply Recommendations, Layout, and Power  
Dissipation for other key design considerations for the LMG5200.  
4. Design Parameters  
PARAMETER  
Half-bridge input supply voltage, VIN  
Output voltage, VOUT  
Output current  
SAMPLE VALUE  
48 V  
12 V  
8 A  
VHB-HS bootstrap capacitor  
Switching frequency  
Dead time  
0.1 uF, X5R  
1 MHz  
8 ns  
Inductor  
4.7 µH  
Controller  
TPS40400  
9.2.2 Detailed Design Procedure  
This procedure outlines the design considerations of LMG5200 in a synchronous buck converter. For additional  
design help, see 相关文档 .  
9.2.2.1 VCC Bypass Capacitor  
The VCC bypass capacitor provides the gate charge for the low-side and high-side transistors and to absorb the  
reverse recovery charge of the bootstrap diode. The required bypass capacitance can be calculated with 公式 1.  
CVCC = (QgH + QgL + Qrr) / ΔV  
(1)  
QgH and QgL are the gate charge of the high-side and low-side transistors, respectively. Qrr is the reverse  
recovery charge of the bootstrap diode. ΔV is the maximum allowable voltage drop across the bypass capacitor.  
A 0.1-µF or larger value, good-quality, ceramic capacitor is recommended. Place the bypass capacitor as close  
as possible to the VCC and AGND pins of the device to minimize the parasitic inductance.  
9.2.2.2 Bootstrap Capacitor  
The bootstrap capacitor provides the gate charge for the high-side gate drive, dc bias power for HB UVLO circuit,  
and the reverse recovery charge of the bootstrap diode. The required bypass capacitance can be calculated  
using 公式 2.  
CBST = (QgH + Qrr + IHB * tON(max)) / ΔV  
where  
IHB is the quiescent current of the high-side gate driver (150 µA, maximum)  
tON(maximum) is the maximum on-time period of the high-side gate driver  
Qrr is the reverse recovery charge of the bootstrap diode  
QgH is the gate charge of the high-side GaN FET  
ΔV is the permissible ripple in the bootstrap capacitor (< 100 mV, typical)  
(2)  
A 0.1-µF, 16-V, 0402 ceramic capacitor is suitable for most applications. Place the bootstrap capacitor as close  
as possible to the HB and HS pins.  
版权 © 2015–2017, Texas Instruments Incorporated  
13  
 
 
 
