LM5022 [TI]

6V 至 60V 宽输入电压、电流模式升压、SEPIC 和反激式控制器;
LM5022
型号: LM5022
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

6V 至 60V 宽输入电压、电流模式升压、SEPIC 和反激式控制器

控制器
文件: 总40页 (文件大小:2157K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM5022  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
适用于升压和 SEPIC 稳压器的 LM5022 60V 低侧控制器  
1 特性  
3 说明  
1
内部 60V 启动稳压器  
LM5022 器件是一款适用于升压和 SEPIC 稳压器的高  
压、低侧、N 沟道 MOSFET 控制器。该器件包含 实  
施 单端主要拓扑所需的全部特性。输出电压调节基于  
电流模式控制,这不仅简化了环路补偿的设计,同时还  
能够提供固有输入电压前馈。LM5022 包含一个启动稳  
压器,该稳压器能够在 6V 60V 的宽输入范围内工  
作。PWM 控制器专为高速性能而设计,包含一个振荡  
器,振荡器频率范围高达 2.2MHz,总传播延迟低于  
100ns。其他 功能 还包括误差放大器、精密基准、线  
路欠压锁定、逐周期电流限制、斜率补偿、软启动、外  
部同步功能和热关断。LM5022 采用 10 引脚 VSSOP  
封装。  
峰值电流为 1A 的金属氧化物半导体场效应晶体管  
(MOSFET) 栅极驱动器  
VIN 范围:6V 60V(启动后,最低可以在 3V 下  
工作)  
占空比限值 90%  
可编程 UVLO 磁滞  
逐周期电流限制  
外部器件可同步(交流耦合)  
单个电阻振荡器频率设置  
斜率补偿  
可调节软启动  
10 引脚超薄小外形尺寸 (VSSOP) 封装  
器件信息(1)  
器件型号  
LM5022  
封装  
封装尺寸(标称值)  
2 应用  
VSSOP (10)  
3.00mm × 3.00mm  
升压转换器  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
SEPIC 转换器  
典型应用  
VIN  
L1  
D1  
VO  
CIN  
CO  
Q1  
RS1  
VIN  
RT  
OUT  
RT  
RUV2  
RSNS  
CS  
CCS  
CF  
UVLO  
SS  
GND  
CSS  
RUV1  
VCC  
RFB2  
COMP  
R1  
FB  
C2  
RFB1  
C1  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVS480  
 
 
 
 
LM5022  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 12  
8
9
Application and Implementation ........................ 14  
8.1 Application Information............................................ 14  
8.2 Typical Application .................................................. 14  
Power Supply Recommendations...................... 28  
10 Layout................................................................... 29  
10.1 Layout Guidelines ................................................. 29  
10.2 Layout Examples................................................... 30  
11 器件和文档支持 ..................................................... 32  
11.1 器件支持................................................................ 32  
11.2 文档支持................................................................ 32  
11.3 接收文档更新通知 ................................................. 32  
11.4 社区资源................................................................ 32  
11.5 ....................................................................... 32  
11.6 静电放电警告......................................................... 32  
11.7 Glossary................................................................ 32  
12 机械、封装和可订购信息....................................... 32  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision H (December 2016) to Revision I  
Page  
Changed 1 To: C2 in Equation 55........................................................................................................................................ 24  
Changes from Revision G (December 2013) to Revision H  
Page  
已添加 添加了 ESD 额定值 表、特性 说明 部分、器件功能模式应用和实施 部分、电源建议 部分、布局 部分、器  
件和文档支持 部分,以及机械、封装和可订购信息 部分 ....................................................................................................... 1  
Deleted soldering temperature (215°C Vapor phase maximum and 220°C Infrared maximum) ........................................... 4  
Changed Junction to Ambient Thermal Resistance, RθJA, value From: 200 To: 161.5.......................................................... 4  
Changed slope compensation amplitude, VSLOPE, values From: 80 To: 83 (Minimum), From: 105 To: 110 (Typical),  
and From: 130 To: 137 (Maximum)........................................................................................................................................ 5  
Changes from Revision F (March 2013) to Revision G  
Page  
Changed timing resistor equation. Incorrect change when converting to TI format............................................................. 12  
Changes from Revision E (March 2013) to Revision F  
Page  
已更改 将美国国家半导体数据表的布局更改为 TI 格式 .......................................................................................................... 1  
2
Copyright © 2007–2017, Texas Instruments Incorporated  
 
LM5022  
www.ti.com.cn  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
5 Pin Configuration and Functions  
DGS Package  
10-Pin VSSOP  
Top View  
VIN  
FB  
1
10  
9
SS  
2
3
4
5
RT/SYNC  
CS  
COMP  
VCC  
OUT  
8
7
UVLO  
GND  
6
Not to scale  
Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
1
VIN  
I
I
Source input voltage: Input to the startup regulator. Operates from 6 V to 60 V.  
Feedback pin: Inverting input to the internal voltage error amplifier. The noninverting input of the error  
amplifier connects to a 1.25-V reference.  
2
3
FB  
Error amplifier output and PWM comparator input: The control loop compensation components connect  
between this pin and the FB pin.  
COMP  
I/O  
O
Output of the internal, high-voltage linear regulator: This pin must be bypassed to the GND pin with a  
ceramic capacitor.  
4
5
VCC  
OUT  
Output of MOSFET gate driver: Connect this pin to the gate of the external MOSFET. The gate driver has  
a 1-A peak current capability.  
O
I
6
7
8
GND  
UVLO  
CS  
System ground  
Input undervoltage lockout: Set the start-up and shutdown levels by connecting this pin to the input voltage  
through a resistor divider. A 20-µA current source provides hysteresis.  
I
Current sense input: Input for the switch current used for current mode control and for current limiting.  
Oscillator frequency adjust pin and synchronization input: An external resistor connected from this pin to  
GND sets the oscillator frequency. This pin can also accept an AC-coupled input for synchronization from  
an external clock.  
9
RT/SYNC  
SS  
I
I
Soft-start pin: An external capacitor placed from this pin to ground is charged by a 10-µA current source,  
creating a ramp voltage to control the regulator start-up.  
10  
Copyright © 2007–2017, Texas Instruments Incorporated  
3
LM5022  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
65  
UNIT  
VIN to GND  
V
V
V
V
V
VCC to GND  
16  
RT/SYNC to GND  
OUT to GND  
5.5  
–1.5 for < 100 ns  
–0.3  
All other pins to GND  
Power dissipation  
7
Internally limited  
150  
(3)  
Junction temperature, TJ  
°C  
°C  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(3) High junction temperatures degrade operating lifetimes. Operating lifetime is derated for junction temperatures greater than 125°C.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)(2)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(3)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) The human-body model is a 100-pF capacitor discharged through a 1.5-kresistor into each pin.  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply voltage  
6
7.5  
60  
14  
V
V
External voltage at VCC  
Junction temperature  
–40  
125  
°C  
(1) Device thermal limitations may limit usable range  
6.4 Thermal Information  
LM5022  
THERMAL METRIC(1)  
DGS (VSSOP)  
UNIT  
10 PINS  
161.5  
56  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
81.3  
5.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
80  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2007–2017, Texas Instruments Incorporated  
 
LM5022  
www.ti.com.cn  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
6.5 Electrical Characteristics  
Typical limits apply for TJ=25°C and are provided for reference purposes only; minimum and maximum limits apply over the  
junction temperature (TJ) range of –40°C to 125°C. VIN = 24 V and RT = 27.4 kΩ (unless otherwise noted).(1)  
PARAMETER  
SYSTEM PARAMETERS  
VFB FB pin voltage  
STARTUP REGULATOR  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
1.225  
1.25 1.275  
V
V
10 V VIN 60 V, ICC = 1 mA  
6.6  
5
7
7.4  
4
VCC  
VCC regulation(2)  
6 V VIN < 10V,  
VCC Pin Open Circuit  
OUT Pin Capacitance = 0,  
VCC = 10 V  
VCC = 0 V(2)(3)  
ICC  
Supply current  
3.5  
35  
mA  
mA  
mV  
ICC-LIM  
VIN - VCC  
VCC current limit  
15  
ICC = 0 mA, ƒSW < 200 kHz,  
6 V VIN 8.5 V  
Dropout voltage across bypass switch  
200  
VBYP-HI  
Bypass switch turnoff threshold  
VIN increasing  
VIN Decreasing  
VIN = 6 V  
8.7  
260  
58  
V
VBYP-HYS  
Bypass switch threshold hysteresis  
mV  
VCC pin output impedance  
0 mA ICC 5 mA  
ZVCC  
VIN = 8 V  
53  
Ω
VIN = 24 V  
1.6  
5
VCC-HI  
VCC-HYS  
IVIN  
VCC pin UVLO rising threshold  
VCC pin UVLO falling hysteresis  
Startup regulator leakage  
Shutdown current  
V
300  
150  
350  
mV  
µA  
µA  
VIN = 60 V  
500  
450  
IIN-SD  
VUVLO = 0 V, VCC = Open Circuit  
ERROR AMPLIFIER  
GBW  
ADC  
Gain bandwidth  
4
75  
17  
MHz  
dB  
DC gain  
ICOMP  
UVLO  
VSD  
COMP pin current sink capability  
VFB = 1.5 V, VCOMP = 1 V  
5
mA  
Shutdown threshold  
1.22  
16  
1.25  
20  
1.28  
24  
V
ISD-HYS  
Shutdown hysteresis current source  
µA  
CURRENT LIMIT  
CS steps from 0 V to 0.6 V, OUT  
transitions to 90% of VCC  
tLIM-DLY  
Delay from ILIM to output  
30  
ns  
VCS  
Current limit threshold voltage  
Leading edge blanking time  
CS pin sink impedance  
0.45  
0.5  
65  
40  
0.55  
75  
V
ns  
Ω
tBLK  
RCS  
Blanking active  
SOFT START  
ISS  
Soft-start current source  
Soft start to COMP offset  
7
10  
13  
µA  
V
VSS-OFF  
0.35  
0.55  
0.75  
(1) All Minimum and Maximum limits are specified by correlating the electrical characteristics to process and temperature variations and  
applying statistical process control. The junction temperature (TJ in °C) is calculated from the ambient temperature (TA in °C) and power  
dissipation (PD in Watts) as follows: TJ = TA + (PD × RθJA) where RθJA (in °C/W) is the package thermal impedance provided in Thermal  
Information.  
(2) VCC provides bias for the internal gate drive and control circuits.  
(3) Device thermal limitations may limit usable range.  
Copyright © 2007–2017, Texas Instruments Incorporated  
5
 
