LM74721-Q1 [TI]

具有有源整流功能的汽车类无 TVS、低 IQ 反向电池保护理想二极管控制器;
LM74721-Q1
型号: LM74721-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有有源整流功能的汽车类无 TVS、低 IQ 反向电池保护理想二极管控制器

电池 控制器 二极管 电视
文件: 总27页 (文件大小:1972K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
LM74721-Q1 具有有源整流特性的TVS IQ 汽车类反向电池保护理想二极管  
控制器  
1 特性  
3 说明  
• 具有符AEC-Q100 标准的下列特性  
LM74721-Q1 理想二极管控制器可驱动和控制外部背  
N MOSFET从而模拟具有电源路径开/关控  
制和过压保护功能的理想二极管整流器。3V 65V 的  
宽输入电源电压可保护和控制 12V 汽车类电池供电的  
ECU。该器件可承受并保护负载免受低至 –33V直  
电源电压的影响。集成的理想二极管控制器  
(GATE) 可驱动第一个 MOSFET 来代替肖特基二极  
以实现反向输入保护和输出电压保持功能。集成的  
VDS 钳位功能可实现输入无 TVS 的系统设计从而在  
汽车应用中实现符合 ISO7637 标准的脉冲抑制。具有  
快速导通和关断比较器的强大升压稳压器可确保在汽车  
测试ISO16750 LV124期间实现稳健、高效  
MOSFET 开关性能期间 ECU 会收到输入短时中  
断以及频率高达 100kHz 的交流叠加输入信号。运行期  
间的低静态电流 35µA最大值可实现常开型系统设  
计。在电源路径中使用了第二个 MOSFET 的情况下,  
该器件允许使用 EN 引脚实现负载断开控制。EN 处  
于低电平时静态电流降至 3.3μA最大值。该器  
件具有可调节过压切断保护功能可提供负载突降保  
护。  
– 器件温度等1:  
40°C +125°C 环境工作温度范围  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C4B  
3V 65V 输入范围  
• 反向输入保护低-33V  
• 针对输入的TVS 运行集VDS 钳位从而实现  
ISO7637 标准的脉冲抑制  
• 低静态电流运行35µA最大值)  
3.3µA最大值低关断电流EN = 低电平)  
17 mV 阳极至阴极正向压降调节下理想二极管正  
常运行  
• 驱动外部背对N MOSFET  
• 集成30mA 升压稳压器  
• 快速响应反向电流阻断0.5 µs  
• 高100 kHz 的有源整流  
• 可调节过压保护  
• 采用节省空间12 WSON 封装  
LM74720-Q1 引脚对引脚兼容  
器件信息  
封装(1)  
2 应用  
封装尺寸标称值)  
器件型号  
• 汽车电池保护  
ADAS 域控制器  
摄像头、雷ECU  
出色的音频放大器  
抬头显示  
LM74721-Q1  
WSON (12)  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VBATT  
Q1  
VBATT  
12 V  
VOUT  
VOUT  
IIN  
GATE  
A
C
VS CAP LX  
PD  
VSNS  
SW  
VGATE  
R1  
BATT_MON  
R2  
LM74721-Q1  
GND  
VGATE -VBATT  
EN  
ON OFF  
OV  
TVS 条件下ISO7637-2 1 性能  
适用12V 电池供电汽车类应用的IQTVS 理想  
二极管  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNOSDC2  
 
 
 