LMG5200  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
www.ti.com.cn  
9.2.2.3 Power Dissipation  
Ensure that the power loss in the driver and the GaN FETs is maintained below the maximum power dissipation  
limit of the package at the operating temperature. The smaller the power loss in the driver and the GaN FETs,  
the higher the maximum operating frequency that can be achieved in the application. The total power dissipation  
of the LMG5200 device is the sum of the gate driver losses, the bootstrap diode power loss and the switching  
and conduction losses in the FETs.  
The gate driver losses are incurred by charge and discharge of the capacitive load. It can be approximated using  
公式 3.  
P = (2 ì Qg) ì VDD ì fSW  
where  
Qg is the gate charge  
VDD is the bias supply  
fSW is the switching frequency  
(3)  
There are some additional losses in the gate drivers due to the internal CMOS stages used to buffer the outputs.  
1 shows the measured gate driver power dissipation versus frequency and load capacitance. Use this graph  
to approximate the power losses due to the gate drivers.  
The bootstrap diode power loss is the sum of the forward bias power loss that occurs while charging the  
bootstrap capacitor and the reverse bias power loss that occurs during reverse recovery. Because each of these  
events happens once per cycle, the diode power loss is proportional to the operating frequency. Higher input  
voltages (VIN) to the half bridge also result in higher reverse recovery losses.  
The power losses due to the GaN FETs can be divided into conduction losses and switching losses. Conduction  
losses are resistive losses and can be calculated using 公式 4.  
2
2
»
ÿ
»
ÿ
ì RDS(on)LS  
PCOND = (IRMS(HS)  
)
ì RDS(on)HS + (IRMS(LS)  
)
where  
RDS(on)HS is the high-side GaN FET on-resistance  
RDS(on)LS is the low-side GaN FET on-resistance  
IRMS(HS) is the high-side GaN FET RMS current  
IRMS(LS) and low-side GaN FET RMS current  
(4)  
(5)  
The switching losses can be computed to a first order using 公式 5.  
= V ´I ´ f ´ t  
P
SW  
IN OUT  
SW  
TR  
where  
tTR is the switch transition time from ON to OFF and from OFF to ON  
Note that the low-side FET does not suffer from this loss. The third quadrant loss in the low-side device is  
ignored in this first order loss calculation.  
As described previously, switching frequency has a direct effect on device power dissipation. Although the gate  
driver of the LMG5200 device is capable of driving the GaN FETs at frequencies up to 10 MHz, careful  
consideration must be applied to ensure that the running conditions for the device meet the recommended  
operating temperature specification. Specifically, hard-switched topologies tend to generate more losses and self-  
heating than soft-switched applications.  
The sum of the driver loss, the bootstrap diode loss, and the switching and conduction losses in the GaN FETs is  
the total power loss of the device. Careful board layout with an adequate amount of thermal vias close to the  
power pads (VIN and PGND) allows optimum power dissipation from the package. A top-side mounted heat sink  
with airflow can also improve the package power dissipation.  
14  
版权 © 2015–2017, Texas Instruments Incorporated  
 
 
 
LMG5200  
www.ti.com.cn  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
9.2.3 Application Curves  
13. Zoom-In Showing the Dead Time of 7.7 ns and the  
12. SW Node Behavior Showing the Dead Time  
Overshoot of the SW Node  
10 Power Supply Recommendations  
The recommended bias supply voltage range for LMG5200 is from 4.75 V to 5.25 V. The lower end of this range  
is governed by the internal undervoltage lockout (UVLO) protection feature of the VCC supply circuit. The upper  
end of this range is driven by the 6 V absolute maximum voltage rating of VCC. Note that the gate voltage of the  
low-side GaN FET is not clamped internally. Hence, it is important to keep the VCC bias supply within the  
recommended operating range to prevent exceeding the low-side GaN transistor gate breakdown voltage.  
The UVLO protection feature also involves a hysteresis function. This means that once the device is operating in  
normal mode, if the VCC voltage drops, the device continues to operate in normal mode as far as the voltage  
drop does not exceeds the hysteresis specification, VCC(hyst). If the voltage drop is more than hysteresis  
specification, the device shuts down. Therefore, while operating at or near the 4.5 V range, the voltage ripple on  
the auxiliary power supply output must be smaller than the hysteresis specification of LMG5200 to avoid  
triggering device-shutdown.  
Place a local bypass capacitor between the VDD and VSS pins. This capacitor must be located as close as  
possible to the device. A low ESR, ceramic surface-mount capacitor is recommended. TI recommends using 2  
capacitors across VDD and GND: a 100 nF ceramic surface-mount capacitor for high frequency filtering placed  
very close to VDD and GND pin, and another surface-mount capacitor, 220 nF to 10 μF, for IC bias  
requirements.  
版权 © 2015–2017, Texas Instruments Incorporated  
15  
LMG5200  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
To maximize the efficiency benefits of fast switching, it is extremely important to optimize the board layout such  
that the power loop impedance is minimal. When using a multilayer board (more than 2 layers), power loop  
parasitic impedance is minimized by having the return path to the input capacitor (between VIN and PGND),  
small and directly underneath the first layer as shown in 14 and 15. Loop inductance is reduced due to flux  
cancellation as the return current is directly underneath and flowing in the opposite direction. It is also critical that  
the VCC capacitors and the bootstrap capacitors are as close as possible to the device and in the first layer.  
Carefully consider the AGND connection of LMG5200 device. It must NOT be directly connected to PGND so  
that PGND noise does not directly shift AGND and cause spurious switching events due to noise injected in HI  
and LI signals.  
11.2 Layout Examples  
Placements shown in 14 and in the cross section of 15 show the suggested placement of the device with  
respect to sensitive passive components, such as VIN, bootstrap capacitors (HS and HB) and VSS capacitors.  
Use appropriate spacing in the layout to reduce creepage and maintain clearance requirements in accordance  
with the application pollution level. Inner layers if present can be more closely spaced due to negligible pollution.  
The layout must be designed to minimize the capacitance at the SW node. Use as small an area of copper as  
possible to connect the device SW pin to the inductor, or transformer, or other output load. Furthermore, ensure  
that the ground plane or any other copper plane has a cutout so that there is no overlap with the SW node, as  
this would effectively form a capacitor on the printed circuit board. Additional capacitance on this node reduces  
the advantages of the advanced packaging approach of the LMG5200 and may result in reduced performance.  
16, 17, 18, and 19 show an example of how to design for minimal SW node capacitance on a four-  
layer board. In these figures, U1 is the LMG5200 device.  
PGND  
Metal underneath solder mask  
VIN Capacitors  
VIN  
VIN  
HS  
HB  
HI  
LI  
LMG5200  
PGND  
PGND  
Legend  
VCC AGND  
Metal 1  
SW  
SW  
Metal 2 (PGND)  
Vias  
14. External Component Placement (Single Layer)  
16  
版权 © 2015–2017, Texas Instruments Incorporated  
 