LM5022  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
Typical limits apply for TJ=25°C and are provided for reference purposes only; minimum and maximum limits apply over the  
junction temperature (TJ) range of –40°C to 125°C. VIN = 24 V and RT = 27.4 kΩ (unless otherwise noted).(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OSCILLATOR  
fSW  
RT to GND = 84.5 kΩ  
170(4)  
525  
200  
600  
990  
230  
675  
kHz  
kHz  
kHz  
V
RT to GND = 27.4 kΩ  
See(4)  
See(4)  
RT to GND = 16.2 kΩ  
865  
1115  
3.8  
VSYNC-HI  
Synchronization rising threshold  
PWM COMPARATOR  
VCOMP = 2 V, CS stepped  
from 0 V to 0.4 V  
tCOMP-DLY  
Delay from COMP to OUT transition  
25  
ns  
DMIN  
Minimum duty cycle  
VCOMP = 0 V  
0%  
DMAX  
Maximum duty cycle  
90%  
95%  
0.33  
5.2  
APWM  
COMP to PWM comparator gain  
COMP pin open circuit voltage  
COMP pin short circuit current  
V/V  
V
VCOMP-OC  
ICOMP-SC  
VFB = 0 V  
4.3  
0.6  
6.1  
1.5  
VCOMP = 0 V, VFB = 1.5 V  
1.1  
mA  
SLOPE COMPENSATION  
VSLOPE  
Slope compensation amplitude  
83  
110  
137  
mV  
MOSFET DRIVER  
VSAT-HI  
VSAT-LO  
tRISE  
Output high saturation voltage (VCC – VOUT)  
IOUT = 50 mA  
0.25  
0.25  
18  
0.75  
0.75  
V
V
Output low saturation voltage (VOUT)  
OUT pin rise time  
IOUT = 100 mA  
OUT Pin load = 1 nF  
OUT Pin load = 1 nF  
ns  
ns  
tFALL  
OUT pin fall time  
15  
THERMAL CHARACTERISTICS  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
165  
25  
°C  
°C  
TSD-HYS  
(4) Specification applies to the oscillator frequency.  
6
Copyright © 2007–2017, Texas Instruments Incorporated  
 
LM5022  
www.ti.com.cn  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
6.6 Typical Characteristics  
VO = 40 V  
VIN = 24 V  
Figure 1. Efficiency, Example Circuit BOM  
Figure 2. VFB vs Temperature  
TA = 25°C  
TA = 25°C  
Figure 3. VFB vs VIN  
Figure 4. VCC vs VIN  
TA = 25°C  
RT = 16.2 KΩ  
Figure 5. Maximum Duty Cycle vs ƒSW  
Figure 6. ƒSW vs Temperature  
Copyright © 2007–2017, Texas Instruments Incorporated  
7
LM5022  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
TA = 25°C  
Figure 7. RT vs ƒSW  
Figure 8. SS vs Temperature  
Figure 9. OUT Pin TRISE vs Gate Capacitance  
Figure 10. OUT Pin TFALL vs Gate Capacitance  
8
Copyright © 2007–2017, Texas Instruments Incorporated  
LM5022  
www.ti.com.cn  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
7 Detailed Description  
7.1 Overview  
The LM5022 is a low-side, N-channel MOSFET controller that contains all of the features required to implement  
single-ended power converter topologies. The LM5022 includes a high-voltage start-up regulator that operates  
over a wide input range of 6 V to 60 V. The PWM controller is designed for high-speed capability including an  
oscillator frequency range up to 2.2 MHz and total propagation delays less than 100 ns. Additional features  
include an error amplifier, precision reference, input undervoltage lockout, cycle-by-cycle current limit, slope  
compensation, soft start, oscillator sync capability, and thermal shutdown.  
The LM5022 is designed for current-mode control power converters that require a single drive output, such as  
boost and SEPIC topologies. The LM5022 provides all of the advantages of current-mode control including input  
voltage feedforward, cycle-by-cycle current limiting, and simplified loop compensation.  
7.2 Functional Block Diagram  
BYPASS  
SWITCH  
(6 V to 8.7 V)  
VCC  
VIN  
7V SERIES  
REGULATOR  
5 V  
1.25 V  
REFERENCE  
ENABLE  
+
-
UVLO  
LOGIC  
1.25 V  
UVLO  
HYSTERESIS  
(20 µA)  
CLK  
RT/SYNC  
OSC  
DRIVER  
45 µA  
Max  
Duty  
Limit  
S
R
Q
Q
OUT  
GND  
0
5 V  
5 k  
100 kΩ  
1.4 V  
COMP  
FB  
1.25 V  
PWM  
+
-
LOGIC  
SS  
10 µA  
50 kΩ  
SS  
SS  
CS  
+
-
0.5 V  
2 kΩ  
CLK + LEB  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2007–2017, Texas Instruments Incorporated  
9
 
LM5022  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 High-Voltage Start-Up Regulator  
The LM5022 contains an internal high-voltage start-up regulator that allows the VIN pin to be connected directly  
to line voltages as high as 60 V. The regulator output is internally current limited to 35 mA (typical). When power  
is applied, the regulator is enabled and sources current into an external capacitor, CF, connected to the VCC pin.  
The recommended capacitance range for CF is 0.1 µF to 100 µF. When the voltage on the VCC pin reaches the  
rising threshold of 5 V, the controller output is enabled. The controller remains enabled until VCC falls below 4.7  
V. In applications using a transformer, an auxiliary winding can be connected through a diode to the VCC pin.  
This winding must raise the VCC pin voltage to above 7.5 V to shut off the internal start-up regulator. Powering  
VCC from an auxiliary winding improves conversion efficiency while reducing the power dissipated in the  
controller. The capacitance of CF must be high enough that it maintains the VCC voltage greater than the VCC  
UVLO falling threshold (4.7 V) during the initial start-up. During a fault condition when the converter auxiliary  
winding is inactive, external current draw on the VCC line must be limited such that the power dissipated in the  
start-up regulator does not exceed the maximum power dissipation capability of the controller.  
An external start-up or other bias rail can be used instead of the internal start-up regulator by connecting the  
VCC and the VIN pins together and feeding the external bias voltage (7.5 V to 14 V) to the two pins.  
7.3.2 Input Undervoltage Detector  
The LM5022 contains an input undervoltage lockout (UVLO) circuit. UVLO is programmed by connecting the  
UVLO pin to the center point of an external voltage divider from VIN to GND. The resistor divider must be  
designed such that the voltage at the UVLO pin is greater than 1.25 V when VIN is in the desired operating  
range. If the undervoltage threshold is not met, all functions of the controller are disabled and the controller  
remains in a low power standby state. UVLO hysteresis is accomplished with an internal 20-µA current source  
that is switched on or off into the impedance of the setpoint divider. When the UVLO threshold is exceeded, the  
current source is activated to instantly raise the voltage at the UVLO pin. When the UVLO pin voltage falls below  
the 1.25-V threshold the current source is turned off, causing the voltage at the UVLO pin to fall. The UVLO pin  
can also be used to implement a remote enable or disable function. If an external transistor pulls the UVLO pin  
below the 1.25-V threshold, the converter is disabled. This external shutdown method is shown in Figure 11.  
VIN  
VIN  
RUV2  
LM5022  
UVLO  
ON/OFF  
RUV1  
2N7000 or  
Equivalent  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 11. Enable or Disable Using UVLO  
10  
Copyright © 2007–2017, Texas Instruments Incorporated  
 
