LDC2114 [TI]

适用于低功耗触摸按钮、具有基线跟踪功能的 4 通道电感数字转换器;
LDC2114
型号: LDC2114
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于低功耗触摸按钮、具有基线跟踪功能的 4 通道电感数字转换器

转换器
文件: 总53页 (文件大小:2238K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
适合低功耗 HMI 按钮应用的 LDC2112/LDC2114 电感应触控解决 方案  
1 特性  
3 说明  
1
低功耗:  
借助电感式传感技术,设计人员可以测量导电目标的小  
幅偏移,从而在金属、玻璃、塑料和木材等各种材料上  
实现人机界面 (HMI) 的触控按钮设计。电感应触控系  
统的传感器是一款可在小型 PCB 上实现的线圈,该  
PCB 位于面板后方,以免受外界环境影响。电感式传  
感解决方案不受湿度或油污和灰尘等非导电污染物的干  
扰。它能够自动更正导电目标出现的任何变形。  
一个按钮:6µA(速率为 0.625SPS 时)  
两个按钮:72µA(速率为 20SPS 时)  
可配置按钮扫描频率:  
0.625SPS 80SPS  
触摸按钮的应力水平测量  
独立通道运算:  
适用于 LDC2112 的双通道  
适用于 LDC2114 的四通道  
LDC2112/LDC2114 是一款多通道、低噪声电感数字  
转换器,采用集成算法,可实现电感应触控 应用。该  
器件采用创新型 LC 谐振器,可高度抑制噪音和干扰。  
即使材料偏移不足 200nmLDC2112/LDC2114 也能  
够可靠地检测出来。  
集成算法,可支持:  
调节每个按钮的力阈值  
环境变化补偿  
同步按钮按压检测  
LDC2112/LDC2114 还提供了超低功耗模式,专供电  
池供电类应用中的开通/关断按钮 使用。  
支持独立运算,无需 MCU  
强大的 EMI 性能:  
LDC2112/LDC2114 采用 16 引脚 DSBGA TSSOP  
封装。DSBGA 封装(间距为 0.4mm)的标称封装尺  
寸非常小,仅为 1.6 × 1.6mm,其最大高度为  
支持 CISPR 22 CISPR 24 合规性  
工作电压范围:1.8V ± 5%  
温度范围:-40°C +85°C  
接口:  
0.4mmTSSOP 封装(间距为 0.65mm)的标称封装  
尺寸为 5.0 × 4.4mm,其最大高度为 1.2mm。  
I2C  
每个通道的专用逻辑输出  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
1.6mm x 1.6mm  
5.0mm × 4.4mm  
2 应用  
LDC2112/LDC2114 DSBGA (16)  
LDC2112/LDC2114 TSSOP (16)  
以下产品的触控按钮及其所用不同材料(包括金  
属、塑料和玻璃材料)的应力水平测量:  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
消费类电子产品:  
智能手机  
简化原理图  
智能手表及其他可穿戴设备  
智能扬声器  
VDD  
LDC2114  
平板电脑/PC  
虚拟现实耳机  
条形音箱  
OUT0  
OUT1  
Digital  
Algorithm  
IN0  
OUT2  
OUT3  
IN1  
IN2  
工业 应用:  
Resonant  
Circuit  
Driver  
Inductive  
Sensing Core  
INTB  
电视  
Logic  
I2C  
LPWRB  
手持设备  
家用电器  
HMI 面板和键盘  
IN3  
SCL  
SDA  
COM  
GND  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNOSD15  
 
 
 
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
目录  
7.5 Register Maps......................................................... 15  
Application and Implementation ........................ 28  
8.1 Application Information............................................ 28  
8.2 Typical Application .................................................. 38  
Power Supply Recommendations...................... 40  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Digital Interface ......................................................... 7  
6.7 I2C Interface.............................................................. 7  
6.8 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 11  
7.4 Device Functional Modes........................................ 15  
8
9
10 Layout................................................................... 40  
10.1 Layout Guidelines ................................................. 40  
10.2 Layout Example .................................................... 40  
10.3 DSBGA Light Sensitivity ...................................... 41  
11 器件和文档支持 ..................................................... 42  
11.1 文档支持 ............................................................... 42  
11.2 相关链接................................................................ 42  
11.3 接收文档更新通知 ................................................. 42  
11.4 社区资源................................................................ 42  
11.5 ....................................................................... 42  
11.6 静电放电警告......................................................... 42  
11.7 出口管制提示 ........................................................ 42  
11.8 Glossary................................................................ 42  
12 机械、封装和可订购信息....................................... 42  
7
4 修订历史记录  
Changes from Revision A (January 2017) to Revision B  
Page  
Changed unit of Data set-up time from µs to ns (typo) ......................................................................................................... 7  
已更改 Multi-Channel and Single-Channel Operation .......................................................................................................... 11  
已添加 LDC2112 to Register EN – Address 0x0C Table ..................................................................................................... 19  
Changes from Original (December 2016) to Revision A  
Page  
已更改 将高级信息更改成了生产数据发布” ......................................................................................................................... 1  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
5 Pin Configuration and Functions  
LDC2112  
16-Pin DSBGA  
Top View (Bumps Down)  
LDC2112  
16-Pin TSSOP  
Top View  
1
2
3
4
COM  
GND  
LPWRB  
VDD  
INTB  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
SCL  
OUT0  
SDA  
OUT1  
NC  
IN0  
A
B
NC  
NC  
IN1  
GND  
NC  
ADDR  
INTB  
LDC2112  
ADDR  
GND  
IN0  
LPW  
RB  
C
D
VDD  
GND  
SDA  
SCL  
OUT1  
OUT0  
NC  
IN1  
COM  
Pin Functions - LDC2112  
PIN  
DSBGA NO. TSSOP NO.  
I/O(1)  
DESCRIPTION  
NAME  
VDD  
C1  
D1  
A4  
4
2
P
Power supply  
Ground(2)  
GND  
G
10  
Interrupt output  
Polarity can be configured in Register 0x11.  
INTB  
B2  
C2  
5
3
O
I
Normal / Low Power Mode select  
Set LPWRB to VDD for Normal Power Mode or ground for Low Power Mode.  
LPWRB  
Common return current path for all LC resonator sensors  
A capacitor should be connected from this pin to GND. Refer to Setting COM  
Pin Capacitor.  
COM  
D2  
1
A
IN0  
IN1  
A3  
A2  
9
8
A
A
Channel 0 LC sensor input  
Channel 1 LC sensor input  
Channel 0 logic output  
Polarity can be configured in Register 0x1C.  
