LM2575HVS-15/NOPB [TI]

LM1575/LM2575/LM2575HV SIMPLE SWITCHER 1A Step-Down Voltage Regulator; LM1575 / LM2575 / LM2575HV SIMPLE SWITCHER 1A降压型稳压器
LM2575HVS-15/NOPB
型号: LM2575HVS-15/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LM1575/LM2575/LM2575HV SIMPLE SWITCHER 1A Step-Down Voltage Regulator
LM1575 / LM2575 / LM2575HV SIMPLE SWITCHER 1A降压型稳压器

稳压器 开关
文件: 总44页 (文件大小:6007K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM1575, LM2575-N, LM2575HV  
www.ti.com  
SNVS106E MAY 1999REVISED APRIL 2013  
®
LM1575/LM2575/LM2575HV SIMPLE SWITCHER 1A Step-Down Voltage Regulator  
Check for Samples: LM1575, LM2575-N, LM2575HV  
1
FEATURES  
DESCRIPTION  
The LM2575 series of regulators are monolithic  
integrated circuits that provide all the active functions  
for a step-down (buck) switching regulator, capable of  
driving a 1A load with excellent line and load  
regulation. These devices are available in fixed output  
voltages of 3.3V, 5V, 12V, 15V, and an adjustable  
output version.  
23  
3.3V, 5V, 12V, 15V, and Adjustable Output  
Versions  
Adjustable Version Output Voltage Range,  
1.23V to 37V (57V for HV Version) ±4%  
Max Over  
Line and Load Conditions  
Requiring  
a
minimum number of external  
Specified 1A Output Current  
components, these regulators are simple to use and  
include internal frequency compensation and a fixed-  
frequency oscillator.  
Wide Input Voltage Range, 40V up to 60V for  
HV Version  
Requires Only 4 External Components  
The LM2575 series offers  
a
high-efficiency  
52 kHz Fixed Frequency Internal Oscillator  
replacement for popular three-terminal linear  
regulators. It substantially reduces the size of the  
heat sink, and in many cases no heat sink is  
required.  
TTL Shutdown Capability, Low Power Standby  
Mode  
High Efficiency  
A standard series of inductors optimized for use with  
the LM2575 are available from several different  
manufacturers. This feature greatly simplifies the  
design of switch-mode power supplies.  
Uses Readily Available Standard Inductors  
Thermal Shutdown and Current Limit  
Protection  
P+ Product Enhancement Tested  
Other features include a specified ±4% tolerance on  
output voltage within specified input voltages and  
output load conditions, and ±10% on the oscillator  
frequency. External shutdown is included, featuring  
50 μA (typical) standby current. The output switch  
includes cycle-by-cycle current limiting, as well as  
thermal shutdown for full protection under fault  
conditions.  
APPLICATIONS  
Simple High-Efficiency Step-Down (Buck)  
Regulator  
Efficient Pre-Regulator for Linear Regulators  
On-Card Switching Regulators  
Positive to Negative Converter (Buck-Boost)  
Typical Application  
(Fixed Output Voltage Versions)  
Pin numbers are for the TO-220 package.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
SIMPLE SWITCHER is a registered trademark of Texas Instruments.  
2
3
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 1999–2013, Texas Instruments Incorporated  
LM1575, LM2575-N, LM2575HV  
SNVS106E MAY 1999REVISED APRIL 2013  
www.ti.com  
Block Diagram and Typical Application  
3.3V, R2 = 1.7k  
5V, R2 = 3.1k  
12V, R2 = 8.84k  
15V, R2 = 11.3k  
For ADJ. Version  
R1 = Open, R2 = 0Ω  
Pin numbers are for the TO-220 package.  
Figure 1.  
2
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LM1575 LM2575-N LM2575HV  
LM1575, LM2575-N, LM2575HV  
www.ti.com  
SNVS106E MAY 1999REVISED APRIL 2013  
Connection Diagrams  
(XX indicates output voltage option.)  
Top View  
Top View  
Side View  
Figure 2. Straight Leads  
5-Lead TO-220 Package  
LM2575T-XX or LM2575HVT-XX  
See Package Number KC0005A  
Figure 3. Bent, Staggered Leads Figure 4. LM2575T-XX Flow LB03  
or  
5-Lead TO-220 Package  
LM2575HVT-XX Flow LB03  
See Package Number NDH0005D  
See Package Number NDH0005D  
Top View  
Top View  
*No Internal Connection  
*No Internal Connection  
Figure 5. 16-Lead CDIP and PDIP Packages  
LM2575N-XX or LM2575HVN-XX  
LM1575J-XX-QML  
Figure 6. 24-Lead Surface Mount SOIC Package  
LM2575M-XX or LM2575HVM-XX  
See Package Number DW0024B  
See Package Numbers NFE0016A and NBG  
Top View  
Figure 7. DDPAK/TO-263 Package  
5-Lead Surface-Mount Package  
See Package Number KTT0005B  
Side View  
Figure 8. LM2575S-XX or LM2575HVS-XX  
See Package Number KTT0005B  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM1575 LM2575-N LM2575HV  
LM1575, LM2575-N, LM2575HV  
SNVS106E MAY 1999REVISED APRIL 2013  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
(1)(2)(3)  
ABSOLUTE MAXIMUM RATINGS  
Maximum Supply Voltage  
LM1575/LM2575  
LM2575HV  
45V  
63V  
ON /OFF Pin Input Voltage  
Output Voltage to Ground  
Power Dissipation  
0.3V V +VIN  
1V  
(Steady State)  
Internally Limited  
65°C to +150°C  
150°C  
Storage Temperature Range  
Maximum Junction Temperature  
Minimum ESD Rating  
(C = 100 pF, R = 1.5 kΩ)  
2 kV  
Lead Temperature  
(Soldering, 10 sec.)  
260°C  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but do not ensure specific performance limits. For specified specifications and test  
conditions, see Electrical Characteristics.  
(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.  
(3) Refer to RETS LM1575J for current revision of military RETS/SMD.  
OPERATING RATINGS  
Temperature Range  
LM1575  
55°C TJ +150°C  
LM2575/LM2575HV  
LM1575/LM2575  
LM2575HV  
40°C TJ +125°C  
Supply Voltage  
40V  
60V  
ELECTRICAL CHARACTERISTICS LM1575-3.3, LM2575-3.3, LM2575HV-3.3  
Specifications with standard type face are for TJ = 25°C, and those with boldface type apply over full Operating  
Temperature Range .  
LM2575-3.3  
LM1575-3.3  
Units  
(Limits)  
LM2575HV-3.3  
Symbol  
Parameter  
Conditions  
Typ  
(1)  
(2)  
Limit  
Limit  
SYSTEM PARAMETERS Test Circuit Figure 25 and Figure 26(3)  
VOUT  
VOUT  
VOUT  
η
Output Voltage  
VIN = 12V, ILOAD = 0.2A  
Circuit Figure 25 and Figure 26  
3.3  
V
3.267  
3.333  
3.234  
3.366  
V(Min)  
V(Max)  
V
Output Voltage  
LM1575/LM2575  
4.75V VIN 40V, 0.2A ILOAD 1A  
Circuit Figure 25 and Figure 26  
3.3  
3.3  
75  
3.200/3.168  
3.400/3.432  
3.168/3.135  
3.432/3.465  
V(Min)  
V(Max)  
V
Output Voltage  
LM2575HV  
4.75V VIN 60V, 0.2A ILOAD 1A  
Circuit Figure 25 and Figure 26  
3.200/3.168  
3.416/3.450  
3.168/3.135  
3.450/3.482  
V(Min)  
V(Max)  
%
Efficiency  
VIN = 12V, ILOAD = 1A  
(1) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All limits are used to  
calculate Average Outgoing Quality Level, and all are 100% production tested.  
(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits  
are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control  
(SQC) methods.  
(3) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance.  
When the LM1575/LM2575 is used as shown in the test circuit Figure 25 and Figure 26, system performance will be as shown in system  
parameters of Electrical Characteristics.  
4
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LM1575 LM2575-N LM2575HV  
LM1575, LM2575-N, LM2575HV  
www.ti.com  
SNVS106E MAY 1999REVISED APRIL 2013  
ELECTRICAL CHARACTERISTICS LM1575-5.0, LM2575-5.0, LM2575HV-5.0  
Specifications with standard type face are for TJ = 25°C, and those with boldface type apply over full Operating  
Temperature Range.  
LM2575-5.0  
LM1575-5.0  
Units  
(Limits)  
LM2575HV-5.0  
Symbol  
Parameter  
Conditions  
Typ  
(1)  
(2)  
Limit  
Limit  
SYSTEM PARAMETERS Test Circuit Figure 25 and Figure 26(3)  
VOUT  
VOUT  
VOUT  
η
Output Voltage  
VIN = 12V, ILOAD = 0.2A  
Circuit Figure 25 and Figure 26  
5.0  
V
4.950  
4.900  
5.100  
V(Min)  
V(Max)  
V
5.050  
Output Voltage  
LM1575/LM2575  
0.2A ILOAD 1A,  
8V VIN 40V  
Circuit Figure 25 and Figure 26  
5.0  
5.0  
77  
4.850/4.800  
5.150/5.200  
4.800/4.750  
5.200/5.250  
V(Min)  
V(Max)  
V
Output Voltage  
LM2575HV  
0.2A ILOAD 1A,  
8V VIN 60V  
Circuit Figure 25 and Figure 26  
4.850/4.800  
5.175/5.225  
4.800/4.750  
5.225/5.275  
V(Min)  
V(Max)  
%
Efficiency  
VIN = 12V, ILOAD = 1A  
(1) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All limits are used to  
calculate Average Outgoing Quality Level, and all are 100% production tested.  
(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits  
are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control  
(SQC) methods.  
(3) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance.  
When the LM1575/LM2575 is used as shown in the test circuit Figure 25 and Figure 26, system performance will be as shown in system  
parameters of Electrical Characteristics.  
ELECTRICAL CHARACTERISTICS LM1575-12, LM2575-12, LM2575HV-12  
Specifications with standard type face are for TJ = 25°C, and those with boldface type apply over full Operating  
Temperature Range .  
LM2575-12  
LM2575HV-12  
LM1575-12  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Typ  
(1)  
(2)  
Limit  
Limit  
(3)  
SYSTEM PARAMETERS Test Circuit Figure 25 and Figure 26  
VOUT  
VOUT  
VOUT  
η
Output Voltage  
VIN = 25V, ILOAD = 0.2A  
Circuit Figure 25 and Figure 26  
12  
V
11.88  
12.12  
11.76  
12.24  
V(Min)  
V(Max)  
V
Output Voltage  
LM1575/LM2575  
0.2A ILOAD 1A,  
15V VIN 40V  
Circuit Figure 25 and Figure 26  
12  
12  
88  
11.64/11.52  
12.36/12.48  
11.52/11.40  
12.48/12.60  
V(Min)  
V(Max)  
V
Output Voltage  
LM2575HV  
0.2A ILOAD 1A,  
15V VIN 60V  
Circuit Figure 25 and Figure 26  
11.64/11.52  
12.42/12.54  
11.52/11.40  
12.54/12.66  
V(Min)  
V(Max)  
%
Efficiency  
VIN = 15V, ILOAD = 1A  
(1) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All limits are used to  
calculate Average Outgoing Quality Level, and all are 100% production tested.  
(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits  
are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control  
(SQC) methods.  
(3) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance.  
When the LM1575/LM2575 is used as shown in the test circuit Figure 25 and Figure 26, system performance will be as shown in system  
parameters of Electrical Characteristics.  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM1575 LM2575-N LM2575HV  
LM1575, LM2575-N, LM2575HV  
SNVS106E MAY 1999REVISED APRIL 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS LM1575-15, LM2575-15, LM2575HV-15  
Specifications with standard type face are for TJ = 25°C, and those with boldface type apply over full Operating  
Temperature Range .  
LM2575-15  
LM1575-15  
Units  
(Limits)  
LM2575HV-15  
Parameter  
Conditions  
Typ  
(1)  
(2)  
Symbol  
SYSTEM PARAMETERS Test Circuit Figure 25 and Figure 26(3)  
Limit  
Limit  
VOUT  
VOUT  
VOUT  
η
Output Voltage  
VIN = 30V, ILOAD = 0.2A  
Circuit Figure 25 and Figure 26  
15  
V
14.85  
14.70  
15.30  
V(Min)  
V(Max)  
V
15.15  
Output Voltage  
LM1575/LM2575  
0.2A ILOAD 1A,  
18V VIN 40V  
Circuit Figure 25 and Figure 26  
15  
15  
88  
14.55/14.40  
15.45/15.60  
14.40/14.25  
15.60/15.75  
V(Min)  
V(Max)  
V
Output Voltage  
LM2575HV  
0.2A ILOAD 1A,  
18V VIN 60V  
Circuit Figure 25 and Figure 26  
14.55/14.40  
14.40/14.25  
15.68/15.83  
V(Min)  
V(Max)  
%
15.525/15.675  
Efficiency  
VIN = 18V, ILOAD = 1A  
(1) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All limits are used to  
calculate Average Outgoing Quality Level, and all are 100% production tested.  
(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits  
are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control  
(SQC) methods.  
(3) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance.  
When the LM1575/LM2575 is used as shown in the test circuit Figure 25 and Figure 26, system performance will be as shown in system  
parameters of Electrical Characteristics.  
ELECTRICAL CHARACTERISTICS LM1575-ADJ, LM2575-ADJ, LM2575HV-ADJ  
Specifications with standard type face are for TJ= 25°C, and those with boldface type apply over full Operating  
Temperature Range.  
LM2575-ADJ  
LM2575HV-ADJ  
LM1575-ADJ  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Typ  
(1)  
(2)  
Limit  
Limit  
SYSTEM PARAMETERS Test Circuit Figure 25 and Figure 26(3)  
VOUT  
VOUT  
VOUT  
η
Feedback Voltage  
VIN = 12V, ILOAD = 0.2A  
VOUT = 5V  
Circuit Figure 25 and Figure 26  
1.230  
V
1.217  
1.243  
1.217  
1.243  
V(Min)  
V(Max)  
V
Feedback Voltage  
LM1575/LM2575  
0.2A ILOAD 1A,  
8V VIN 40V  
VOUT = 5V, Circuit Figure 25 and  
Figure 26  
1.230  
1.230  
77  
1.205/1.193  
1.255/1.267  
1.193/1.180  
1.267/1.280  
V(Min)  
V(Max)  
V
Feedback Voltage  
LM2575HV  
0.2A ILOAD 1A,  
8V VIN 60V  
VOUT = 5V, Circuit Figure 25 and  
Figure 26  
1.205/1.193  
1.261/1.273  
1.193/1.180  
1.273/1.286  
V(Min)  
V(Max)  
%
Efficiency  
VIN = 12V, ILOAD = 1A, VOUT = 5V  
(1) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All limits are used to  
calculate Average Outgoing Quality Level, and all are 100% production tested.  
(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits  
are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control  
(SQC) methods.  
(3) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance.  
When the LM1575/LM2575 is used as shown in the test circuit Figure 25 and Figure 26, system performance will be as shown in system  
parameters of Electrical Characteristics.  
6
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LM1575 LM2575-N LM2575HV  
 