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
Table of Contents  
9 Application and Implementation..................................17  
9.1 Application Information............................................. 17  
9.2 Typical 12-V Reverse Battery Protection  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics............................................7  
6.7 Typical Characteristics................................................8  
7 Parameter Measurement Information.......................... 11  
8 Detailed Description......................................................12  
8.1 Overview...................................................................12  
8.2 Functional Block Diagram.........................................12  
8.3 Feature Description...................................................12  
8.4 Shutdown Mode........................................................16  
Application...................................................................17  
9.3 What to Do and What Not to Do .............................. 22  
10 Power Supply Recommendations..............................23  
10.1 Transient Protection................................................23  
11 Layout...........................................................................24  
11.1 Layout Guidelines................................................... 24  
11.2 Layout Example...................................................... 24  
12 Device and Documentation Support..........................25  
12.1 接收文档更新通知................................................... 25  
12.2 支持资源..................................................................25  
12.3 Trademarks.............................................................25  
12.4 Electrostatic Discharge Caution..............................25  
12.5 术语表..................................................................... 25  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 25  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (February 2022) to Revision B (July 2022)  
Page  
• 将状态从“预告信息”更改为“量产数据”....................................................................................................... 1  
Changes from Revision * (September 2021) to Revision A (February 2022)  
Page  
• 更新了数据表标题...............................................................................................................................................1  
Updated the Load Disconnect Switch Control (PD) description....................................................................... 14  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LM74721-Q1  
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
12  
11  
10  
1
2
3
4
GATE  
A
C
VS  
CAP  
VSNS  
SW  
RTN  
9
8
7
LX  
Exposed  
Thermal  
Pad  
PD  
5
6
OV  
EN  
GND  
5-1. WSON 12-Pin DRR Transparent Top View  
5-1. Pin Functions  
PIN  
LM74721-Q1  
TYPE  
DESCRIPTION  
NAME  
DRR-12 (WSON)  
Diode controller gate drive output. Connect to the GATE of the external  
MOSFET.  
GATE  
1
O
A
2
3
I
I
Anode of the ideal diode. Connect to the source of the external MOSFET.  
Voltage sensing input  
VSNS  
Voltage sensing disconnect switch terminal. VSNS and SW are internally  
connected through a switch. Use SW as the top connection of the battery  
sensing or OV resistor ladder network. When EN is pulled low, the switch is  
OFF, disconnecting the resistor ladder from the battery line, thereby cutting off  
the leakage current. If the internal disconnect switch between VSNS and SW  
is not used, then short them together and connect to C pin.  
SW  
4
I
Adjustable overvoltage threshold input. Connect a resistor ladder across SW  
to OV terminal. When the voltage at OV exceeds the overvoltage cutoff  
threshold, then the PD is pulled low turning OFF the HSFET. PD is driven high  
when the sense voltage goes below the OV falling threshold.  
OV  
EN  
5
6
I
I
EN Input. Connect to A or C pin for always ON operation. In this mode, the  
device consumes an IQ of 35 µA (maximum) that can be driven externally  
from a micro controller I/O. Pulling this pin low below 0.5 V enters the device  
in low Iq shutdown mode.  
GND  
PD  
7
8
G
O
Connect to the system ground plane.  
Pull down connection for the external HSFET. Connect to the GATE of the  
external FET. Leave PD pin floating if the load disconnect FET is not used.  
Switch node of the internal boost regulator. This node must be kept small on  
the PCB for good performance and low EMI. Connect the boost inductor  
between this pin and the DRAIN connection of the external FET.  
LX  
9
I
Boost Regulator Output. This pin is used to provide a drive voltage to the gate  
driver of the ideal diode stage as well as drive supply for the HSFET. Connect  
a 1-µF capacitor between this pin and the VS pin.  
CAP  
VS  
10  
O
I
11  
12  
Supply voltage pin. Place 0.1-µF capacitor from VS pin to GND.  
Cathode of the ideal diode. Connect to the DRAIN of the external MOSFET.  
The voltage sensed at this pin is used to control the external MOSFET GATE.  
This pin must be locally bypassed with at least 1 µF.  
C
I
RTN  
Thermal Pad  
Leave exposed pad floating. Do not connect to GND plane.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM74721-Q1  
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
(VCLAMP  
+
Input Pins  
A to GND  
70  
1)  
Input Pins  
Input Pins  
Input Pins  
Input Pins  
VS, C to GND  
70  
70  
0.3  
0.3  
V(A)  
VSNS, SW, EN, OV to GND, V(A) > 0 V  
VSNS, SW, EN, OV to GND, V(A) 0 V  
C to GND, V(A) 0 V  
V
(70 + V(A)  
)
)
(70 + V(A)  
1  
(VCLAMP  
+
Input Pins  
RTN to GND  
0.3  
10  
1)  
Input Pins  
IVSNS, ISW  
1  
1  
mA  
Input Pins  
IEN, IOV, V(A) > 0 V  
IEN, IOV, V(A) 0 V  
CAP to C  
Input Pins  
Internally limited  
0.3  
Output Pins  
Output Pins  
Output Pins  
Output Pins  
Output to Input Pins  
15.9  
CAP to A  
VCLAMP + 15.9  
0.3  
0.3  
0.3  
5  
GATE to A  
15  
85  
V
LX, CAP, PD to GND  
C to A  
VCLAMP  
150  
(2)  
Operating junction temperature, Tj  
Storage temperature, Tstg  
40  
40  
°C  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
±2000  
Corner pins (GATE, EN, GND,  
C)  
V(ESD)  
Electrostatic discharge  
±750  
±500  
V
Charged device model (CDM),  
per AEC Q100-011  
Other pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
NOM  
MAX  
65  
UNIT  
A to GND  
VS, C to GND  
EN to GND  
A
60  
Input Pins  
65  
V
65  
60  
0.1  
1
External capacitance  
External Inductor  
µF  
µH  
CAP to VS  
LX  
100  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LM74721-Q1  
 
 
 
 
 
 
 
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
6.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
NOM  
MAX  
UNIT  
V
External MOSFET max  
VDS rating  
60  
External MOSFET max  
GATE to A  
15  
VGS rating  
TJ  
Operating junction temperature range(2)  
150  
°C  
40  
(1) Recommended Operating Conditions are conditions under which the device is intended to be functional. For specifications and test  
conditions, see Electrical Characteristics.  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
6.4 Thermal Information  
LM74721-Q1  
THERMAL METRIC(1)  
DRR (WSON)  
UNIT  
12 PINS  
61.6  
50  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
32.7  
1.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (botton) thermal resistance  
32.7  
6.9  
ΨJB  
RθJC  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(A) = V(VS) = 12 V, C(CAP) = 1 µF, V(EN) = 2 V, over operating free-air  
temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VA, V(VS) SUPPLY VOLTAGE  
VCLAMP  
V(A POR)  
V(CA) clamp voltage  
VA POR Rising threshold  
VA POR Falling threshold  
Minimum Voltage at VS  
VS POR Rising  
34.5  
3.1  
43  
3.4  
2.6  
3.85  
2.9  
3
V
V
2.2  
V(VS)  
2.58  
2.35  
2.8  
2.6  
2
2.95  
2.85  
3.3  
VS POR Falling  
I(SHDN)  
Shutdown Supply Current  
V(EN) = 0 V  
V(EN) = 2 V, Active Rectifier Controller  
In Regulation, 40°C TJ +85°C  
27  
27  
32  
35  
µA  
I(Q)  
Total System Quiescent Current  
V(EN) = 2 V, Active Rectifier Controller  
In Regulation, 40°C TJ +125°C  
ENABLE INPUT  
V(EN_IH)  
Enable input high threshold  
Enable input low threshold  
Enable Hysteresis  
2
V
V(EN_IL)  
0.5  
0.85  
485  
55  
1.2  
V(EN_Hys)  
mV  
nA  
I(EN)  
Enable sink current  
V(EN) = 12 V  
155  
VANODE to VCATHODE  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM74721-Q1  
 