OUT0  
OUT1  
D4  
C4  
15  
13  
O
O
Channel 1 logic output  
Polarity can be configured in Register 0x1C.  
I2C address  
ADDR  
B3  
11  
I
When ADDR = Ground, I2C address = 0x2A. When ADDR = VDD, I2C address =  
0x2B.  
SCL  
SDA  
D3  
C3  
A1  
B1  
B4  
16  
14  
7
I
I2C clock  
I2C data  
I/O  
No connect  
Leave them floating.  
NC  
6
12  
(1) I = Input, O = Output, P=Power, G=Ground, A=Analog  
(2) Both pins should be connected to the system ground on the PCB.  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
LDC2114  
16-Pin DSBGA  
Top View (Bumps Down)  
LDC2114  
16-Pin TSSOP  
Top View  
1
2
3
4
COM  
GND  
LPWRB  
VDD  
INTB  
IN3  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
SCL  
IN0  
A
B
IN2  
IN3  
IN1  
GND  
OUT0  
SDA  
OUT3  
OUT2  
INTB  
OUT1  
OUT2  
OUT3  
GND  
IN0  
LDC2114  
LPW  
RB  
C
D
VDD  
GND  
SDA  
SCL  
OUT1  
OUT0  
IN2  
IN1  
COM  
Pin Functions - LDC2114  
PIN  
DSBGA NO. TSSOP NO.  
I/O(1)  
DESCRIPTION  
NAME  
VDD  
C1  
D1  
A4  
4
2
P
Power supply  
Ground(2)  
GND  
G
10  
Interrupt output  
Polarity can be configured in Register 0x11.  
INTB  
B2  
C2  
5
3
O
I
Normal / Low Power Mode select  
Set LPWRB to VDD for Normal Power Mode or ground for Low Power Mode.  
Common return current path for all LC resonator sensors  
LPWRB  
COM  
D2  
1
A
A capacitor should be connected from this pin to GND. Refer to Setting COM Pin  
Capacitor.  
IN0  
IN1  
IN2  
IN3  
A3  
A2  
A1  
B1  
9
8
7
6
A
A
A
A
Channel 0 LC sensor input  
Channel 1 LC sensor input  
Channel 2 LC sensor input  
Channel 3 LC sensor input  
Channel 0 logic output  
Polarity can be configured in Register 0x1C.  
OUT0  
OUT1  
OUT2  
D4  
C4  
B4  
15  
13  
12  
O
O
O
Channel 1 logic output  
Polarity can be configured in Register 0x1C.  
Channel 2 logic output  
Polarity can be configured in Register 0x1C.  
Channel 3 logic output  
Polarity can be configured in Register 0x1C.  
I2C clock  
OUT3  
SCL  
B3  
D3  
C3  
11  
16  
14  
O
I
I2C data  
SDA  
I/O  
I2C address = 0x2A.  
(1) I = Input, O = Output, P=Power, G=Ground, A=Analog  
(2) Both pins should be connected to the system ground on the PCB.  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating temperature range unless otherwise noted.(1)  
MIN  
MAX  
2.2  
UNIT  
V
VDD  
VI  
Supply voltage  
Voltage on SCL, SDA  
Voltage on any other pin  
Junction temperature  
Storage temperature  
–0.3  
–0.3  
–40  
–65  
3.6  
2.2(2)  
V
V
TJ  
85  
°C  
TSTG  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Maximum voltage across any two pins (not including SCL or SDA) is VDD + 0.3 V.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1000  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating temperature range unless otherwise noted.  
MIN  
1.71  
–40  
NOM  
MAX  
1.89  
85  
UNIT  
VDD  
TJ  
Supply voltage  
V
Junction temperature  
°C  
6.4 Thermal Information  
LDC2112/LDC2114  
THERMAL METRIC(1)  
DSBGA  
16 PINS  
81.8  
TSSOP  
UNIT  
16 PINS  
105.1  
40.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
0.4  
18.2  
50.2  
ΨJT  
0.3  
3.6  
Junction-to-board characterization  
parameter  
ΨJB  
18  
49.6  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
版权 © 2016–2017, Texas Instruments Incorporated  
5
 
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
6.5 Electrical Characteristics  
Over operating temperature range unless otherwise noted. VDD = 1.8 V, TJ = 25 °C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER  
VDD  
Supply voltage  
1.71  
1.8  
1.89  
V
4 channels, 40 SPS per channel,  
1 ms sampling window per channel,  
LPWRB = VDD  
Normal power mode supply current  
(4 channels)(1)(2)(3)  
IDDNP  
IDDNP  
IDDLP  
0.49  
mA  
2 channels, 40 SPS per channel,  
1 ms sampling window per channel,  
LPWRB = VDD  
Normal power mode supply current  
(2 channels)(1)(2)  
0.26  
mA  
1 channel, 1.25 SPS per channel,  
1 ms sampling window per channel,  
LPWRB = Ground  
Low power mode supply  
current(1)(2)  
9
5
µA  
µA  
IDDSB  
Standby supply current  
No button active (EN = 0x00)  
7
SENSOR  
Registers SENSORn_CONFIG: RPn = 0  
ISENSOR, MAX Sensor maximum current drive  
2.5  
350  
10  
mA  
(4)  
Sensor minimum parallel resonant  
impedance  
RP, MIN  
Sensor maximum parallel resonant  
impedance  
RP, MAX  
k  
fSENSOR  
Sensor resonant frequency  
1
30  
MHz  
QSENSOR, MIN Sensor minimum quality factor  
QSENSOR, MAX Sensor maximum quality factor  
5
30  
Sensor oscillation peak-to-peak  
Measured on the INn(4) pins with  
reference to COM.  
VSENSOR, PP  
voltage  
0.9  
17  
V
CIN  
Sensor input pin capacitance  
pF  
CONVERTER  
Minimum normal power mode scan  
rate(5)  
SRNP, MIN  
SRNP, MAX  
SRLP, MIN  
LPWRB = VDD  
7
56  
10  
80  
13  
104  
SPS  
SPS  
SPS  
Maximum normal power mode scan  
rate(5)  
LPWRB = VDD  
Minimum low power mode scan  
rate(5)  
LPWRB = Ground  
LPWRB = Ground  
0.438  
3.5  
0.625  
0.813  
6.5  
Maximum low power mode scan  
rate(5)  
SRLP, MAX  
Resolution  
5
SPS  
Bits  
Data code width  
12  
(1) Sensor configuration: LSENSOR = 0.85 µH, CSENSOR = 58 pF, QSENSOR = 11, RP = 0.7 k.  
(2) I2C communication and pull-up resistors current is not included.  
(3) Four-channel supply current is applicable to LDC2114 only.  