LMG5200  
www.ti.com.cn  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
Layout Examples (接下页)  
Legend  
VIN  
SW  
PGND  
PGND  
Metal 3  
Small Return Path  
Minimizes Power Loop  
Impedance  
VIN Capacitors  
LMG5200  
4 Layer PCB  
15. Four-Layer Board Cross Section With Return Path Directly Underneath for Power Loop  
16. Top Layer  
17. Ground Plane  
版权 © 2015–2017, Texas Instruments Incorporated  
17  
LMG5200  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
www.ti.com.cn  
Layout Examples (接下页)  
18. Middle Layer  
19. Bottom Layer  
VIN Capacitors  
VIN  
VIN  
HS  
HB  
HI  
LI  
LMG5200  
PGND  
PGND  
Legend  
Metal 1  
Bottom Layer  
Metal 1 (SW)  
Vias  
VCC AGND  
SW  
SW  
VIN Capacitors (Bottom Layer)  
20. External Component Placement (Double Layer PCB)  
18  
版权 © 2015–2017, Texas Instruments Incorporated  
 
LMG5200  
www.ti.com.cn  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
Layout Examples (接下页)  
Legend  
VIN  
SW (Top Layer)  
PGND  
PGND (Bottom Layer)  
Small Return Path  
Minimizes Power Loop  
Impedance  
LMG5200  
2 Layer PCB  
VIN Capacitors  
21. Two-Layer Board Cross Section With Return Path  
Two-layer boards are not recommended for use with LMG5200 device due to the larger power loop inductance.  
However, if design considerations allow only two board layers, place the input decoupling capacitors immediately  
behind the device on the back-side of the board to minimize loop inductance. 20 and 21 show a layout  
example for two-layer boards.  
版权 © 2015–2017, Texas Instruments Incorporated  
19  
 
