LM5161QPWPRQ1 [TI]

4.5V 至 100V 宽输入电压、1A 同步降压/Fly-Buck 转换器 | PWP | 14 | -40 to 125;
LM5161QPWPRQ1
型号: LM5161QPWPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4.5V 至 100V 宽输入电压、1A 同步降压/Fly-Buck 转换器 | PWP | 14 | -40 to 125

转换器
文件: 总39页 (文件大小:2084K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM5161-Q1  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
LM5161-Q1 宽输入 100V1A 同步降压/Fly-Buck™ 转换器  
1 特性  
2 应用  
1
符合汽车应用 要求  
具有符合 AEC-Q100 标准的下列特性:  
工业可编程逻辑控制器  
IGBT 栅极驱动偏置电源  
电信 DC/DC 初级侧/次级侧偏置  
电子电表电力线通信  
器件温度 1 级:–40°C 125°C 的环境工作温  
度范围  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 2  
低功耗 (< 12W) 隔离式 DC-DC (Fly-Buck)  
车用电子产品  
充电器件模型 (CDM) ESD 分类等级 C5  
3 说明  
4.5V 100V 宽输入电压范围  
集成高侧和低侧开关  
LM5161-Q1 是一款集成高侧和低侧金属氧化物半导体  
场效应晶体管 (MOSFET) 100V1.5A 同步降压转  
换器。恒定导通时间控制方案无需环路补偿,在快速瞬  
态响应下支持高降压比。内部反馈放大器在完整工作温  
度范围保持 ±1% 的输出电压调节率。导通时间与输入  
电压成反比,产生近似恒定的开关频率。峰谷电流限制  
电路可防止发生过载。欠压锁定 (EN/UVLO) 电路提供  
可独立调节的输入欠压阈值和迟滞。通过 FPWM 输入  
引脚,LM5161-Q1 可选择在所有负载水平下以强制连  
续导通模式 (CCM) 运行或在轻载/空载条件下以非连续  
导通模式 (DCM) 运行。在强制 CCM 下运行  
无需肖特基二极管  
1A 最大负载电流  
恒定导通时间控制  
无外部环路补偿  
快速瞬态响应  
轻载条件下可选择 DCM 降压操作  
CCM 选项支持多输出 Fly-Buck™  
无需外部纹波电路(FPWM = 0 时)  
近似恒定的开关频率  
频率最高可调节至 1MHz  
可编程软启动时间  
时,LM5161-Q1 支持多输出和隔离式 Fly-Buck 应  
用。当通过编程设定 DCM 操作时,LM5161-Q1 提供  
经严格稳压的降压输出,无需额外使用任何外部反馈纹  
波注入电路。  
预偏置启动  
峰值电流限制保护  
可调输入欠压闭锁 (UVLO) 和滞后  
±1% 反馈电压基准  
器件信息(1)  
热关断保护  
使用 LM5161-Q1 并借助 WEBENCH® 电源设计器  
创建定制设计  
器件型号  
LM5161-Q1  
封装  
封装尺寸(标称值)  
HTSSOP (14)  
4.40mm × 5.00mm  
(1) 如需了解所有可用封装,请参见数据表末尾的可订购产品附  
录。  
典型 Fly-Buck 应用电路  
典型降压应用电路  
VOUT-SEC  
VIN  
VIN  
VIN  
BST  
SW  
VIN  
BST  
SW  
VOUT  
LM5161  
VOUT-PRI  
RON  
RON  
LM5161  
FB  
VCC  
EN/UVLO  
FB  
EN/UVLO  
VCC  
FPWM  
SS  
FPWM  
SS  
AGND PGND  
AGND PGND  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVSAF9  
 
 
 
 
LM5161-Q1  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions ...................... 4  
6.4 Thermal Information ................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics ......................................... 6  
6.7 Typical Characteristics ............................................. 7  
Detailed Description ............................................ 11  
7.1 Overview ................................................................ 11  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description ................................................ 12  
7.4 Device Functional Modes........................................ 15  
8
9
Applications and Implementation ...................... 17  
8.1 Application Information .......................................... 17  
8.2 Typical Applications ................................................ 17  
8.3 Do's and Don'ts ...................................................... 27  
Power Supply Recommendations...................... 28  
10 Layout................................................................... 28  
10.1 Layout Guidelines ................................................ 28  
10.2 Layout Example ................................................... 29  
11 器件和文档支持 ..................................................... 30  
11.1 器件支持................................................................ 30  
11.2 相关文档 ............................................................... 30  
11.3 ....................................................................... 30  
11.4 接收文档更新通知 ................................................. 30  
11.5 社区资源................................................................ 30  
11.6 静电放电警告......................................................... 30  
11.7 Glossary................................................................ 30  
12 机械、封装和可订购信息....................................... 31  
7
4 修订历史记录  
Changes from Original (August 2016) to Revision A  
Page  
向数据表添加了 WEBENCH ........................................................................................................................................... 1  
Deleted the lead temperature from the Absolute Maximum Ratings table............................................................................. 4  
Moved Ripple Configuration to the Feature Description section ......................................................................................... 14  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
LM5161-Q1  
www.ti.com.cn  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
5 Pin Configuration and Functions  
PWP Package  
14-Pin HTSSOP  
TOP  
AGND  
PGND  
VIN  
1
2
3
4
5
6
7
14  
NC  
13  
12  
11  
10  
9
SW  
LM5161  
SW  
EN/UVLO  
RON  
BST  
VCC  
FB  
EXP  
PAD  
SS  
NC  
FPWM  
8
Copyright © 2016, Texas Instruments Incorporated  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
AGND  
PGND  
VIN  
HTSSOP  
1
2
3
4
-
-
I
I
Analog Ground. Ground connection of internal control circuits.  
Power Ground. Ground connection of the internal synchronous rectifier FET.  
Input supply connection. Operating input range is 4.5-V to 100-V.  
Precision enable. Input pin of undervoltage lockout (UVLO) comparator.  
EN/UVLO  
On-time programming pin. A resistor between this pin and VIN sets the switch ON-time as a  
function of input voltage.  
RON  
SS  
5
6
I
I
Softstart. Connect a capacitor from SS to AGND to control output rise time and limit overshoot.  
Forced PWM logic input pin. Connect to AGND for discontinuous conduction mode (DCM) with  
light loads. Connect to VCC for continuous conduction mode (CCM) at all loads and Fly-Buck  
configuration.  
FPWM  
8
I
FB  
9
I
Feedback input of voltage regulation comparator.  
VCC  
10  
O
Internal high voltage start-up regulator bypass capacitor pin.  
Bootstrap capacitor pin. Connect a capacitor between BST and SW to bias gate driver of high-  
side buck FET.  
BST  
11  
I
Switch node. Source connection of high side buck FET and drain connection of low-side  
synchronous rectifier FET.  
SW  
NC  
EP  
12,13  
7,14  
-
O
No Connection.  
Exposed Pad. Connect to AGND and printed-circuit board ground plane to improve power  
dissipation.  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
LM5161-Q1  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
100  
100  
100  
114  
14  
UNIT  
VIN to AGND  
EN/UVLO to AGND  
RON to AGND  
BST to AGND  
VCC to AGND  
FPWM to AGND  
SS to AGND  
Input voltage  
V
14  
7
FB to AGND  
7
BST to SW  
14  
BST to VCC  
100  
100  
Output voltage  
V
SW to AGND  
–1.5  
–3  
SW to AGND (20-ns transient)  
(3)  
Maximum junction temperature  
–40  
–65  
150  
150  
°C  
°C  
Storage temperature Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions . Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(3) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions(1)  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
100  
1
UNIT  
VIN input voltage  
4.5  
V
A
IO output current  
External VCC bias voltage  
Operating junction temperature(2)  
9
13  
V
–40  
150  
°C  
(1) Recommended Operating Conditions are conditions under the device is intended to be functional. For specifications and test conditions,  
see Electrical Characteristics  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
6.4 Thermal Information(1)  
LM5161-Q1  
THERMAL METRIC  
PWP (HTSSOP)  
UNIT  
14 PINS  
39.3  
RθJA  
RθJCbot  
ψJB  
Junction-to-ambient thermal resistance(1)  
Junction-to-case (bottom) thermal resistance(1)  
Junction-to-board thermal characteristic parameter  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
2.0  
19.3  
RθJB  
19.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
LM5161-Q1  
www.ti.com.cn  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
Thermal Information(1) (continued)  
LM5161-Q1  
THERMAL METRIC  
PWP (HTSSOP)  
14 PINS  
22.8  
UNIT  
RθJCtop  
Junction-to-case (top) thermal resistance  
Junction-to-top thermal characteristic parameter  
°C/W  
°C/W  
ψJT  
0.5  
6.5 Electrical Characteristics  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over TJ = –40°C to 125°C(1)(2) for LM5161-Q1.  
Unless otherwise stated, VIN = 48 V.(1)(2)  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISD  
Input shutdown current  
Input operating current  
VIN = 48 V, EN/UVLO = 0 V  
50  
90  
µA  
IOP  
VIN = 48 V, FB = 3 V, Non-switching  
2.3  
2.8  
mA  
VCC SUPPLY  
VCC  
Bias regulator output  
VIN = 48 V, ICC = 20 mA  
VIN = 48 V  
6.3  
30  
7.3  
8.5  
4.1  
V
VCC  
Bias regulator current limit  
VCC undervoltage threshold  
VCC undervoltage hysteresis  
VIN - VCC dropout voltage  
mA  
V
VCC(UV)  
VCC(HYS)  
VCC(LDO)  
VCC rising  
3.98  
185  
200  
VCC falling  
mV  
mV  
VIN = 4.5 V, ICC = 20 mA  
340  
HIGH-SIDE FET  
RDS(ON)  
High-side on resistance  
V(BST - SW) = 7 V, ISW = 0.5A  
V(BST - SW) rising  
0.58  
2.93  
200  
Ω
V
BST(UV)  
Bootstrap gate drive UV  
Gate drive UV hysteresis  
3.6  
1.9  
BST(HYS)  
LOW-SIDE FET  
RDS(ON)  
V(BST - SW) falling  
mV  
Low-side on resistance  
ISW = 0.5 A  
0.24  
Ω
HIGH-SIDE CURRENT LIMIT  
ILIM (HS) High-side current limit threshold  
TRES  
1.3  
1.61  
100  
16.5  
13  
A
Current limit response time  
Current limit forced off-time  
Current limit forced off-time  
Current limit forced off-time  
ILIM (HS)threshold detect to FET turn-off  
FB = 0 V, VIN = 72 V  
ns  
µs  
µs  
µs  
TOFF  
13  
10  
2
21  
17  
TOFF1  
TOFF2  
FB = 0.1 V, VIN = 72 V  
FB = 1 V, VIN = 72 V  
2.7  
4.1  
LOW-SIDE CURRENT LIMIT  
ISOURCE(LS) Sourcing current limit  
ISINK(LS) Sinking current limit  
DIODE EMULATION  
1.3  
1.6  
3
1.9  
1
A
VFPWM(LOW)  
VFPWM(HIGH)  
IZX  
FPWM input logic low  
VIN = 48 V  
V
FPWM input logic high  
VIN = 48 V  
3
Zero cross detect current  
FPWM = 0 (Diode emulation)  
22.5  
2
mA  
REGULATION COMPARATOR  
VREF  
FB regulation level  
VIN = 48 V  
VIN = 48 V  
1.975  
2.015  
100  
V
I(BIAS)  
FB input bias current  
nA  
ERROR CORRECTION AMPLIFIER & SOFT-START  
GM  
Error amp transconductance  
Error amp source current  
Error amp sink current  
FB = VREF (±) 10 mV  
FB = 1 V, SS = 1 V  
FB = 5 V, SS = 2.25 V  
100  
10  
µA/V  
µA  
IEA(SOURCE)  
IEA(SINK)  
7.5  
7.5  
12.5  
12.5  
10  
(1) All minimum and maximum limits are specified by correlating the electrical characteristics to process and temperature variations and  
applying statistical process control.  
(2) The junction temperature (TJ in °C) is calculated from the ambient temperature (TA in °C) and power dissipation (PD in Watts) as follows:  
TJ = TA + (PD • RθJA) where RθJA (in °C/W) is the package thermal impedance provided in the Thermal Information section.  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
 