(4) The italic n is the channel index, i.e., n = 0 or 1 for LDC2112; n = 0, 1, 2, or 3 for LDC2114.  
(5) For typical distribution of the scan rates, refer to 9.  
6
版权 © 2016–2017, Texas Instruments Incorporated  
 
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
6.6 Digital Interface  
Over operating temperature range unless otherwise noted. VDD = 1.8 V, TJ = 25 °C. Pins: LPWRB, INTB, OUT0, OUT1,  
OUT2, OUT3, and ADDR.  
PARAMETER  
VOLTAGE LEVELS  
TEST CONDITIONS  
MIN  
0.8 × VDD  
0.8 × VDD  
–500  
TYP  
MAX  
UNIT  
VIH  
VIL  
VOH  
VOL  
IL  
Input high voltage  
V
V
Input low voltage  
0.2 × VDD  
Output high voltage  
Output low voltage  
Digital input leakage current  
ISOURCE = 400 µA  
ISINK = 400 µA  
V
0.2 × VDD  
500  
V
nA  
6.7 I2C Interface  
MIN  
TYP  
MAX  
UNIT  
VOLTAGE LEVELS  
VIH  
Input high voltage  
0.7 × VDD  
V
V
V
V
VIL  
Input low voltage  
Output low voltage  
Hysteresis(1)  
0.3 × VDD  
0.2 × VDD  
VOL  
HYS  
3 mA sink current  
0.05 × VDD  
I2C TIMING CHARACTERISTICS  
fSCL  
Clock frequency  
Clock low time  
Clock high time  
400  
kHz  
µs  
tLOW  
tHIGH  
1.3  
0.6  
µs  
After this period, the first  
clock pulse is generated.  
tHD;STA  
tSU;STA  
Hold time repeated START condition  
0.6  
0.6  
µs  
µs  
Set-up time for a repeated START  
condition  
tHD;DAT  
tSU;DAT  
tSU;STO  
Data hold time  
0
100  
0.6  
µs  
ns  
µs  
Data set-up time  
Set-up time for STOP condition  
Bus free time between a STOP and  
START condition  
tBUF  
1.3  
µs  
tVD;DAT  
tVD;ACK  
Data valid time  
0.9  
0.9  
µs  
µs  
Data valid acknowledge time  
Pulse width of spikes that must be  
suppressed by the input filter(1)  
tSP  
50  
ns  
(1) This parameter is specified by design and/or characterization and is not tested in production.  
SDA  
t
BUF  
t
t
LOW  
t
f
HD;STA  
t
r
t
t
SP  
t
f
r
SCL  
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
1. I2C Timing Diagram  
版权 © 2016–2017, Texas Instruments Incorporated  
7
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
6.8 Typical Characteristics  
Over recommended operating conditions unless specified otherwise. VDD = 1.8 V, TJ = 25 °C.  
One channel enabled with a button sampling window of 1 ms unless specified otherwise.  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
10 SPS  
20 SPS  
40 SPS  
80 SPS  
10 SPS  
20 SPS  
40 SPS  
80 SPS  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Sensor RP (kW)  
Sensor RP (kW)  
D001  
D011  
2. Supply Current vs Sensor RP for Normal Power Mode.  
3. Supply Current vs Sensor RP for Normal Power Mode.  
Sensor Frequency = 3.6 MHz. Four Channels Enabled.  
Sensor Frequency = 3.6 MHz. Two Channels Enabled.  
160  
30  
VDD = 1.71 V  
VDD = 1.8 V  
0.625 SPS  
1.25 SPS  
150  
25  
VDD = 1.89 V  
140  
2.5 SPS  
5 SPS  
20  
130  
120  
110  
100  
90  
15  
10  
5
0
80  
0
1
2
3
4
5
6
7
8
9
10  
-40  
-20  
0
20  
40  
60  
80  
100  
Sensor RP (kW)  
Temperature (èC)  
D002  
D003  
4. Supply Current vs Sensor RP for Low Power Mode.  
5. Supply Current vs Temperature. Sensor RP = 650 ,  
Sensor Frequency = 3.6 MHz.  
Scan Rate = 40 SPS.  
160  
9
VDD = 1.71 V  
VDD = 1.8 V  
VDD = 1.89 V  
150  
140  
130  
120  
110  
100  
90  
8
7
6
5
4
3
-40èC  
-25èC  
0èC  
25èC  
85èC  
80  
1.7  
1.75  
1.8  
VDD (V)  
1.85  
1.9  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
D004  
D005  
6. Supply Current vs VDD. Sensor RP = 650 , Scan Rate =  
7. Standby Current vs Temperature  
40 SPS.  
8
版权 © 2016–2017, Texas Instruments Incorporated  
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
Typical Characteristics (接下页)  
One channel enabled with a button sampling window of 1 ms unless specified otherwise.  
450  
400  
350  
300  
250  
200  
150  
100  
50  
9
8
7
6
5
4
3
-40èC  
-25èC  
0èC  
25èC  
85°C  
0
1.7  
1.75  
1.8  
VDD (V)  
1.85  
1.9  
-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
Percentage Offset (%)  
D006  
D007  
8. Standby Current vs VDD  
9. Scan Rate Distribution at 30 °C  
版权 © 2016–2017, Texas Instruments Incorporated  
9
 
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LDC2112/LDC2114 is a multi-channel, low-noise, high-resolution inductance to digital converter (LDC)  
optimized for inductive touch applications. Button presses form micro-deflections in the conductive targets which  
cause frequency shifts in the resonant sensors. The LDC2112/LDC2114 can measure such frequency shifts and  
determine when button presses have occurred. With adjustable sensitivity per input channel, the  
LDC2112/LDC2114 can reliably operate with a wide range of physical button structures and materials. The high  
resolution measurement enables the implementation of force level buttons. The LDC2112/LDC2114 incorporates  
customizable post-processing algorithms for enhanced robustness.  
The LDC2112/LDC2114 can operate in an ultra-low power mode for optimal battery life, or can be toggled into a  
higher scan rate for more responsive button press detection for game play or other low latency applications. The  
LDC2112/LDC2114 is operational from –40 °C to +85 °C with a 1.8 V ± 5% power supply voltage.  
The LDC2112/LDC2114 is configured through 400 kHz I2C. Button presses can be reported through the I2C  
interface or with configurable polarity dedicated push-pull outputs. Besides the LC resonant sensors, the only  
external components necessary for operation are supply bypassing capacitors and a COM pin capacitor to  
ground.  