LM1575, LM2575-N, LM2575HV  
www.ti.com  
SNVS106E MAY 1999REVISED APRIL 2013  
ELECTRICAL CHARACTERISTICS ALL OUTPUT VOLTAGE VERSIONS  
Specifications with standard type face are for TJ = 25°C, and those with boldface type apply over full Operating  
Temperature Range. Unless otherwise specified, VIN = 12V for the 3.3V, 5V, and Adjustable version, VIN = 25V for the 12V  
version, and VIN = 30V for the 15V version. ILOAD = 200 mA.  
LM2575-XX  
LM2575HV-XX  
LM1575-XX  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Typ  
(1)  
(2)  
Limit  
Limit  
DEVICE PARAMETERS  
Ib  
Feedback Bias Current  
VOUT = 5V (Adjustable Version Only)  
50  
52  
100/500  
100/500  
nA  
kHz  
(3)  
fO  
Oscillator Frequency  
See  
47/43  
58/62  
47/42  
58/63  
kHz(Min)  
kHz(Max)  
V
(4)  
VSAT  
DC  
Saturation Voltage  
Max Duty Cycle (ON)  
Current Limit  
IOUT = 1A  
0.9  
98  
1.2/1.4  
1.2/1.4  
V(Max)  
%
(5)  
See  
93  
93  
%(Min)  
A
(4)(3)  
ICL  
Peak Current  
2.2  
1.7/1.3  
3.0/3.2  
2
1.7/1.3  
3.0/3.2  
2
A(Min)  
A(Max)  
mA(Max)  
mA  
IL  
Output Leakage  
Current  
Output = 0V  
Output = 1V  
Output = 1V  
7.5  
5
(6)(7)  
30  
30  
10  
mA(Max)  
mA  
(6)  
IQ  
Quiescent Current  
See  
10/12  
mA(Max)  
μA  
ISTBY  
Standby Quiescent  
Current  
ON /OFF Pin = 5V (OFF)  
50  
200/500  
200  
μA(Max)  
(8)  
(9)  
θJA  
θJA  
θJC  
θJA  
θJA  
θJA  
Thermal Resistance  
TO-220 Package, Junction to Ambient  
TO-220 Package, Junction to Ambient  
TO-220 Package, Junction to Case  
CDIP Package, Junction to Ambient  
SOIC Package, Junction to Ambient  
65  
45  
2
85  
100  
37  
(10)  
°C/W  
(10)  
DDPAK/TO-263 Package, Junction to Ambient  
(11)  
(1) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All limits are used to  
calculate Average Outgoing Quality Level, and all are 100% production tested.  
(2) All limits specified at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits  
are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control  
(SQC) methods.  
(3) The oscillator frequency reduces to approximately 18 kHz in the event of an output short or an overload which causes the regulated  
output voltage to drop approximately 40% from the nominal output voltage. This self protection feature lowers the average power  
dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%.  
(4) Output (pin 2) sourcing current. No diode, inductor or capacitor connected to output pin.  
(5) Feedback (pin 4) removed from output and connected to 0V.  
(6) Feedback (pin 4) removed from output and connected to +12V for the Adjustable, 3.3V, and 5V versions, and +25V for the 12V and 15V  
versions, to force the output transistor OFF.  
(7) VIN = 40V (60V for the high voltage version).  
(8) Junction to ambient thermal resistance (no external heat sink) for the 5 lead TO-220 package mounted vertically, with ½ inch leads in a  
socket, or on a PC board with minimum copper area.  
(9) Junction to ambient thermal resistance (no external heat sink) for the 5 lead TO-220 package mounted vertically, with ½ inch leads  
soldered to a PC board containing approximately 4 square inches of copper area surrounding the leads.  
(10) Junction to ambient thermal resistance with approximately 1 square inch of pc board copper surrounding the leads. Additional copper  
area will lower thermal resistance further. See thermal model in Switchers made Simple software.  
(11) If the DDPAK/TO-263 package is used, the thermal resistance can be reduced by increasing the PC board copper area thermally  
connected to the package: Using 0.5 square inches of copper area, θJA is 50°C/W; with 1 square inch of copper area, θJA is 37°C/W;  
and with 1.6 or more square inches of copper area, θJA is 32°C/W.  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM1575 LM2575-N LM2575HV  
LM1575, LM2575-N, LM2575HV  
SNVS106E MAY 1999REVISED APRIL 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS ALL OUTPUT VOLTAGE VERSIONS (continued)  
Specifications with standard type face are for TJ = 25°C, and those with boldface type apply over full Operating  
Temperature Range. Unless otherwise specified, VIN = 12V for the 3.3V, 5V, and Adjustable version, VIN = 25V for the 12V  
version, and VIN = 30V for the 15V version. ILOAD = 200 mA.  
LM2575-XX  
LM2575HV-XX  
LM1575-XX  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Typ  
(1)  
(2)  
Limit  
Limit  
ON /OFF CONTROL Test Circuit Figure 25 and Figure 26  
VIH  
VIL  
IIH  
ON /OFF Pin Logic  
Input Level  
VOUT = 0V  
1.4  
1.2  
12  
2.2/2.4  
1.0/0.8  
2.2/2.4  
1.0/0.8  
V(Min)  
V(Max)  
μA  
VOUT = Nominal Output Voltage  
ON /OFF Pin = 5V (OFF)  
ON /OFF Pin Input  
Current  
30  
10  
30  
10  
μA(Max)  
μA  
IIL  
ON /OFF Pin = 0V (ON)  
0
μA(Max)  
8
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LM1575 LM2575-N LM2575HV  
LM1575, LM2575-N, LM2575HV  
www.ti.com  
SNVS106E MAY 1999REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS  
(Circuit Figure 25 and Figure 26)  
Normalized Output Voltage  
Line Regulation  
Figure 9.  
Figure 10.  
Dropout Voltage  
Current Limit  
Figure 11.  
Figure 12.  
Standby  
Quiescent Current  
Quiescent Current  
Figure 13.  
Figure 14.  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM1575 LM2575-N LM2575HV  
LM1575, LM2575-N, LM2575HV  
SNVS106E MAY 1999REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
(Circuit Figure 25 and Figure 26)  
Switch Saturation  
Voltage  
Oscillator Frequency  
Figure 15.  
Efficiency  
Figure 16.  
Minimum Operating Voltage  
Figure 17.  
Figure 18.  
Quiescent Current  
vs Duty Cycle  
Feedback Voltage  
vs Duty Cycle  
Figure 19.  
Figure 20.  
10  
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LM1575 LM2575-N LM2575HV  
LM1575, LM2575-N, LM2575HV  
www.ti.com  
SNVS106E MAY 1999REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
(Circuit Figure 25 and Figure 26)  
Maximum Power Dissipation  
(1)  
Feedback Pin Current  
(TO-263) (See  
)
Figure 21.  
Figure 22.  
Load Transient Response  
Switching Waveforms  
VOUT = 5V  
A: Output Pin Voltage, 10V/div  
B: Output Pin Current, 1A/div  
C: Inductor Current, 0.5A/div  
D: Output Ripple Voltage, 20 mV/div,  
AC-Coupled  
Horizontal Time Base: 5 μs/div  
Figure 23.  
Figure 24.  
(1) If the DDPAK/TO-263 package is used, the thermal resistance can be reduced by increasing the PC board copper area thermally  
connected to the package: Using 0.5 square inches of copper area, θJA is 50°C/W; with 1 square inch of copper area, θJA is 37°C/W;  
and with 1.6 or more square inches of copper area, θJA is 32°C/W.  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM1575 LM2575-N LM2575HV  
LM1575, LM2575-N, LM2575HV  
SNVS106E MAY 1999REVISED APRIL 2013  
www.ti.com  
TEST CIRCUIT AND LAYOUT GUIDELINES  
As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring  
inductance generate voltage transients which can cause problems. For minimal inductance and ground loops, the  
length of the leads indicated by heavy lines should be kept as short as possible. Single-point grounding (as  
indicated) or ground plane construction should be used for best results. When using the Adjustable version,  
physically locate the programming resistors near the regulator, to keep the sensitive feedback wiring short.  
CIN — 100 μF, 75V, Aluminum Electrolytic  
COUT — 330 μF, 25V, Aluminum Electrolytic  
D1 — Schottky, 11DQ06  
L1 — 330 μH, PE-52627 (for 5V in, 3.3V out, use 100 μH, PE-92108)  
Figure 25. Fixed Output Voltage Versions  
where  
VREF = 1.23V, R1 between 1k and 5k.  
R1 — 2k, 0.1%  
R2 — 6.12k, 0.1%  
Pin numbers are for the TO-220 package.  
Figure 26. Adjustable Output Voltage Version  
12  
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LM1575 LM2575-N LM2575HV  
 