 
LM5161-Q1  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over TJ = –40°C to 125°C(1)(2) for LM5161-Q1.  
Unless otherwise stated, VIN = 48 V.(1)(2)  
PARAMETER  
TEST CONDITIONS  
FB = 1.75 V, CSS= 1 nF  
MIN  
TYP  
135  
10  
MAX  
UNIT  
mV  
V(SS-FB)  
VSS - VFB clamp voltage  
Softstart charging current  
ISS  
SS = 0.5 V  
7.5  
12.5  
µA  
ENABLE/UVLO  
VUVLO (TH)  
IUVLO(HYS)  
VSD(TH)  
UVLO threshold  
EN/UVLO rising  
EN/UVLO = 1.4 V  
EN/UVLO falling  
EN/UVLO rising  
1.195  
15  
1.24  
20  
1.272  
25  
V
µA  
V
UVLO hysteresis current  
Shutdown mode threshold  
Shutdown threshold hysteresis  
0.29  
0.35  
50  
VSD(HYS)  
mV  
THERMAL SHUTDOWN  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
175  
20  
°C  
°C  
TSD(HYS)  
6.6 Switching Characteristics(1)  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over TJ = –40°C to 125°C for LM5161-Q1.  
Unless otherwise stated, VIN = 48 V.  
PARAMETER  
MINIMUM OFF-TIME  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TOFF-MIN  
TOFF-MIN  
Minimum off-Time, FB = 0 V  
170  
200  
ns  
ns  
Minimum off-Time, FB = 0 V, VIN =  
4.5 V  
ON-TIME GENERATOR  
TON Test 1 VIN = 24 V, RON = 100 kΩ  
TON Test 2 VIN = 48 V, RON = 100 kΩ  
TON Test 3 VIN = 8 V, RON = 100 kΩ  
TON Test 4 VIN = 72V, RON = 150 kΩ  
420  
540  
270  
665  
ns  
ns  
ns  
ns  
1150  
1325  
285  
1500  
(1) All minimum and maximum limits are specified by correlating the electrical characteristics to process and temperature variations and  
applying statistical process control.  
6
版权 © 2016–2017, Texas Instruments Incorporated  
 