 
 
 
 
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(A) = V(VS) = 12 V, C(CAP) = 1 µF, V(EN) = 2 V, over operating free-air  
temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
V(AC_REG)  
V(AC_FWD)  
Regulated Forward V(AC) Threshold  
9
16.4  
22.7  
V(AC) threshold from RCB to Forward  
conduction  
75  
105  
140  
mV  
V(AC) threshold for reverse current  
blocking  
V(AC_REV)  
12  
5.65  
1.3  
GATE DRIVE  
V(GATE) - V(A)  
3V < V(VS) < 65V  
V(A) V(C) = 20 mV,  
(GATE) V(A) = 100 mV  
9.5  
14  
13  
39  
V
A
I(GATE_Pull down)  
I(GATE)  
Peak Pulldown current  
2.5  
26  
V
Regulation max sink current  
GATE pulldown resistance  
µA  
V(A) V(C) = 0 V, V(GATE) V(A) = 5 V  
V(A) V(C) = 20 mV,  
RGATE  
1.2  
V
(GATE) V(A) = 100 mV  
BOOST REGULATOR CHARGE PUMP  
Boost output rising threshold  
Hysteresis  
13  
1.1  
29  
15.5  
V
V
(CAP) V(c)  
I(CAP)  
I(LX)  
Boost load capacity  
mA  
mA  
V
(CAP) V(VS) = 7.5 V  
V(VS) = 12 V  
V(VS) = 3 V  
110  
1.3  
140  
170  
210  
5.1  
Peak inductor current limit threshold  
Low side switch On-Resistance  
R(LX)  
2.7  
BATTERY SENSING (VSNS, SW) AND OVER VOLTAGE DETECTION (OVP, PD)  
Battery sensing disconnect switch  
resistance  
R(SW)  
104  
226  
430  
V(OVR)  
V(OVF)  
V(OV_Hys)  
I(OV)  
Overvoltage threshold input, rising  
Overvoltage threshold input, falling  
OV Hysteresis  
1.13  
1.03  
1.231  
1.125  
110  
50  
1.33  
V
1.215  
mV  
nA  
µA  
OV Input leakage current  
Pullup current  
0 V < V(OV) < 5 V  
3V < VS < 65V  
110  
60  
I(PD_SRC)  
43  
55  
7
50  
Peak Pulldown current  
DC Pulldown current  
88  
117  
14  
I(PD_SINK)  
CATHODE  
I(C)  
V(OV) > V(OVR)  
mA  
10  
9.4  
15  
18  
V(A) = 12 V, V(A) V(C) = 100 mV  
V(A) = 14 V, V(C) = 14 V  
CATHODE sink current  
µA  
10.6  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LM74721-Q1  
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
6.6 Switching Characteristics  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(A) = V(VS) = 12 V, C(CAP) = 1 µF, V(EN) = 2 V, over operating free-air  
temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
V(A) V(A_POR) to V(GATE-A) > 5V,  
C(GATE-A) = 10 nF  
VA_POR(DLY)  
tReverse delay  
tForward recovery  
A (low to high) to GATE Turn-On delay  
200  
Reverse voltage detection to Gate Turn-  
Off delay  
V(A) V(C) = +30 mV to 100  
mV, V(GATE-A) <1V, C(GATE-A) = 10 nF  
0.47  
1.9  
0.81  
Forward voltage detection to Gate Turn-  
On delay  
V(A) V(C) = 100 mV to 700  
mV, V(GATE-A) >5V, C(GATE-A) = 10 nF  
µs  
2.9  
tEN_OFF(DLY)PD EN to PD Delay  
tOV_OFF(DLY)PD OV to PD Deglitch  
6.5  
0.9  
38  
12  
1.5  
65  
EN to PD ↓  
OV to PD ↓  
tPD_Pk  
Peak Pulldown duration  
11  
I(PD_SINK,Pk) to I(PD_SINK,DC)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM74721-Q1  
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
8
7
6
5
4
3
2
1
0
40C  
25C  
85C  
125C  
150C  
40C  
25C  
85C  
125C  
150C  
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VS (V)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VA (V)  
6-1. Operating Quiescent Current vs Supply Voltage  
6-2. Shutdown Supply Current vs Supply Voltage  
3.5  
3
2.5  
2
1.5  
VS PORR  
VS PORF  
1
-50  
0
50  
100  
150  
200  
Temperature (C)  
6-3. VA POR Threshold vs Temperature  
6-4. VS POR Threshold vs Temperature  
14  
40  
35  
30  
25  
20  
15  
10  
5
VS = 12 V  
VS = 3 V  
13  
12  
11  
(VCAPVS) R  
(VCAPVS) F  
10  
0
-50  
0
50  
100  
150  
200  
-50  
0
50  
100  
150  
200  
Temperature (C)  
Temperature (C)  
6-5. Boost Comparator Threshold vs Temperature  
6-6. Boost Loading Capacity vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LM74721-Q1  
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
1.2  
1
1.3  
1.2  
1.1  
1
0.8  
0.6  
0.4  
0.2  
VOV_R  
VOV_F  
-50  
0
50  
100  
150  
200  
Temperature (C)  
-50  
0
50  
100  
150  
200  
Temperature (C)  
6-8. PD Turn-off Delay During OV  
6-7. OV Threshold vs Temperature  
8
7
6
5
4
3
2
4
3
2
1
0