7.2 Functional Block Diagram  
VDD  
LDC2112  
OUT0  
Digital  
Algorithm  
OUT1  
IN0  
INTB  
Resonant  
Circuit  
Driver  
Inductive  
Sensing Core  
Logic  
I2C  
LPWRB  
IN1  
ADDR  
SCL  
COM  
SDA  
GND  
Copyright © 2016, Texas Instruments Incorporated  
10. Block Diagram of LDC2112  
10  
版权 © 2016–2017, Texas Instruments Incorporated  
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
Functional Block Diagram (接下页)  
VDD  
LDC2114  
OUT0  
OUT1  
Digital  
IN0  
IN1  
IN2  
Algorithm  
OUT2  
OUT3  
Resonant  
Circuit  
Driver  
Inductive  
Sensing Core  
INTB  
Logic  
I2C  
LPWRB  
IN3  
SCL  
SDA  
COM  
GND  
Copyright © 2016, Texas Instruments Incorporated  
11. Block Diagram of LDC2114  
7.3 Feature Description  
7.3.1 Multi-Channel and Single-Channel Operation  
The LDC2112 provides two independent sensing channels; the LDC2114 provides four independent sensing  
channels. In the following sections, some parameters, such as DATAn and SENSORn_CONFIG, contain a  
channel index n. In those instances, n = 0 or 1 for LDC2112, and n = 0, 1, 2, or 3 for LDC2114.  
The LDC2112's two available channels are always enabled in Normal Power Mode. The LDC2112 sequentially  
samples both channels at the configured scan rate. Either channel can be independently enabled in Low Power  
Mode by setting the LPENn (n = 0 or 1) bit fields in Register EN (Address 0x0C).  
Any of the LDC2114’s four available channels can be independently enabled by setting the ENn and LPENn (n =  
0, 1, 2, or 3) bit fields in Register EN (Address 0x0C). The low-power-enable bit LPENn only takes effect if the  
corresponding ENn bit is also set. If only one channel is set active, the LDC2114 periodically samples the single  
active channel at the configured scan rate. When several channels are set active, the LDC2114 operates in  
multi-channel mode, and it sequentially samples the active channels at the configured scan rate. Each channel of  
the LDC2114 can be independently enabled in Low Power Mode and Normal Power Mode.  
7.3.2 Button Output Interfaces  
Button events may be reported by using two methods. The first method is to monitor the OUTn pins (n = 0, 1, 2,  
or 3), which are push-pull outputs and can be used as interrupts to a micro-controller. The polarities of these pins  
are programmable through Register OPOL_DPOL (Address 0x1C). Any button press or error condition is also  
reported by the push-pull interrupt pin, INTB. Its polarity is configurable through Register INTPOL (Address  
0x11). Any assertion of INTB is cleared upon reading Register STATUS (Address 0x00). Each push-pull output  
must be assigned to a dedicated general-purpose input pin on the micro-controller to avoid potential current  
fights.  
The second method is by use of the LDC2112/LDC2114’s I2C interface. The Register OUT (Address 0x01)  
contains the fields OUT0, OUT1, OUT2, and OUT3, which indicate when a button press has been detected. For  
more advanced button press measurements, the output DATAn registers (n = 0, 1, 2, or 3, Addresses 0x02  
through 0x09), which are 12-bit two’s complements, can be retrieved for all active buttons, and processed on a  
micro-controller. A valid button push is represented by a positive value. The polarity is configurable in Register  
OPOL_DPOL (Address 0x1C). The DATAn values can be used to implement multi-level buttons, where the data  
value is correlated to the amount of force applied to the button.  
版权 © 2016–2017, Texas Instruments Incorporated  
11  
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
Feature Description (接下页)  
7.3.3 Programmable Button Sensitivity  
The GAINn registers (Addresses 0x0E, 0x10, 0x12, and 0x14) enable sensitivity enhancement of individual  
buttons to ensure consistent behavior of different mechanical structures. The sensitivity has a 64-level gain factor  
for a normalized gain between 1 and 232. Each gain step increases the gain by an average of 9%.  
The gain required for an application is primarily determined by the mechanical rigidity of each individual button.  
The individual gain steps are listed in the Gain Table.  
7.3.4 Baseline Tracking  
The LDC2112/LDC2114 incorporates a baseline tracking algorithm to automatically compensate for any slow  
change in the sensor output caused by environmental variations, such as temperature drift. The baseline tracking  
is configured independently for Normal Power Mode and Low Power Mode. For more information, refer to  
Tracking Baseline.  
7.3.5 Integrated Button Algorithms  
The LDC2112/LDC2114 features several algorithms that can mitigate false button detections due to mechanical  
non-idealities. The algorithms look for correlated button responses, for example, similar or opposite responses  
between two neighboring buttons, to determine if there is any undesirable mechanical crosstalk. For more  
information, refer to Mitigating False Button Detections.  
7.3.6 I2C Interface  
The LDC2112/LDC2114 features an I2C Interface that can be used to program the internal registers and read  
channel data. Before reading the OUT (Address 0x01) or channel DATAn (n = 0, 1, 2 or 3, Addresses 0x02  
through 0x05) registers, the user should always read Register STATUS (Address 0x00) first to lock the data. The  
LDC2112/LDC2114 supports burst mode with auto-incrementing register addresses.  
For the write sequence, there is a special handshake process that has to take place to ensure data integrity. The  
sequence of register write is illustrated as follows:  
Set CONFIG_MODE (Register RESET, Address 0x0A) bit = 1 to start the register write session  
Poll for RDY_TO_WRITE (Register STATUS, Address 0x00) bit = 1  
I2C write to configure registers  
Set CONFIG_MODE (Register RESET, Address 0x0A) bit = 0 to terminate the register write session  
After CONFIG_MODE is de-asserted, the new scan cycle will start in less than 1 ms. The waveform of the above  
process is shown in 12.  
25 ms scan cycle  
25 ms scan cycle  
Sampling  
Sampling  
CONFIG_MODE  
(Register RESET)  
< 1 ms  
RDY_TO_WRITE  
(Register STATUS)  
Program registers only after  
confirming RDY_TO_WRITE = 1  
12. Timing Diagram Representing the States of the CONFIG_MODE and RDY_TO_WRITE Bits for an  
I2C Write Handshake  
7.3.6.1 Selectable I2C Address (LDC2112 Only)  
The LDC2112 provides an I2C address select pin, ADDR. Connecting this pin to ground will set the LDC2112 I2C  
address to 0x2A. Connecting ADDR to VDD will set the LDC2112 I2C address to 0x2B.  
The LDC2114 has a fixed I2C address of 0x2A.  