LM5161-Q1  
www.ti.com.cn  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
6.7 Typical Characteristics  
At TA = 25°C and applicable to LM5161-Q1 unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
FPWM = 0  
80  
70  
FPWM = 0  
60  
VIN = 36 V  
VIN = 48 V  
VIN = 60 V  
VIN = 4.5 V  
VIN = 12 V  
VIN = 24 V  
FPWM = 1  
50  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
0.025  
0.05 0.07 0.1  
0.2  
0.3 0.4 0.5 0.7  
1
Load Current (A)  
Load Current (A)  
VOUT= 3.3 V  
FPWM = 0  
RON= 110 kΩ  
VOUT= 5 V  
RON= 169 kΩ  
L=47 µH  
1. Efficiency at 300 kHz  
2. Efficiency at 300 kHz  
100  
100  
90  
80  
70  
60  
Ext-VCC  
95  
90  
85  
80  
75  
FPWM = 1  
Int-VCC  
VIN = 24 V  
VIN = 48 V  
VIN = 60 V  
FPWM = 1  
IOUT = 1 A  
IOUT = 0.5 A  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Load Current (A)  
1
Input Voltage (V)  
RON = 402 kΩ  
L = 100 µH  
VOUT = 12 V  
FPWM = 1  
VOUT = 12 V  
FPWM = 0  
RON = 402 kΩ  
L = 100 µH  
4. Efficiency at 300 kHz  
3. Efficiency at 300 kHz  
12.12  
8
12.1  
12.08  
12.06  
12.04  
12.02  
12  
6
4
2
0
11.98  
11.96  
11.94  
11.92  
11.9  
Ext-VCC  
FPWM = 1  
IOUT = 0 A  
IOUT = 0.5 A  
IOUT = 1 A  
11.88  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
0
2
4
6
8
10  
12  
14  
Input Voltage (V)  
RON = 300 kΩ  
L = 100 µH  
Input Voltage (V)  
VOUT = 12 V  
FPWM = 1  
5. Line Regulation  
6. VCC vs. VIN  
版权 © 2016–2017, Texas Instruments Incorporated  
7
LM5161-Q1  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TA = 25°C and applicable to LM5161-Q1 unless otherwise noted.  
8
20  
18  
16  
14  
12  
10  
8
6
4
2
0
FSW = 1-MHz  
6
4
VIN = 24-V  
VIN = 48-V  
VIN = 72-V  
FSW = 300-kHz  
2
0
0
10  
20  
30  
40  
50  
8
9
10  
11  
12  
13  
14  
ICC Current (mA)  
VCC Voltage (V)  
VIN = 48 V  
IOUT = 1 A  
FPWM = 0  
7. VCC vs. ICC  
8. ICC vs. External VCC  
25  
5000  
VIN = 12V  
RON = 200KW  
RON = 150KW  
RON = 100KW  
RON = 50KW  
3000  
2000  
VIN = 24V  
VIN = 48V  
VIN = 72V  
20  
15  
10  
5
VIN = 100V  
1000  
700  
500  
300  
200  
100  
70  
0
50  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
10 20 30 40 50 60 70 80 90 100 110  
Input Voltage (V)  
Feedback Voltage (V)  
9. TOFF (ILIM) vs. VFB  
10. TON vs. VIN  
5000  
360  
345  
330  
315  
300  
RON = 402KW  
RON = 169KW  
3000  
2000  
VOUT = 12 V  
1000  
700  
500  
300  
200  
VOUT = 5 V  
FSW = 300 kHz  
100  
70  
IOUT =1 A  
IOUT = 0.5 A  
50  
10  
20  
30  
40  
50  
60  
70  
80  
15  
30  
45  
60  
75  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 12 V  
11. TON vs. VIN  
12. FSW vs. VIN  
8
版权 © 2016–2017, Texas Instruments Incorporated  
LM5161-Q1  
www.ti.com.cn  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
Typical Characteristics (接下页)  
At TA = 25°C and applicable to LM5161-Q1 unless otherwise noted.  
60  
4
3.5  
3
50  
40  
30  
20  
10  
0
2.5  
2
1.5  
1
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Input Voltage (V)  
Input Voltage (V)  
VFB = 3 V  
13. Shutdown Current vs. VIN  
14. IIN vs. VIN (Operating, Non Switching)  
1000  
800  
600  
400  
200  
0
4
3.75  
3.5  
3.25  
3
2.75  
2.5  
2.25  
2
RON = 402KW  
RON = 169KW  
Rising  
Falling  
15 20 25 30 35 40 45 50 55 60 65 70 75  
Input Voltage (V)  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Junction Temperature (oC)  
VIN = 48 V  
15. Voltage at RON pin vs. Input Voltage  
16. Gate Drive UVLO vs. Temperature  
2.02  
2.015  
2.01  
2.005  
2
2.5  
2.25  
2
1.995  
1.99  
1.985  
1.98  
1.75  
1.5  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Junction Temperature (oC)  
Junction Temperature (oC)  
VIN = 48 V  
VIN = 48 V  
17. Reference Voltage vs. Temperature  
18. Input Operating Current vs. Temperature  
版权 © 2016–2017, Texas Instruments Incorporated  
9
LM5161-Q1  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TA = 25°C and applicable to LM5161-Q1 unless otherwise noted.  
75  
4.25  
4.1  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
3.95  
3.8  
3.65  
Rising  
Falling  
3.5  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Junction Temperature (oC)  
Junction Temperature (oC)  
VIN = 48 V  
VIN = 48 V  
19. Input Shutdown Current vs. Temperature  
20. VCC UVLO vs. Temperature  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
3.5  
3.4  
3.3  
3.2  
3.1  
3
2.9  
2.8  
2.7  
2.6  
2.5  
High Side FET  
Low Side FET  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Junction Temperature (oC)  
Junction Temperature (oC)  
VIN = 48 V  
VIN = 48 V  
21. Current Limit vs. Temperature  
22. Sink Current Limit vs. Temperature  
3
2.5  
2
1
0.8  
0.6  
0.4  
0.2  
0
1.5  
Rising  
Falling  
High Side FET  
Low Side FET  
1
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Junction Temperature (oC)  
Junction Temperature (oC)  
VIN = 48 V  
ISW = 500 mA  
VIN = 48 V  
23. FPWM Threshold vs. Temperature  
24. Switch Resistance vs. Temperature  
版权 © 2016–2017, Texas Instruments Incorporated  
10  
LM5161-Q1  
www.ti.com.cn  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
7 Detailed Description  
7.1 Overview  
The LM5161-Q1 step-down switching regulator features all the functions needed to implement a low-cost,  
efficient buck converter capable of supplying 1-A to the load. This high voltage regulator contains 100-V N-  
channel buck and synchronous rectifier switches and is available in the 14-pin HTSSOP package. The regulator  
operation is based on constant ON-time control where the ON-time is inversely proportional to input voltage VIN.  
This feature maintains a relatively constant operating frequency with load and input voltage variations. A constant  
on-time switching regulator requires no loop compensation resulting in fast load transient response. Peak current  
limit detection circuit is implemented with a forced OFF-time during current limiting which is inversely proportional  
to voltage at the feedback pin, VFB and directly proportional to VIN. Varying the current limit OFF-time with VFB  
and VIN ensures short circuit protection with minimal current limit foldback. The LM5161-Q1 can be applied in  
numerous end equipment systems requiring efficient step-down regulation from higher input voltages. This  
regulator is well suited for 24 V industrial systems as well as for 48 V telecom and PoE voltage ranges. The  
LM5161-Q1 integrates an undervoltage lockout (EN/UVLO) circuit to prevent faulty operation of the device at low  
input voltages and features intelligent current limit and thermal shutdown to protect the device during overload or  
short circuit.  
All instances of the LM5161 device name used throughout this document, in block diagrams and application  
schematics, are valid for LM5161-Q1 as well, unless stated otherwise.  
7.2 Functional Block Diagram  
LM5161  
VIN  
VCC  
VIN  
VCC  
REGULATOR  
RUV2  
VCC UVLO  
CVCC  
20 µA  
CIN  
EN/UVLO  
STANDBY  
RUV1  
THERMAL  
SHUTDOWN  
VIN  
1.24 V  
SHUTDOWN  
BIAS  
BST  
REGULATOR  
0.35 V  
RON  
VIN  
RON  
CBST  
ON/OFF  
TIMERS  
DISABLE  
CONSTANT  
VOUT  
L
ON-TIME  
CONTROL  
LOGIC  
SW  
VOUT  
FEEDBACK  
COMPARATOR  
SS  
VCC  
CSS  
RFB2  
COUT  
PGND  
FB  
GM ERROR  
AMP  
CURRENT LIMIT  
COMPARATOR  
2.0 V  
RFB1  
CURRENT  
LIMIT TIMER  
+
-
AGND  
VILIM  
FPWM  
DIODE  
EMULATION  
Copyright © 2016, Texas Instruments Incorporated  
版权 © 2016–2017, Texas Instruments Incorporated  
11  
 
LM5161-Q1  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Control Circuit  
The LM5161-Q1 step-down switching regulator employs a control principle based on a comparator and a one-  
shot ON-timer, with the output voltage feedback (FB) compared to the voltage at the Soft-Start (SS) pin (VSS). If  
the FB voltage is below VSS, the internal buck switch is turned on for a time period determined by the input  
voltage and one-shot programming resistor (RON). Following the ON-time, the buck switch must remain off for the  
minimum OFF-time forced by the minimum OFF-time one-shot. The buck switch remains off until the FB voltage  
falls below VSS again, when it turns on for another ON-time one-shot period.  
During a rapid start-up or when the load current increases suddenly, the regulator operates with minimum off-  
time per cycle. When regulating the output in steady state operation, the off-time automatically adjusts to produce  
the SW pin duty cycle required for output voltage regulation.  
When in regulation, the LM5161-Q1 operates in continuous conduction mode at heavy load currents. If the  
FPWM pin is connected to ground or left floating, the regulator operates in discontinuous conduction mode at  
light load with the synchronous rectifier FET emulating a diode. With sufficient load, the LM5161-Q1 operates in  
continuous conduction mode with the inductor current never reaching zero during the OFF-time of the high-side  
FET. In this mode the operating frequency remains relatively constant with load and line variations. The minimum  
load current for continuous conduction mode is one-half the inductor’s ripple current amplitude. The operating  
frequency (in Hz) is programmed by the RON pin resistor and can be calculated from 公式 1 with RON expressed  
in ohms.  
VOUT  
FSW  
=
Hz  
1.008 x 10-10 x RON  
(1)  
In discontinuous conduction mode, current through the inductor ramps up from zero to a peak value during the  
ON-time, then ramps back to zero before the end of the OFF-time. The next ON-time period starts when the  
voltage at FB falls below VSS. When the inductor current is zero during the high side FET off-time, the load  
current is supplied by the output capacitor. In this mode, the operating switching frequency is lower than the  
continuous conduction mode switching frequency and the frequency varies with load. The discontinuous  
conduction mode maintains higher conversion efficiency at light loads since the switching losses decrease with  
the decrease in load and frequency.  
The output voltage is set by two external resistors ( RFB1, RFB2). The regulated output voltage is calculated from  
公式 2, where VREF = 2 V (typical) is the feedback reference voltage.  
VREF ì(RFB2 + RFB1  
)
VOUT  
=
V
RFB1  
(2)  
7.3.2 VCC Regulator  
The LM5161-Q1 contains an internal high voltage linear regulator with a nominal output voltage of 7.3 V (typical).  
The VCC regulator is internally current limited to 30 mA (minimum). This regulator supplies power to internal  
circuit blocks including the synchronous FET gate driver and the logic circuits. When the voltage on the VCC pin  
reaches the undervoltage lockout (VCC(UV)) threshold of 3.98 V (typical), the IC is enabled. An external capacitor  
at the VCC pin stabilizes the regulator and supplies transient VCC current to the gate drivers. An internal diode  
connected from VCC to the BST pin replenishes the charge in the high-side gate drive bootstrap capacitor when  
the SW pin is low.  
In high input voltage applications, the power dissipated in the regulator is significant and can limit the efficiency  
and maximum achievable output power. The LM5161-Q1 allows the internal VCC regulator power loss to be  
reduced by supplying the VCC voltage via a diode from an external voltage source regulated between 9 V and  
13 V. The external VCC bias can be supplied from the LM5161-Q1 converter output rail if the regulation voltage  
is within this range. When the VCC pin of the LM5161-Q1 is raised above the regulation voltage (7.3 V typical),  
the internal regulator is disabled and the power dissipation in the IC is reduced.  
12  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
LM5161-Q1  
www.ti.com.cn  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
Feature Description (接下页)  
7.3.3 Regulation Comparator  
The feedback voltage at the FB pin is compared to the SS pin voltage VSS. In normal operation when the output  
voltage is in regulation, an ON-time period is initiated when the voltage at FB pin falls below VSS. The high-side  
buck switch stays on for the ON-time one-shot period causing the FB voltage to rise. After the on-time period  
expires, the high-side switch will remain off until the FB voltage falls below VSS. During start-up, the FB voltage is  
below VSS at the end of each on-time period and the high-side switch turns on again after the minimum forced  
off-time of 170 ns (typical). When the output is shorted to ground (FB = 0 V), the high side peak current limit is  
triggered, the high-side FET is turned off, and remains off for a period determined by the current limit OFF-time  
one-shot. See the Current Limit section for additional information.  
7.3.4 Soft-Start  
The soft-start feature of the LM5161-Q1 allows the converter to gradually reach a steady-state operating point,  
thereby reducing start-up stresses and current surges. When the EN/UVLO pin is above the EN/UVLO standby  
threshold VUVLO(TH) = 1.24 V (typical) and VCC exceeds the VCC undervoltage VCC(UV) = 3.98 V (typical)  
threshold, an internal 10-µA current source charges the external capacitor at the SS pin (CSS) from 0 V to 2 V.  
The voltage at the SS pin is connected to the noninverting input of the internal FB comparator. The soft-start  
interval ends when the SS capacitor is charged to the 2 V reference level. The ramping voltage at the SS pin  
produces a controlled, monotonic output voltage start-up. A minimum 1-nF soft-start capacitor must be used in all  
applications.  
7.3.5 Error Transconductance (GM) Amplifier  
The LM5161-Q1 provides a trans-conductance (GM) error amplifier that minimizes the difference between the  
reference voltage (VREF) and the average feedback (FB) voltage. This amplifier reduces the load and line  
regulation errors that are common in constant-on-time regulators. The soft-start capacitor (CSS) provides  
compensation for this error correction loop. The soft-start capacitor should be greater than 1 nF to ensure  
stability.  
7.3.6 On-Time Generator  
The ON-time of the LM5161-Q1 high-side FET is determined by the RON resistor and is inversely proportional to  
the input voltage (VIN). The inverse relationship with VIN results in a nearly constant frequency as VIN is varied.  
The ON-time can be calculated from 公式 3 with RON expressed in ohms.  
1.008 x 10-10 x RON  
TON  
=
s
V
IN  
(3)  
To set a specific continuous conduction mode switching frequency (FSW expressed in Hz), the RON resistor is  
determined from 公式 4:  
VOUT  
RON  
=
W
1.008 x 10-10 x FSW  
(4)  
RON must be selected for a minimum on-time (at maximum VIN) greater than 150 ns for proper operation. This  
minimum ON-time requirement limits the maximum switching frequency of applications with relatively high VIN  
and low VOUT  
.
7.3.7 Current Limit  
The LM5161-Q1 provides an intelligent current limit OFF-timer that adjusts the OFF-time to reduce foldback of  
the current limit. If the peak value of the current in the buck switch exceeds 1.6 A (typical) the present ON-time  
period is immediately terminated, and a non-resettable OFF-timer is initiated. The length of the OFF-time is  
controlled by the FB voltage and the input voltage VIN. As an example, when VFB = 0.1-V and VIN = 72-V, the  
OFF-time is set to 13 μs (typical). This condition would occur if the output is shorted or during the initial phase of  
start-up. In cases of output overload where the FB voltage is greater than zero volts (a soft short), the current  
limit OFF-time is reduced. Reducing the OFF-time during less severe overloads reduces the current limit  
foldback, overload recovery time, and start-up time. The current limit off-time, TOFF(CL) is calculated from 公式 5:  
V
IN  
TOFF CL  
=
ms  
(
)
20VFB + 4.35  
(5)  
13  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
 
