LM66100DCKR [TI]

具有集成式 FET 的 1.5V 至 5.5V、1.5A、0.5µA IQ 理想二极管 | DCK | 6 | -40 to 125;
LM66100DCKR
型号: LM66100DCKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成式 FET 的 1.5V 至 5.5V、1.5A、0.5µA IQ 理想二极管 | DCK | 6 | -40 to 125

PC 光电二极管
文件: 总22页 (文件大小:2675K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM66100  
ZHCSJI1A MARCH 2019REVISED JUNE 2019  
具有输入极性保护功能的 LM66100 5.5V1.5A79mΩ、低 IQ 理想二极  
1 特性  
该芯片通过比较 CE 引脚电压和输入电压来提供支持。  
CE 引脚电压高于输入电压时,该器件被禁用并且  
MOSFET 关闭。当 CE 引脚电压比较低时,MOSFET  
开启。LM66100 还具有反极性保护 (RPP) 功能,该功  
能可以保护器件不受误接线输入的影响,例如电池装  
反。  
1
宽工作电压范围:1.5V 5.5V  
输入电压反向关断电压:  
绝对最大电压为 –6V  
最大持续电流 (IMAX)1.5A  
导通电阻 (RON):  
5V VIN = 79mΩ(典型值)  
3.6V VIN = 91mΩ(典型值)  
1.8V VIN = 141mΩ(典型值)  
可在 ORing 配置中使用两个 LM66100 器件,其实施  
方法与双二极管 ORing 相似。在此配置中,该器件将  
最高输出电压传递到输出端,同时阻断反向电流流入输  
入电源。这些器件可以比较输入和输出电压,以确保内  
部电压比较器成功阻止反向电流。  
启用比较器芯片 (CE)  
通道状态指示 (ST)  
低电流消耗:  
LM66100 采用标准 SC-70 封装,工作结温范围为  
–40°C 125°C。  
3.6V VIN 关断电流 (ISD,VIN)120nA(典型值)  
3.6V VIN 静态电流 (IQ, VIN)150nA(典型值)  
器件信息(1)  
2 应用  
器件编号  
LM66100  
封装  
SC-70 (6)  
封装尺寸(标称值)  
智能仪表  
2.1mm x 2.0mm  
楼宇自动化  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
GPS 和跟踪  
原电池和备用电池  
典型应用  
3 说明  
LM66100 是单输入单输出 (SISO) 集成式理想二极  
管,非常适用于各种 解决方案。该器件包含一个可在  
1.5V 5.5V 输入电压范围内运行的 P 沟道  
MOSFET,并且支持 1.5A 的最大持续电流。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEZ8  
 
 
 
 
 