12  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
Feature Description (接下页)  
7.3.6.2 I2C Interface Specifications  
The maximum speed of the I2C interface is 400 kHz. This sequence uses the standard I2C 7-bit slave address  
followed by an 8-bit pointer to set the register address. For both write and read, the address pointer will auto-  
increment as long as the master acknowledges.  
1
9
1
9
SCL  
SDA  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Start by  
Master  
Ack  
by  
Ack  
by  
Slave  
Slave  
Frame 1  
Serial Bus Address Byte  
from Master  
Frame 2  
Slave Register Address  
1
9
SCL  
(continued)  
SDA  
(continued)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Stop by  
Master  
Ack  
by  
Slave  
Frame 3  
Data Byte  
13. I2C Sequence of Writing a Single Register  
1
9
1
9
SCL  
SDA  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Start by  
Master  
Ack  
by  
Ack  
by  
Slave  
Slave  
Frame 1  
Frame 2  
Serial Bus Address Byte  
from Master  
Slave Register Address (ADDR) from  
Master  
1
9
1
9
SCL  
(continued)  
SDA  
(continued)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Ack  
by  
Ack  
by  
Slave  
Slave  
Frame 3  
Frame 4  
Data Byte to  
Register ADDR  
Data Byte to  
Register ADDR+1  
1
9
SCL  
(continued)  
SDA  
(continued)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Ack  
by  
Stop by  
Master  
Slave  
Frame N+3  
Data Byte to Register  
ADDR+N  
14. I2C Sequence of Writing Consecutive Registers  
版权 © 2016–2017, Texas Instruments Incorporated  
13  
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
Feature Description (接下页)  
1
9
1
9
SCL  
SDA  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Start by  
Master  
Ack  
by  
Ack  
by  
Slave  
Slave  
Frame 1  
Serial Bus Address Byte  
from Master  
Frame 2  
Slave Register Address from Master  
1
9
1
9
SCL  
(continued)  
SDA  
(continued)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
No Ack  
by  
Master  
Stop  
by  
Master  
Ack  
by  
Slave  
Repeat  
Start by  
Master  
Frame 3  
Serial Bus Address Byte  
from Master  
Frame 4  
Data Byte from Slave  
15. I2C Sequence of Reading a Single Register  
1
9
1
9
SCL  
SDA  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Start by  
Master  
Ack  
by  
Ack  
by  
Slave  
Slave  
Frame 1  
Frame 2  
Serial Bus Address Byte  
from Master  
Slave Register Address (ADDR) from  
Master  
1
9
1
9
SCL  
(continued)  
SDA  
(continued)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
Repeat  
Start by  
Master  
Ack  
by  
Master  
Ack  
by  
Slave  
Frame 3  
Serial Bus Address Byte  
from Master  
Frame 4  
Data Byte from Slave Register ADDR  
1
9
1
9
SCL  
(continued)  
SDA  
(continued)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
No Ack  
by  
Master  
Stop  
by  
Master  
Ack  
by  
Master  
Frame N+4  
Data Byte from Slave Register  
ADDR+N  
Frame 5  
Data Byte from Slave Register ADDR+1  
16. I2C Sequence of Reading Consecutive Registers  
14  
版权 © 2016–2017, Texas Instruments Incorporated  
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
Feature Description (接下页)  
7.3.6.3 I2C Bus Control  
The LDC2112/LDC2114 cannot drive the I2C clock (SCL), i.e. it does not support clock stretching. In the unlikely  
event where the SCL is stuck LOW, power cycle any device that is holding the SCL to activate its internal Power-  
On Reset (POR) circuit. If the LDC is connected to the same power supply as that device, there will be about 66  
ms set-up time before the LDC becomes active again. For more information, refer to Defining Power-On Timing.  
If the data line (SDA) is stuck LOW, the I2C master should send nine clock pulses. The device that is holding the  
bus LOW should release it sometime within those nine clocks. If not, then power cycle to clear the bus.  
The LDC2112/LDC2114 has built-in monitors to check that the device is currently working. In the unlikely event  
of a device fault, the device state will be reset internally, and all the registers will be reset with default settings.  
For system robustness, it is recommended to check the value of a modified register periodically to monitor the  
device status and reload the register settings if needed.  
7.4 Device Functional Modes  
The LDC2112/LDC2114 supports two power modes of operation, a Normal Power Mode for active sampling at  
10, 20, 40, or 80 SPS, and a Low Power Mode for reduced current consumption at 0.625, 1.25, 2.5, or 5 SPS.  
Refer to Configuring Button Scan Rate for details.  
7.4.1 Normal Power Mode  
When the LPWRB input pin is set to VDD, all enabled channels operate in Normal Power Mode. Each channel  
can be enabled independently through Register EN (Address 0x0C). For the electrical specification of Normal  
Power Mode Scan Rate, refer to Electrical Characteristics.  
7.4.2 Low Power Mode  
When the LPWRB input pin is set to Ground, only the low-power-enabled channels are active. Each channel can  
be enabled independently to operate in Low Power Mode through Register EN (Address 0x0C). For a channel to  
operate in the Low Power Mode, both the LPENn and ENn bits (n is the channel index) must be set to 1. The  
Low Power Mode allows for energy-saving monitoring of button activity. In this mode, the device is in an inactive  
power-saving state for the majority of the time. Lower scan rates correspond to lower current consumption. In  
addition, the individual button sampling window should be set to the lowest effective setting (this is system  
dependent, but typically 0.8 to 1 ms). For the electrical specification of the configurable Low Power Mode Scan  
Rate, refer to Electrical Characteristics.  
If a channel is operational in both Low Power Mode and Normal Power Mode, it is recommended to toggle the  
LPWRB pin only after the button associated with that channel is released.  
7.4.3 Configuration Mode  
Before configuring any register settings, the device must be put into the configuration mode first. Setting  
CONFIG_MODE = 1 through Register RESET (Address 0x0A) stops data conversion and holds the device in  
configuration mode. Any device configuration changes can then be made. The current consumption in this mode  
is typically 0.3 mA. After all changes have been written, set CONFIG_MODE = 0 for normal operation. Refer to  
I2C Interface for more information.  
7.5 Register Maps  
Registers indicated with Reserved must be written only with indicated values. Improper device operation may  
occur otherwise.  