 
LM5161-Q1  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Feature Description (接下页)  
7.3.8 N-Channel Buck Switch and Driver  
The LM5161-Q1 integrates an N-channel buck switch and associated floating high-side gate driver. The gate  
driver circuit works in conjunction with an external bootstrap capacitor and an internal high voltage bootstrap  
diode. A 10-nF or larger ceramic capacitor connected between the BST pin and the SW pin provides the voltage  
to the high-side driver during the buck switch ON-time. During the OFF-time, the SW node is pulled down to  
approximately 0 V and the bootstrap capacitor charges from VCC through the internal bootstrap diode. The  
minimum OFF-time of 170 ns (typical) provides a minimum time each cycle to recharge the bootstrap capacitor.  
7.3.9 Synchronous Rectifier  
The LM5161-Q1 provides an internal low-side synchronous rectifier N-channel FET. This low-side FET provides  
a low resistance path for the inductor current when the high-side FET is turned off.  
With the FPWM pin connected to ground or left floating, the LM5161-Q1 synchronous rectifier operates in diode  
emulation mode. Diode emulation enables the pulse-skipping during light load conditions. This leads to a  
reduction in the average switching frequency at light loads. Switching losses and FET gate driver losses, both of  
which are proportional to switching frequency, are significantly reduced and efficiency is improved. This pulse-  
skipping mode also reduces the circulating inductor currents and losses associated with a continuous conduction  
mode (CCM). When the FPWM pin is grounded or left floating, an internal ripple injection circuit is enabled. With  
the internal ripple injection enabled, the typical external feedback ripple injection circuit is no longer required.  
This feature reduces the component count in the buck applications. For more details see Forced Pulse Width  
Modulation (FPWM) Mode.  
When the FPWM pin is pulled high, diode emulation is disabled. The inductor current can flow in either direction  
through the low-side FET resulting in CCM operation with nearly constant switching frequency. A negative sink  
current limit circuit limits the current that can flow into the SW pin and through the low-side FET to ground. In a  
buck regulator application, large negative current will only flow from VOUT to the SW pin if VOUT is lifted above the  
output regulation set-point.  
7.3.10 Enable / Undervoltage Lockout (EN/UVLO)  
The LM5161-Q1 contains a dual level undervoltage lockout (EN/UVLO) circuit. When the EN/UVLO pin voltage is  
below 0.35 V (typical), the regulator is in a low current shutdown mode. When the EN/UVLO pin voltage is  
greater than 0.35 V (typical) but less than 1.24 V (typical), the regulator is in standby mode. In standby mode, the  
VCC bias regulator is active but converter switching remains disabled. When the voltage at the VCC pin exceeds  
the VCC rising threshold VCC(UV) = 3.98 V (typical) and the EN/UVLO pin voltage is greater than 1.24 V, normal  
switching operation begins. An external resistor voltage divider from VIN to GND can be used to set the minimum  
operating voltage of the regulator.  
EN/UVLO hysteresis is accomplished with an internal 20-μA (typical) current source (IUVLO(HYS)) that is switched  
on or off into the impedance of the EN/UVLO pin resistor divider. When the EN/UVLO threshold is exceeded, the  
current source is activated to effectively raise the voltage at the EN/UVLO pin. The hysteresis is equal to the  
value of this current times the upper resistance of the resistor divider, (RUV2) (See Functional Block Diagram).  
7.3.11 Thermal Protection  
The LM5161-Q1 must be operated such that the junction temperature does not exceed 150°C during normal  
operation. An internal thermal shutdown circuit is provided to protect the LM5161-Q1 in the event of a higher  
than normal junction temperature. When activated, typically at 175°C, the controller is forced into a low-power  
reset state, disabling the high side buck switch and the VCC regulator. This feature prevents catastrophic failures  
due to device overheating. When the junction temperature falls below 155°C (typical hysteresis = 20°C), the VCC  
regulator is enabled, and operation resumes.  
7.3.12 Ripple Configuration  
LM5161-Q1 uses a Constant-On-Time (COT) control scheme, in which the ON-time is terminated by a one-shot,  
and the OFF-time is terminated by the feedback voltage (VFB) falling below the reference voltage. Therefore, for  
stable operation, the feedback voltage must decrease monotonically and in phase with the inductor current  
during the OFF-time. Furthermore, this change in feedback voltage (VFB) during OFF-time must be large enough  
to dominate any noise present at the feedback node.  
14  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
LM5161-Q1  
www.ti.com.cn  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
Feature Description (接下页)  
1 presents three different methods for generating appropriate voltage ripple at the feedback node. Type 1 and  
Type 2 ripple circuits couple the ripple from the output of the converter to the feedback node (FB). The output  
voltage ripple has two components:  
1. Capacitive ripple caused by the inductor current ripple charging or discharging the output capacitor.  
2. Resistive ripple caused by the inductor current ripple flowing through the ESR of the output capacitor and  
R3.  
The capacitive ripple is out-of-phase with the inductor current. As a result, the capacitive ripple does not  
decrease monotonically during the OFF-time. The resistive ripple is in phase with the inductor current and  
decreases monotonically during the OFF-time. The resistive ripple must exceed the capacitive ripple at output  
(VOUT) for stable operation. If this condition is not satisfied unstable switching behavior is observed in COT  
converters, with multiple ON-time bursts in close succession followed by a long OFF-time.  
Type 3 ripple method uses a ripple injection circuit with RA, CA and the switch node (SW) voltage to generate a  
triangular ramp. This triangular ramp is then AC-coupled into the feedback node (FB) using the capacitor CB.  
Since this circuit does not use the output voltage ripple, it is suited for applications where low output voltage  
ripple is imperative. See application note Controlling Output Ripple and Achieving ESR Independence in  
Constant On-Time (COT) Regulator Designs (SNVA166) for more details for each ripple generation method.  
1. Ripple Configuration  
TYPE 1  
TYPE 2  
TYPE 3  
Lowest Cost  
Reduced Ripple  
Minimum Ripple  
VOUT  
VOUT  
VOUT  
L1  
L1  
L1  
Cff  
R
RA  
CA  
C
FB2  
R3  
R
OUT  
FB2  
R3  
R
FB2  
CB  
To FB  
To FB  
GND  
C
OUT  
C
To FB  
OUT  
R
FB1  
R
FB1  
R
FB1  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
5
Cff  
í
(V  
- VO )ì TON(@V  
IN, min  
IN, min  
)
FSW ì(RFB2 IIRFB1  
25 mV  
)
25 mV ì VO  
R3 í  
RACA  
Ç
25mV  
VREF ì DIL1, min  
(6)  
R3 í  
(8)  
DIL1, min  
(7)  
7.4 Device Functional Modes  
7.4.1 Forced Pulse Width Modulation (FPWM) Mode  
The Synchronous Rectifier section gives a brief introduction to the LM5161-Q1 diode emulation feature. The  
FPWM pin allows the power supply designer to select either CCM or DCM mode of operation at light loads.  
When the FPWM pin is connected to ground or left floating (FPWM = 0), a pulse-skipping mode and the zero-  
cross current detector circuit is enabled. The zero-cross detector turns off the low-side FET when the inductor  
current falls close to zero (IZX, see Electrical Characteristics). This feature allows the LM5161-Q1 regulator to  
operate in DCM mode at light loads. In the DCM state, the switching frequency decreases with lighter loads.  
When the FPWM pin is left open or shorted to ground, the user can take the advantage of the internal ripple  
injection circuit, enabled in this mode, for a typical Buck application circuit. This feature is applicable over the  
entire load and input voltage ranges. It eliminates the need for an external feedback ripple injection circuit.  
版权 © 2016–2017, Texas Instruments Incorporated  
15  
 