 
LM1575, LM2575-N, LM2575HV  
www.ti.com  
SNVS106E MAY 1999REVISED APRIL 2013  
LM2575 Series Buck Regulator Design Procedure  
PROCEDURE (Fixed Output Voltage Versions)  
EXAMPLE (Fixed Output Voltage Versions)  
Given:  
Given:  
VOUT = 5V  
VIN(Max) = Maximum Input Voltage  
VIN(Max) = 20V  
VOUT = Regulated Output Voltage (3.3V, 5V, 12V, or 15V)  
ILOAD(Max) = Maximum Load Current  
ILOAD(Max) = 0.8A  
1. Inductor Selection (L1)  
1. Inductor Selection (L1)  
A. Select the correct Inductor value selection guide from Figure 27, A. Use the selection guide shown in Figure 28.  
Figure 28, Figure 29 and Figure 30 (Output voltages of 3.3V, 5V,  
12V or 15V respectively). For other output voltages, see the design  
procedure of Figure 26 .  
B. From the selection guide, the inductance area intersected by the  
20V line and 0.8A line is L330.  
C. Inductor value required is 330 μH. From the table in Table 2,  
choose AIE 415-0926, Pulse Engineering PE-52627, or RL1952.  
B. From the inductor value selection guide, identify the inductance  
region intersected by VIN(Max) and ILOAD(Max), and note the  
inductor code for that region.  
C. Identify the inductor value from the inductor code, and select an  
appropriate inductor from the table shown in Table 2. Part numbers  
are listed for three inductor manufacturers. The inductor chosen  
must be rated for operation at the LM2575 switching frequency (52  
kHz) and for a current rating of 1.15 × ILOAD. For additional inductor  
information, see INDUCTOR SELECTION.  
2. Output Capacitor Selection (COUT  
)
2. Output Capacitor Selection (COUT)  
A. The value of the output capacitor together with the inductor A. COUT = 100 μF to 470 μF standard aluminum electrolytic.  
defines the dominate pole-pair of the switching regulator loop. For  
B. Capacitor voltage rating = 20V.  
stable operation and an acceptable output ripple voltage,  
(approximately 1% of the output voltage) a value between 100 μF  
and 470 μF is recommended.  
B. The capacitor's voltage rating should be at least 1.5 times greater  
than the output voltage. For a 5V regulator, a rating of at least 8V is  
appropriate, and a 10V or 15V rating is recommended.  
Higher voltage electrolytic capacitors generally have lower ESR  
numbers, and for this reason it may be necessary to select a  
capacitor rated for a higher voltage than would normally be needed.  
3. Catch Diode Selection (D1)  
3. Catch Diode Selection (D1)  
A. The catch-diode current rating must be at least 1.2 times greater A. For this example, a 1A current rating is adequate.  
than the maximum load current. Also, if the power supply design  
B. Use a 30V 1N5818 or SR103 Schottky diode, or any of the  
must withstand a continuous output short, the diode should have a  
suggested fast-recovery diodes shown in Table 1.  
current rating equal to the maximum current limit of the LM2575. The  
most stressful condition for this diode is an overload or shorted  
output condition.  
B. The reverse voltage rating of the diode should be at least 1.25  
times the maximum input voltage.  
4. Input Capacitor (CIN  
An aluminum or tantalum electrolytic bypass capacitor located close A 47 μF, 25V aluminum electrolytic capacitor located near the input  
to the regulator is needed for stable operation. and ground pins provides sufficient bypassing.  
)
4. Input Capacitor (CIN)  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM1575 LM2575-N LM2575HV  
LM1575, LM2575-N, LM2575HV  
SNVS106E MAY 1999REVISED APRIL 2013  
www.ti.com  
Inductor Value Selection Guides  
(For Continuous Mode Operation)  
Figure 27. LM2575(HV)-3.3  
Figure 28. LM2575(HV)-5.0  
Figure 29. LM2575(HV)-12  
Figure 30. LM2575(HV)-15  
Figure 31. LM2575(HV)-ADJ  
14  
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LM1575 LM2575-N LM2575HV  
 