C(GATE A) = 4.7 nF  
C(GATE A) = 10 nF  
C(GATE A) = 22 nF  
C(GATE A) = 33 nF  
C(GATE A) = 47 nF  
-50  
0
50  
100  
150  
200  
-50  
0
50  
100  
150  
200  
Temperature (C)  
Temperature (C)  
6-9. PD Turn-off Delay During EN  
6-10. Forward Turn-on Delay vs Temperature  
90  
60  
5
RPD = 270   
RPD = 330   
4.5  
4
30  
0
3.5  
3
-30  
-60  
-90  
2.5  
2
-10  
0
10  
20  
30  
40  
50  
V(AC) mV  
5
10 15 20 25 30 35 40 45 50 55 60 65  
VS (V)  
6-11. Gate Current vs Forward Voltage Drop  
6-12. PD Turn-off Delay vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM74721-Q1  
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
42  
5
0
41.2  
40.4  
39.6  
38.8  
38  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
40C  
25C  
85C  
125C  
150C  
-50  
-10  
30  
70  
110  
150  
-35  
-30  
-25  
-20  
VANODE (V)  
-15  
-10  
-5  
0
Free-Air Temperature (C)  
6-13. VCLAMP vs Temperature  
6-14. Anode Leakage Current vs Reverse Anode Voltage  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM74721-Q1  
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
30 mV  
VA > VC  
0 mV  
VC > VA  
–100 mV  
VGATE  
1 V  
0 V  
ttGATE_OFF(DLY)  
t
700 mV  
VA > VC  
0 mV  
VC > VA  
–100 mV  
VGATE  
5 V  
0 V  
ttGATE_ON(DLY)  
t
VOVR + 0.1 V  
0 V  
VPD  
0 V  
ttOV_OFF(DLY)PD  
t
7-1. Timing Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM74721-Q1  
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LM74721-Q1 ideal diode controller drives and controls external N-Channel MOSFET to emulate an ideal  
diode rectifier. The wide input supply of 3 V to 65 V allows protection and control of 12-V automotive battery  
powered ECUs. IQ during operation (EN = High) is < 35 µA and < 3.3 µA during shutdown mode (EN = Low).  
The device can withstand and protect the loads from negative supply voltages down to 33-V DC. Integrated  
VDS clamp feature enables input TVS less system designs for automotive ISO7637 pulse suppression. An  
integrated ideal diode controller (GATE) drives the first MOSFET to replace a Schottky diode for reverse input  
protection and output voltage holdup. A strong 30-mA boost regulator and short turn ON and turn OFF delay  
times of comparator ensures fast transient response, ensuring robust and efficient MOSFET switching  
performance during automotive testing, such as ISO16750 or LV124, where an ECU is subjected to input short  
interruptions and AC superimpose input signals up to 100-kHz frequency.  
The LM74721-Q1 controls the GATE of the MOSFET to regulate the forward voltage drop at 17 mV. The linear  
regulation scheme in these devices enables graceful control of the GATE voltage and turns off of the MOSFET  
during a reverse current event and ensures zero DC reverse current flow.  
Low quiescent current (< 35 µA) in operation enables always ON system designs. With a second MOSFET in the  
power path, the device allows load disconnect control using EN pin. Quiescent current reduces to < 3.3 μA with  
EN low.  
8.2 Functional Block Diagram  
Q1  
Q2  
VBATT  
VOUT  
18 V  
GATE  
C
VS CAP  
LX  
PD  
A
VSNS  
SW  
VC-A CLAMP  
50 µA  
EN  
Boost  
Converter and  
control  
Reverse Current  
Protection controller and  
Gate Driver  
EN  
R1  
BATT_MON  
VA + 10 V  
100 mA  
12 mA  
R2  
OV  
+
RTN  
OV  
1.23 V  
R3  
EN  
1.12 V  
VS  
+
2.8 V  
2.6 V  
OV  
+
EN  
EN  
VA  
VCAP  
VA  
VA + 10 V  
2 V  
Bias Rails  
RTN  
0.5 V  
Reverse  
Protection Logic  
LM74721-Q1  
GND  
8.3 Feature Description  
8.3.1 Reverse Battery Protection (A, C, GATE)  
A, C, GATE comprises of ideal diode stage. Connect the Source of the external MOSFET to A, Drain to C and  
Gate to GATE pin. The LM74721-Q1 has integrated reverse input protection down to 33 V.  
In LM74721-Q1 the voltage drop across the MOSFET is continuously monitored between the A and C pins, and  
the GATE to A voltage is adjusted as needed to regulate the forward voltage drop at 17 mV (typical) for  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM74721-Q1  
 