 
LM5161-Q1  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
Device Functional Modes (接下页)  
For wide VIN applications where VIN > 72 V, an external VCC supply is commonly used to minimize the power  
dissipation in the IC. In such applications at TJ >125°C, it is recommended to add a BST resistor (> 3Ω) in series  
with the BST capacitor, in order to protect the internal VCC-BST diode during a full load transient operation. The  
addition of the external resistor will reduce the fast (dv/dt) of the switch node that can impact the normal IC  
operation.  
If the FPWM pin is pulled high, the LM5161-Q1 will operate in CCM mode regardless of the load conditions. The  
CCM operation reduces efficiency at light load but improves the output transient response to step load changes  
and provides nearly constant switching frequency. Moreover, the Fly-Buck topology always requires the  
continuous conduction mode during its operation.  
The internal ripple injection circuit is disabled in the CCM mode. An external ripple injection circuit or an  
additional ESR resistor in series with the output capacitor is required to generate the optimal ripple at the FB  
node. Also, there is no need to add any BST resistor in series with the BST capacitor in either forced CCM Buck  
or Fly-Buck application.  
2. FPWM Pin Mode Summary  
FPWM PIN CONNECTION  
LOGIC STAGE  
DESCRIPTION  
The FPWM pin is grounded or left floating. DCM enabled at light  
loads. Internal Ripple circuit is enabled. No external ripple  
circuit/ addition required.  
GND or Floating (High Z)  
0
The FPWM pin is connected to VCC. The LM5161-Q1 then  
operates in CCM mode at light loads. Internal ripple injection  
disabled. External ripple injection needed.  
VCC  
1
7.4.2 Undervoltage Detector  
The following table summarizes the dual threshold levels of the undervoltage lockout (EN/UVLO) circuit  
explained in Enable / Undervoltage Lockout (EN/UVLO) .  
3. UVLO Pin Mode Summary  
EN/UVLO PIN  
VOLTAGE  
VCC REGULATOR  
MODE  
Shutdown  
Standby  
DESCRIPTION  
VCC regulator disabled. High and low side  
FETs disabled.  
< 0.35 V  
Off  
On  
VCC regulator enabled. High and low side  
FETs disabled.  
0.35 V to 1.24 V  
> 1.24 V  
VCC regulator enabled. High and low side  
FETs disabled.  
VCC < VCC(UV)  
VCC > VCC(UV)  
Standby  
Operating  
VCC regulator enabled. Switching enabled.  
If an EN/UVLO setpoint is not required, the EN/UVLO pin can be driven by a logic signal as an enable input or  
connected directly to the VIN pin. If the EN/UVLO is directly connected to the VIN pin, the regulator will begin  
switching when the VCC UVLO is satisfied.  
16  
版权 © 2016–2017, Texas Instruments Incorporated  
LM5161-Q1  
www.ti.com.cn  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
8 Applications and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LM5161-Q1 is a synchronous-buck regulator converter designed to operate over a wide input voltage and  
output current range. Spreadsheet based Quick-Start Calculator tools, available on the www.ti.com product  
website, can be used to design a single output synchronous buck converter or an isolated dual output Fly-Buck  
converter using the LM5161-Q1. See application note Designing an Isolated Buck (Fly-Buck) Converter for a  
detailed design guide for the Fly-Buck converter. Alternatively, the online WEBENCH® Tool can be used to  
create a complete buck or Fly-Buck designs and generate the bill of materials, estimated efficiency, solution size,  
and cost of the complete solution.Typical Applications describes a few application circuits using the LM5161-Q1  
with detailed, step-by-step design procedures.  
8.2 Typical Applications  
8.2.1 LM5161-Q1 Synchronous Buck (15-V to 95-V Input, 12-V Output, 1-A Load)  
A typical application example is a synchronous buck converter operating from a wide input voltage range of 15 V  
to 95 V and providing a stable 12 V output voltage with maximum output current capability of 1 A. The complete  
schematic for a typical buck application circuit with LM5161-Q1 in diode emulation is shown in 25 . In the  
application schematic below, the components are labeled by their respective component numbers instead of the  
descriptive name used in the previous sections. For example, R1 represents RON and so on.  
版权 © 2016–2017, Texas Instruments Incorporated  
17  
 
 
LM5161-Q1  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
J4  
D1  
C1  
U1  
VIN  
SD103AWS-7-F  
40V  
VIN 15 - 80VDC  
0.01µF  
R2  
0
2
1
3
5
11  
BST  
L2  
R1  
RON  
R3  
75.0k  
J1  
13  
12 SW  
402k  
SW  
SW  
VOUT 12VDC  
IOUT 1A  
C4  
2.2µF  
C6  
2.2µF  
C5  
0.1µF  
DR125-101-R  
C7  
4
6
EN/UVLO  
SS  
R4  
0
8
1
2
FPWM  
VCC  
R6  
R7  
10.0k  
10  
J2  
100k  
1000pF  
C9  
0.022uF  
C10  
0.1µF  
9
FB  
C11  
10µF  
C12  
10µF  
1
2
AGND  
PGND  
PAD  
7
NC  
NC  
C13  
1µF  
GND  
15  
14  
SW  
R8  
2.00k  
J3  
GND  
2
1
LM5161PWP  
R9  
6.81k  
GND  
GND  
GND  
JP1  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
25. Synchronous Buck Application Circuit  
18  
版权 © 2016–2017, Texas Instruments Incorporated  
LM5161-Q1  
www.ti.com.cn  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
8.2.1.1 Design Requirements  
A typical synchronous-buck application introduced in LM5161-Q1 Synchronous Buck (15-V to 95-V Input, 12-V  
Output, 1-A Load), 4 summarizes the operating parameters:  
4. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
output  
EXAMPLE VALUE  
15-V to 80-V  
12-V  
Full load current  
1-A  
Nominal switching frequency  
Light load operating mode  
Jumper JP1  
300 kHz  
CCM, FPWM=1  
Pins 1-2 connected  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LM5161-Q1 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.1.2.2 Output Resistor Divider Selection  
With the required output voltage set point at 12 V and VFB = 2 V (typical), the ratio of R8 (RFB1) to R7 (RFB2) can  
be calculated using 公式 9:  
RFB2 VOUT  
=
-1  
RFB1 VREF  
(9)  
The resistor ratio calculates to be 5:1. Standard values of R8 (RFB1) = 2 kand R7 (RFB2 ) =10 kare chosen.  
Higher or lower resistor values could be used as long as the ratio of 5:1 is maintained.  
8.2.1.2.3 Frequency Selection  
The duty cycle required to maintain output regulation at the minimum input voltage restricts the maximum  
switching frequency of LM5161-Q1. The maximum value of the minimum forced OFF-time TOFF,min (max), limits  
the duty cycle and therefore the switching frequency. The maximum frequency that avoids output dropout at  
minimum input voltage can be calculated from 公式 10.  
V
- VOUT  
IN, min  
FSW, max (@V  
=
)
IN, min  
V
IN, min ì TOFF, min(ns)  
(10)  
For this design example, the maximum frequency based on the minimum OFF-time limitation for TOFF,min(typical)  
= 170 ns is calculated to be FSW,max(@VIN,min) = 1.2 MHz. This value is above 1 MHz, the maximum possible  
operating frequency of the LM5161-Q1. Therefore, the minimum OFF-time parameter restricts the maximum  
achievable switching frequency calculation in this application.  
版权 © 2016–2017, Texas Instruments Incorporated  
19  
 