LM5022  
www.ti.com.cn  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
Feature Description (continued)  
7.3.3 Error Amplifier  
An internal high gain error amplifier is provided within the LM5022. The amplifier’s noninverting input is internally  
set to a fixed reference voltage of 1.25 V. The inverting input is connected to the FB pin. In non-isolated  
applications such as the boost converter the output voltage, VO, is connected to the FB pin through a resistor  
divider. The control loop compensation components are connected between the COMP and FB pins. For most  
isolated applications, the error amplifier function is implemented on the secondary side of the converter and the  
internal error amplifier is not used. The internal error amplifier is configured as an open-drain output and can be  
disabled by connecting the FB pin to ground. An internal 5-kΩ pullup resistor between a 5-V reference and  
COMP can be used as the pullup for an opto-coupler in isolated applications.  
7.3.4 Current Sensing and Current Limiting  
The LM5022 provides a cycle-by-cycle over current protection function. Current limit is accomplished by an  
internal current sense comparator. If the voltage at the current sense comparator input exceeds 0.5 V, the  
MOSFET gate drive is immediately terminated. A small RC filter, placed near the controller, is recommended to  
filter noise from the current sense signal. The CS input has an internal MOSFET which discharges the CS pin  
capacitance at the conclusion of every cycle. The discharge device remains on an additional 65 ns after the  
beginning of the new cycle to attenuate leading edge ringing on the current sense signal.  
The LM5022 current sense and PWM comparators are very fast, and may respond to short duration noise  
pulses. Layout considerations are critical for the current sense filter and sense resistor. The capacitor associated  
with the CS filter must be placed very close to the device and connected directly to the pins of the controller (CS  
and GND). If a current sense transformer is used, both leads of the transformer secondary must be routed to the  
sense resistor and the current sense filter network. The current sense resistor can be placed between the source  
of the primary power MOSFET and power ground, but it must be a low inductance type. When designing with a  
current sense resistor all of the noise sensitive low-power ground connections must be connected together  
locally to the controller and a single connection must be made to the high current power ground (sense resistor  
ground point).  
7.3.5 PWM Comparator and Slope Compensation  
The PWM comparator compares the current ramp signal with the error voltage derived from the error amplifier  
output. The error amplifier output voltage at the COMP pin is offset by 1.4 V and then further attenuated by a 3:1  
resistor divider. The PWM comparator polarity is such that 0 V on the COMP pin results in a zero duty cycle at  
the controller output. For duty cycles greater than 50%, current mode control circuits can experience sub-  
harmonic oscillation. By adding an additional fixed-slope voltage ramp signal (slope compensation) this  
oscillation can be avoided. Proper slope compensation damps the double pole associated with current mode  
control (see Control Loop Compensation) and eases the design of the control loop compensator. The LM5022  
generates the slope compensation with a sawtooth-waveform current source with a slope of 45 µA × ƒSW  
,
generated by the clock (see Figure 12). This current flows through an internal 2-kΩ resistor to create a minimum  
compensation ramp with a slope of 100 mV × ƒSW (typical). The slope of the compensation ramp increases when  
external resistance is added for filtering the current sense (RS1) or in the position RS2. As shown in Figure 12 and  
the Functional Block Diagram, the sensed current slope and the compensation slope add together to create the  
signal used for current limiting and for the control loop itself.  
Copyright © 2007–2017, Texas Instruments Incorporated  
11  
LM5022  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
ISW  
LM5022  
45 µA  
0
RS1  
RS2  
2 kΩ  
CS  
Current  
Limit  
-
+
0.5V  
RSNS  
CSNS  
VCL  
Copyright © 2016, Texas Instruments Incorporated  
Figure 12. Slope Compensation  
In peak current mode control, the optimal slope compensation is proportional to the slope of the inductor current  
during the power switch off-time. For boost converters, the inductor current slope while the MOSFET is off is  
(VO – VIN) / L. This relationship is combined with the requirements to set the peak current limit and is used to  
select RSNS and RS2 in Application and Implementation.  
7.3.6 Soft Start  
The soft-start feature allows the power converter output to gradually reach the initial steady-state output voltage,  
thereby reducing start-up stresses and current surges. At power on, after the VCC and input undervoltage  
lockout thresholds are satisfied, an internal 10-µA current source charges an external capacitor connected to the  
SS pin. The capacitor voltage ramps up slowly and limits the COMP pin voltage and the switch current.  
7.3.7 MOSFET Gate Driver  
The LM5022 provides an internal gate driver through the OUT pin that can source and sink a peak current of 1 A  
to control external, ground-referenced N-channel MOSFETs.  
7.3.8 Thermal Shutdown  
Internal thermal shutdown circuitry is provided to protect the LM5022 in the event that the maximum junction  
temperature is exceeded. When activated, typically at 165°C, the controller is forced into a low power standby  
state, disabling the output driver and the VCC regulator. After the temperature is reduced (typical hysteresis is  
25°C) the VCC regulator is re-enabled and the LM5022 performs a soft start.  
7.4 Device Functional Modes  
7.4.1 Oscillator, Shutdown, and SYNC  
A single external resistor, RT, connected between the RT/SYNC and GND pins sets the LM5022 oscillator  
frequency. To set the switching frequency (ƒSW), RT can be calculated with Equation 1.  
1- 8´10-8 ´ fSW  
(
=
)
RT  
fSW ´ 5.77´10-11  
where  
fSW is in Hz  
RT is in Ω  
(1)  
12  
Copyright © 2007–2017, Texas Instruments Incorporated  
 
LM5022  
www.ti.com.cn  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
Device Functional Modes (continued)  
The LM5022 can also be synchronized to an external clock. The external clock must have a higher frequency  
than the free-running oscillator frequency set by the RT resistor. The clock signal must be capacitively coupled  
into the RT/SYNC pin with a 100-pF capacitor as shown in Figure 13. A peak voltage level greater than 3.8 V at  
the RT/SYNC pin is required for detection of the sync pulse. The sync pulse width must be set between 15 ns to  
150 ns by the external components. The RT resistor is always required, whether the oscillator is free-running or  
externally synchronized. The voltage at the RT/SYNC pin is internally regulated to 2 V, and the typical delay from  
a logic high at the RT/SYNC pin to the rise of the OUT pin voltage is 120 ns. RT must be placed very close to the  
device and connected directly to the pins of the controller (RT/SYNC and GND).  
LM5022  
EXTERNAL  
CLOCK  
CSS  
RT/SYNC  
100 pF  
RT  
15 ns to 150 ns  
EXTERNAL  
CLOCK  
120 ns  
(Typical)  
OUT PIN  
Copyright © 2016, Texas Instruments Incorporated  
Figure 13. SYNC Operation  
Copyright © 2007–2017, Texas Instruments Incorporated  
13  
 
LM5022  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The most common circuit controlled by the LM5022 is a non-isolated boost regulator. The boost regulator steps  
up the input voltage and has a duty ratio D in Equation 2.  
VO - VIN + VD  
D=  
VO + VD  
where  
VD is the forward voltage drop of the output diode  
(2)  
The following is a design procedure for selecting all the components for the boost converter circuit shown in  
Figure 14. The application is in-cabin automotive, meaning that the operating ambient temperature ranges from  
–20°C to 85°C. This circuit operates in continuous conduction mode (CCM), where inductor current stays above  
0 A at all times, and delivers an output voltage of 40 V ±2% at a maximum output current of 0.5 A. Additionally,  
the regulator must be able to handle a load transient of up to 0.5 A while keeping VO within ±4%. The voltage  
input comes from the battery or alternator system of an automobile, where the standard range of 9 V to 16 V and  
transients of up to 32 V must not cause any malfunction.  
8.2 Typical Application  
L1  
D1  
VIN = 9 V to 16 V  
VO = 40 V  
CIN1,2  
CINX  
Q1  
CO1,2  
COX  
RS1  
VIN  
RT  
OUT  
RT  
RS2  
RUV2  
RSNS  
CS  
CCS  
UVLO  
SS  
GND  
CSS  
CF  
RUV1  
VCC  
RFB2  
COMP  
R1  
FB  
C2  
RFB1  
C1  
Copyright © 2016, Texas Instruments Incorporated  
Figure 14. LM5022 Typical Application  
14  
Copyright © 2007–2017, Texas Instruments Incorporated  
 