LMG5200  
ZHCSFT3D MARCH 2015REVISED MARCH 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
LMG5200 PSpice 瞬态模型》  
LMG5200 TINA-TI 瞬态参考设计》  
LMG5200 TINA-TI 瞬态 Spice 模型》  
12.2 文档支持  
12.2.1 相关文档  
LMG5200 GaN 功率级模块布局指南》  
《使用 LMG5200GaN 半桥功率模块评估模块》  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至德州仪器 TI.com.cn 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可  
收到任意产品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
13.1 封装信息  
LMG5200 器件封装为 MSL3 封装(湿敏等级 3)。请参阅应用报告 AN-2029 操作和处理建议》获取 MSL3 封  
装的具体操作和处理建议。  
20  
版权 © 2015–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMG5200MOFR  
LMG5200MOFT  
ACTIVE  
QFM  
QFM  
MOF  
9
9
2000 RoHS & Green  
250 RoHS & Green  
NIAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
LMG5200  
513B  
ACTIVE  
MOF  
NIAU  
LMG5200  
513B  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMG5200MOFR  
QFM  
MOF  
9
2000  
330.0  
16.4  
6.3  
8.3  
2.2  
12.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
QFM MOF  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
LMG5200MOFR  
9
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
MOF0009A  
QFM - 2 mm max height  
S
C
A
L
E
1
.
8
0
0
QUAD FLAT MODULE  
6.1  
5.9  
A
B
PIN 1 INDEX AREA  
8.1  
7.9  
C
2 MAX  
SEATING PLANE  
1.8  
SYMM  
0.75  
0.65  
6X  
4
5
3
2
6
7
1.2  
0.55  
6X  
0.45  
0.1  
0.08  
3.55  
C A  
B
2.05  
PKG  
1.78  
4.3  
4.2  
3X  
0.05  
C A  
B
(0.1)  
ALL AROUND  
8
1
9
0.75  
0.65  
2X  
2.55  
0.05  
C A  
B
1.1  
1.0  
4221487/B 06/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
MOF0009A  
QFM - 2 mm max height  
QUAD FLAT MODULE  
SYMM  
PKG  
(2.55)  
(1.05)  
(R0.05) TYP  
9
8
1
3X (4.25)  
3X  
(1.78)  
PKG  
2X (0.7)  
(2.05)  
(3.55)  
7
2
3
(1.2)  
6
6X (0.5)  
4
5
6X (0.7)  
(1.8)  
4X (2.55)  
LAND PATTERN EXAMPLE  
SCALE:12X  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK DEFINED  
ALL PADS  
4221487/B 06/2015  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
MOF0009A  
QFM - 2 mm max height  
QUAD FLAT MODULE  
PKG  
SYMM  
(2.55)  
10X (0.7)  
5X(1.05)  
1
9
8
15X (0.59)  
SOLDER MASK EDGE  
TYP  
METAL  
TYP  
(0.89) TYP  
PKG  
(R0.05) TYP  
(2.05)  
(3.55)  
7
6
2
3
6X (0.5)  
(1.2)  
4
5
6X (0.7)  
(1.8)  
(2.55)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PADS 1, 8 & 9  
81% PRINTED SOLDER COVERAGE BY AREA  
SCALE:12X  
4221487/B 06/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

LMG5200MOFT

80V GaN 半桥功率级 | MOF | 9 | -40 to 125
TI

LMG5278XUFC-00T

INTERFACE SPECIFICATION
HITACHI

LMG6382QHFR

LCD MODULE REFLECTIVE FILM BLACK & WHITE MODE WITH BULT-IN CONTROLLER AND RAM
HITACHI

LMG6402PLFR

Optoelectronic Device
HITACHI

LMG7400PLFC

240 128 DOTS
HITACHI

LMG7402PLFF

240 128 DOTS
HITACHI

LMG7420PLFC-X

240 128 DOTS
HITACHI

LMG7520RPFC

LCD MODULE
HITACHI

LMGSF1N02LT1

Power MOSFET 750 mAmps, 20 Volts
LRC

LMH0001

SMPTE 259M / 344M Serial Digital Cable Driver
INTERSIL

LMH0001

SMPTE 259M / 344M Serial Digital Cable Driver
NSC

LMH0001

SMPTE 259M/344M 串行数字电缆驱动器
TI