 
LM1575, LM2575-N, LM2575HV  
www.ti.com  
SNVS106E MAY 1999REVISED APRIL 2013  
PROCEDURE (Adjustable Output Voltage Versions)  
EXAMPLE (Adjustable Output Voltage Versions)  
Given:  
Given:  
VOUT = Regulated Output Voltage  
VIN(Max) = Maximum Input Voltage  
ILOAD(Max) = Maximum Load Current  
F = Switching Frequency (Fixed at 52 kHz)  
VOUT = 10V  
VIN(Max) = 25V  
ILOAD(Max) = 1A  
F = 52 kHz  
1. Programming Output Voltage (Selecting R1 and R2, as shown 1. Programming Output Voltage (Selecting R1 and R2)  
in Figure 25 and Figure 26)  
Use the following formula to select the appropriate resistor values.  
(1)  
(3)  
R1 can be between 1k and 5k. (For best temperature coefficient and  
stability with time, use 1% metal film resistors)  
R2 = 1k (8.13 1) = 7.13k, closest 1% value is 7.15k  
(2)  
2. Inductor Selection (L1)  
2. Inductor Selection (L1)  
A. Calculate the inductor Volt • microsecond constant,  
E • T (V • μs), from the following formula:  
A. Calculate E • T (V • μs)  
(5)  
(4)  
B. E • T = 115 V • μs  
B. Use the E • T value from the previous formula and match it with  
the E • T number on the vertical axis of the Inductor Value  
Selection Guide shown in Figure 31.  
C. ILOAD(Max) = 1A  
D. Inductance Region = H470  
E. Inductor Value = 470 μH Choose from AIE part #430-0634, Pulse  
Engineering part #PE-53118, or Renco part #RL-1961.  
C. On the horizontal axis, select the maximum load current.  
D. Identify the inductance region intersected by the E • T value and  
the maximum load current value, and note the inductor code for that  
region.  
E. Identify the inductor value from the inductor code, and select an  
appropriate inductor from the table shown in Table 2. Part numbers  
are listed for three inductor manufacturers. The inductor chosen  
must be rated for operation at the LM2575 switching frequency (52  
kHz) and for a current rating of 1.15 × ILOAD. For additional inductor  
information, see INDUCTOR SELECTION.  
3. Output Capacitor Selection (COUT  
)
3. Output Capacitor Selection (COUT  
)
A. The value of the output capacitor together with the inductor A.  
defines the dominate pole-pair of the switching regulator loop. For  
stable operation, the capacitor must satisfy the following  
requirement:  
(7)  
However, for acceptable output ripple voltage select  
C
OUT 220 μF  
(6)  
COUT = 220 μF electrolytic capacitor  
The above formula yields capacitor values between 10 μF and 2000  
μF that will satisfy the loop requirements for stable operation. But to  
achieve an acceptable output ripple voltage, (approximately 1% of  
the output voltage) and transient response, the output capacitor may  
need to be several times larger than the above formula yields.  
B. The capacitor's voltage rating should be at last 1.5 times greater  
than the output voltage. For a 10V regulator, a rating of at least 15V  
or more is recommended.  
Higher voltage electrolytic capacitors generally have lower ESR  
numbers, and for this reason it may be necessary to select a  
capacitor rate for a higher voltage than would normally be needed.  
(Continued)  
(Continued)  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LM1575 LM2575-N LM2575HV  
LM1575, LM2575-N, LM2575HV  
SNVS106E MAY 1999REVISED APRIL 2013  
www.ti.com  
PROCEDURE (Adjustable Output Voltage Versions)  
4. Catch Diode Selection (D1)  
EXAMPLE (Adjustable Output Voltage Versions)  
4. Catch Diode Selection (D1)  
A. The catch-diode current rating must be at least 1.2 times greater A. For this example, a 3A current rating is adequate.  
than the maximum load current. Also, if the power supply design  
B. Use a 40V MBR340 or 31DQ04 Schottky diode, or any of the  
suggested fast-recovery diodes in Table 1.  
must withstand a continuous output short, the diode should have a  
current rating equal to the maximum current limit of the LM2575. The  
most stressful condition for this diode is an overload or shorted  
output. See Table 1.  
B. The reverse voltage rating of the diode should be at least 1.25  
times the maximum input voltage.  
5. Input Capacitor (CIN  
An aluminum or tantalum electrolytic bypass capacitor located close A 100 μF aluminum electrolytic capacitor located near the input and  
to the regulator is needed for stable operation. ground pins provides sufficient bypassing.  
)
5. Input Capacitor (CIN)  
To further simplify the buck regulator design procedure, TI is making available computer design software to be  
used with the Simple Switcher line of switching regulators. Switchers Made Simple (version 3.3) is available on  
a (3½) diskette for IBM compatible computers from a TI sales office in your area.  
Table 1. Diode Selection Guide  
Schottky  
Fast Recovery  
VR  
1A  
3A  
1A  
3A  
20V  
30V  
1N5817  
MBR120P  
SR102  
1N5820  
MBR320  
SR302  
The following  
diodes are all  
rated to 100V:  
The following  
diodes are all  
rated to 100V:  
1N5818  
MBR130P  
11DQ03  
SR103  
1N5821  
MBR330  
31DQ03  
SR303  
11DF1  
MUR110  
HER102  
31DF1  
MURD310  
HER302  
40V  
1N5819  
MBR140P  
11DQ04  
SR104  
IN5822  
MBR340  
31DQ04  
SR304  
50V  
60V  
MBR150  
11DQ05  
SR105  
MBR350  
31DQ05  
SR305  
MBR160  
11DQ06  
SR106  
MBR360  
31DQ06  
SR306  
Table 2. Inductor Selection by Manufacturer's Part Number  
(1)  
(2)  
(3)  
Inductor Code  
L100  
Inductor Value  
100 μH  
Schott  
Pulse Eng.  
PE-92108  
PE-53113  
PE-52626  
PE-52627  
PE-53114  
PE-52629  
PE-53115  
PE-53116  
PE-53117  
PE-53118  
PE-53119  
PE-53120  
Renco  
67127000  
67127010  
67127020  
67127030  
67127040  
67127050  
67127060  
67127070  
67127080  
67127090  
67127100  
67127110  
RL2444  
RL1954  
RL1953  
RL1952  
RL1951  
RL1950  
RL2445  
RL2446  
RL2447  
RL1961  
RL1960  
RL1959  
L150  
150 μH  
L220  
220 μH  
L330  
330 μH  
L470  
470 μH  
L680  
680 μH  
H150  
150 μH  
H220  
220 μH  
H330  
330 μH  
H470  
470 μH  
H680  
680 μH  
H1000  
1000 μH  
(1) Schott Corp., (612) 475-1173, 1000 Parkers Lake Rd., Wayzata, MN 55391.  
(2) Pulse Engineering, (619) 674-8100, P.O. Box 12236, San Diego, CA 92112.  
(3) Renco Electronics Inc., (516) 586-5566, 60 Jeffryn Blvd. East, Deer Park, NY 11729.  
16  
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LM1575 LM2575-N LM2575HV  
 
LM1575, LM2575-N, LM2575HV  
www.ti.com  
SNVS106E MAY 1999REVISED APRIL 2013  
Table 2. Inductor Selection by Manufacturer's Part Number (continued)  
(1)  
(2)  
(3)  
Inductor Code  
Inductor Value  
1500 μH  
Schott  
Pulse Eng.  
PE-53121  
PE-53122  
Renco  
H1500  
H2200  
67127120  
67127130  
RL1958  
RL2448  
2200 μH  
APPLICATION HINTS  
INPUT CAPACITOR (CIN)  
To maintain stability, the regulator input pin must be bypassed with at least a 47 μF electrolytic capacitor. The  
capacitor's leads must be kept short, and located near the regulator.  
If the operating temperature range includes temperatures below 25°C, the input capacitor value may need to be  
larger. With most electrolytic capacitors, the capacitance value decreases and the ESR increases with lower  
temperatures and age. Paralleling a ceramic or solid tantalum capacitor will increase the regulator stability at cold  
temperatures. For maximum capacitor operating lifetime, the capacitor's RMS ripple current rating should be  
greater than  
(8)  
INDUCTOR SELECTION  
All switching regulators have two basic modes of operation: continuous and discontinuous. The difference  
between the two types relates to the inductor current, whether it is flowing continuously, or if it drops to zero for a  
period of time in the normal switching cycle. Each mode has distinctively different operating characteristics,  
which can affect the regulator performance and requirements.  
The LM2575 (or any of the Simple Switcher family) can be used for both continuous and discontinuous modes of  
operation.  
The inductor value selection guides in Figure 27 through Figure 31 were designed for buck regulator designs of  
the continuous inductor current type. When using inductor values shown in the inductor selection guide, the  
peak-to-peak inductor ripple current will be approximately 20% to 30% of the maximum DC current. With  
relatively heavy load currents, the circuit operates in the continuous mode (inductor current always flowing), but  
under light load conditions, the circuit will be forced to the discontinuous mode (inductor current falls to zero for a  
period of time). This discontinuous mode of operation is perfectly acceptable. For light loads (less than  
approximately 200 mA) it may be desirable to operate the regulator in the discontinuous mode, primarily because  
of the lower inductor values required for the discontinuous mode.  
The selection guide chooses inductor values suitable for continuous mode operation, but if the inductor value  
chosen is prohibitively high, the designer should investigate the possibility of discontinuous operation. The  
computer design software Switchers Made Simple will provide all component values for discontinuous (as well  
as continuous) mode of operation.  
Inductors are available in different styles such as pot core, toriod, E-frame, bobbin core, etc., as well as different  
core materials, such as ferrites and powdered iron. The least expensive, the bobbin core type, consists of wire  
wrapped on a ferrite rod core. This type of construction makes for an inexpensive inductor, but since the  
magnetic flux is not completely contained within the core, it generates more electromagnetic interference (EMI).  
This EMI can cause problems in sensitive circuits, or can give incorrect scope readings because of induced  
voltages in the scope probe.  
The inductors listed in the selection chart include ferrite pot core construction for AIE, powdered iron toroid for  
Pulse Engineering, and ferrite bobbin core for Renco.  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LM1575 LM2575-N LM2575HV  
 