1. Register List  
ADDRESS  
0x00  
NAME  
STATUS  
DEFAULT VALUE  
DESCRIPTION  
0x00  
0x00  
0x00  
0x00  
0x00  
Device status  
0x01  
OUT  
Channel output logic states  
0x02  
DATA0_LSB  
DATA0_MSB  
DATA1_LSB  
The lower 8 bits of the Button 0 data (Two’s complement)  
The upper 4 bits of the Button 0 data (Two’s complement)  
The lower 8 bits of the Button 1 data (Two’s complement)  
0x03  
0x04  
版权 © 2016–2017, Texas Instruments Incorporated  
15  
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
Register Maps (接下页)  
1. Register List (接下页)  
ADDRESS  
0x05  
NAME  
DEFAULT VALUE  
DESCRIPTION  
DATA1_MSB  
DATA2_LSB  
DATA2_MSB  
DATA3_LSB  
DATA3_MSB  
RESET  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
The upper 4 bits of the Button 1 data (Two’s complement)  
The lower 8 bits of the Button 2 data (Two’s complement)  
The upper 4 bits of the Button 2 data (Two’s complement)  
The lower 8 bits of the Button 3 data (Two’s complement)  
The upper 4 bits of the Button 3 data (Two’s complement)  
Reset device and register configurations  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
RESERVED  
Reserved. Set to 0x00  
0x10 (LDC2112)  
0x1F (LDC2114)  
0x0C  
EN  
Enable channels and low power modes  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0xFC  
0xFD  
NP_SCAN_RATE  
GAIN0  
0x01  
0x28  
0x02  
0x28  
0x01  
0x28  
0x05  
0x28  
0x03  
0x00  
0x03  
0x08  
0x00  
0x00  
0x00  
0x0F  
0x00  
0x55  
0x00  
0x04  
0x00  
0x04  
0x00  
0x04  
0x02  
0x04  
0x00  
0x50  
0x00  
0x00  
0x01  
0x49  
0x54  
Normal Power Mode scan rate  
Gain for Channel 0 sensitivity adjustment  
Low Power Mode scan rate  
Gain for Channel 1 sensitivity adjustment  
Interrupt polarity  
LP_SCAN_RATE  
GAIN1  
INTPOL  
GAIN2  
Gain for Channel 2 sensitivity adjustment  
Low power base increment  
Gain for Channel 3 sensitivity adjustment  
Normal power base increment  
Baseline tracking pause and Max-win  
LC oscillation frequency divider  
Hysteresis for threshold  
LP_BASE_INC  
GAIN3  
NP_BASE_INC  
BTPAUSE_MAXWIN  
LC_DIVIDER  
HYST  
TWIST  
Anti-twist  
COMMON_DEFORM  
RESERVED  
Anti-common and anti-deformation  
Reserved. Set to 0x00  
OPOL_DPOL  
RESERVED  
Output polarity  
Reserved. Set to 0x00  
CNTSC  
Counter scale  
RESERVED  
Reserved. Set to 0x00  
SENSOR0_CONFIG  
RESERVED  
Sensor 0 cycle count, frequency, RP range  
Reserved. Set to 0x00  
SENSOR1_CONFIG  
RESERVED  
Sensor 1 cycle count, frequency, RP range  
Reserved. Set to 0x00  
SENSOR2_CONFIG  
FTF0  
Sensor 2 cycle count, frequency, RP range  
Sensor 0 fast tracking factor  
Sensor 3 cycle count, frequency, RP range  
Reserved. Set to 0x00  
SENSOR3_CONFIG  
RESERVED  
FTF1_2  
Sensors 1 and 2 fast tracking factors  
Reserved. Set to 0x00  
RESERVED  
RESERVED  
Reserved. Set to 0x00  
FTF3  
Sensor 3 fast tracking factor  
Manufacturer ID lower byte  
Manufacturer ID upper byte  
MANUFACTURER_ID_LSB  
MANUFACTURER_ID_MSB  
0x01 (LDC2112)  
0x00 (LDC2114)  
0xFE  
0xFF  
DEVICE_ID_LSB  
DEVICE_ID_MSB  
Device ID lower byte  
Device ID upper byte  
0x20  
16  
版权 © 2016–2017, Texas Instruments Incorporated  
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
7.5.1 Individual Register Listings  
Fields indicated with ‘Reserved’ must be written only with indicated values. Improper device operation may occur  
otherwise. The R/W column indicates the Read-Write status of the corresponding field. An ‘R/W’ entry indicates  
read and write capability, an ‘R’ indicates read-only, and a ‘W’ indicates write-only.  
Before reading the OUT (Address 0x01) or channel DATAn registers (n = 0, 1, 2, or 3, Addresses 0x02 through  
0x09), the user should always read the STATUS register (Address 0x00) first to lock the data. The  
LDC2112/LDC2114 supports burst mode with auto-incrementing register addresses.  
2. Register STATUS – Address 0x00  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
OUT_STATUS  
R
0
Output Status  
Logic OR of output bits from Register OUT (Address 0x01). This field  
is cleared by reading this register.  
6
5
CHIP_READY  
R
R
1
0
Chip Ready Status  
b0: Chip not ready after internal reset.  
b1: Chip ready after internal reset.  
RDY_TO_WRITE  
Ready to Write  
Indicates if registers are ready to be written. See I2C Interface for  
more information.  
b0: Registers not ready.  
b1: Registers ready.  
4
3
2
1
0
MAXOUT  
R
R
R
R
R
0
0
0
0
0
Maximum Output Code  
Indicates if any channel output data reaches the maximum value  
(+0x7FF or –0x800). Cleared by a read of the status register.  
b0: No maximum output code.  
b1: Maximum output code.  
FSM_WD  
Finite-State Machine Watchdog Error  
Reports an error has occurred and conversions have been halted.  
Cleared by a read of the status register.  
b0: No error in finite-state machine.  
b1: Error in finite-state machine.  
LC_WD  
LC Sensor Watchdog Error  
Reports an error when any LC oscillator fails to start. Cleared by a  
read of the status register.  
b0: No error in LC oscillator initialization.  
b1: Error in LC oscillator initialization.  
TIMEOUT  
Button Timeout  
Reports when any button is asserted for more than 50 seconds.  
Cleared by a read of the status register.  
b0: no timeout error.  
b1: timeout error.  
REGISTER_FLAG  
Register Integrity Flag  
Reports if any register's value has an unexpected change. Cleared by  
a read of the status register.  
b0: No unexpected register change.  
b1: Unexpected register change.  
3. Register OUT – Address 0x01  
BIT  
7:4  
3
FIELD  
TYPE  
RESET  
0000  
0
DESCRIPTION  
RESERVED  
OUT3  
R
R
Reserved. Set to b0000.  
Output Logic State for Channel 3 (LDC2114 Only)  
b0: No button press detected on Channel 3.  
b1: Button press detected on Channel 3.  
2
1
0
OUT2  
OUT1  
OUT0  
R
R
R
0
0
0
Output Logic State for Channel 2 (LDC2114 Only)  
b0: No button press detected on Channel 2.  
b1: Button press detected on Channel 2.  