 
 
LM5161-Q1  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
At the maximum input voltage, the maximum switching frequency of LM5161-Q1 is restricted by the minimum  
ON-time, TON,min which limits the minimum duty cycle of the converter. The maximum frequency at maximum  
input voltage can be calculated using 公式 11.  
VOUT  
FSW, max (@V  
=
)
IN, max  
V
IN, max ì TON, min(ns)  
(11)  
Using 公式 11 and TON,min (typ) = 150 ns, the maximum achievable switching frequency is FSW,max(@VIN,min)= 1000  
kHz. Taking this value as the maximum possible operational switching frequency over the input voltage range in  
this application, a nominal switching frequency of FSW = 300 kHz is chosen for this design.  
The value of the resistor, RON sets the nominal switching frequency based on 公式 12.  
VOUT  
RON  
=
W
1.008 x 10-10 x FSW  
(12)  
For this particular application with FSW = 300 kHz, RON calculates to be 396 k. Selecting a standard value for  
R1 (RON) = 402 k(±1%) results in a nominal frequency of 296 kHz. The resistor value may need to adjusted  
further in order to achieve the required switching frequency as the switching frequency in Constant ON-Time  
converters varies slightly(±10%) with input voltage and/or output current. Operation at a lower nominal switching  
frequency will result in higher efficiency but increase in the inductor and capacitor values leading to a larger total  
solution size.  
8.2.1.2.4 Inductor Selection  
The inductor is selected to limit the inductor ripple current to a value between 20 and 40 percent of the maximum  
load current. The minimum value of the inductor required in this application can be calculated from 公式 13:  
VO ì(V  
- VO )  
IN, max  
Lmin  
=
V
IN, max ìFSW ìIO, max ì0.4  
(13)  
Based on 公式 13 , the minimum value of the inductor is calculated to be 85 µH for VIN = 80-V (max) and  
inductor current ripple will be 40 percent of the maximum load current. Allowing some margin for inductance  
variation and inductor saturation, a higher standard value of L1 (L) = 100 µH is selected for this design.  
The peak inductor current at maximum load must be smaller than the minimum current limit threshold of the high  
side FET as given in Electrical Characteristics table. The inductor current ripple at any input voltage is given by:  
VO ì(VIN - VO )  
DIL =  
V ìFSW ìL  
IN  
(14)  
The peak-to-peak inductor current ripple is calculated to be 81 mA and 341 mA at the minimum and maximum  
input voltages respectively. The maximum peak inductor current in the buck FET is given by 公式 15:  
DIL, max  
IL(peak) = IO, max  
+
2
(15)  
In this design with maximum output current of 1-A, the maximum peak inductor current is calculated to be  
approximately 1.17 A at VIN,max = 80 V, which is less than the minimum high-side FET current limit threshold.  
The saturation current of the inductor must also be carefully considered. The peak value of the inductor current  
will be bound by the high side FET current limit during overload or short circuit conditions. Based on the high  
side FET current limit specification in the Electrical Characteristics, an inductor with saturation current rating  
above 1.9 A (max) should be selected.  
8.2.1.2.5 Output Capacitor Selection  
The output capacitor is selected to limit the capacitive ripple at the output of the regulator. Maximum capacitive  
ripple is observed at maximum input voltage. The output capacitance required for a ripple voltage VO across the  
capacitor is given by 公式 16.  
DIL, max  
COUT  
=
8ìFSW ì DVO, ripple  
(16)  
20  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
 
 
 
LM5161-Q1  
www.ti.com.cn  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
Substituting VO, ripple = 10 mV gives COUT = 15 μF. Two standard 10 μF ceramic capacitors in parallel (C11,  
C12) are selected. An X7R type capacitor with a voltage rating 25 V or higher should be used for COUT (C11,  
C12) to limit the reduction of capacitance due to dc bias voltage.  
8.2.1.2.6 Series Ripple Resistor - RESR (FPWM = 1)  
If the FPWM = 1, i.e. the FPWM pin is pulled high as when connected to VCC, a series resistor in series with the  
output capacitor or the external ripple injection circuit must be selected such that sufficient ripple injection (>  
25mV) is ensured at the feedback pin FB. The ripple produced by RESR is proportional to the inductor current  
ripple, and therefore, RESR should be chosen for minimum inductor current ripple which occurs at minimum input  
voltage. The RESR is calculated by 公式 17.  
25 mV ì VO  
VREF ì DIL, min  
RESR  
í
(17)  
With VO = 12 V, VREF = 2 V and ΔIL, min = 81 mA (at VIN, min= 15 V) as calculated in 公式 14, 公式 17 requires an  
RESR greater than or equal to 1.87 . Selecting R4 (RESR) = 2 results in approximately 700 mV of maximum  
output voltage ripple at VIN,max. However due to the internal DC Error correction loop, the load and line regulation  
will be much improved, despite the addition of a large RESR in the circuit. For applications which require even  
lower output voltage ripple, Type 2 or Type 3 ripple injection circuits must be used, as described in Ripple  
Configuration. In this design example, with the FPWM =1 (i.e. the FPWM pin is pulled up to VCC) a 0 ESR  
resistor is selected and the external Type 3 ripple injection circuit is used.  
8.2.1.2.7 VCC and Bootstrap Capacitor  
The VCC capacitor charges the bootstrap capacitor during the OFF-time of the high-side switch and powers  
internal logic circuits and the low side sync FET gate driver. The bootstrap capacitor biases the high-side gate  
driver during the high-side FET ON-time. A good value for C13 (CVCC) is 1 µF. A good choice for C1 (CBST) is 10  
nF. Both must be high quality X7R ceramic capacitors.  
8.2.1.2.8 Input Capacitor Selection  
The input capacitor must be large enough to limit the input voltage ripple to an acceptable level. 公式 18 provides  
the input capacitance CIN required for a worst case input ripple of VIN, ripple  
.
IO, max ì D ì (1-D)  
CIN  
=
DVIN, ripple ìFSW  
(18)  
CIN (C4, C6) supplies most of the switch current during the ON-time to limit the voltage ripple at the VIN pin. At  
maximum load current, when the buck switch turns on, the current into the VIN pin quickly increases to the valley  
current of the inductor ripple and then ramps up to the peak of the inductor ripple during the ON-time of the high-  
side FET. The average current during the ON-time is the output load current. For a worst-case calculation, CIN  
must supply this average load current during the maximum ON-time, without letting the voltage at VIN drop more  
than the desired input ripple. For this design, the input voltage drop is limited to 0.5 V and the value of CIN is  
calculated using 公式 18.  
Based on 公式 18, the value of the input capacitor is calculated to be approximately 1.68 µF at D = 0.5. Taking  
into account the decrease in capacitance over an applied voltage, two standard value ceramic capacitors of 2.2  
μF are selected for C4 and C6. The input capacitors should be rated for the maximum input voltage under all  
operating and transient conditions. A 100-V, X7R dielectric was selected for this design.  
A third input capacitor C5 is needed in this design as a bypass path for the high frequency component of the  
input switching current. The value of C5 is 0.1 μF and this bypass capacitor must be placed directly across VIN  
and PGND (pin 3 and 2) near the IC. The CIN values and location are critical to reducing switching noise and  
transients.  
8.2.1.2.9 Soft-Start Capacitor Selection  
The capacitor at the SS pin determines the soft-start time, that is the time for the output voltage to reach its final  
steady state value. The capacitor value is determined from 公式 19:  
ISS ì TStartup  
CSS  
=
VSS  
(19)  
21  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
LM5161-Q1  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
With C9 (CSS) set at 22 nF and the Vss = 2 V, ISS = 10 µA, the TStartup should measure approximately 4 ms.  
8.2.1.2.10 EN/UVLO Resistor Selection  
The UVLO resistors R3 (RUV2) and R9 (RUV1) set the input undervoltage lockout threshold and hysteresis  
according to 公式 20 and 公式 21:  
V
= IUVLO(HYS) ìRUV2  
IN(HYS)  
(20)  
and,  
÷
RUV2  
V
= VUVLO(TH) 1+  
IN,UVLO(rising)  
RUV1 ◊  
«
(21)  
From the Electrical Characteristics, IUVLO(HYS) = 20 μA (typical). To design for VIN rising threshold (VIN, UVLO(rising)  
)
at 15 V and EN/UVLO hysteresis of 1.5 V, 公式 20 and 公式 21 yield RUV1 = 6.81 kand RUV2 = 75 k.  
Selecting 1% standard value of R9 (RUV1) = 6.81 kand R3 (RUV2) = 75 kresults in UVLO threshold (rising)  
and hysteresis of 14.9 V and 1.5 V respectively.  
8.2.1.3 Application Curves  
100  
95  
90  
85  
80  
75  
12.12  
12.1  
Ext-VCC  
12.08  
12.06  
12.04  
12.02  
12  
11.98  
11.96  
11.94  
11.92  
11.9  
Int-VCC  
Ext-VCC  
FPWM = 1  
VIN = 24 V  
VIN = 48 V  
VIN = 60 V  
VIN = 24 V  
VIN = 48 V  
VIN = 60 V  
FPWM = 1  
11.88  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Load Current (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Load Current (A)  
1
27. Efficiency vs IOUT (FPWM = 1)  
26. Load Regulation  
28. EN/UVLO Startup at VIN= 48 V and IOUT = 1 A  
29. Pre-Bias (11.5 V) Startup at VIN= 48 V at No Load &  
FPWM = 1  
22  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
LM5161-Q1  
www.ti.com.cn  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
30. EN/UVLO Startup at VIN= 48 V and RLOAD = 12 Ω at  
31. Load Transient (0 A - 1 A) at VIN = 48 V  
FPWM = 1  
at FPWM = 0  
32. Load Transient (0 A - 1 A) at VIN = 48 V  
33. Output Short-Circuit at VIN = 48 V  
at FPWM = 1  
(Full Load to Short)  
8.2.2 LM5161-Q1 Isolated Fly-Buck (36-V to 72-V Input, 12-V, 12-W Isolated Output)  
A typical application example for an isolated Fly-Buck converter operates over an input voltage range of 36 V to  
72 V. It provides a stable 12 V isolated output voltage with output power capability of 10 W. The complete  
schematic of the Fly-Buck application circuit is shown in 34.  
版权 © 2016–2017, Texas Instruments Incorporated  
23  
LM5161-Q1  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
C1  
2200pF  
GND  
ISOGND  
1
2
R1  
0
C2  
10µF  
C3  
10µF  
R2  
2.00k  
J1  
D1  
VOUTISO  
12VSEC  
MBR1H100SFT3G  
C17  
2200pF  
T1  
60µH  
TP1  
GND  
U1  
VIN  
C4  
R3  
0
VIN  
3
5
11  
BST  
VOUT  
R4  
R5  
100k  
0.01µF  
SW  
C5  
RON  
R6  
13  
12  
402k  
SW  
SW  
36-72VIN  
C8  
2.2µF  
C9  
2.2µF  
C10  
0.1µF  
100k  
1000pF  
J2  
4
6
J3  
EN/UVLO  
SS  
2
1
8
VOUT  
1
2
FPWM  
D2  
C11  
0.1µF  
R7  
10.7k  
C12  
10µF  
C13  
10µF  
10  
VCC  
FB  
VPRI  
SD103AWS-7-F  
R9  
3.57k  
9
1
2
AGND  
PGND  
PAD  
C14  
0.022µF  
7
14  
NC  
NC  
C15  
1µF  
R10  
2.00k  
J4  
15  
1
GND  
1040  
LM5161PWPR  
GND  
GND  
GND  
GND  
GND  
SW  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
34. 12-V, 10-W Fly-Buck Schematic  
24  
版权 © 2016–2017, Texas Instruments Incorporated  
 