 
 
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
LM74721-Q1. This closed loop regulation scheme enables graceful turn-off of the MOSFET during a reverse  
current event and ensures zero DC reverse current flow. This scheme ensures robust performance during slow  
input voltage ramp down tests. Along with the linear regulation amplifier scheme, the LM74721-Q1 also  
integrates a fast reverse voltage comparator. When the voltage drop across A and C reaches V(AC_REV)  
threshold, then the GATE goes low within 0.5 µs (typical). This fast reverse voltage comparator scheme ensures  
robust performance during fast input voltage ramp down tests such as input micro-shorts. The external MOSFET  
is turned ON back when the voltage across A and C hits V(AC_FWD) threshold within 1.9 µs (typical) for LM74721-  
Q1. For ideal diode only designs, connect LM74721-Q1 as shown in 8-1  
Q1  
VBATT  
12 V  
VOUT  
GATE C VS CAP LX  
PD  
A
VSNS  
SW  
R1  
BATT_MON  
R2  
LM74721-Q1  
EN  
ON OFF  
GND  
OV  
8-1. Configuring LM74721-Q1 for Ideal Diode Only  
8.3.1.1 Input TVS Less Operation: VDS Clamp  
The LM74721-Q1 features an integrated VDS clamp that operates the external MOSFET as an active clamp to  
dissipate the automotive ISO7637 pulse 1 transient.  
When the ISO7637 pulse 1 is applied at the input:  
The GATE goes low and turns OFF the MOSFET after the voltage drop across A and C reaches V(AC_REV)  
threshold.  
After the voltage across Drain and Source of the MOSFET reaches VCLAMP level (34-V minimum), it is turned  
ON back in saturation, operating as an active clamp and dissipates the ISO7637 pulse 1 energy.  
8-2 shows circuit operation during ISO7637 pulse 1.  
Note that the reverse current flows from VOUT back to input during the ISO7637 pulse 1 test dropping the VOUT  
.
The output filter must be designed to ensure that VOUT does not go negative during ISO7637 pulse 1 test. For  
all the other ISO7637 pulses that is pulse 2a, 2b, 3a, 3b, the input and output filter components suppress these  
pulses.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM74721-Q1  
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
VCLAMP  
ISO7637 Pulse 1  
-
+
13.5 V  
VOUT  
COUT  
VIN  
CIN  
VIN  
0 V  
C3  
Q1  
L1  
C2  
C VS CAP LX  
- (VCLAMP – VOUT  
)
GATE  
A
13.5 V  
VOUT  
PD  
EN  
VSNS  
SW  
0 V  
R1  
BATT_MON  
LM74721-Q1  
GND  
R2  
R3  
ON  
OFF  
OV  
8-2. LM74721-Q1 Ideal Diode Circuit Operation During ISO7637 Pulse 1  
8.3.2 Load Disconnect Switch Control (PD)  
The PD pin provides a 50-µA drive and 88-mA peak pulldown strength for the load disconnect switch stage.  
Connect the Gate of the FET to PD pin. Place a 18-V Zener (Dz) across the FET gate and source.  
For inrush current limiting, connect CdVdT capacitor and R1 as shown in 8-3.  
Q1  
Dz  
18 V  
COUT  
R1  
CdVdT  
RPD  
50 µA  
PD  
Fault  
Off  
88 mA  
10 mA  
GND  
8-3. Inrush Current Limiting  
The CdVdT capacitor is required for slowing down the PD voltage ramp during power up for inrush current  
limiting. Use 方程1 to calculate CdVdT capacitance value.  
C
(dVdT) = IPD_DRV × COUT  
IINRUSH  
(1)  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LM74721-Q1  
 
 
 
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
where IPD_DRV is 50 μA (typical), IINRUSH is the inrush current, and COUT is the output load capacitance. An extra  
resistor, R1, in series with the CdVdT capacitor improves the turn-off time.  
PD is pulled low during the following conditions:  
During an OV event with the OV pin voltage rising above the V(OVR) threshold  
When the EN pin is pulled low with V(EN) driven lower than V(EN_IL) level  
When the voltage at VS pin drops below the V(VS POR) falling threshold  
During these conditions, the FET Q1 turns OFF with its GATE connected to its SOURCE terminal through the  
external Zener (Dz).  
Use 方程2 to calculate the peak power dissipated in the LM74721-Q1 at the instance of PD pulldown.  
PPD_peak = VOUT × IPD_SINK  
(2)  
where  
IPDSINK_peak is the peak sink current of 88 mA (typical)  
In the system designs with input voltage above 48 V, TI recommends to place a resistor, RPD, in series with the  
PD pin as shown in 8-3. The peak power dissipation during the pulldown events gets distributed in RPD and  
the internal PD switch. A resistor value in the range of 270 to 330 can be selected to limit the device power  
dissipation within the safe limits.  
8.3.3 Overvoltage Protection and Battery Voltage Sensing (VSNS, SW, OV)  
A disconnect switch is integrated between VSNS and SW pins. This switch is turned OFF when EN pin is pulled  
low. This action helps to reduce the leakage current through the resistor divider network during system shutdown  
state (IGN_OFF state).  
Connect a resistor ladder as shown in 8-4 for battery voltage sensing and overvoltage threshold  
programming.  
VBATT  
A
VSNS  
EN  
SW  
R1  
BATT_MON  
LM74721-Q1  
R2  
R3  
OV  
+
PD_OFF  
1.23 V  
1.12 V  
8-4. Programming Overvoltage Threshold and Battery Voltage Sensing  
8.3.4 Boost Regulator  
The LM74721-Q1 integrates a boost converter to provide voltage necessary to drive the external N-channel  
MOSFETs for the ideal diode and the load disconnect stages. The boost converter uses hysteretic mode control  
scheme for the output voltage (VCAP-VVS) regulation along with the constant peak inductor current limit (ILX).  
When the CAPVS voltage is below its nominal value of typically 11.9 V, the low side switch of the boost is  
turned on and the inductor current rises with the slope of VS/L approximately. After the current hits the limit of  
140 mA (typical), then the low side switch is turned off and the inductor current discharges to the output till it  
reaches zero. The low side switch is turned on again and the switching cycle repeats until the CAPVS voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM74721-Q1  
 