 
LM5022  
www.ti.com.cn  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
Typical Application (continued)  
8.2.1 Design Requirements  
For typical low-side controller applications, use the parameters listed in Table 1.  
Table 1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Output voltage  
EXAMPLE VALUE  
9 V to 16 V  
40 V  
Maximum output current  
Switching frequency  
500 mA  
500 kHz  
8.2.2 Detailed Design Procedure  
Table 2 lists the bill of materials for this design example.  
Table 2. BOM for Example Circuit  
ID  
U1  
PART NUMBER  
LM5022  
TYPE  
Low-Side Controller  
MOSFET  
SIZE  
10-pin VSSOP  
SO-8  
PARAMETERS  
60 V  
QTY  
VENDOR  
TI  
1
1
1
1
2
2
1
Q1  
Si4850EY  
60 V, 31 mΩ, 27 nC  
60 V, 2 A  
Vishay  
Central Semi  
TDK  
D1  
CMSH2-60M  
Schottky Diode  
Inductor  
SMA  
L1  
SLF12575T-M3R2  
C4532X7R1H475M  
C5750X7R2A475M  
C2012X7R1E105K  
12.5 × 12.5 × 7.5 mm  
1812  
33 µH, 3.2 A, 40 mΩ  
4.7 µF, 50 V, 3 mΩ  
4.7 µF,100 V, 3 mΩ  
1 µF, 25 V  
Cin1, Cin2  
Co1, Co2  
Cf  
Capacitor  
TDK  
Capacitor  
2220  
TDK  
Capacitor  
0805  
TDK  
Cinx  
Cox  
C2012X7R2A104M  
Capacitor  
0805  
100 nF, 100 V  
2
TDK  
C1  
C2  
VJ0805A561KXXAT  
VJ0805Y124KXXAT  
VJ0805Y103KXXAT  
VJ0805Y102KXXAT  
CRCW08053011F  
CRCW08056490F  
CRCW08052002F  
CRCW0805101J  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
0805  
0805  
0805  
0805  
0805  
0805  
0805  
0805  
0805  
1210  
0805  
0805  
0805  
560 pF 10%  
120 nF 10%  
10 nF 10%  
1 nF 10%  
1
1
1
1
1
1
1
1
1
1
1
1
1
Vishay  
Vishay  
Vishay  
Vishay  
Vishay  
Vishay  
Vishay  
Vishay  
Vishay  
Panasonic  
Vishay  
Vishay  
Vishay  
Css  
Ccs  
R1  
3.01 kΩ 1%  
649 Ω 1%  
Rfb1  
Rfb2  
Rs1  
Rs2  
Rsns  
Rt  
20 kΩ 1%  
100 Ω 5%  
CRCW08053571F  
ERJL14KF10C  
3.57 kΩ 1%  
100 mΩ, 1%, 0.5 W  
33.2 kΩ 1%  
2.61 kΩ 1%  
10 kΩ 1%  
CRCW08053322F  
CRCW08052611F  
CRCW08051002F  
Ruv1  
Ruv2  
8.2.2.1 Switching Frequency  
The selection of switching frequency is based on the tradeoffs between size, cost, and efficiency. In general, a  
lower frequency means larger, more expensive inductors and capacitors is required. A higher switching  
frequency generally results in a smaller but less efficient solution, as the power MOSFET gate capacitances must  
be charged and discharged more often in a given amount of time. For this application, a frequency of 500 kHz  
was selected as a good compromise between the size of the inductor and efficiency. PCB area and component  
height are restricted in this application. Following Equation 1, a 33.2-kΩ 1% resistor must be used to switch at  
500 kHz.  
Copyright © 2007–2017, Texas Instruments Incorporated  
15  
 
 
LM5022  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
www.ti.com.cn  
8.2.2.2 MOSFET  
Selection of the power MOSFET is governed by tradeoffs between cost, size, and efficiency. Breaking down the  
losses in the MOSFET is one way to determine relative efficiencies between different devices. For this example,  
the SO 8-pin package provides a balance of a small footprint with good efficiency (see Q1 in Table 2).  
Losses in the MOSFET can be broken down into conduction loss, gate charging loss, and switching loss.  
Conduction, or I2R loss (PC) is approximately Equation 3.  
»
ÿ
Ÿ
IO  
P = D ì  
ì R  
ì 1.3  
DSON  
÷
÷
c
1 - D  
Ÿ
«
(3)  
The factor 1.3 accounts for the increase in MOSFET on-resistance due to heating. Alternatively, the factor of 1.3  
can be ignored and the maximum on-resistance of the MOSFET can be used.  
Gate charging loss, PG, results from the current required to charge and discharge the gate capacitance of the  
power MOSFET and is approximated with Equation 4.  
PG = VCC × QG × fSW  
(4)  
QG is the total gate charge of the MOSFET. Gate charge loss differs from conduction and switching losses  
because the actual dissipation occurs in the LM5022 and not in the MOSFET itself. If no external bias is applied  
to the VCC pin, additional loss in the LM5022 IC occurs as the MOSFET driving current flows through the VCC  
regulator. This loss (PVCC) is estimated with Equation 5.  
PVCC = (VIN – VCC) × QG × fSW  
(5)  
Switching loss (PSW) occurs during the brief transition period as the MOSFET turns on and off. During the  
transition period both current and voltage are present in the channel of the MOSFET. The loss can be  
approximated with Equation 6.  
PSW = 0.5 × VIN × [IO / (1 – D)] × (tR + tF) × ƒSW  
where  
tR is the rise time of the MOSFET  
tF is the fall time of the MOSFET  
(6)  
For this example, the maximum drain-to-source voltage applied across the MOSFET is VO plus the ringing due to  
parasitic inductance and capacitance. The maximum drive voltage at the gate of the high-side MOSFET is VCC,  
or 7 V typical. The MOSFET selected must be able to withstand 40 V plus any ringing from drain to source, and  
be able to handle at least 7 V plus ringing from gate to source. A minimum voltage rating of 50-VD-S and 10-VG-S  
MOSFET is used. Comparing the losses in a spreadsheet leads to a 60 VD-S rated MOSFET in SO-8 with an  
RDSON of 22 mΩ (the maximum value is 31 mΩ), a gate charge of 27 nC, and rise and falls times of 10 ns and 12  
ns, respectively.  
8.2.2.3 Output Diode  
The boost regulator requires an output diode D1 (see Figure 14) to carrying the inductor current during the  
MOSFET off-time. The most efficient choice for D1 is a Schottky diode due to low forward drop and near-zero  
reverse recovery time. D1 must be rated to handle the maximum output voltage plus any switching node ringing  
when the MOSFET is on. In practice, all switching converters have some ringing at the switching node due to the  
diode parasitic capacitance and the lead inductance. D1 must also be rated to handle the average output current,  
IO.  
The overall converter efficiency becomes more dependent on the selection of D1 at low duty cycles, where the  
boost diode carries the load current for an increasing percentage of the time. This power dissipation can be  
calculating by checking the typical diode forward voltage, VD, from the I-V curve on the diode's data sheet and  
then multiplying it by IO. Diode data sheets also provides a typical junction-to-ambient thermal resistance, RθJA  
,
which can be used to estimate the operating die temperature of the Schottky. Multiplying the power dissipation  
(PD = IO × VD) by RθJA gives the temperature rise. The diode case size can then be selected to maintain the  
Schottky diode temperature below the operational maximum.  
16  
Copyright © 2007–2017, Texas Instruments Incorporated  
 
 
 
 
 
LM5022  
www.ti.com.cn  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
In this example a Schottky diode rated to 60 V and 1 A is suitable, as the maximum diode current is 0.5 A. A  
small case such as SOD-123 can be used if a small footprint is critical. Larger case sizes generally have lower  
RθJA and lower forward voltage drop, so for better efficiency the larger SMA case size is used.  
8.2.2.4 Boost Inductor  
The first criterion for selecting an inductor is the inductance itself. In fixed-frequency boost converters this value  
is based on the desired peak-to-peak ripple current, ΔiL, which flows in the inductor along with the average  
inductor current, IL. For a boost converter in CCM IL is greater than the average output current, IO. The two  
currents are related by Equation 7.  
IL = IO / (1 – D)  
(7)  
As with switching frequency, the inductance used is a tradeoff between size and cost. Larger inductance means  
lower input ripple current, however because the inductor is connected to the output during the off-time only there  
is a limit to the reduction in output ripple voltage. Lower inductance results in smaller, less expensive magnetics.  
An inductance that gives a ripple current of 30% to 50% of IL is a good starting point for a CCM boost converter.  
Minimum inductance must be calculated with Equation 8 at the extremes of input voltage to find the operating  
condition with the highest requirement.  
VIN ì D  
L1 =  
fSW ì DiL  
(8)  
By calculating in terms of amperes, volts, and megahertz, the inductance value comes out in micro henries.  
To ensure that the boost regulator operates in CCM a second equation is required, and must also be evaluated  
with Equation 9 at the corners of input voltage to find the minimum inductance required.  
D(1- D) ì VIN  
L 2 =  
IO ì fSW  
(9)  
By calculating in terms of volts, amps, and megahertz, the inductance value comes out in µH.  
For this design, ΔiL is set to 40% of the maximum IL. Duty cycle is evaluated first at VIN(MIN) and at VIN(MAX)  
.
Second, the average inductor current is evaluated at the two input voltages. Third, the inductor ripple current is  
determined. Finally, the inductance can be calculated, and a standard inductor value selected that meets all the  
criteria.  
1. Inductance for Minimum Input Voltage (Equation 10, Equation 11, and Equation 12)  
DVIN(MIN) = (40 – 9 + 0.5) / (40 + 0.5) = 78% IL-VIN(MIN) = 0.5 / (1 – 0.78) = 2.3 A ΔiL = 0.4 × 2.3 A = 0.92 A  
(10)  
(11)  
9 ì 0.78  
L1 - VIN (MIN)  
=
= 15.3 mH  
0.5 ì 0.92  
0.78 ì 0.22 ì 9  
0.5 ì 0.5  
L 2 - VIN (MIN)  
=
= 6.2 mH  
(12)  
(13)  
2. Inductance for Maximum Input Voltage (Equation 13, Equation 14, and Equation 15)  
DVIN(MAX) = (40 – 16 + 0.5) / (40 + 0.5) = 60% IL-VIN(MIAX) = 0.5 / (1 – 0.6) = 1.25 A ΔiL = 0.4 × 1.25 A = 0.5 A  
16 ì 0.6  
0.5 ì 0.5  
L1 - VIN (MIN)  
=
= 38.4 mH  
(14)  
0.6 ì 0.4 ì 16  
0.5 ì 0.5  
L 2 - VIN (MIN)  
=
= 15.4 mH  
(15)  
Maximum average inductor current occurs at VIN(MIN), and the corresponding inductor ripple current is 0.92 AP-P  
.
Selecting an inductance that exceeds the ripple current requirement at VIN(MIN) and the requirement to stay in  
CCM for VIN(MAX) provides a tradeoff that allows smaller magnetics at the cost of higher ripple current at  
maximum input voltage. For this example, a 33-µH inductor satisfies these requirements.  
Copyright © 2007–2017, Texas Instruments Incorporated  
17  
 