Output Logic State for Channel 1  
b0: No button press detected on Channel 1.  
b1: Button press detected on Channel 1.  
Output Logic State for Channel 0  
b0: No button press detected on Channel 0.  
b1: Button press detected on Channel 0.  
版权 © 2016–2017, Texas Instruments Incorporated  
17  
 
 
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
4. Register DATA0_LSB – Address 0x02  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7:0  
DATA0[7:0]  
R
0000 0000 The lower 8 bits of Channel 0 data (Two’s complement).  
5. Register DATA0_MSB – Address 0x03  
BIT  
7:4  
3:0  
FIELD  
TYPE  
RESET  
0000  
DESCRIPTION  
RESERVED  
DATA0[11:8]  
R
R
Reserved.  
0000  
The upper 4 bits of Channel 0 data (Two’s complement).  
6. Register DATA1_LSB – Address 0x04  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7:0  
DATA1[7:0]  
R
0000 0000 The lower 8 bits of Channel 1 data (Two’s complement).  
7. Register DATA1_MSB – Address 0x05  
BIT  
7:4  
3:0  
FIELD  
TYPE  
RESET  
0000  
DESCRIPTION  
RESERVED  
DATA1[11:8]  
R
R
Reserved.  
0000  
The upper 4 bits of Channel 1 data (Two’s complement).  
8. Register DATA2_LSB – Address 0x06  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7:0  
DATA2[7:0]  
R
0000 0000 The lower 8 bits of Channel 2 data (Two’s complement).  
(LDC2114 Only)  
9. Register DATA2_MSB – Address 0x07  
BIT  
7:4  
3:0  
FIELD  
TYPE  
RESET  
0000  
DESCRIPTION  
RESERVED  
DATA2[11:8]  
R
R
Reserved.  
0000  
The upper 4 bits of Channel 2 data (Two’s complement).  
(LDC2114 Only)  
10. Register DATA3_LSB – Address 0x08  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7:0  
DATA3[7:0]  
R
0000 0000 The lower 8 bits of Channel 3 data (Two’s complement).  
(LDC2114 Only)  
11. Register DATA3_MSB – Address 0x09  
BIT  
7:4  
3:0  
FIELD  
TYPE  
RESET  
0000  
DESCRIPTION  
RESERVED  
DATA3[11:8]  
R
R
Reserved.  
0000  
The upper 4 bits of Channel 3 data (Two’s complement).  
(LDC2114 Only)  
12. Register RESET – Address 0x0A  
BIT  
7:5  
4
FIELD  
TYPE  
R/W  
RESET  
000  
DESCRIPTION  
RESERVED  
FULL_RESET  
Reserved. Set to b000.  
R/W  
0
Device Reset  
b0: Normal operation.  
b1: Resets the device and register configurations. All registers will be  
returned to default values. Normal operation will not resume until  
STATUS:CHIP_READY = 1.  
3:1  
0
RESERVED  
R/W  
R/W  
000  
0
Reserved. Set to b000.  
CONFIG_MODE  
Configuration Mode  
b0: Normal operation.  
b1: Holds the device in configuration mode (no data conversion), but  
maintains current register configurations. Any device configuration  
changes should be made with this bit set to 1. After all configuration  
changes have been written, set this bit to 0 for normal operation.  
18  
版权 © 2016–2017, Texas Instruments Incorporated  
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
13. Register EN – Address 0x0C  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
LPEN3  
R/W  
0
Channel 3 Low-Power-Enable (LDC2114 Only)  
b0: Disable Channel 3 in Low Power Mode.  
b1: Enable Channel 3 in Low Power Mode. EN3 must also be set  
to 1.  
6
5
4
3
LPEN2  
R/W  
R/W  
R/W  
R/W  
0
0
1
1
Channel 2 Low-Power-Enable (LDC2114 Only)  
b0: Disable Channel 2 in Low Power Mode.  
b1: Enable Channel 2 in Low Power Mode. EN2 must also be set  
to 1.  
LPEN1  
Channel 1 Low-Power-Enable  
b0: Disable Channel 1 in Low Power Mode.  
b1: Enable Channel 1 in Low Power Mode. EN1 must also be set  
to 1.  
LPEN0  
Channel 0 Low-Power-Enable  
b0: Disable Channel 0 in Low Power Mode.  
b1: Enable Channel 0 in Low Power Mode. EN0 must also be set  
to 1.  
EN3 (LDC2114)  
Channel 3 Enable (LDC2114 Only)  
b0: Disable Channel 3.  
b1: Enable Channel 3.  
RESERVED (LDC2112)  
EN2 (LDC2114)  
R
0
1
Reserved. Set to b0. (LDC2112 Only)  
2
1
R/W  
Channel 2 Enable (LDC2114 Only)  
b0: Disable Channel 2.  
b1: Enable Channel 2.  
RESERVED (LDC2112)  
EN1 (LDC2114)  
R
0
1
Reserved. Set to b0. (LDC2112 Only)  
R/W  
Channel 1 Enable (LDC2114 Only)  
b0: Disable Channel 1.  
b1: Enable Channel 1.  
RESERVED (LDC2112)  
EN0 (LDC2114)  
R
0
1
Reserved. Set to b0. (LDC2112 Only)  
For LDC2112, Channel 1 is always enabled.  
0
R/W  
Channel 0 Enable (LDC2114 Only)  
b0: Disable Channel 0.  
b1: Enable Channel 0.  
RESERVED (LDC2112)  
R
0
Reserved. Set to b0. (LDC2112 Only)  
For LDC2112, Channel 0 is always enabled.  
14. Register NP_SCAN_RATE – Address 0x0D  
BIT  
7:2  
1:0  
FIELD  
TYPE  
R/W  
RESET  
b00 0000  
01  
DESCRIPTION  
RESERVED  
NPSR  
Reserved. Set to b00 0000.  
R/W  
Normal Power Mode Scan Rate  
Refer to Configuring Button Scan Rate for more information.  
b00: 80 SPS  
b01: 40 SPS (Default)  
b10: 20 SPS  
b11: 10 SPS  
15. Register GAIN0 – Address 0x0E  
BIT  
7:6  
5:0  
FIELD  
TYPE  
R/W  
RESET  
00  
DESCRIPTION  
RESERVED  
GAIN0  
Reserved. Set to b00.  
R/W  
b10 1000  
Gain for Channel 0  
Refer to the Gain Table for detailed configuration.  
16. Register LP_SCAN_RATE – Address 0x0F  
BIT  
7:2  
1:0  
FIELD  
TYPE  
R/W  
RESET  
b00 0000  
10  
DESCRIPTION  
RESERVED  
LPSR  
Reserved. Set to b00 0000.  