LM66100  
ZHCSJI1A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................... 9  
8.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 10  
9.1 Application Information............................................ 10  
9.2 Typical Applications ................................................ 10  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 5  
6.7 Typical Characteristics.............................................. 6  
Parameter Measurement Information .................. 7  
Detailed Description .............................................. 8  
8.1 Overview ................................................................... 8  
8.2 Functional Block Diagram ......................................... 8  
9
10 Power Supply Recommendations ..................... 13  
11 Layout................................................................... 14  
11.1 Layout Guidelines ................................................. 14  
11.2 Layout Example .................................................... 14  
12 器件和文档支持 ..................................................... 15  
12.1 接收文档更新通知 ................................................. 15  
12.2 社区资源................................................................ 15  
12.3 ....................................................................... 15  
12.4 静电放电警告......................................................... 15  
12.5 Glossary................................................................ 15  
13 机械、封装和可订购信息....................................... 15  
7
8
4 修订历史记录  
Changes from Original (March 2019) to Revision A  
Page  
已更改 将高级信息更改为生产数据” ................................................................................................................................... 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
LM66100  
www.ti.com.cn  
ZHCSJI1A MARCH 2019REVISED JUNE 2019  
5 Pin Configuration and Functions  
DCK Package  
6-Pin SC-70  
Top View  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
VIN  
I
Device input  
2
GND  
-
Device ground  
Active-low chip enable. Can be connected to VOUT for reverse current protection. Do not  
leave floating.  
3
4
5
6
CE  
I
N/C  
ST  
-
Not internally connected, can be tied to GND or left floating.  
Active-low open-drain output, pulled low when the chip is disabled. Hi-Z when the chip is  
enabled. Connect to GND if not required.  
O
O
VOUT  
Device output  
Copyright © 2019, Texas Instruments Incorporated  
3
LM66100  
ZHCSJI1A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–6  
MAX  
6
UNIT  
V
VIN  
Maximum Input Voltage Range  
Maximum Output Voltage Range  
Maximum CE Pin Voltage  
VOUT  
VCE  
–0.3  
–0.3  
–0.3  
6
V
6
V
VST  
Maximum ST Pin Voltage  
6
V
ISW, MAX  
ISW, PLS  
ID, PLS  
ICE  
Maximum Continuous Switch Current  
1.5  
2.5  
2.5  
A
Maximum Pulsed Switch Current (120 ms, 2% Duty Cycle)  
Maximum Pulsed Body Diode Current (0.1 ms, 0.2% Duty Cycle)  
Maximum CE Pin Current  
A
A
–1  
–1  
mA  
mA  
°C  
°C  
°C  
IST  
Maximum ST Pin Current  
TJ  
Junction temperature  
–40  
–65  
125  
150  
300  
TSTG  
TLEAD  
Storage temperature  
Maximum Lead Temperature (10 s soldering time)  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, allpins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specificationJESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less is possible with the necessary precautions. Pins listed may actually have higher performance.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.5  
1
TYP  
MAX  
5.5  
UNIT  
VIN  
Input Voltage Range  
Output Voltage Range  
CE Pin Voltage Range  
ST Pin Voltage Range  
V
V
V
V
VOUT  
VCE  
VST  
5.5  
0
5.5  
0
5.5  
6.4 Thermal Information  
LM66100  
THERMAL METRIC(1)  
DCK (SC-70)  
UNIT  
6 PINS  
192  
124  
52  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
34  
ΨJB  
52  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2019, Texas Instruments Incorporated  
LM66100  
www.ti.com.cn  
ZHCSJI1A MARCH 2019REVISED JUNE 2019  
6.5 Electrical Characteristics  
Typical values are at 25°C with an input voltage of 3.6V (unless otherwise noted)  
PARAMETER  
Input Supply (VIN)  
TEST CONDITIONS  
MIN TYP MAX UNIT  
VOUT = VIN  
VCE > VIN + 80mV  
IOUT = 0 A (VOUT = open)  
25°C  
0.12  
0.15  
0.2  
0.3 µA  
0.3 µA  
0.3 µA  
0.3 µA  
ISD,VIN  
VIN Shutdown Current  
VIN Quiescent Current  
-40°C to 105°C  
25°C  
VOUT = VIN  
VCE < VIN - 250mV  
IOUT = 0 A (VOUT = open)  
IQ,VIN  
-40°C to 105°C  
25°C  
0.5 µA  
2.7 µA  
VOUT - VIN 5.5 V  
VCE > VIN + 80mV  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
-40°C to 85°C  
-40°C to 105°C  
8
µA  
OUT to IN Leakage Current  
(Current out of VIN)  
IOUT, OFF  
1.7 µA  
5.1 µA  
0.7 µA  
2.1 µA  
VOUT - VIN 4.5 V  
VCE > VIN + 80mV  
VOUT - VIN 1.0 V  
VCE > VIN + 80mV  
ON-Resistance (RON)  
25°C  
79  
95  
RON  
RON  
RON  
ON-State Resistance  
IOUT = -200 mA  
IOUT = -200 mA  
IOUT = -200 mA  
VIN = 5 V  
-40°C to 85°C  
-40°C to 125°C  
25°C  
110 mΩ  
120  
91 110  
ON-State Resistance  
ON-State Resistance  
VIN = 3.6 V  
VIN = 1.8 V  
-40°C to 85°C  
-40°C to 125°C  
25°C  
125 mΩ  
140  
141 180  
210 mΩ  
-40°C to 85°C  
-40°C to 125°C  
230  
Comparator Chip Enable (CE)  
VON  
VOFF  
ICE  
Turn ON Threshold  
VCE - VIN  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
–250 –150 –80 mV  
Turn OFF Threshold  
CE Pin Leakage Current  