LM1575, LM2575-N, LM2575HV  
SNVS106E MAY 1999REVISED APRIL 2013  
www.ti.com  
An inductor should not be operated beyond its maximum rated current because it may saturate. When an  
inductor begins to saturate, the inductance decreases rapidly and the inductor begins to look mainly resistive (the  
DC resistance of the winding). This will cause the switch current to rise very rapidly. Different inductor types have  
different saturation characteristics, and this should be kept in mind when selecting an inductor.  
The inductor manufacturer's data sheets include current and energy limits to avoid inductor saturation.  
INDUCTOR RIPPLE CURRENT  
When the switcher is operating in the continuous mode, the inductor current waveform ranges from a triangular  
to a sawtooth type of waveform (depending on the input voltage). For a given input voltage and output voltage,  
the peak-to-peak amplitude of this inductor current waveform remains constant. As the load current rises or falls,  
the entire sawtooth current waveform also rises or falls. The average DC value of this waveform is equal to the  
DC load current (in the buck regulator configuration).  
If the load current drops to a low enough level, the bottom of the sawtooth current waveform will reach zero, and  
the switcher will change to a discontinuous mode of operation. This is a perfectly acceptable mode of operation.  
Any buck switching regulator (no matter how large the inductor value is) will be forced to run discontinuous if the  
load current is light enough.  
OUTPUT CAPACITOR  
An output capacitor is required to filter the output voltage and is needed for loop stability. The capacitor should  
be located near the LM2575 using short pc board traces. Standard aluminum electrolytics are usually adequate,  
but low ESR types are recommended for low output ripple voltage and good stability. The ESR of a capacitor  
depends on many factors, some which are: the value, the voltage rating, physical size and the type of  
construction. In general, low value or low voltage (less than 12V) electrolytic capacitors usually have higher ESR  
numbers.  
The amount of output ripple voltage is primarily a function of the ESR (Equivalent Series Resistance) of the  
output capacitor and the amplitude of the inductor ripple current (ΔIIND). (See INDUCTOR RIPPLE CURRENT).  
The lower capacitor values (220 μF–680 μF) will allow typically 50 mV to 150 mV of output ripple voltage, while  
larger-value capacitors will reduce the ripple to approximately 20 mV to 50 mV.  
Output Ripple Voltage = (ΔIIND) (ESR of COUT  
)
(9)  
To further reduce the output ripple voltage, several standard electrolytic capacitors may be paralleled, or a  
higher-grade capacitor may be used. Such capacitors are often called “high-frequency,” “low-inductance,” or  
“low-ESR.” These will reduce the output ripple to 10 mV or 20 mV. However, when operating in the continuous  
mode, reducing the ESR below 0.05Ω can cause instability in the regulator.  
Tantalum capacitors can have a very low ESR, and should be carefully evaluated if it is the only output capacitor.  
Because of their good low temperature characteristics, a tantalum can be used in parallel with aluminum  
electrolytics, with the tantalum making up 10% or 20% of the total capacitance.  
The capacitor's ripple current rating at 52 kHz should be at least 50% higher than the peak-to-peak inductor  
ripple current.  
CATCH DIODE  
Buck regulators require a diode to provide a return path for the inductor current when the switch is off. This diode  
should be located close to the LM2575 using short leads and short printed circuit traces.  
Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best efficiency,  
especially in low output voltage switching regulators (less than 5V). Fast-Recovery, High-Efficiency, or Ultra-Fast  
Recovery diodes are also suitable, but some types with an abrupt turn-off characteristic may cause instability and  
EMI problems. A fast-recovery diode with soft recovery characteristics is a better choice. Standard 60 Hz diodes  
(example: 1N4001 or 1N5400, and so on.) are also not suitable. See Table 1 for Schottky and “soft” fast-  
recovery diode selection guide.  
18  
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LM1575 LM2575-N LM2575HV  
 
LM1575, LM2575-N, LM2575HV  
www.ti.com  
SNVS106E MAY 1999REVISED APRIL 2013  
OUTPUT VOLTAGE RIPPLE AND TRANSIENTS  
The output voltage of a switching power supply will contain a sawtooth ripple voltage at the switcher frequency,  
typically about 1% of the output voltage, and may also contain short voltage spikes at the peaks of the sawtooth  
waveform.  
The output ripple voltage is due mainly to the inductor sawtooth ripple current multiplied by the ESR of the output  
capacitor. (See INDUCTOR SELECTION)  
The voltage spikes are present because of the fast switching action of the output switch, and the parasitic  
inductance of the output filter capacitor. To minimize these voltage spikes, special low inductance capacitors can  
be used, and their lead lengths must be kept short. Wiring inductance, stray capacitance, as well as the scope  
probe used to evaluate these transients, all contribute to the amplitude of these spikes.  
An additional small LC filter (20 μH & 100 μF) can be added to the output (as shown in Figure 37) to further  
reduce the amount of output ripple and transients. A 10 × reduction in output ripple voltage and transients is  
possible with this filter.  
FEEDBACK CONNECTION  
The LM2575 (fixed voltage versions) feedback pin must be wired to the output voltage point of the switching  
power supply. When using the adjustable version, physically locate both output voltage programming resistors  
near the LM2575 to avoid picking up unwanted noise. Avoid using resistors greater than 100 kΩ because of the  
increased chance of noise pickup.  
ON /OFF INPUT  
For normal operation, the ON /OFF pin should be grounded or driven with a low-level TTL voltage (typically  
below 1.6V). To put the regulator into standby mode, drive this pin with a high-level TTL or CMOS signal. The  
ON /OFF pin can be safely pulled up to +VIN without a resistor in series with it. The ON /OFF pin should not be  
left open.  
GROUNDING  
To maintain output voltage stability, the power ground connections must be low-impedance (see Figure 26). For  
the TO-3 style package, the case is ground. For the 5-lead TO-220 style package, both the tab and pin 3 are  
ground and either connection may be used, as they are both part of the same copper lead frame.  
With the CDIP or SOIC packages, all the pins labeled ground, power ground, or signal ground should be  
soldered directly to wide printed circuit board copper traces. This assures both low inductance connections and  
good thermal properties.  
HEAT SINK/THERMAL CONSIDERATIONS  
In many cases, no heat sink is required to keep the LM2575 junction temperature within the allowed operating  
range. For each application, to determine whether or not a heat sink will be required, the following must be  
identified:  
1. Maximum ambient temperature (in the application).  
2. Maximum regulator power dissipation (in application).  
3. Maximum allowed junction temperature (150°C for the LM1575 or 125°C for the LM2575). For a safe,  
conservative design, a temperature approximately 15°C cooler than the maximum temperature should be  
selected.  
4. LM2575 package thermal resistances θJA and θJC.  
Total power dissipated by the LM2575 can be estimated as follows:  
PD = (VIN) (IQ) + (VO/VIN) (ILOAD) (VSAT  
)
where  
IQ (quiescent current) and VSAT can be found in the Characteristic Curves shown previously,  
VIN is the applied minimum input voltage,  
VO is the regulated output voltage  
and ILOAD is the load current.  
(10)  
19  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: LM1575 LM2575-N LM2575HV  
LM1575, LM2575-N, LM2575HV  
SNVS106E MAY 1999REVISED APRIL 2013  
www.ti.com  
The dynamic losses during turn-on and turn-off are negligible if a Schottky type catch diode is used.  
When no heat sink is used, the junction temperature rise can be determined by the following:  
ΔTJ = (PD) (θJA)  
(11)  
To arrive at the actual operating junction temperature, add the junction temperature rise to the maximum ambient  
temperature.  
TJ = ΔTJ + TA  
(12)  
If the actual operating junction temperature is greater than the selected safe operating junction temperature  
determined in step 3, then a heat sink is required.  
When using a heat sink, the junction temperature rise can be determined by the following:  
ΔTJ = (PD) (θJC + θinterface + θHeat sink  
)
(13)  
The operating junction temperature will be:  
TJ = TA + ΔTJ  
(14)  
As shown in Equation 14, if the actual operating junction temperature is greater than the selected safe operating  
junction temperature, then a larger heat sink is required (one that has a lower thermal resistance).  
When using the LM2575 in the plastic CDIP or surface mount SOIC packages, several items about the thermal  
properties of the packages should be understood. The majority of the heat is conducted out of the package  
through the leads, with a minor portion through the plastic parts of the package. Since the lead frame is solid  
copper, heat from the die is readily conducted through the leads to the printed circuit board copper, which is  
acting as a heat sink.  
For best thermal performance, the ground pins and all the unconnected pins should be soldered to generous  
amounts of printed circuit board copper, such as a ground plane. Large areas of copper provide the best transfer  
of heat to the surrounding air. Copper on both sides of the board is also helpful in getting the heat away from the  
package, even if there is no direct copper contact between the two sides. Thermal resistance numbers as low as  
40°C/W for the SOIC package, and 30°C/W for the CDIP package can be realized with a carefully engineered pc  
board.  
Included on the Switchers Made Simple design software is a more precise (non-linear) thermal model that can  
be used to determine junction temperature with different input-output parameters or different component values.  
It can also calculate the heat sink thermal resistance required to maintain the regulators junction temperature  
below the maximum operating temperature.  
ADDITIONAL APPLICATIONS  
INVERTING REGULATOR  
Figure 32 shows a LM2575-12 in a buck-boost configuration to generate a negative 12V output from a positive  
input voltage. This circuit bootstraps the regulator's ground pin to the negative output voltage, then by grounding  
the feedback pin, the regulator senses the inverted output voltage and regulates it to 12V.  
For an input voltage of 12V or more, the maximum available output current in this configuration is approximately  
0.35A. At lighter loads, the minimum input voltage required drops to approximately 4.7V.  
The switch currents in this buck-boost configuration are higher than in the standard buck-mode design, thus  
lowering the available output current. Also, the start-up input current of the buck-boost converter is higher than  
the standard buck-mode regulator, and this may overload an input power source with a current limit less than  
1.5A. Using a delayed turn-on or an undervoltage lockout circuit (described in the NEGATIVE BOOST  
REGULATOR section) would allow the input voltage to rise to a high enough level before the switcher would be  
allowed to turn on.  
Because of the structural differences between the buck and the buck-boost regulator topologies, the buck  
regulator design procedure section cannot be used to select the inductor or the output capacitor. The  
recommended range of inductor values for the buck-boost design is between 68 μH and 220 μH, and the output  
capacitor values must be larger than what is normally required for buck designs. Low input voltages or high  
output currents require a large value output capacitor (in the thousands of micro Farads).  
20  
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LM1575 LM2575-N LM2575HV  
 
LM1575, LM2575-N, LM2575HV  
www.ti.com  
SNVS106E MAY 1999REVISED APRIL 2013  
The peak inductor current, which is the same as the peak switch current, can be calculated from the following  
formula:  
where  
fosc = 52 kHz.  
(15)  
Under normal continuous inductor current operating conditions, the minimum VIN represents the worst case.  
Select an inductor that is rated for the peak current anticipated.  
Also, the maximum voltage appearing across the regulator is the absolute sum of the input and output voltage.  
For a 12V output, the maximum input voltage for the LM2575 is +28V, or +48V for the LM2575HV.  
The Switchers Made Simple (version 3.3) design software can be used to determine the feasibility of regulator  
designs using different topologies, different input-output parameters, different components, and so on.  
Figure 32. Inverting Buck-Boost Develops 12V  
NEGATIVE BOOST REGULATOR  
Another variation on the buck-boost topology is the negative boost configuration. The circuit in Figure 33 accepts  
an input voltage ranging from 5V to 12V and provides a regulated 12V output. Input voltages greater than  
12V will cause the output to rise above 12V, but will not damage the regulator.  
Because of the boosting function of this type of regulator, the switch current is relatively high, especially at low  
input voltages. Output load current limitations are a result of the maximum current rating of the switch. Also,  
boost regulators can not provide current limiting load protection in the event of a shorted load, so some other  
means (such as a fuse) may be necessary.  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LM1575 LM2575-N LM2575HV  
 