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
has risen above the boost rising threshold of 13 V (typical). After this threshold level is reached, the boost  
converter switching is turned OFF to reduce the quiescent current.  
For the boost converter to be enabled, the EN pin voltage must be above the specified input high threshold,  
V(ENR). The boost converter has a maximum output load capacity of 30-mA typical. If EN pin is pulled low, then  
the boost converter remains disabled.  
8.4 Shutdown Mode  
The LM74721-Q1 enters shutdown mode when the EN pin voltage is below the specified input low threshold,  
V(EN_IL). Both the gate drivers (GATE and PD) and the boost regulator are disabled in shutdown mode. During  
shutdown mode, the LM74721-Q1 enters low IQ operation with a total input quiescent consumption of 2 µA  
(typical).  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM74721-Q1  
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
LM74721-Q1 controls two N-channel power MOSFETs with GATE used to control diode MOSFET to emulate an  
ideal diode and PD controlling second MOSFET for power path cutoff when disabled or during an overvoltage  
protection and provide inrush current limiting. IQ during operation (EN = High) is < 35 µA and < 3.3 µA during  
shutdown mode (EN = Low). LM74721-Q1 can be placed into low quiescent current mode using EN = low, where  
both GATE and PD are turned OFF.  
9.2 Typical 12-V Reverse Battery Protection Application  
9-1 shows a typical application circuit of LM74721-Q1 configured to provide TVS less reverse battery  
protection.  
Q1  
VOUT  
VBATT  
12 V  
C3  
1 µF  
50 V  
CLOAD  
660 µF  
(220 µF × 3)  
C2  
1 µF  
50 V  
C1  
L1  
100 µH  
1 µF  
50 V  
GATE C VS CAP  
LX  
A
VSNS  
SW  
PD  
R1  
90.9 k  
LM74721-Q1  
GND  
BATT_MON  
R2  
12.6 k  
EN  
ON  
OFF  
OV  
9-1. Typical Application Circuit for 12-V TVS-less Reverse Battery Protection  
9.2.1 Design Requirements for 12-V Battery Protection  
9-1 lists the system design requirements.  
9-1. Design Parameters 12-V Reverse Battery Protection and Overvoltage Protection  
DESIGN PARAMETER  
EXAMPLE VALUE  
12-V battery, 12-V nominal with 3.2-V cold crank and 35-V load  
dump  
Operating input voltage range  
Output power  
Output current range  
Input capacitance  
Output capacitance  
50 W  
4-A nominal, 5-A maximum  
0.1-µF minimum  
220 µF × 3  
2-V peak-peak, 30 kHz  
(maximum)  
AC super imposed test  
ISO 7637-2 with pulse 1 maximum level of 100-V peak level and  
10-Ωgenerator impedance, ISO 16750-2 and LV124  
Automotive transient immunity compliance  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM74721-Q1  
 
 
 