CE Pin Leakage Current  
VCE - VIN  
0
0
0
35  
80 mV  
VCE < VIN - 250mV  
VCE > VIN + 80mV  
160 300 nA  
400 610 nA  
ICE  
Reverse Current Blocking (RCB) and Body Diode Characteristics  
IRCB  
Reverse Activation Current  
VCE = VOUT  
-40°C to 125°C  
-40°C to 125°C  
0.5  
0.5  
1
A
V
IOUT = 10 mA  
VCE > VIN + 80mV  
VFWD  
Body Diode Forward Voltage  
0.1  
1.1  
Status Indication (ST)  
VOL, ST Output Low Voltage  
tST  
IST = 1 mA  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
0.1  
V
Status Delay Time  
VCE transitions from low to high  
VCE < VIN - 250mV  
1
µs  
IST  
ST Pin Leakage Current  
–20  
20 nA  
6.6 Switching Characteristics  
Unless otherwise noted, the typical characteristics in the following table applies over the entire recommended operating  
voltage at an ambient temperature of 25°C and a load of CL = 100 nF and RL = 1kΩ  
PARAMETER  
TEST CONDITIONS  
VIN = 1.8 V  
MIN  
TYP  
90  
40  
27  
2
MAX  
UNIT  
µs  
tON  
Turn ON Time  
VIN = 3.6 V  
VIN = 5 V  
µs  
µs  
VIN = 1.8 V  
VIN = 3.6 V  
VIN = 5 V  
µs  
tOFF  
Turn OFF Time  
2
µs  
2
µs  
Copyright © 2019, Texas Instruments Incorporated  
5
LM66100  
ZHCSJI1A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
Switching Characteristics (continued)  
Unless otherwise noted, the typical characteristics in the following table applies over the entire recommended operating  
voltage at an ambient temperature of 25°C and a load of CL = 100 nF and RL = 1kΩ  
PARAMETER  
TEST CONDITIONS  
VIN = 1.8 V  
MIN  
TYP  
20  
MAX  
UNIT  
µs  
tFALL  
Output Fall Time  
VIN = 3.6 V  
VIN = 5 V  
10  
µs  
7.5  
µs  
6.7 Typical Characteristics  
200  
180  
160  
140  
120  
100  
80  
240  
-40èC  
25èC  
85èC  
105èC  
-40èC  
220  
25èC  
85èC  
105èC  
200  
180  
160  
140  
120  
100  
80  
60  
40  
60  
20  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
D001  
D002  
VCE > VIN  
VCE < VIN  
1. Shutdown Current vs Input Voltage  
2. Quiescent Current vs Input Voltage  
180  
1200  
VIN = 1.8V  
VIN = 3.6V  
VIN = 5V  
VOUT - VIN = 1V  
VOUT - VIN = 4.5V  
VOUT - VIN = 5.5V  
160  
1000  
140  
120  
100  
80  
800  
600  
400  
200  
0
60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D003  
D004  
VCE > VIN  
VCE < VIN  
IOUT = 200mA  
3. Reverse Leakage Current vs Junction Temperature  
4. On-Resistance vs Junction Temperature  
65  
-50  
-40èC  
-40èC  
25èC  
25èC  
60  
-75  
85èC  
105èC  
85èC  
105èC  
55  
-100  
50  
45  
40  
35  
30  
25  
-125  
-150  
-175  
-200  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
D007  
D008  
5. Turn ON Threshold vs Input Voltage  
6. Turn OFF Threshold vs Input Voltage  
6
版权 © 2019, Texas Instruments Incorporated  
LM66100  
www.ti.com.cn  
ZHCSJI1A MARCH 2019REVISED JUNE 2019  
Typical Characteristics (接下页)  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
120  
100  
80  
60  
40  
20  
0
VIN = 1.8V  
VIN = 3.6V  
VIN = 5V  
-40èC  
25èC  
85èC  
105èC  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Input Voltage (V)  
Junction Temperature (èC)  
D005  
D009  
VCE > VIN  
IOUT = 10mA  
CL = 100nF  
RL = 1kΩ  
7. Body Diode Forward Voltage vs Input Voltage  
8. Turn ON Time vs Junction Temperature  
10  
22  
VIN = 1.8V  
VIN = 3.6V  
VIN = 5V  
20  
18  
16  
14  
12  
10  
8
8
6
4
2
0
6
4
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Junction Temperature (èC)  
D011  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Junction Temperature (èC)  
D010  
CL = 100nF  
RL = 1kΩ  
CL = 100nF  
RL = 1kΩ  
VIN = 1.8V to 5V  
10. Fall Time vs Junction Temperature  
9. Turn OFF Time vs Junction Temperature  
7 Parameter Measurement Information  
11. Timing Diagram  
版权 © 2019, Texas Instruments Incorporated  
7
LM66100  
ZHCSJI1A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LM66100 is a Single-Input, Single-Output (SISO) integrated ideal diode that is well suited for a variety of  
applications. The device contains a P-channel MOSFET that can operate over an input voltage range of 1.5 V to  
5.5 V and can support a maximum continuous current of 1.5 A.  
The chip enable works by comparing the CE pin voltage to the input voltage. When the CE pin voltage is higher  
than VIN by 80 mV, the device is disabled and the MOSFET is off. When the CE pin voltage is lower than VIN by  
250 mV, the MOSFET is on. The LM66100 also comes with reverse polarity protection (RPP) that can protect the  
device from a miswired input, such as a reversed battery.  
8.2 Functional Block Diagram  
8
版权 © 2019, Texas Instruments Incorporated  
LM66100  
www.ti.com.cn  
ZHCSJI1A MARCH 2019REVISED JUNE 2019  
8.3 Feature Description  
8.3.1 Reverse Polarity Protection (RPP)  
In the event a negative input voltage is applied, the ideal diode will stay off and prevent current flow to protect the  
system load. For a stand-alone, always on application, CE can be tied to GND so it will not go negative with  
respect to GND see 12.  
12. RPP Protection Circuit  
8.3.2 Always-ON Reverse Current Blocking (RCB)  
By connecting the CE pin to VOUT, this allows the comparator to detect reverse current flow through the switch.  
If the output is forced above the selected input by VOFF, the channel will switch off to stop the reverse current  
IRCB within tOFF. Once the output falls to below VIN by VON, the device will turn back on.  
13. RCB Circuit  
14. RCB Waveforms  
版权 © 2019, Texas Instruments Incorporated  
9
 