 
 
 
 
 
 
 
 
LM5022  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
www.ti.com.cn  
The second criterion for selecting an inductor is the peak current carrying capability. This is the level above  
which the inductor saturates. In saturation, the inductance can drop off severely, resulting in higher peak current  
that may overheat the inductor or push the converter into current limit. In a boost converter, peak current, IPK, is  
equal to the maximum average inductor current plus one half of the ripple current. First, the current ripple must  
be determined under the conditions that give maximum average inductor current with Equation 16.  
VIN x D  
DiL =  
fSW ì L  
(16)  
Maximum average inductor current occurs at VIN(MIN). Using the selected inductance of 33 µH yields Equation 17.  
ΔiL = (9 × 0.78) / (0.5 × 33) = 425 mAP-P  
(17)  
The highest peak inductor current over all operating conditions is therefore Equation 18.  
IPK = IL + 0.5 × ΔiL = 2.3 + 0.213 = 2.51 A  
(18)  
Hence an inductor must be selected that has a peak current rating greater than 2.5 A and an average current  
rating greater than 2.3 A. One possibility is an off-the-shelf 33 µH ±20% inductor that can handle a peak current  
of 3.2 A and an average current of 3.4 A. Finally, the inductor current ripple is recalculated with Equation 19 at  
the maximum input voltage.  
ΔiL-VIN(MAX) = (16 × 0.6) / (0.5 × 33) = 0.58 AP-P  
(19)  
8.2.2.5 Output Capacitor  
The output capacitor in a boost regulator supplies current to the load during the MOSFET on-time and also filters  
the AC portion of the load current during the off-time. This capacitor determines the steady-state output voltage  
ripple, ΔVO, a critical parameter for all voltage regulators. Output capacitors are selected based on their  
capacitance, CO, their equivalent series resistance (ESR) and their RMS or AC current rating.  
The magnitude of ΔVO is comprised of three parts, and in steady-state the ripple voltage during the on-time is  
equal to the ripple voltage during the off-time. For simplicity the analysis is performed for the MOSFET turning off  
(off-time) only. The first part of the ripple voltage is the surge created as the output diode D1 turns on. At this  
point, inductor and diode current are at peak value, and the ripple voltage increase can be calculated with  
Equation 20.  
ΔVO1 = IPK × ESR  
(20)  
The second portion of the ripple voltage is the increase due to the charging of CO through the output diode. This  
portion can be approximated with Equation 21.  
ΔVO2 = (IO / CO) × (D / ƒSW  
)
(21)  
The final portion of the ripple voltage is a decrease due to the flow of the diode and inductor current through the  
ESR of the output capacitor. This decrease can be calculated with Equation 22.  
ΔVO3 = ΔiL × ESR  
(22)  
The total change in output voltage is Equation 23.  
ΔVO = ΔVO1 + ΔVO2 ΔVO3  
(23)  
The combination of two positive terms and one negative term may yield an output voltage ripple with a net rise or  
a net fall during the converter off-time. The ESR of the output capacitor(s) has a strong influence on the slope  
and direction of ΔVO. Capacitors with high ESR such as tantalum and aluminum electrolytic create an output  
voltage ripple that is dominated by ΔVO1 and ΔVO3, with a shape shown in Figure 15. Ceramic capacitors, in  
contrast, have very low ESR and lower capacitance. The shape of the output ripple voltage is dominated by  
ΔVO2, with a shape shown in Figure 16.  
18  
Copyright © 2007–2017, Texas Instruments Incorporated  
 
 
 
 
 
 
 
 
 
LM5022  
www.ti.com.cn  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
VO  
ÂvO  
VO  
ÂvO  
ID  
ID  
Figure 15. ΔVO Using High-ESR Capacitors  
Figure 16. ΔVO Using Low-ESR Capacitors  
For this example the small size and high temperature rating of ceramic capacitors make them a good choice.  
The output ripple voltage waveform of Figure 16 is assumed, and the capacitance is selected first. The desired  
ΔVO is ±2% of 40 V, or 0.8 VP-P. Beginning with the calculation for ΔVO2, the required minimum capacitance is in  
Equation 24.  
CO-MIN = (IO / ΔVO) x (DMAX / fSW) CO-MIN = (0.5 / 0.8) x (0.77 / 5 x 105) = 0.96 µF  
(24)  
The next higher standard 20% capacitor value is 1 µF, however to provide margin for component tolerance and  
load transients two capacitors rated 4.7 µF each (CO= 9.4 µF) is used. Ceramic capacitors rated 4.7 µF ±20%  
are available from many manufacturers. The minimum quality dielectric that is suitable for switching power supply  
output capacitors is X5R, while X7R (or better) is preferred. Pay careful attention to the DC voltage rating and  
case size, as ceramic capacitors can lose 60% or more of their rated capacitance at the maximum DC voltage.  
This is the reason that ceramic capacitors are often de-rated to 50% of their capacitance at their working voltage.  
The output capacitors for this example has a 100-V rating in a 2220 case size.  
The typical ESR of the selected capacitors is 3 mΩ each, and in parallel is approximately 1.5 mΩ. The worst-  
case value for ΔVO1 occurs during the peak current at minimum input voltage in Equation 25.  
ΔVO1 = 2.5 × 0.0015 = 4 mV  
(25)  
The worst-case capacitor charging ripple occurs at maximum duty cycle in Equation 26.  
ΔVO2 = (0.5 / 9.4 × 10–6) x (0.77 / 5 × 105) = 82 mV  
(26)  
Finally, the worst-case value for ΔVO3 occurs when inductor ripple current is highest, at maximum input voltage in  
Equation 27.  
ΔVO3 = 0.58 × 0.0015 = 1 mV (negligible)  
(27)  
The output voltage ripple can be estimated by summing the three terms in Equation 28.  
ΔVO = 4 mV + 82 mV - 1 mV = 85 mV  
(28)  
The RMS current through the output capacitor(s) can be estimated using the following, worst-case equation in  
Equation 29.  
IO-RMS = 1.13 ì IL ì D ì (1-D)  
(29)  
The highest RMS current occurs at minimum input voltage. For this example the maximum output capacitor RMS  
current is calculated with Equation 30.  
IO-RMS(MAX) = 1.13 × 2.3 × (0.78 x 0.22)0.5 = 1.08 ARMS  
(30)  
These 2220 case size devices are capable of sustaining RMS currents of over 3 A each, making them more than  
adequate for this application.  
Copyright © 2007–2017, Texas Instruments Incorporated  
19  
 
 
 
 
 
 
 