LM1575, LM2575-N, LM2575HV  
SNVS106E MAY 1999REVISED APRIL 2013  
www.ti.com  
+
Feedback  
C
OUT  
V
C
IN  
4
1000 mF  
LM2575-12  
Output  
1
Low ESR  
2
3
GND  
5
1N5817  
+
IN  
ON/OFF  
100 mF  
V
OUT  
= -12V  
150 mH  
-V  
IN  
-5V to -12V  
Typical Load Current  
200 mA for VIN = 5.2V  
500 mA for VIN = 7V  
Pin numbers are for TO-220 package.  
Figure 33. Negative Boost  
UNDERVOLTAGE LOCKOUT  
In some applications it is desirable to keep the regulator off until the input voltage reaches a certain threshold. An  
undervoltage lockout circuit which accomplishes this task is shown in Figure 34, while Figure 35 shows the same  
circuit applied to a buck-boost configuration. These circuits keep the regulator off until the input voltage reaches  
a predetermined level.  
VTH VZ1 + 2VBE (Q1)  
(16)  
DELAYED STARTUP  
The ON /OFF pin can be used to provide a delayed startup feature as shown in Figure 36. With an input voltage  
of 20V and for the part values shown, the circuit provides approximately 10 ms of delay time before the circuit  
begins switching. Increasing the RC time constant can provide longer delay times. But excessively large RC time  
constants can cause problems with input voltages that are high in 60 Hz or 120 Hz ripple, by coupling the ripple  
into the ON /OFF pin.  
ADJUSTABLE OUTPUT, LOW-RIPPLE  
POWER SUPPLY  
A 1A power supply that features an adjustable output voltage is shown in Figure 37. An additional L-C filter that  
reduces the output ripple by a factor of 10 or more is included in this circuit.  
22  
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LM1575 LM2575-N LM2575HV  
LM1575, LM2575-N, LM2575HV  
www.ti.com  
SNVS106E MAY 1999REVISED APRIL 2013  
Complete circuit not shown.  
Pin numbers are for the TO-220 package.  
Figure 34. Undervoltage Lockout for Buck Circuit  
Complete circuit not shown (see Figure 32).  
Pin numbers are for the TO-220 package.  
Figure 35. Undervoltage Lockout  
for Buck-Boost Circuit  
Complete circuit not shown.  
Pin numbers are for the TO-220 package.  
Figure 36. Delayed Startup  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LM1575 LM2575-N LM2575HV  
LM1575, LM2575-N, LM2575HV  
SNVS106E MAY 1999REVISED APRIL 2013  
www.ti.com  
Pin numbers are for the TO-220 package.  
Figure 37. 1.2V to 55V Adjustable 1A Power Supply with Low Output Ripple  
Definition of Terms  
BUCK REGULATORA switching regulator topology in which a higher voltage is converted to a lower voltage.  
Also known as a step-down switching regulator.  
BUCK-BOOST REGULATORA switching regulator topology in which a positive voltage is converted to a  
negative voltage without a transformer.  
DUTY CYCLE (D)Ratio of the output switch's on-time to the oscillator period.  
(17)  
CATCH DIODE OR CURRENT STEERING DIODEThe diode which provides a return path for the load current  
when the LM2575 switch is OFF.  
EFFICIENCY (η)The proportion of input power actually delivered to the load.  
(18)  
CAPACITOR EQUIVALENT SERIES RESISTANCE (ESR)The purely resistive component of a real capacitor's  
impedance (see Figure 38). It causes power loss resulting in capacitor heating, which directly affects the  
capacitor's operating lifetime. When used as a switching regulator output filter, higher ESR values result in  
higher output ripple voltages.  
Figure 38. Simple Model of a Real Capacitor  
Most standard aluminum electrolytic capacitors in the 100 μF–1000 μF range have 0.5Ω to  
0.1Ω ESR. Higher-grade capacitors (“low-ESR”, “high-frequency”, or “low-inductance”') in the  
100 μF–1000 μF range generally have ESR of less than 0.15Ω.  
EQUIVALENT SERIES INDUCTANCE (ESL)The pure inductance component of a capacitor (see Figure 38).  
The amount of inductance is determined to a large extent on the capacitor's construction. In a buck  
regulator, this unwanted inductance causes voltage spikes to appear on the output.  
OUTPUT RIPPLE VOLTAGEThe AC component of the switching regulator's output voltage. It is usually  
dominated by the output capacitor's ESR multiplied by the inductor's ripple current (ΔIIND). The peak-to-  
peak value of this sawtooth ripple current can be determined by reading INDUCTOR RIPPLE CURRENT.  
24  
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LM1575 LM2575-N LM2575HV  
 
LM1575, LM2575-N, LM2575HV  
www.ti.com  
SNVS106E MAY 1999REVISED APRIL 2013  
CAPACITOR RIPPLE CURRENTRMS value of the maximum allowable alternating current at which a capacitor  
can be operated continuously at a specified temperature.  
STANDBY QUIESCENT CURRENT (ISTBY)Supply current required by the LM2575 when in the standby mode  
(ON /OFF pin is driven to TTL-high voltage, thus turning the output switch OFF).  
INDUCTOR RIPPLE CURRENT (ΔIIND)The peak-to-peak value of the inductor current waveform, typically a  
sawtooth waveform when the regulator is operating in the continuous mode (vs. discontinuous mode).  
CONTINUOUS/DISCONTINUOUS MODE OPERATIONRelates to the inductor current. In the continuous mode,  
the inductor current is always flowing and never drops to zero, vs. the discontinuous mode, where the  
inductor current drops to zero for a period of time in the normal switching cycle.  
INDUCTOR SATURATIONThe condition which exists when an inductor cannot hold any more magnetic flux.  
When an inductor saturates, the inductor appears less inductive and the resistive component dominates.  
Inductor current is then limited only by the DC resistance of the wire and the available source current.  
OPERATING VOLT MICROSECOND CONSTANT (E•Top)The product (in VoIt•μs) of the voltage applied to the  
inductor and the time the voltage is applied. This E•Top constant is a measure of the energy handling  
capability of an inductor and is dependent upon the type of core, the core area, the number of turns, and  
the duty cycle.  
Copyright © 1999–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LM1575 LM2575-N LM2575HV  
 