 
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9.2.2.1 Boost Converter Components (C2, C3, L1)  
Place a minimum of a 1-µF capacitor across drain of the FET to GND (C2) and across CAP pin of LM74721-Q1  
to drain of the FET (C3). Use a 100-µH inductor (L1) with saturation current rating > 175 mA. Example:  
XPL2010-104ML from coil craft.  
9.2.2.2 Input and Output Capacitance  
TI recommends a minimum input capacitance C1 of 1 µF and output capacitance COUT of 0.1 µF.  
9.2.2.3 Hold-Up Capacitance  
Usually bulk capacitors are placed on the output due to various reasons, such as uninterrupted operation during  
power interruption or micro-short at the input, hold-up requirements for doing a memory dump before turning of  
the module and filtering requirements as well. This design considers minimum bulk capacitors requirements for  
meeting functional status "A" during LV124 E10 test case 2 100-µs input interruption. To achieve functional pass  
status A, acceptable voltage droop in the output of LM74721-Q1 is based on the UVLO settings of downstream  
DC/DC converters. For this design, 1-V drop in output voltage for 100 µs is considered and the minimum hold-up  
capacitance required is calculated by:  
C
(HOLD_UP_MIN) = ILOAD_MAX × 100µs  
dVOUT  
(3)  
Minimum hold-up capacitance required for 1-V drop in 100 µs is 500 µF. 3 × 220-µF electrolytic capacitors are  
selected.  
Also during ISO7637-2 pulse 1 transient event, LM74721-Q1 operates external MOSFET in active clamp mode,  
allowing reverse current to flow from output to back to the input source. The output hold-up capacitor also  
ensures output voltage does not swing negative when device is operating VDS clamp mode.  
9.2.2.4 MOSFET Selection: Q1  
For selecting the blocking MOSFET Q1, important electrical parameters are the maximum continuous drain  
current ID, the maximum drain-to-source voltage VDS(MAX), the maximum drain-to-source voltage VGS(MAX)  
Safe Operating Area (SOA), the maximum source current through body diode and the drain-to-source ON  
resistance RDS(ON)  
,
.
The maximum continuous drain current (ID) rating must exceed the maximum continuous load current.  
To reduce the MOSFET conduction losses, MOSFET with the lowest possible RDS(ON) is preferred, but selecting  
a MOSFET based on low RDS(ON) cannot be beneficial always. Higher RDS(ON) provides increased voltage  
information to LM74721-Q1 reverse current comparator at a lower reverse current. Reverse current detection is  
better with increased RDS(ON). Choosing a MOSFET with forward voltage drop of less than 50 mV at maximum  
current is a good starting point.  
The maximum drain-to-source voltage, VDS(MAX), must be high enough to withstand the highest differential  
voltage seen in the application. With LM74721-Q1, the maximum differential voltage across the MOSFET is  
VCLAMP (maximum) of 43 V. TI recommends a minimum of 60-V VDS rated. This includes all the automotive  
transient events and any anticipated fault conditions.  
During the ISO7637 pulse 1, the maximum VDS seen by the external MOSFET Q1 is VDSCLAMP (max) that is 43  
V. Use 方程4 to calculate the peak current during ISO7637-2 pulse 1.  
IISO_PEAK = (VISO + VOUT VDSCLAMP(max)) / RS  
(4)  
Where  
VISO is the negative peak of the ISO7637-2 pulse 1  
VOUT is the initial level of the VBATT before ISO pulse is applied  
VDSCLAMP is maximum VCLAMP threshold of LM74721-Q1  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LM74721-Q1  
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
RS is the ISO7637 pulse generator input impedance (10 Ω)  
For ISO7637-2 pulse 1 with amplitude of 100 V, VOUT nominal voltage of 13.5 V the peak current seen by  
MOSFET Q1 comes around 7 A.  
The current profile tapers down from 7 A to 0 A from the peak of 7 A as shown in 9-5. The resulting average  
current (IISO_AVG) can be approximated as one third of the peak current that is around 2.4 A. The VDS clamp  
operation lasts for about 1 ms (maximum). Selecting a MOSFET with SOA characteristics covering the load line  
of 43 V which can support drain current greater than (IISO_PEAK / 2) for 1 ms is a good starting point. For this  
particular design example, MOSFET which can support greater than 3.5 A of drain current at 43-V VDS on SoA  
curve is suitable.  
9-2 shows typical SoA characteristics plot highlighting maximum drain current supported by the MOSFET for  
the duration of 1 ms. MOSFET data sheet SoA curves are typically plotted at ambient temperature, so consider  
sufficient margin over MOSFET parameters calculated values to ensure safe operation over desired operating  
temperature range.  
9-2. Typical MOSFET SoA Characteristics  
As external MOSFET dissipates ISO7637-2 pulse 1 energy, a special attention must be given while calculating  
maximum power dissipation and effective temperature rise. Use 程式 5 to calculate an average power  
dissipation across the MOSFET.  
PD_AVG = VDSCLAMP(max) × IISO_AVG  
(5)  
For given design example, average power dissipation comes around.  
PD_AVG = 43 V × 2.4 A = 103.2 W  
(6)  
Typical ISO7637-2 pulse 1 transient lasts for 2 ms with total time period of 200 ms between two consecutive  
pulses (duty cycle of 1%). The effective temperature rise due to power dissipation across MOSFET during  
ISO7637-2 pulse 1 event can be calculated by looking at transient thermal impedance curve in a MOSFET data  
sheet. 9-3 shows an example of how to estimate transient thermal impedance of a MOSFET for ISO7637-2  
pulse 1 event.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM74721-Q1  
 