LM5161-Q1  
www.ti.com.cn  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
8.2.2.1 LM5161-Q1 Fly-Buck Design Requirements  
The LM5161-Q1 Fly-Buck application example is designed to operate from a nominal 48-V DC supply with line  
variations from 36-V to 72-V. This example provides a space-optimized and efficient 12-V isolated output solution  
with secondary load current capability from 0-A to 800 mA. The primary side remains unloaded in this  
application. The switching frequency is set at 300 kHz (nominal). This design achieves greater than 88% peak  
efficiency.  
5. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
36 V - 72 V  
12 V (+/- 10%)  
0-A to 0.8-A  
300 KHz  
Isolated output  
Isolated load current range (IISO  
Nominal switching frequency  
Peak efficiency  
)
~87%  
Operation mode  
FPWM = 1  
8.2.2.2 Detailed Design Procedure  
The Fly-Buck converter design procedure closely follows the buck converter design outlined in LM5161-Q1  
Synchronous Buck (15-V to 95-V Input, 12-V Output, 1-A Load). The selection of primary output voltage,  
transformer turns ratio, rectifier diode, and output capacitors are covered here.  
8.2.2.2.1 Selection of VOUT and Turns Ratio  
The primary output voltage in a Fly-Buck converter should be no more than one half of the minimum input  
voltage. Therefore, at the minimum VIN of 36 V, the primary output voltage ( VOUT ) should be no higher than 18  
V. The isolated output voltage of VOUTISO in 34 is set at 12 V by selecting a transformer with a turns ratio  
(N1:N2 :: NPRI:NSEC) of 1:1. Using this turns ratio, the required primary output voltage VOUT is calculated in 公式  
22:  
VOUTISO + VFD1 VOUTISO + 0.7V  
VOUT  
=
=
= 12.7 V  
N2  
1
N1  
(22)  
The 0.7 V (VFD1) added to VOUTISO in 公式 22 represents the forward voltage drop of the secondary rectifier  
diode. By setting the primary output voltage VOUT to 12.7-V by selecting the correct feedback resistors, the  
secondary voltage is regulated at 12-V nominally. Adjustment of the primary side VOUT may be required to  
compensate for voltage errors due to the leakage inductance of the transformer, the resistance of the transformer  
windings, the diode drop in the power path on the secondary side and the low-side FET of the LM5161-Q1.  
8.2.2.2.2 Secondary Rectifier Diode  
The secondary side rectifier diode must block the maximum input voltage reflected at secondary side switch  
node. The minimum diode reverse voltage V(RD1) rating is given in 公式 23:  
N2  
VRD1 = V  
x
+ VOUTISO = 72V x 1+12V = 84V  
IN(max)  
N1  
(23)  
A diode of 100-V or higher reverse voltage rating must be selected in this application. If the input voltage (VIN)  
has transients above the normal operating maximum input voltage of 72 V, then the worst-case transient input  
voltage must be used in the 公式 23 while selecting the secondary side rectifier diode.  
8.2.2.2.3 External Ripple Circuit  
The FPWM pin in the LM5161-Q1 should never be grounded or left open when used in a Fly-Buck application.  
Type 3 ripple circuit is required for Fly-Buck applications. Follow the design procedure used in the buck converter  
for selecting the Type 3 ripple injection components. See Ripple Configuration for ripple design information.  
版权 © 2016–2017, Texas Instruments Incorporated  
25  
 
 
LM5161-Q1  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
8.2.2.2.4 Output Capacitor (CVISO  
)
The Fly-Buck output capacitor conducts higher ripple current than a buck converter output capacitor. The ripple  
voltage across the isolated output capacitor is calculated based on the time the rectifier diode is off. During this  
time the entire output current is supplied by the output capacitor. The required capacitance for the worst-case  
ripple voltage can be calculated using 公式 24 where, ΔVISO is the expected ripple voltage at the secondary  
output.  
I
VPRI  
1
ISO  
CV  
=
ì
«
÷
÷
ISO  
DV  
V
fsw  
ISO  
IN(MIN)  
(24)  
公式 24 is an approximation and ignores the ripple components associated with ESR and ESL of the output  
capacitor. For a ΔVISO = 100 mV, 公式 24 requires CVISO = 11.12 µF. When selecting the CVISO output capacitors  
(C2 and C3 in the 34), the DC bias must be considered in order to ensure sufficient capacitance over the  
output voltage.  
8.2.2.3 Application Curves  
13.2  
12.8  
12.4  
12  
100  
90  
80  
70  
60  
50  
VIN= 36 V  
VIN= 48 V  
VIN= 72 V  
11.6  
11.2  
10.8  
VIN= 36 V  
VIN= 48 V  
VIN= 72 V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
Isolated Secondary Load Current (A)  
Isolated Secondary Load Current (A)  
35. Load Regulation  
36. Efficiency vs. IISO  
37. Steady State at VIN = 48 V  
38. Secondary Load Transient  
and IOUT2 = 500 mA  
at IISO = 250 mA - 750 mA  
26  
版权 © 2016–2017, Texas Instruments Incorporated  
 