LM1575, LM2575-N, LM2575HV  
SNVS106E MAY 1999REVISED APRIL 2013  
www.ti.com  
REVISION HISTORY  
Changes from Revision D (April 2013) to Revision E  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 25  
26  
Submit Documentation Feedback  
Copyright © 1999–2013, Texas Instruments Incorporated  
Product Folder Links: LM1575 LM2575-N LM2575HV  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
LM2575HVMX-5.0  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SOIC  
SOIC  
PDIP  
PDIP  
PDIP  
PDIP  
DW  
24  
24  
16  
16  
16  
16  
5
1000  
TBD  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
Call TI  
Level-3-260C-168 HR  
Call TI  
LM2575HVM  
-5.0 P+  
LM2575HVMX-5.0/NOPB  
LM2575HVN-5.0  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DW  
NBG  
NBG  
NBG  
NBG  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
1000  
20  
20  
20  
20  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
500  
Green (RoHS  
& no Sb/Br)  
LM2575HVM  
-5.0 P+  
TBD  
LM2575HVN  
-5.0 P+  
LM2575HVN-5.0/NOPB  
LM2575HVN-ADJ  
Green (RoHS  
& no Sb/Br)  
Level-1-NA-UNLIM  
Call TI  
LM2575HVN  
-5.0 P+  
TBD  
LM2575HVN  
-ADJ P+  
LM2575HVN-ADJ/NOPB  
LM2575HVS-12  
Green (RoHS  
& no Sb/Br)  
Level-1-NA-UNLIM  
Call TI  
LM2575HVN  
-ADJ P+  
DDPAK/  
TO-263  
TBD  
LM2575HVS  
-12 P+  
LM2575HVS-12/NOPB  
LM2575HVS-15  
DDPAK/  
TO-263  
5
Pb-Free (RoHS  
Exempt)  
Level-3-245C-168 HR  
Call TI  
LM2575HVS  
-12 P+  
DDPAK/  
TO-263  
5
TBD  
LM2575HVS  
-15 P+  
LM2575HVS-15/NOPB  
LM2575HVS-3.3  
DDPAK/  
TO-263  
5
Pb-Free (RoHS  
Exempt)  
Level-3-245C-168 HR  
Call TI  
LM2575HVS  
-15 P+  
DDPAK/  
TO-263  
5
TBD  
LM2575HVS  
-3.3 P+  
LM2575HVS-3.3/NOPB  
LM2575HVS-5.0  
DDPAK/  
TO-263  
5
Pb-Free (RoHS  
Exempt)  
Level-3-245C-168 HR  
Call TI  
LM2575HVS  
-3.3 P+  
DDPAK/  
TO-263  
5
TBD  
LM2575HVS  
-5.0 P+  
LM2575HVS-5.0/NOPB  
LM2575HVS-ADJ  
DDPAK/  
TO-263  
5
Pb-Free (RoHS  
Exempt)  
Level-3-245C-168 HR  
Call TI  
LM2575HVS  
-5.0 P+  
DDPAK/  
TO-263  
5
TBD  
LM2575HVS  
-ADJ P+  
LM2575HVS-ADJ/NOPB  
LM2575HVSX-15  
DDPAK/  
TO-263  
5
Pb-Free (RoHS  
Exempt)  
Level-3-245C-168 HR  
Call TI  
LM2575HVS  
-ADJ P+  
DDPAK/  
TO-263  
5
TBD  
LM2575HVS  
-15 P+  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
LM2575HVSX-15/NOPB  
LM2575HVSX-3.3  
ACTIVE  
DDPAK/  
TO-263  
KTT  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
500  
Pb-Free (RoHS  
Exempt)  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
Call TI  
CU SN  
CU SN  
Call TI  
Call TI  
CU SN  
CU SN  
Call TI  
CU SN  
CU SN  
Level-3-245C-168 HR  
LM2575HVS  
-15 P+  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KC  
500  
500  
500  
500  
500  
500  
45  
TBD  
Call TI  
LM2575HVS  
-3.3 P+  
LM2575HVSX-3.3/NOPB  
LM2575HVSX-5.0  
DDPAK/  
TO-263  
Pb-Free (RoHS  
Exempt)  
Level-3-245C-168 HR  
Call TI  
LM2575HVS  
-3.3 P+  
DDPAK/  
TO-263  
TBD  
LM2575HVS  
-5.0 P+  
LM2575HVSX-5.0/NOPB  
LM2575HVSX-ADJ  
DDPAK/  
TO-263  
Pb-Free (RoHS  
Exempt)  
Level-3-245C-168 HR  
Call TI  
LM2575HVS  
-5.0 P+  
DDPAK/  
TO-263  
TBD  
LM2575HVS  
-ADJ P+  
LM2575HVSX-ADJ/NOPB  
LM2575HVT-12  
DDPAK/  
TO-263  
Pb-Free (RoHS  
Exempt)  
Level-3-245C-168 HR  
Call TI  
LM2575HVS  
-ADJ P+  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TBD  
LM2575HVT  
-12 P+  
LM2575HVT-12/LB03  
LM2575HVT-12/LF03  
LM2575HVT-12/NOPB  
LM2575HVT-15  
NDH  
NDH  
KC  
45  
TBD  
Call TI  
LM2575HVT  
-12 P+  
45  
Green (RoHS  
& no Sb/Br)  
Level-1-NA-UNLIM  
Level-1-NA-UNLIM  
Call TI  
LM2575HVT  
-12 P+  
45  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
LM2575HVT  
-12 P+  
KC  
45  
TBD  
LM2575HVT  
-15 P+  
LM2575HVT-15/LB03  
LM2575HVT-15/LF03  
LM2575HVT-15/NOPB  
LM2575HVT-3.3  
NDH  
NDH  
KC  
45  
TBD  
Call TI  
LM2575HVT  
-15 P+  
45  
Green (RoHS  
& no Sb/Br)  
Level-1-NA-UNLIM  
Level-1-NA-UNLIM  
Call TI  
LM2575HVT  
-15 P+  
45  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
LM2575HVT  
-15 P+  
KC  
45  
TBD  
LM2575HVT  
-3.3 P+  
LM2575HVT-3.3/LF03  
LM2575HVT-3.3/NOPB  
NDH  
KC  
45  
Green (RoHS  
& no Sb/Br)  
Level-1-NA-UNLIM  
Level-1-NA-UNLIM  
LM2575HVT  
-3.3 P+  
45  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
LM2575HVT  
-3.3 P+  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
LM2575HVT-5.0  
LM2575HVT-5.0/LB03  
LM2575HVT-5.0/LF03  
LM2575HVT-5.0/NOPB  
LM2575HVT-ADJ  
ACTIVE  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
SOIC  
KC  
5
5
45  
TBD  
Call TI  
Call TI  
CU SN  
CU SN  
Call TI  
Call TI  
CU SN  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
-40 to 125  
LM2575HVT  
-5.0 P+  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NDH  
NDH  
KC  
45  
45  
TBD  
Call TI  
LM2575HVT  
-5.0 P+  
5
Green (RoHS  
& no Sb/Br)  
Level-1-NA-UNLIM  
Level-1-NA-UNLIM  
Call TI  
LM2575HVT  
-5.0 P+  
5
45  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
LM2575HVT  
-5.0 P+  
KC  
5
45  
TBD  
LM2575HVT  
-ADJ P+  
LM2575HVT-ADJ/LB03  
LM2575HVT-ADJ/LF03  
LM2575HVT-ADJ/NOPB  
LM2575M-5.0  
NDH  
NDH  
KC  
5
45  
TBD  
Call TI  
LM2575HVT  
-ADJ P+  
5
45  
Green (RoHS  
& no Sb/Br)  
Level-1-NA-UNLIM  
Level-1-NA-UNLIM  
Call TI  
LM2575HVT  
-ADJ P+  
5
45  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
LM2575HVT  
-ADJ P+  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
NBG  
NBG  
24  
24  
24  
24  
24  
24  
24  
24  
16  
16  
30  
TBD  
LM2575M  
-5.0 P+  
LM2575M-5.0/NOPB  
LM2575M-ADJ  
SOIC  
30  
Green (RoHS  
& no Sb/Br)  
Level-3-260C-168 HR  
Call TI  
LM2575M  
-5.0 P+  
SOIC  
30  
TBD  
LM2575M  
-ADJ P+  
LM2575M-ADJ/NOPB  
LM2575MX-5.0  
SOIC  
30  
Green (RoHS  
& no Sb/Br)  
Level-3-260C-168 HR  
Call TI  
LM2575M  
-ADJ P+  
SOIC  
1000  
1000  
1000  
1000  
20  
TBD  
LM2575M  
-5.0 P+  
LM2575MX-5.0/NOPB  
LM2575MX-ADJ  
SOIC  
Green (RoHS  
& no Sb/Br)  
Level-3-260C-168 HR  
Call TI  
LM2575M  
-5.0 P+  
SOIC  
TBD  
LM2575M  
-ADJ P+  
LM2575MX-ADJ/NOPB  
LM2575N-5.0  
SOIC  
Green (RoHS  
& no Sb/Br)  
Level-3-260C-168 HR  
Call TI  
LM2575M  
-ADJ P+  
PDIP  
TBD  
LM2575N  
-5.0 P+  
LM2575N-5.0/NOPB  
PDIP  
20  
Green (RoHS  
& no Sb/Br)  
Level-1-NA-UNLIM  
LM2575N  
-5.0 P+  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
LM2575N-ADJ  
LM2575N-ADJ/NOPB  
LM2575S-12  
ACTIVE  
PDIP  
PDIP  
NBG  
16  
16  
5
20  
TBD  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
Level-1-NA-UNLIM  
Call TI  
LM2575N  
-ADJ P+  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NBG  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
20  
45  
Green (RoHS  
& no Sb/Br)  
LM2575N  
-ADJ P+  
DDPAK/  
TO-263  
TBD  
LM2575S  
-12 P+  
LM2575S-12/NOPB  
LM2575S-15  
DDPAK/  
TO-263  
5
45  
Pb-Free (RoHS  
Exempt)  
Level-3-245C-168 HR  
Call TI  
LM2575S  
-12 P+  
DDPAK/  
TO-263  
5
45  
TBD  
LM2575S  
-15 P+  
LM2575S-15/NOPB  
LM2575S-3.3  
DDPAK/  
TO-263  
5
45  
Pb-Free (RoHS  
Exempt)  
Level-3-245C-168 HR  
Call TI  
LM2575S  
-15 P+  
DDPAK/  
TO-263  
5
45  
TBD  
LM2575S  
-3.3 P+  
LM2575S-3.3/NOPB  
LM2575S-5.0  
DDPAK/  
TO-263  
5
45  
Pb-Free (RoHS  
Exempt)  
Level-3-245C-168 HR  
Call TI  
LM2575S  
-3.3 P+  
DDPAK/  
TO-263  
5
45  
TBD  
LM2575S  
-5.0 P+  
LM2575S-5.0/NOPB  
LM2575S-ADJ  
DDPAK/  
TO-263  
5
45  
Pb-Free (RoHS  
Exempt)  
Level-3-245C-168 HR  
Call TI  
LM2575S  
-5.0 P+  
DDPAK/  
TO-263  
5
45  
TBD  
LM2575S  
-ADJ P+  
LM2575S-ADJ/NOPB  
LM2575SX-12  
DDPAK/  
TO-263  
5
45  
Pb-Free (RoHS  
Exempt)  
Level-3-245C-168 HR  
Call TI  
LM2575S  
-ADJ P+  
DDPAK/  
TO-263  
5
500  
500  
500  
500  
500  
500  
TBD  
LM2575S  
-12 P+  
LM2575SX-12/NOPB  
LM2575SX-15  
DDPAK/  
TO-263  
5
Pb-Free (RoHS  
Exempt)  
Level-3-245C-168 HR  
Call TI  
LM2575S  
-12 P+  
DDPAK/  
TO-263  
5
TBD  
LM2575S  
-15 P+  
LM2575SX-15/NOPB  
LM2575SX-3.3  
DDPAK/  
TO-263  
5
Pb-Free (RoHS  
Exempt)  
Level-3-245C-168 HR  
Call TI  
LM2575S  
-15 P+  
DDPAK/  
TO-263  
5
TBD  
LM2575S  
-3.3 P+  
LM2575SX-3.3/NOPB  
DDPAK/  
TO-263  
5
Pb-Free (RoHS  
Exempt)  
Level-3-245C-168 HR  
LM2575S  
-3.3 P+  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
LM2575SX-5.0  
LM2575SX-5.0/NOPB  
LM2575SX-ADJ  
ACTIVE  
DDPAK/  
TO-263  
KTT  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
500  
TBD  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
Call TI  
CU SN  
CU SN  
Call TI  
CU SN  
CU SN  
Call TI  
CU SN  
CU SN  
Call TI  
Call TI  
CU SN  
CU SN  
Call TI  
Level-3-245C-168 HR  
Call TI  
LM2575S  
-5.0 P+  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
KTT  
KTT  
KTT  
KC  
500  
500  
500  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
Pb-Free (RoHS  
Exempt)  
LM2575S  
-5.0 P+  
DDPAK/  
TO-263  
TBD  
LM2575S  
-ADJ P+  
LM2575SX-ADJ/NOPB  
LM2575T-12  
DDPAK/  
TO-263  
Pb-Free (RoHS  
Exempt)  
Level-3-245C-168 HR  
Call TI  
LM2575S  
-ADJ P+  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TBD  
LM2575T  
-12 P+  
LM2575T-12/LB03  
LM2575T-12/LF03  
LM2575T-12/NOPB  
LM2575T-15  
NDH  
NDH  
KC  
TBD  
Call TI  
LM2575T  
-12 P+  
Green (RoHS  
& no Sb/Br)  
Level-1-NA-UNLIM  
Level-1-NA-UNLIM  
Call TI  
LM2575T  
-12 P+  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
LM2575T  
-12 P+  
KC  
TBD  
LM2575T  
-15 P+  
LM2575T-15/LF03  
LM2575T-15/NOPB  
LM2575T-3.3  
NDH  
KC  
Green (RoHS  
& no Sb/Br)  
Level-1-NA-UNLIM  
Level-1-NA-UNLIM  
Call TI  
LM2575T  
-15 P+  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
LM2575T  
-15 P+  
KC  
TBD  
LM2575T  
-3.3 P+  
LM2575T-3.3/LF03  
LM2575T-3.3/NOPB  
LM2575T-5.0  
NDH  
KC  
Green (RoHS  
& no Sb/Br)  
Level-1-NA-UNLIM  
Level-1-NA-UNLIM  
Call TI  
LM2575T  
-3.3 P+  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
LM2575T  
-3.3 P+  
KC  
TBD  
LM2575T  
-5.0 P+  
LM2575T-5.0/LB03  
LM2575T-5.0/LF02  
LM2575T-5.0/LF03  
NDH  
NEB  
NDH  
TBD  
Call TI  
LM2575T  
-5.0 P+  
Green (RoHS  
& no Sb/Br)  
Level-1-NA-UNLIM  
Level-1-NA-UNLIM  
LM2575T  
-5.0 P+  
Green (RoHS  
& no Sb/Br)  
LM2575T  
-5.0 P+  
Addendum-Page 5  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
LM2575T-5.0/LF04  
LM2575T-5.0/NOPB  
LM2575T-ADJ  
ACTIVE  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
TO-220  
NEB  
5
5
5
5
5
5
5
45  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
Call TI  
Call TI  
CU SN  
CU SN  
CU SN  
Level-1-NA-UNLIM  
Level-1-NA-UNLIM  
Call TI  
LM2575T  
-5.0 P+  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
KC  
KC  
45  
45  
45  
45  
45  
45  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
-40 to 125  
LM2575T  
-5.0 P+  
TBD  
LM2575T  
-ADJ P+  
LM2575T-ADJ/LB03  
LM2575T-ADJ/LF02  
LM2575T-ADJ/LF03  
LM2575T-ADJ/NOPB  
NDH  
NEB  
NDH  
KC  
TBD  
Call TI  
LM2575T  
-ADJ P+  
Green (RoHS  
& no Sb/Br)  
Level-1-NA-UNLIM  
Level-1-NA-UNLIM  
Level-1-NA-UNLIM  
LM2575T  
-ADJ P+  
Green (RoHS  
& no Sb/Br)  
LM2575T  
-ADJ P+  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
LM2575T  
-ADJ P+  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Addendum-Page 6  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 7  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Apr-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM2575HVMX-5.0  
SOIC  
DW  
DW  
KTT  
24  
24  
5
1000  
1000  
500  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
10.8  
10.8  
15.9  
15.9  
3.2  
3.2  
5.0  
12.0  
12.0  
16.0  
24.0  
24.0  
24.0  
Q1  
Q1  
Q2  
LM2575HVMX-5.0/NOPB SOIC  
LM2575HVSX-15  
DDPAK/  
TO-263  
10.75 14.85  
10.75 14.85  
10.75 14.85  
10.75 14.85  
10.75 14.85  
10.75 14.85  
10.75 14.85  
10.75 14.85  
LM2575HVSX-15/NOPB DDPAK/  
TO-263  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
5
5
5
5
5
5
5
500  
500  
500  
500  
500  
500  
500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
LM2575HVSX-3.3  
DDPAK/  
TO-263  
LM2575HVSX-3.3/NOPB DDPAK/  
TO-263  
LM2575HVSX-5.0  
DDPAK/  
TO-263  
LM2575HVSX-5.0/NOPB DDPAK/  
TO-263  
LM2575HVSX-ADJ  
DDPAK/  
TO-263  
LM2575HVSX-ADJ/NOPB DDPAK/  
TO-263  
LM2575MX-5.0  
SOIC  
SOIC  
DW  
DW  
24  
24  
1000  
1000  
330.0  
330.0  
24.4  
24.4  
10.8  
10.8  
15.9  
15.9  
3.2  
3.2  
12.0  
12.0  
24.0  
24.0  
Q1  
Q1  
LM2575MX-5.0/NOPB  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Apr-2013  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM2575MX-ADJ  
LM2575MX-ADJ/NOPB  
LM2575SX-12  
SOIC  
SOIC  
DW  
DW  
KTT  
24  
24  
5
1000  
1000  
500  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
10.8  
10.8  
15.9  
15.9  
3.2  
3.2  
5.0  
12.0  
12.0  
16.0  
24.0  
24.0  
24.0  
Q1  
Q1  
Q2  
DDPAK/  
TO-263  
10.75 14.85  
10.75 14.85  
10.75 14.85  
10.75 14.85  
10.75 14.85  
10.75 14.85  
10.75 14.85  
10.75 14.85  
10.75 14.85  
10.75 14.85  
LM2575SX-12/NOPB  
LM2575SX-15  
DDPAK/  
TO-263  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
5
5
5
5
5
5
5
5
5
500  
500  
500  
500  
500  
500  
500  
500  
500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
DDPAK/  
TO-263  
LM2575SX-15/NOPB  
LM2575SX-3.3  
DDPAK/  
TO-263  
DDPAK/  
TO-263  
LM2575SX-3.3/NOPB  
LM2575SX-5.0  
DDPAK/  
TO-263  
DDPAK/  
TO-263  
LM2575SX-5.0/NOPB  
LM2575SX-ADJ  
DDPAK/  
TO-263  
DDPAK/  
TO-263  
LM2575SX-ADJ/NOPB DDPAK/  
TO-263  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Apr-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM2575HVMX-5.0  
LM2575HVMX-5.0/NOPB  
LM2575HVSX-15  
SOIC  
DW  
DW  
24  
24  
5
1000  
1000  
500  
500  
500  
500  
500  
500  
500  
500  
1000  
1000  
1000  
1000  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
45.0  
SOIC  
DDPAK/TO-263  
DDPAK/TO-263  
DDPAK/TO-263  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
DW  
LM2575HVSX-15/NOPB  
LM2575HVSX-3.3  
5
5
LM2575HVSX-3.3/NOPB DDPAK/TO-263  
LM2575HVSX-5.0 DDPAK/TO-263  
LM2575HVSX-5.0/NOPB DDPAK/TO-263  
LM2575HVSX-ADJ DDPAK/TO-263  
LM2575HVSX-ADJ/NOPB DDPAK/TO-263  
5
5
5
5
5
LM2575MX-5.0  
LM2575MX-5.0/NOPB  
LM2575MX-ADJ  
SOIC  
24  
24  
24  
24  
5
SOIC  
DW  
SOIC  
DW  
LM2575MX-ADJ/NOPB  
LM2575SX-12  
SOIC  
DW  
DDPAK/TO-263  
DDPAK/TO-263  
DDPAK/TO-263  
DDPAK/TO-263  
DDPAK/TO-263  
DDPAK/TO-263  
DDPAK/TO-263  
DDPAK/TO-263  
DDPAK/TO-263  
DDPAK/TO-263  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
KTT  
LM2575SX-12/NOPB  
LM2575SX-15  
5
5
LM2575SX-15/NOPB  
LM2575SX-3.3  
5
5
LM2575SX-3.3/NOPB  
LM2575SX-5.0  
5
5
LM2575SX-5.0/NOPB  
LM2575SX-ADJ  
5
5
LM2575SX-ADJ/NOPB  
5
Pack Materials-Page 3  
MECHANICAL DATA  
NDH0005D  
www.ti.com  
MECHANICAL DATA  
NBG0016G  
www.ti.com  
MECHANICAL DATA  
KTT0005B  
TS5B (Rev D)  
BOTTOM SIDE OF PACKAGE  
www.ti.com  
MECHANICAL DATA  
NEB0005B  
www.ti.com  
MECHANICAL DATA  
NEB0005F  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