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
9-3. Typical MOSFET Transient Thermal Impedance  
The maximum VGS LM74721-Q1 can drive is 13.9 V, so a MOSFET with 15-V minimum VGS rating must be  
selected.  
Based on the design requirements and MOSFET selection criteria BUK7Y4R8-60E, SQJ460AEP, STL130N6F7  
are some of the 60-V MOSFET options that can be selected.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LM74721-Q1  
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
9.2.3 Application Curves  
VBATT  
VOUT  
IIN  
VGATE  
VGATE -VBATT  
9-4. ISO 7637-2 Pulse 1  
Time (4 ms/DIV)  
9-5. Response to ISO 7637-2 Pulse 1  
VBATT  
VBATT  
VOUT  
VGATE  
VOUT  
VGATE  
IIN  
IIN  
Time (100 µs/DIV)  
Time (200 ms/DIV)  
9-6. Response to ISO 7637-2 Pulse 2A  
9-7. Response to ISO 7637-2 Pulse 2B  
VBATT  
VBATT  
VOUT  
VOUT  
VGATE  
VGATE  
IIN  
IIN  
Time (100 ms/DIV)  
Time (40 µs/DIV)  
9-8. Response to LV124 E-06 (AC Superimpose 9-9. Response to LV124 E-10 (Input Micro Short,  
Test)  
100 us)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LM74721-Q1  
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
9.3 What to Do and What Not to Do  
Leave the exposed pad (RTN) of the IC floating. Do not connect the exposed pad to the GND plane. Connecting  
RTN to GND disables the reverse polarity protection feature.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LM74721-Q1  
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 Transient Protection  
When the MOSFET is turned OFF during conditions such as reverse current blocking in the system designs  
where there is an output C-L-C filter (for EMI filtering) as shown in 10-1, the voltage across COUT can swing  
negative based on the values of L2 ,COUT and the initial reverse current in L2 before the MOSFET turns OFF.  
Use a low VF Schottky diode D1 across COUT to GND and place a R-C filter with 100 Ω and 0.1 µF at Vs pin,  
ensuring the device pins does not exceed the Absolute Maximum Ratings.  
Q1  
L2  
VOUT  
VBATT  
12 V  
C2  
*
R3  
C3  
*
L1  
COUT  
CBULK  
CIN  
D1  
C4  
GATE C VS  
CAP LX  
PD  
A
VSNS  
SW  
R1  
LM74721-Q1  
BATT_MON  
R2  
EN  
ON  
OFF  
GND  
OV  
* Optional components needed for suppression of transients  
10-1. Circuit Implementation with Optional Protection Components for LM74721-Q1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LM74721-Q1  
 
 
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Connect A, GATE and C pins of LM74721-Q1 close to the MOSFET SOURCE, GATE and DRAIN pins for the  
ideal diode stage, c.  
Use thick and short traces for source and drain of the MOSFET to minimize resistive losses because the high  
current path of for this solution is through the MOSFET.  
Have the PowerPADintegrated circuit package (exposed pad) of the MOSFET soldered directly to the top  
plane for best thermal performance. Other planes, such as the bottom side of the circuit board, can be used  
to increase heat sinking. Thermal considerations: during the VDS clamp operation, the MOSFET acts as an  
active clamp with pulse power dissipation.  
Connect the GATE pin of the LM74721-Q1 to the MOSFET GATE with short trace.  
Minimize the loops formed by capacitor across CAP pin and DRAIN of the FET and C3 to GND by placing  
these capacitors as close as possible. Keep the GND side of the C3 capacitor close to GND pin of LM74721-  
Q1. Boost converter switching currents flow into LX, CAP, GND pins and C3 (across DRAIN of the FET to  
GND).  
Place transient suppression components like output Schottky close to C pin of LM74721-Q1.  
11.2 Layout Example  
S
S
Q1  
S
VIN PLANE  
G
VOUT PLANE  
GATE  
C
C2  
VS  
CAP  
A
L1  
VSNS  
C3  
LX  
PD  
SW  
CIN  
COUT  
OV  
EN  
BATT_MON  
GND  
GND PLANE  
11-1. LM74721-Q1 Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LM74721-Q1  
 
 
 
LM74721-Q1  
ZHCSOW5B SEPTEMBER 2021 REVISED JULY 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LM74721-Q1  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM74721QDRRRQ1  
ACTIVE  
WSON  
DRR  
12  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
L74721  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LM74721QDRRRQ1

具有有源整流功能的汽车类无 TVS、低 IQ 反向电池保护理想二极管控制器 | DRR | 12 | -40 to 125
TI

LM74722-Q1

具有 200kHz 有源整流和负载突降保护功能的汽车类低 IQ 理想二极管控制器
TI

LM74722QDRRRQ1

具有 200kHz 有源整流和负载突降保护功能的汽车类低 IQ 理想二极管控制器 | DRR | 12 | -40 to 125
TI

LM747A

Dual Operational Amplifier
NSC

LM747AH

IC DUAL OP-AMP, 4000 uV OFFSET-MAX, 1.5 MHz BAND WIDTH, MBCY10, METAL CAN-10, Operational Amplifier
NSC

LM747AH-MIL

IC DUAL OP-AMP, 4000 uV OFFSET-MAX, 1.5 MHz BAND WIDTH, MBCY8, Operational Amplifier
NSC

LM747AH-MIL

Operational Amplifier, 2 Func, 4000uV Offset-Max, BIPolar, MBCY8, METAL, CAN-8
ROCHESTER

LM747AJ

Operational Amplifier, 2 Func, 4000uV Offset-Max, BIPolar, CDIP14, CERAMIC, DIP-14
ROCHESTER

LM747C

Dual Operational Amplifier
NSC

LM747CH

IC DUAL OP-AMP, 7500 uV OFFSET-MAX, MBCY10, METAL CAN, TO-100, 10 PIN, Operational Amplifier
NSC

LM747CH

Operational Amplifier, 2 Func, 7500uV Offset-Max, BIPolar, MBCY10, METAL CAN, TO-100, 10 PIN
ROCHESTER

LM747CJ

暂无描述
TI