LM5022  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
www.ti.com.cn  
8.2.2.6 VCC Decoupling Capacitor  
The VCC pin must be decoupled with a ceramic capacitor placed as close as possible to the VCC and GND pins  
of the LM5022. The decoupling capacitor must have a minimum X5R or X7R type dielectric to ensure that the  
capacitance remains stable over voltage and temperature, and be rated to a minimum of 470 nF. One good  
choice is a 1-µF device with X7R dielectric and 1206 case size rated to 25 V.  
8.2.2.7 Input Capacitor  
The input capacitors to a boost regulator control the input voltage ripple (ΔVIN) hold up the input voltage during  
load transients and prevent impedance mismatch (also called power supply interaction) between the LM5022 and  
the inductance of the input leads. Selection of input capacitors is based on their capacitance, ESR, and RMS  
current rating. The minimum value of ESR can be selected based on the maximum output current transient,  
ISTEP, using Equation 31.  
1 - D ìDV  
(
)
IN  
ESRMIN  
=
2 x ISTEP  
(31)  
For this example, the maximum load step is equal to the load current or 0.5 A. The maximum permissable ΔVIN  
during load transients is 4%P-P. ΔVIN and duty cycle are taken at minimum input voltage to give the worst-case  
value in Equation 32.  
ESRMIN = [(1 – 0.77) × 0.36] / (2 × 0.5) = 83 mΩ  
(32)  
The minimum input capacitance can be selected based on ΔVIN, based on the drop in VIN during a load transient,  
or based on prevention of power supply interaction. In general, the requirement for greatest capacitance comes  
from the power supply interaction. The inductance and resistance of the input source must be estimated, and if  
this information is not available, they can be assumed to be 1 µH and 0.1 Ω, respectively. Minimum capacitance  
is then estimated with Equation 33.  
2 ì L S ì VO ì IO  
CMIN  
=
V
2 ì RS  
IN  
(33)  
As with ESR, the worst-case, highest minimum capacitance calculation comes at the minimum input voltage.  
Using the default estimates for LS and RS, minimum capacitance is calculated with Equation 34.  
2 ì 140ì 0.5  
CMIN  
=
= 4.9 mF  
9 2 ì 0.1  
(34)  
The next highest standard 20% capacitor value is 6.8 µF, but because the actual input source impedance and  
resistance are not known, two 4.7-µF capacitors is used. In general, doubling the calculated value of input  
capacitance provides a good safety margin. The final calculation is for the RMS current. For boost converters  
operating in CCM this can be estimated with Equation 35.  
IRMS = 0.29 × ΔiL(MAX)  
(35)  
From the inductor section, maximum inductor ripple current is 0.58 A, hence the input capacitor(s) must be rated  
to handle 0.29 × 0.58 = 170 mARMS  
.
The input capacitors can be ceramic, tantalum, aluminum, or almost any type, however the low capacitance  
requirement makes ceramic capacitors particularly attractive. As with the output capacitors, the minimum quality  
dielectric used must X5R, with X7R or better preferred. The voltage rating for input capacitors requirement not be  
as conservative as the output capacitors, as the requirement for capacitance decreases as input voltage  
increases. For this example, the capacitor selected is 4.7 µF ±20%, rated to 50 V in the 1812 case size. The  
RMS current rating of these capacitors is over 2 A each, more than enough for this application.  
8.2.2.8 Current Sense Filter  
Parasitic circuit capacitance, inductance and gate drive current create a spike in the current sense voltage at the  
point where Q1 turns on. To prevent this spike from terminating the on-time prematurely, every circuit must have  
a low-pass filter that consists of CCS and RS1, shown in Figure 14. The time constant of this filter must be long  
enough to reduce the parasitic spike without significantly affecting the shape of the actual current sense voltage.  
The recommended range for RS1 is between 10 Ω and 500 Ω, and the recommended range for CCS is between  
100 pF and 2.2 nF. For this example, the values of RS1 and CCS is 100 Ω and 1 nF, respectively.  
20  
Copyright © 2007–2017, Texas Instruments Incorporated  
 
 
 
 
 
LM5022  
www.ti.com.cn  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
8.2.2.9 RSNS, RS2 and Current Limit  
The current sensing resistor RSNS is used for steady-state regulation of the inductor current and to sense  
overcurrent conditions. The slope compensation resistor is used to ensure control loop stability, and both  
resistors affect the current limit threshold. The RSNS value selected must be low enough to keep the power  
dissipation to a minimum, yet high enough to provide good signal-to-noise ratio for the current sensing circuitry.  
RSNS, and RS2 must be set so that the current limit comparator, with a threshold of 0.5 V, trips before the sensed  
current exceeds the peak current rating of the inductor, without limiting the output power in steady state.  
For this example the peak current, at VIN(MIN), is 2.5 A, while the inductor itself is rated to 3.2 A. The threshold for  
current limit, ILIM, is set slightly between these two values to account for tolerance of the circuit components, at a  
level of 3 A. The required resistor calculation must take both the switch current through RSNS and the  
compensation ramp current flowing through the internal 2 kΩ, RS1 and RS2 resistors into account. RSNS must be  
selected first because it is a power resistor with more limited selection. Equation 36 and Equation 37 must be  
evaluated at VIN(MIN), when duty cycle is highest.  
L ì fSW ì VCL  
R SNS  
=
V
- VIN ì 3 ì D+ L ì fSW ìILIM  
(
)
O
(36)  
33 ì 0.5 ì 0.5  
40 - 9 ì 3 ì 0.78 + 33 ì 0.5 ì 3  
RSNS  
=
(
)
where  
L is in µH  
fSW in MHz  
(37)  
The closest 5% value is 100 mΩ. Power dissipation in RSNS can be estimated by calculating the average current.  
The worst-case average current through RSNS occurs at minimum input voltage/maximum duty cycle and can be  
calculated with Equation 38 and Equation 39.  
2
»
ÿ
Ÿ
IO  
PCS  
=
ì R  
ì D  
÷
÷
SNS Ÿ  
1 - D  
«
(38)  
(39)  
PCS = [(0.5 / 0.22)2 × 0.1] × 0.78 = 0.4 W  
For this example, a 0.1 Ω ±1%, thick-film chip resistor in a 1210 case size rated to 0.5 W is used.  
With RSNS selected, RS2 can be determined using Equation 40 and Equation 41.  
VCL - IILIM ì R SNS  
R S2  
=
- 2000 - R S1  
45m ì D  
(40)  
(41)  
0.5 - 3 ì 0.1  
45m ì 0.78  
RS2  
=
- 2000 - 100 = 3598W  
The closest 1% tolerance value is 3.57 kΩ.  
8.2.2.10 Control Loop Compensation  
The LM5022 uses peak current-mode PWM control to correct changes in output voltage due to line and load  
transients. Peak current-mode provides inherent cycle-by-cycle current limiting, improved line transient response,  
and easier control loop compensation.  
The control loop is comprised of two parts. The first is the power stage, which consists of the pulse width  
modulator, output filter, and the load. The second part is the error amplifier, which is an op-amp configured as an  
inverting amplifier. Figure 17 shows the regulator control loop components.  
Copyright © 2007–2017, Texas Instruments Incorporated  
21  
 
 
 
 
 
 
LM5022  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
www.ti.com.cn  
L
+
CO  
RC  
D
VIN  
RO  
+
-
RSNS  
+
-
RFB2  
R1  
C2  
C1  
-
+
RFB1  
+
-
VREF  
Figure 17. Power Stage and Error Amplifier  
One popular method for selecting the compensation components is to create Bode plots of gain and phase for  
the power stage and error amplifier. Combined, they make the overall bandwidth and phase margin of the  
regulator easy to determine. Software tools such as Excel, MathCAD, and Matlab are useful for observing how  
changes in compensation or the power stage affect system gain and phase.  
The power stage in a CCM peak current mode boost converter consists of the DC gain, APS, a single low-  
frequency pole, ƒLFP, the ESR zero, ƒZESR, a right-half plane zero, ƒRHP, and a double pole resulting from the  
sampling of the peak current. The power stage transfer function (also called the control-to-output transfer  
function) can be written with Equation 42, Equation 43, and Equation 44.  
æ
ç
è
öæ  
÷ç  
øè  
ö
÷
ø
s2  
s
s
1+  
1-  
wZESR  
wRHP  
GPS = APS  
´
æ
ö
÷
÷
ø
æ
ç
è
ö
÷
ø
s
s
1+  
ç1+  
+
w2  
ç
è
wLEP  
Qn ´ wn  
n
where  
the DC gain is defined as:  
(1 - D) ì R O  
(42)  
A PS  
=
2 ì R SNS  
where  
RO = VO / IO  
(43)  
(44)  
22  
Copyright © 2007–2017, Texas Instruments Incorporated  
 
 
 
 
LM5022  
www.ti.com.cn  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
The system ESR zero is calculated with Equation 45.  
1
wZESR  
=
R C ì CO  
(45)  
(46)  
The low-frequency pole is calculated with Equation 46.  
1
wLEP  
=
0.5 ì R + ESR ì C  
(
)
O
O
The right-half plane zero is calculated with Equation 47.  
2
VIN  
VO  
R O  
ì
«
÷
÷
wRHP  
=
L
(47)  
The sampling double-pole quality factor is calculated with Equation 48.  
1
Qn =  
»
ÿ
Ÿ
S e  
p -D + 0.5 + (1 - D)  
Sn Ÿ  
(48)  
(49)  
(50)  
(51)  
The sampling double corner frequency is calculated with Equation 49.  
ωn = π × fSW  
The natural inductor current slope is calculated with Equation 50.  
Sn = RSNS × VIN / L  
The external ramp slope is calculated with Equation 51.  
Se = 45 µA × (2000 + RS1 + RS2)] × ƒSW  
In Equation 43, DC gain is highest when input voltage and output current are at the maximum. In this the  
example those conditions are VIN = 16 V and IO = 500 mA.  
DC gain is 44 dB. The low-frequency pole fP = ωP/2π is at 423 Hz, the ESR zero fZ = ωZ/2π is at 5.6 MHz, and the  
right-half plane zero ƒRHP = ωRHP/2π is at 61 kHz. The sampling double-pole occurs at one-half of the switching  
frequency. Proper selection of slope compensation (through RS2) is most evident the sampling double pole. A  
well-selected RS2 value eliminates peaking in the gain and reduces the rate of change of the phase lag. Gain and  
phase plots for the power stage are shown in Figure 18 and Figure 19.  
SPACE  
60  
45  
30  
15  
0
180  
120  
60  
0
-60  
-120  
-180  
-15  
-30  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. Power Stage Gain and Phase  
Figure 19. Power Stage Gain and Phase  
Copyright © 2007–2017, Texas Instruments Incorporated  
23  
 
 
 
 
 
 
 