LM2575HVS-3.3

SIMPLE SWITCHER 1A Step-Down Voltage Regulator
NSC

LM2575HVS-3.3

LM1575/LM2575/LM2575HV SIMPLE SWITCHER 1A Step-Down Voltage Regulator
TI

LM2575HVS-3.3/NOPB

LM1575/LM2575/LM2575HV SIMPLE SWITCHER 1A Step-Down Voltage Regulator
TI

LM2575HVS-3.3EP

IC 3.2 A SWITCHING REGULATOR, 63 kHz SWITCHING FREQ-MAX, PSSO5, TO-263, 5 PIN, Switching Regulator or Controller
NSC

LM2575HVS-5.0

SIMPLE SWITCHER 1A Step-Down Voltage Regulator
NSC

LM2575HVS-5.0

LM1575/LM2575/LM2575HV SIMPLE SWITCHER 1A Step-Down Voltage Regulator
TI

LM2575HVS-5.0/NOPB

LM1575/LM2575/LM2575HV SIMPLE SWITCHER 1A Step-Down Voltage Regulator
TI

LM2575HVS-5.0EP

SIMPLE SWITCHER 1A Step-Down Voltage Regulator
NSC

LM2575HVS-5.0EP/NOPB

IC,SMPS CONTROLLER,VOLTAGE-MODE,BIPOLAR,SIP,5PIN,PLASTIC
TI

LM2575HVS-ADJ

SIMPLE SWITCHER 1A Step-Down Voltage Regulator
NSC

LM2575HVS-ADJ

LM1575/LM2575/LM2575HV SIMPLE SWITCHER 1A Step-Down Voltage Regulator
TI

LM2575HVS-ADJ/NOPB

LM1575/LM2575/LM2575HV SIMPLE SWITCHER 1A Step-Down Voltage Regulator
TI