LM66100  
ZHCSJI1A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
8.4 Device Functional Modes  
1 summarizes the Device Functional Modes:  
1. Device Functional Modes  
State  
OFF  
ON  
IN-to-OUT  
Diode  
Power Dissipation  
ST State  
IOUT x VFWD  
IOUT2 x RON  
L
Switch  
H
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LM66100 Ideal Diode can be used in a variety of stand-alone and multi-channel applications.  
9.2 Typical Applications  
9.2.1 Dual Ideal Diode ORing  
Two LM66100 Ideal Diodes can be used together for ORing between two power supplies.  
15. Dual Ideal Diode ORing  
9.2.1.1 Design Requirements  
Design a circuit that allows the highest input voltage to power a downstream system while providing reverse  
current protection.  
9.2.1.2 Detailed Design Procedure  
This circuit ties the CE of each device to the opposite power source. In this configuration, the highest supply will  
always be selected using a make-before-break logic. This prevents any reverse current flow between the  
supplies and avoids the need of a dedicated reverse current blocking comparator. For ORing applications that  
need RPP, it is recommended to use a series resistor (RCE) to limit the current into the CE pin during a negative  
voltage event.  
10  
版权 © 2019, Texas Instruments Incorporated  
 
LM66100  
www.ti.com.cn  
ZHCSJI1A MARCH 2019REVISED JUNE 2019  
Typical Applications (接下页)  
9.2.1.3 Application Curves  
The below scope shot shows the output voltage (VOUT) being initially powered by VIN1. When VIN2 is applied, it  
powers VOUT because it is a higher voltage. When VIN2 is removed, VOUT is once again powered by VIN1.  
16. Dual Ideal Diode ORing Behavior  
9.2.2 Dual Ideal Diode ORing for Continuous Output Power  
VOUT  
VIN  
+
-
Logic  
VIN1 (5V)  
CE  
GND  
ST  
RL  
CL  
+
-
Logic  
VIN2 (3.3V)  
CE  
GND  
ST  
Status  
Indication  
17. Dual Ideal Diode ORing for Continuous Output Power  
9.2.2.1 Design Requirements  
The shortcoming of the previous implementation happens when both input voltages are the same for a long  
period of time, then both devices will completely turn off, powering down the output load. To avoid this case, the  
status output from the priority supply and a pull up resistor can be used causing both devices to switchover at the  
same time. For ORing applications that need RPP, it is recommended to use a series resistor (RCE) to limit the  
current into the CE pin during a negative voltage event.  
版权 © 2019, Texas Instruments Incorporated  
11  
LM66100  
ZHCSJI1A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
Typical Applications (接下页)  
9.2.2.2 Application Curves  
The figures below show the switchover performance between VIN1 and VIN2.  
18. Switchover from VIN1 (5 V) to VIN2 (3.3 V)  
19. Switchover from VIN2 (3.3V) to VIN1 (5V)  
9.2.3 ORing with Discrete MOSFET  
20. ORing with a Discrete MOSFET  
9.2.3.1 Design Requirements  
Similar to the Dual Ideal Diode circuit, the Status Output can also be used to control a discrete P-Channel  
MOSFET. This can be useful in applications that want to minimize the leakage current on the secondary supply,  
such as battery backup systems. This configuration can also be used on systems that require a lower RON on  
the secondary rail, useful for higher current applications.  
When the Ideal Diode path is enabled, the status will be Hi-Z and pull up the gate of the external PFET to keep it  
off. When the main supply (VIN1) drops such that backup supply (VIN2) is higher than VIN1, the ideal diode will  
be disabled and pull the ST pin and the PFET gate low to turn on the discrete MOSFET path.  
12  
版权 © 2019, Texas Instruments Incorporated  
LM66100  
www.ti.com.cn  
ZHCSJI1A MARCH 2019REVISED JUNE 2019  
Typical Applications (接下页)  
9.2.3.2 Application Curves  
The figures below show the switchover performance between VIN1 and VIN2.  
21. Switchover from VIN1 5 V to VIN2 3.3 V  
22. Switchover from VIN2 3.3 V to VIN1 5 V  
10 Power Supply Recommendations  
The device is designed to operate with a VIN range of 1.5 V to 5.5 V. The VIN power supply must be well  
regulated and placed as close to the device terminal as possible. The power supply must be able to withstand all  
transient load current steps. In most situations, using an input capacitance (CIN) of 1 μF is sufficient to prevent  
the supply voltage from dipping when the switch is turned on. In cases where the power supply is slow to  
respond to a large transient current or large load current step, additional bulk capacitance may be required on  
the input.  
版权 © 2019, Texas Instruments Incorporated  
13  
LM66100  
ZHCSJI1A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For best performance, all traces must be as short as possible. To be most effective, the input and output  
capacitors must be placed close to the device to minimize the effects that parasitic trace inductances may have  
on normal operation. Using wide traces for VIN, VOUT and GND helps minimize the parasitic electrical effects.  
11.2 Layout Example  
23. LM66100 Layout Example  
14  
版权 © 2019, Texas Instruments Incorporated  
LM66100  
www.ti.com.cn  
ZHCSJI1A MARCH 2019REVISED JUNE 2019  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
15  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Jun-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM66100DCKR  
LM66100DCKT  
ACTIVE  
ACTIVE  
SC70  
SC70  
DCK  
DCK  
6
6
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 105  
1CU  
1CU  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Jun-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jun-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM66100DCKR  
LM66100DCKT  
SC70  
SC70  
DCK  
DCK  
6
6
3000  
250  
178.0  
178.0  
9.0  
9.0  
2.4  
2.4  
2.5  
2.5  
1.2  
1.2  
4.0  
4.0  
8.0  
8.0  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jun-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM66100DCKR  
LM66100DCKT  
SC70  
SC70  
DCK  
DCK  
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
18.0  
18.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