LM5161-Q1  
www.ti.com.cn  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
39. VIN Startup at IISO = 500 mA  
40. Secondary-Side Short at IOUT2 = 0 A  
and IPRI = 0 A  
8.3 Do's and Don'ts  
As mentioned earlier in Soft-Start, the SS capacitor CSS, must be more than 1 nF in both Buck and Fly-Buck  
applications. Apart from determining the startup time, this capacitor serves for the external compensation of the  
internal GM error amplifier. A minimum value of 1 nF is necessary to maintain stability. The SS pin must not be  
left floating.  
When the FPWM pin is shorted to ground or left unconnected, no external ripple injection is necessary in a Buck  
application. Should an external feedback ripple circuit be configured when FPWM = 0, it will produce higher  
ripple at the output.  
Add a resistor (>3Ω) in series with the BST capacitor when using the part in FPWM = 0, as described in detail in  
Forced Pulse Width Modulation (FPWM) Mode.  
When configured as a Fly-Buck, the FPWM pin should always be connected to VCC. A Fly-Buck application must  
operate in the continuous conduction mode all the time in order to maintain adequate voltage regulation on the  
secondary side. FPWM = 0 is not a valid mode in the Fly-Buck application.  
版权 © 2016–2017, Texas Instruments Incorporated  
27  
LM5161-Q1  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
9 Power Supply Recommendations  
The LM5161-Q1 is designed to operate with an input power supply capable of supplying a voltage range  
between 4.5 V and 100 V. The power supply should be well regulated and capable of supplying sufficient current  
to the regulator during the sync buck mode or the isolated Fly-Buck mode of operation. As in all DC/DC  
applications, the power supply source impedance must be small compared to the converter input impedance in  
order to maintain the stability of the converter.  
If the LM5161-Q1 is used in a buck topology with low input supply voltage (4.5 V) and large load current (1 A), it  
is prudent to add a large electrolytic capacitor, in parallel the CIN capacitors. The electrolytic capacitor will  
stabilize the input voltage to the IC and prevent droop or oscillation, over the entire load range. Also, it is  
necessary to add the electrolytic capacitor or a ceramic capacitor in series with appropriate ESR, parallel to the  
input capacitors CIN, in order to dampen the input voltage spikes, as seen by the LM5161-Q1 when connected to  
a power supply with long power leads. These input voltage spikes can easily be twice the input voltage step  
amplitude and a damping capacitor is necessary to contain the input voltage to less than 100V in order to protect  
the LM5161-Q1.  
10 Layout  
10.1 Layout Guidelines  
A proper layout is essential for optimum performance of the circuit. In particular, observe the following layout  
guidelines:  
CIN: The loop consisting of input capacitor (CIN), VIN pin, and PGND pin carries the switching current.  
Therefore, in the LM5161-Q1, the input capacitor must be placed close to the IC, directly across VIN and  
PGND pins, and the connections to these two pins should be direct to minimize the loop area. In general it is  
not possible to place all of input capacitances near the IC. However, a good layout practice includes placing  
the bulk capacitor as close as possible to the VIN pin (see 41). When using the LM5161-Q1 HTSSOP-14  
package, a bypass capacitor (Cbyp) measuring ~0.1 μF must be placed directly across VIN and PGND (pin 3  
and 2), as close as possible to the IC while complying with all layout design rules.  
The RON resistor between the VIN and the RON pin and the SS capacitor should be placed as close as  
possible to their respective pins.  
CVCC and CBST: The VCC and bootstrap (BST) bypass capacitors supply switching currents to the high-side  
and low-side gate drivers. These two capacitors should also be placed as close to the IC as possible, and the  
connecting trace lengths and the loop area must be kept at minimum (see 41).  
The feedback trace carries the output voltage information and a small ripple component that is necessary for  
proper operation of the LM5161-Q1. Therefore, care must be taken while routing the feedback trace to avoid  
coupling any noise into this pin. In particular, the feedback trace must be short and not run close to magnetic  
components, or parallel to any other switching trace.  
In FPWM=1 mode, if a ripple injection circuit is being used for ripple generation at the FB pin, it is considered  
a good layout practice to lay out the feedback ripple injection DC trace and the VOUT trace differentially. This  
scheme helps in reducing the scope for any noise injection at the FB pin.  
SW trace: The SW node switches rapidly between VIN and GND every cycle and is therefore a source of  
noise. The SW node area must be kept at minimum. In particular, the SW node should not be inadvertently  
connected to a copper plane or pour.  
28  
版权 © 2016–2017, Texas Instruments Incorporated  
LM5161-Q1  
www.ti.com.cn  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
10.2 Layout Example  
VOUT  
CA  
COUT  
LIND  
GND  
AGND  
PGND  
VIN  
NC  
Cbyp  
RA  
CIN  
SW  
SW  
SW  
BST  
VLINE  
CBST  
CVCC  
LM5161  
EN/  
UVLO  
RUV  
RON  
EXP PAD  
VCC  
FB  
RON  
SS  
CB  
CSS  
FPWM  
NC  
RFB2  
RFB1  
Via to Ground Plane  
Copyright © 2016, Texas Instruments Incorporated  
41. Typical Buck Layout Example  
版权 © 2016–2017, Texas Instruments Incorporated  
29  
LM5161-Q1  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 使用 WEBENCH® 工具创建定制设计  
请单击此处,使用 LM5161-Q1 器件并借助 WEBENCH® 电源设计器创建定制设计。  
1. 首先键入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化关键参数设计,如效率、封装和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案导出至常用 CAD 格式  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com/WEBENCH。  
11.2 相关文档  
请参阅如下相关文档:  
AN-2292《设计隔离式降压 (Fly-buck) 转换器》(SNVA647)  
CAN-1481《使用恒定导通时间稳压器设计控制输出纹波并实现 ESR 独立性》(SNVA166)  
11.3 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
30  
版权 © 2016–2017, Texas Instruments Incorporated  
LM5161-Q1  
www.ti.com.cn  
ZHCSFE2A AUGUST 2016REVISED NOVEMBER 2017  
12 机械、封装和可订购信息  
以下页中包括机械封装、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。数据如有变更,恕不另  
行通知和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2016–2017, Texas Instruments Incorporated  
31  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM5161QPWPRQ1  
LM5161QPWPTQ1  
ACTIVE  
HTSSOP  
HTSSOP  
PWP  
14  
14  
2500 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
LM5161  
QPWPQ1  
ACTIVE  
PWP  
SN  
LM5161  
QPWPQ1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM5161QPWPRQ1  
LM5161QPWPTQ1  
HTSSOP PWP  
HTSSOP PWP  
14  
14  
2500  
250  
330.0  
178.0  
12.4  
12.4  
6.9  
6.9  
5.6  
5.6  
1.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM5161QPWPRQ1  
LM5161QPWPTQ1  
HTSSOP  
HTSSOP  
PWP  
PWP  
14  
14  
2500  
250  
356.0  
208.0  
356.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PWP0014A  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.6  
6.2  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
12X 0.65  
14  
1
2X  
5.1  
4.9  
3.9  
NOTE 3  
7
8
0.30  
14X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
4X (0.2)  
NOTE 5  
4X (0.05)  
NOTE 5  
8
7
THERMAL  
PAD  
0.25  
GAGE PLANE  
3.255  
3.205  
15  
1.2 MAX  
0.15  
0.05  
0 - 8  
14  
1
0.75  
0.50  
DETAIL A  
(1)  
TYPICAL  
3.155  
3.105  
4214867/A 09/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ and may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0014A  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
(3.155)  
SYMM  
SOLDER MASK  
DEFINED PAD  
SEE DETAILS  
14X (1.5)  
1
14  
14X (0.45)  
(1.1)  
TYP  
15  
SYMM  
(3.255)  
(5)  
NOTE 9  
12X (0.65)  
8
7
(
0.2) TYP  
VIA  
(R0.05) TYP  
(1.1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-14  
4214867/A 09/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0014A  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.155)  
BASED ON  
0.125 THICK  
STENCIL  
14X (1.5)  
(R0.05) TYP  
1
14  
14X (0.45)  
15  
(3.255)  
BASED ON  
0.125 THICK  
STENCIL  
SYMM  
12X (0.65)  
8
7
SEE TABLE FOR  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.8)  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.53 X 3.64  
3.155 X 3.255 (SHOWN)  
2.88 X 2.97  
0.125  
0.15  
0.175  
2.67 X 2.75  
4214867/A 09/2016  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LM5161QPWPTQ1

4.5V 至 100V 宽输入电压、1A 同步降压/Fly-Buck 转换器 | PWP | 14 | -40 to 125
TI

LM5163

具有超低 IQ 的 100V 输入、0.5A 同步降压直流/直流转换器
TI

LM5163-Q1

具有超低 IQ 的汽车类 100V 输入、0.5A 同步降压直流/直流转换器
TI

LM5163DDAR

具有超低 IQ 的 100V 输入、0.5A 同步降压直流/直流转换器 | DDA | 8 | -40 to 150
TI

LM5163H-Q1

具有超低 IQ 的 100V 输入、0.5A 同步高温降压直流/直流转换器
TI

LM5163HQDDARQ1

具有超低 IQ 的 100V 输入、0.5A 同步高温降压直流/直流转换器 | DDA | 8 | -40 to 165
TI

LM5163QDDARQ1

具有超低 IQ 的汽车类 100V 输入、0.5A 同步降压直流/直流转换器 | DDA | 8 | -40 to 150
TI

LM5164

具有超低 IQ 的 6V 至 100V 输入、1A 同步直流/直流降压转换器
TI

LM5164-Q1

具有超低 IQ 的 6V 至 100V 输入、1A 同步直流/直流降压转换器
TI

LM5164DDAR

具有超低 IQ 的 6V 至 100V 输入、1A 同步直流/直流降压转换器 | DDA | 8 | -40 to 150
TI

LM5164DDAT

具有超低 IQ 的 6V 至 100V 输入、1A 同步直流/直流降压转换器 | DDA | 8 | -40 to 150
TI

LM5164QDDARQ1

具有超低 IQ 的 6V 至 100V 输入、1A 同步直流/直流降压转换器 | DDA | 8 | -40 to 150
TI