 
LM5022  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
www.ti.com.cn  
The single pole causes a rolloff in the gain of –20 dB/decade at lower frequency. The combination of the RHP  
zero and sampling double pole maintain the slope out to beyond the switching frequency. The phase tends  
towards –90° at lower frequency but then increases to –180° and beyond from the RHP zero and the sampling  
double pole. The effect of the ESR zero is not seen because its frequency is several decades above the  
switching frequency. The combination of increasing gain and decreasing phase makes converters with RHP  
zeroes difficult to compensate. Setting the overall control loop bandwidth to 1/3 to 1/10 of the RHP zero  
frequency minimizes these negative effects, but requires a compromise in the control loop bandwidth. If this loop  
were left uncompensated, the bandwidth would be 89 kHz and the phase margin –54°. The converter would  
oscillate, and therefore is compensated using the error amplifier and a few passive components.  
The transfer function of the compensation block (GEA) can be derived by treating the error amplifier as an  
inverting op-amp with input impedance ZI and feedback impedance ZF. The majority of applications require a  
Type II, or two-pole one-zero amplifier, shown in Figure 17. The LaPlace domain transfer function for this Type II  
network is given by Equation 52.  
ZF  
ZI  
1
s ì R1ì C2 + 1  
s ì R1ì C1ì C2  
C1 + C2  
GEA  
=
=
ì
RFB2 (C1 + C2)  
s
+1  
÷
«
(52)  
Many techniques exist for selecting the compensation component values. The following method is based upon  
setting the mid-band gain of the error amplifier transfer function first and then positioning the compensation zero  
and pole:  
1. Determine the desired control loop bandwidth: The control loop bandwidth (ƒ0dB) is the point at which the  
total control loop gain (H = GPS × GEA) is equal to 0 dB. For this example, a low bandwidth of 10 kHz, or  
approximately 1/6th of the RHP zero frequency, is chosen because of the wide variation in input voltage.  
2. Determine the gain of the power stage at ƒ0dB: This value, A, can be read graphically from the gain plot of  
GPS or calculated by replacing the ‘s’ terms in GPS with ‘2 πf0dB’. For this example, the gain at 10 kHz is  
approximately 16 dB.  
3. Calculate the negative of A and convert it to a linear gain: By setting the mid-band gain of the error amplifier  
to the negative of the power stage gain at f0dB, the control loop gain equals 0 dB at that frequency. For this  
example, –16 dB = 0.15 V/V.  
4. Select the resistance of the top feedback divider resistor RFB2: This value is arbitrary, however selecting a  
resistance between 10 kΩ and 100 kΩ leads to practical values of R1, C1, and C2. For this example, RFB2  
20 kΩ 1%.  
=
5. Set Equation 55:  
R1 = A × RFB2  
(53)  
For this example: R1 = 0.15 × 20000 = 3 kΩ  
6. Select a frequency for the compensation zero, ƒZ1: The suggested placement for this zero is at the low-  
frequency pole of the power stage, ƒLFP = ωLFP / 2π. For this example, ƒZ1 = ƒLFP = 423 Hz  
7. Set Equation 54.  
1
C2 =  
:
2p ì R1ì fZ1  
(54)  
For this example, C2 = 125 nF  
8. Select a frequency for the compensation pole, ƒP1: The suggested placement for this pole is at one-fifth of  
the switching frequency. For this example, ƒP1 = 100 kHz  
9. Set Equation 55.  
C2  
C1 =  
2Œ×C2×R1×fP1-1  
(55)  
For this example, C1 = 530 pF  
24  
Copyright © 2007–2017, Texas Instruments Incorporated  
 
 
 
LM5022  
www.ti.com.cn  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
10. Plug the closest 1% tolerance values for RFB2 and R1, then the closest 10% values for C1 and C2 into GEA  
and model the error amp: The open-loop gain and bandwidth of the LM5022’s internal error amplifier are 75  
dB and 4 MHz, respectively. Their effect on GEA can be modeled using Equation 56:  
2p ì GBW  
OPG =  
2p ì GBW  
s +  
A DC  
(56)  
ADC is a linear gain, the linear equivalent of 75 dB is approximately 5600 V/V. C1 = 560 pF 10%, C2 = 120  
nF 10%, R1 = 3.01 kΩ 1%  
11. Plot or evaluate the actual error amplifier transfer function:  
GEA ì OPG  
GEA-ACTUAL  
=
1 + GEA ì OPG  
(57)  
60  
40  
20  
0
-20  
-40  
-60  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 20. Overall Loop Gain and Phase  
180  
120  
60  
0
-60  
-120  
-180  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 21. Overall Loop Gain and Phase  
12. Plot or evaluate the complete control loop transfer function: The complete control loop transfer function is  
obtained by multiplying the power stage and error amplifier functions together. The bandwidth and phase  
margin can then be read graphically or evaluated numerically. The bandwidth of this example circuit at VIN  
16 V is 10.5 kHz with a phase margin of 66°.  
=
Copyright © 2007–2017, Texas Instruments Incorporated  
25  
 
LM5022  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
www.ti.com.cn  
13. Re-evaluate at the corners of input voltage and output current: Boost converters exhibit significant change in  
their loop response when VIN and IO change. With the compensation fixed, the total control loop gain and  
phase must be checked to ensure a minimum phase margin of 45° over both line and load.  
8.2.2.11 Efficiency Calculations  
A reasonable estimation for the efficiency of a boost regulator controlled by the LM5022 can be obtained by  
adding together the loss is each current carrying element and using Equation 58.  
PO  
PO + Ptotal-loss  
h =  
(58)  
The following shows an efficiency calculation to complement the circuit design. Output power for this circuit is 40  
V × 0.5 A = 20 W. Input voltage is assumed to be 13.8 V, and the calculations used assume that the converter  
runs in CCM. Duty cycle for VIN = 13.8 V is 66%, and the average inductor current is 1.5 A.  
8.2.2.11.1 Chip Operating Loss  
This term accounts for the current drawn at the VIN pin. This current, IIN, drives the logic circuitry and the power  
MOSFETs. The gate driving loss term from MOSFET is included in the chip operating loss. For the LM5022, IIN is  
equal to the steady-state operating current, ICC, plus the MOSFET driving current, IGC. Power is lost as this  
current passes through the internal linear regulator of the LM5022 in Equation 59.  
IGC = QG × ƒSW IGC = 27 nC × 500 kHz = 13.5 mA  
(59)  
ICC is typically 3.5 mA (taken from Electrical Characteristics). Chip operating loss is then calculated with  
Equation 60.  
PQ = VIN × (IQ + IGC) PQ = 13.8 × (3.5 m + 13.5m) = 235 mW  
(60)  
(61)  
(62)  
8.2.2.11.2 MOSFET Switching Loss  
PSW = 0.5 × VIN × IL × (tR + tF) x fSW PSW = 0.5 × 13.8 × 1.5 × (10 ns + 12 ns) × 5 × 105 = 114 mW  
8.2.2.11.3 MOSFET and RSNS Conduction Loss  
PC = D × (IL2 × (RDSON × 1.3 + RSNS)) PC = 0.66 × (1.52 × (0.029 + 0.1)) = 192 mW  
8.2.2.11.4 Output Diode Loss  
The average output diode current is equal to IO or 0.5 A. The estimated forward drop (VD) is 0.5 V. The output  
diode loss is Equation 63.  
PD1 = IO × VD PD1 = 0.5 × 0.5 = 0.25 W  
(63)  
8.2.2.11.5 Input Capacitor Loss  
This term represents the loss as input ripple current passes through the ESR of the input capacitor bank. In this  
equation ‘n’ is the number of capacitors in parallel. The 4.7-µF input capacitors selected have a combined ESR  
of approximately 1.5 mΩ, and ΔiL for a 13.8-V input is 0.55 A in Equation 64 and Equation 65.  
IIN-RMS2 ì ESR  
PCIN  
=
n
(64)  
(65)  
IIN-RMS = 0.29 × ΔiL = 0.29 × 0.55 = 0.16 A PCIN = [0.162 × 0.0015] / 2 = 0.02 mW (negligible)  
8.2.2.11.6 Output Capacitor Loss  
This term is calculated using the same method as the input capacitor loss, substituting the output capacitor RMS  
current for VIN = 13.8 V. The combined ESR of the output capacitors is also approximately 1.5 mΩ in  
Equation 66.  
IO-RMS = 1.13 × 1.5 × (0.66 x 0.34)0.5 = 0.8 A PCO = [0.8 × 0.0015] / 2 = 0.6 mW  
(66)  
26  
Copyright © 2007–2017, Texas Instruments Incorporated  
 
 
 
 
 
 
 
LM5022  
www.ti.com.cn  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
8.2.2.11.7 Boost Inductor Loss  
The typical DCR of the selected inductor is 40 mΩ in Equation 67.  
PDCR = IL2 × DCR PDCR = 1.52 × 0.04 = 90 mW  
(67)  
Core loss in the inductor is estimated to be equal to the DCR loss, adding an additional 90 mW to the total  
inductor loss.  
8.2.2.11.8 Total Loss  
PLOSS = Sum of All Loss Terms = 972 mW  
(68)  
(69)  
8.2.2.11.9 Efficiency  
η = 20 / (20 + 0.972) = 95%  
8.2.3 Application Curves  
10V/DIV  
VO  
SW  
10V/DIV  
1 és/DIV  
VIN = 9 V, IO = 0.5 A  
Figure 23. Switch Node Voltage  
Figure 22. Efficiency  
10V/DIV  
VO  
VO  
50 mV/DIV  
SW  
10V/DIV  
1 és/DIV  
1 és/DIV  
VIN = 9 V, IO = 0.5 A  
VIN = 16 V, IO = 0.5 A  
Figure 24. Switch Node Voltage  
Figure 25. Output Voltage Ripple AC Coupled  
Copyright © 2007–2017, Texas Instruments Incorporated  
27  
 