LM66100DCKT

具有集成式 FET 的 1.5V 至 5.5V、1.5A、0.5µA IQ 理想二极管 | DCK | 6 | -40 to 105
TI

LM66100QDCKRQ1

具有集成式 FET 的汽车类 1.5V 至 5.5V、1.5A、0.5µA IQ 理想二极管 | DCK | 6 | -40 to 125
TI

LM66200

1.6V 至 5.5V、40mΩ、2.5A、低 IQ、双输入理想二极管
TI

LM66200DRLR

1.6V 至 5.5V、40mΩ、2.5A、低 IQ、双输入理想二极管 | DRL | 8 | -40 to 125
TI

LM6629MFX

Ultra-Low Noise, High-Speed Operational Amplifier with Shutdown
NSC

LM6685IM

COMPARATOR, 1900uV OFFSET-MAX, PDSO14, 0.150 INCH, PLASTIC, SOP-14
TI

LM6685IM

COMPARATOR, 1900uV OFFSET-MAX, PDSO14, 0.150 INCH, PLASTIC, SOP-14
ROCHESTER

LM6685IN

COMPARATOR, 1900uV OFFSET-MAX, PDIP16, PLASTIC, DIP-16
TI

LM6687IM

IC DUAL COMPARATOR, 1900 uV OFFSET-MAX, PDSO16, 0.150 INCH, PLASTIC, SOP-16, Comparator
NSC

LM6687IM

DUAL COMPARATOR, 1900uV OFFSET-MAX, PDSO16, 0.150 INCH, PLASTIC, SOP-16
TI

LM6687IN

IC DUAL COMPARATOR, 1900 uV OFFSET-MAX, PDIP16, PLASTIC, DIP-16, Comparator
NSC

LM6687IN

DUAL COMPARATOR, 1900uV OFFSET-MAX, PDIP16, PLASTIC, DIP-16
TI