LM5022  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
www.ti.com.cn  
200 mA/DIV  
IO  
VO  
VO  
2V/DIV  
50 mV/DIV  
400 és/DIV  
1 és/DIV  
VIN = 9 V, IO = 50 mA to 0.5 A  
Figure 27. Load Transient Response  
VIN = 16 V, IO = 0.5 A  
Figure 26. Output Voltage Ripple AC Coupled  
200 mA/DIV  
IO  
VO  
1V/DIV  
1 ms/DIV  
VIN = 16 V, IO = 50 mA to 0.5 A  
Figure 28. Load Transient Response  
9 Power Supply Recommendations  
LM5022 is a power management device. The power supply for the device can be any DC voltage source within  
the specified input range.  
28  
Copyright © 2007–2017, Texas Instruments Incorporated  
LM5022  
www.ti.com.cn  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
10 Layout  
10.1 Layout Guidelines  
To produce an optimal power solution with the LM5022, good layout and design of the PCB are as critical as  
component selection. The following are the several guidelines to create a good layout of the PCB, as based on  
Figure 14:  
1. Using a low-ESR ceramic capacitor, place CINX as close as possible to the VIN and GND pins of the  
LM5022.  
2. Using a low-ESR ceramic capacitor, place COX close to the load as possible of the LM5022.  
3. Using a low-ESR ceramic capacitor, place CF close to the VCC and GND pins of the LM5022.  
4. Minimize the loop area formed by the output capacitor connections (Co1, Co2) by D1 and Rsns. Make sure  
the cathode of D1 and Rsns are positioned next to each other, and place Co1(+) and Co1(–) close to D1  
cathode and Rsns(–) respectively.  
5. Rsns(+) must be connected to the CS pin with a separate trace made as short as possible. This trace  
must be routed away from the inductor and the switch node (where D1, Q1, and L1 connect).  
6. Minimize the trace length to the FB pin by positioning RFB1 and RFB2 close to the LM5022.  
7. Route the VOUT sense path away from noisy node and connect it as close as possible to the positive  
side of COX  
.
10.1.1 Filter Capacitors  
The low-value ceramic filter capacitors are most effective when the inductance of the current loops that they filter  
is minimized. Place CINX as close as possible to the VIN and GND pins of the LM5022. Place COX close to the  
load, and CF next to the VCC and GND pins of the LM5022.  
10.1.2 Sense Lines  
The top of RSNS must be connected to the CS pin with a separate trace made as short as possible. Route this  
trace away from the inductor and the switch node (where D1, Q1, and L1 connect). For the voltage loop, keep  
RFB1/2 close to the LM5022 and run a trace from as close as possible to the positive side of COX to RFB2. As with  
the CS line, the FB line must be routed away from the inductor and the switch node. These measures minimize  
the length of high impedance lines and reduce noise pickup.  
10.1.3 Compact Layout  
Parasitic inductance can be reduced by keeping the power path components close together. As described in  
Layout Guidelines, keep the high slew-rate current loops as tight as possible. Short, thick traces or copper pours  
(shapes) are best.  
The switch node must be just large enough to connect all the components together without excessive heating  
from the current it carries. The LM5022 (boost converter) operates in two distinct cycles whose high current  
paths are shown in Figure 29.  
+
-
Figure 29. Boost Converter Current Loops  
Copyright © 2007–2017, Texas Instruments Incorporated  
29  
 
 
LM5022  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
www.ti.com.cn  
Layout Guidelines (continued)  
The dark grey, inner loops represents the high current paths during the MOSFET on-time. The light grey, outer  
loop represents the high current path during the off-time.  
10.1.4 Ground Plane and Shape Routing  
The diagram of Figure 29 is also useful for analyzing the flow of continuous current versus the flow of pulsating  
currents. The circuit paths with current flow during both the on-time and off-time are considered to be continuous  
current, while those that carry current during the on-time or off-time only are pulsating currents. Preference in  
routing must be given to the pulsating current paths, as these are the portions of the circuit most likely to emit  
EMI. The ground plane of a PCB is a conductor and return path, and it is susceptible to noise injection just as  
any other circuit path. The continuous current paths on the ground net can be routed on the system ground plane  
with less risk of injecting noise into other circuits. The path between the input source, input capacitor and the  
MOSFET and the path between the output capacitor and the load are examples of continuous current paths. In  
contrast, the path between the grounded side of the power switch and the negative output capacitor terminal  
carries a large pulsating current. This path must be routed with a short, thick shape, preferably on the component  
side of the PCB. Multiple vias in parallel must be used right at the negative pads of the input and output  
capacitors to connect the component side shapes to the ground plane. Vias must not be placed directly at the  
grounded side of the MOSFET (or RSNS) as they tend to inject noise into the ground plane. A second pulsating  
current loop that is often ignored but must be kept small is the gate drive loop formed by the OUT and VCC pins,  
Q1, RSNS, and capacitor CF.  
10.2 Layout Examples  
Figure 30. Top Layer and Top Overlay  
30  
Copyright © 2007–2017, Texas Instruments Incorporated  
LM5022  
www.ti.com.cn  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
Layout Examples (continued)  
Figure 31. Bottom Layer  
版权 © 2007–2017, Texas Instruments Incorporated  
31  
LM5022  
ZHCSHC6I JANUARY 2007REVISED DECEMBER 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.1.2 设计支持  
WEBENCH®软件使用迭代设计流程并可访问组件的综合数据库。有关详细信息,请访问 www.ti.com/webench。  
11.2 文档支持  
11.2.1 相关文档  
相关文档请参见以下部分:  
AN-1557 LM5022 评估板》(SNVA203)  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至TI.com 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品信  
息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
32  
版权 © 2007–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Jul-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM5022MM  
NRND  
VSSOP  
DGS  
10  
1000  
Non-RoHS  
& Green  
Call TI  
Level-1-260C-UNLIM  
-40 to 125  
5022  
LM5022MM/NOPB  
LM5022MME/NOPB  
LM5022MMX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
DGS  
DGS  
DGS  
10  
10  
10  
1000 RoHS & Green  
250 RoHS & Green  
3500 RoHS & Green  
SN  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
5022  
5022  
5022  
Samples  
Samples  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Jul-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LM5022 :  
Automotive : LM5022-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Oct-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM5022MM  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGS  
DGS  
DGS  
DGS  
10  
10  
10  
10  
1000  
1000  
250  
178.0  
178.0  
178.0  
330.0  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
3.4  
3.4  
3.4  
3.4  
1.4  
1.4  
1.4  
1.4  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
LM5022MM/NOPB  
LM5022MME/NOPB  
LM5022MMX/NOPB  
3500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Oct-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM5022MM  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGS  
DGS  
DGS  
DGS  
10  
10  
10  
10  
1000  
1000  
250  
208.0  
208.0  
208.0  
367.0  
191.0  
191.0  
191.0  
367.0  
35.0  
35.0  
35.0  
35.0  
LM5022MM/NOPB  
LM5022MME/NOPB  
LM5022MMX/NOPB  
3500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LM5022-Q1

符合 AEC-Q100 标准的 6V 至 60V 宽输入电压、电流模式升压、SEPIC 和反激式控制器
TI

LM5022MM

60V Low Side Controller for Boost and SEPIC
NSC

LM5022MM

6V 至 60V 宽输入电压、电流模式升压、SEPIC 和反激式控制器 | DGS | 10 | -40 to 125
TI

LM5022MM/NOPB

6V 至 60V 宽输入电压、电流模式升压、SEPIC 和反激式控制器 | DGS | 10 | -40 to 125
TI

LM5022MME

60V Low Side Controller for Boost and SEPIC
NSC

LM5022MME/NOPB

6V 至 60V 宽输入电压、电流模式升压、SEPIC 和反激式控制器 | DGS | 10 | -40 to 125
TI

LM5022MMX

60V Low Side Controller for Boost and SEPIC
NSC

LM5022MMX/NOPB

6V 至 60V 宽输入电压、电流模式升压、SEPIC 和反激式控制器 | DGS | 10 | -40 to 125
TI

LM5022QDGSRQ1

符合 AEC-Q100 标准的 6V 至 60V 宽输入电压、电流模式升压、SEPIC 和反激式控制器 | DGS | 10 | -40 to 125
TI

LM5022QDGSTQ1

符合 AEC-Q100 标准的 6V 至 60V 宽输入电压、电流模式升压、SEPIC 和反激式控制器 | DGS | 10 | -40 to 125
TI

LM5022_09

60V Low Side Controller for Boost and SEPIC
NSC

LM5023

AC-DC Quasi-Resonant Current Mode PWM Controller
TI