R/W  
Low Power Mode Scan Rate  
Refer to Configuring Button Scan Rate for more information.  
b00: 5 SPS  
b01: 2.5 SPS  
b10: 1.25 SPS (Default)  
b11: 0.625 SPS  
版权 © 2016–2017, Texas Instruments Incorporated  
19  
 
 
 
 
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
17. Register GAIN1 – Address 0x10  
BIT  
7:6  
5:0  
FIELD  
TYPE  
R/W  
RESET  
00  
DESCRIPTION  
RESERVED  
GAIN1  
Reserved. Set to b00.  
R/W  
b10 1000  
Gain for Channel 1  
Refer to the Gain Table for detailed configuration.  
18. Register INTPOL – Address 0x11  
BIT  
7:3  
2
FIELD  
TYPE  
R/W  
RESET  
b0 0000  
0
DESCRIPTION  
RESERVED  
INTPOL  
Reserved. Set to b0 0000.  
R/W  
Interrupt Polarity  
b0: Set INTB pin polarity to active low.  
b1: Set INTB pin polarity to active high.  
1:0  
RESERVED  
R/W  
01  
Reserved. Set to b01.  
19. Register GAIN2 – Address 0x12  
BIT  
7:6  
5:0  
FIELD  
TYPE  
R/W  
RESET  
00  
DESCRIPTION  
RESERVED  
GAIN2  
Reserved. Set to b00.  
R/W  
b10 1000  
Gain for Channel 2 (LDC2114 Only)  
Refer to the Gain Table for detailed configuration.  
20. Register LP_BASE_INC – Address 0x13  
BIT  
7:3  
2:0  
FIELD  
TYPE  
R/W  
RESET  
b0 0000  
b101  
DESCRIPTION  
RESERVED  
LPBI  
Reserved. Set to b0 0000.  
R/W  
Baseline Tracking Increment in Low Power Mode  
Refer to Tracking Baseline for more information. Valid values:  
[b000:b111].  
b101: LPBI = 5 (Default)  
21. Register GAIN3 – Address 0x14  
BIT  
7:6  
5:0  
FIELD  
TYPE  
R/W  
RESET  
00  
DESCRIPTION  
RESERVED  
GAIN3  
Reserved. Set to b00.  
R/W  
b10 1000  
Gain for Channel 3 (LDC2114 Only)  
Refer to the Gain Table for detailed configuration.  
22. Register NP_BASE_INC – Address 0x15  
BIT  
7:3  
2:0  
FIELD  
TYPE  
R/W  
RESET  
b0 0000  
b011  
DESCRIPTION  
RESERVED  
NPBI  
Reserved. Set to b0 0000.  
R/W  
Baseline Tracking Increment in Normal Power Mode  
Refer to Tracking Baseline for more information. Valid values:  
[b000:b111].  
b011: NPBI = 3 (Default)  
23. Register BTPAUSE_MAXWIN – Address 0x16  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
BTPAUSE3  
R/W  
0
Baseline Tracking Pause for Channel 3 (LDC2114 Only)  
Pauses baseline tracking for Channel 3 when OUT3 is asserted.  
Refer to Tracking Baseline for more information.  
b0: Normal baseline tracking for Channel 3 regardless of OUT3  
status. (Default)  
b1: Pauses baseline tracking for Channel 3 when OUT3 is  
asserted.  
6
BTPAUSE2  
R/W  
0
Baseline Tracking Pause for Channel 2 (LDC2114 Only)  
Pauses baseline tracking for Channel 2 when OUT2 is asserted.  
Refer to Tracking Baseline for more information.  
b0: Normal baseline tracking for Channel 2 regardless of OUT2  
status. (Default)  
b1: Pauses baseline tracking for Channel 2 when OUT2 is  
asserted.  
20  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
 
 
 
 
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
23. Register BTPAUSE_MAXWIN – Address 0x16 (接下页)  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
5
BTPAUSE1  
R/W  
0
Baseline Tracking Pause for Channel 1  
Pauses baseline tracking for Channel 1 when OUT1 is asserted.  
Refer to Tracking Baseline for more information.  
b0: Normal baseline tracking for Channel 1 regardless of OUT1  
status. (Default)  
b1: Pauses baseline tracking for Channel 1 when OUT1 is  
asserted.  
4
BTPAUSE0  
R/W  
0
Baseline Tracking Pause for Channel 0  
Pauses baseline tracking for Channel 0 when OUT0 is asserted.  
Refer to Tracking Baseline for more information.  
b0: Normal baseline tracking for Channel 0 regardless of OUT0  
status. (Default)  
b1: Pauses baseline tracking for Channel 0 when OUT0 is  
asserted.  
3
2
1
0
MAXWIN3  
MAXWIN2  
MAXWIN1  
MAXWIN0  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Max-Win Algorithm Setting for Channel 3 (LDC2114 Only)  
Refer to Resolving Simultaneous Button Presses (Max-Win) for  
more information.  
b0: Exclude Channel 3 from the max-win group. (Default)  
b1: Include Channel 3 in the max-win group.  
Max-Win Algorithm Setting for Channel 2 (LDC2114 Only)  
Refer to Resolving Simultaneous Button Presses (Max-Win) for  
more information.  
b0: Exclude Channel 2 from the max-win group. (Default)  
b1: Include Channel 2 in the max-win group.  
Max-Win Algorithm Setting for Channel 1  
Refer to Resolving Simultaneous Button Presses (Max-Win) for  
more information.  
b0: Exclude Channel 1 from the max-win group. (Default)  
b1: Include Channel 1 in the max-win group.  
Max-Win Algorithm Setting for Channel 0  
Refer to Resolving Simultaneous Button Presses (Max-Win) for  
more information.  
b0: Exclude Channel 0 from the max-win group. (Default)  
b1: Include Channel 0 in the max-win group.  
24. Register LC_DIVIDER – Address 0x17  
BIT  
7:3  
2:0  
FIELD  
TYPE  
R/W  
RESET  
b0 0000  
b011  
DESCRIPTION  
RESERVED  
LCDIV  
Reserved. Set to b0 0000.  
R/W  
LC Oscillation Frequency Divider  
The frequency divider sets the button sampling window in  
conjunction with SENCYCn. Valid values: [b000:b111].  
Refer to Programming Button Sampling Window for more  
information.  
b011: LCDIV = 3 (Default)  
25. Register HYST – Address 0x18  
BIT  
7:4  
3:0  
FIELD  
TYPE  
R/W  
RESET  
b0000  
b1000  
DESCRIPTION  
RESERVED  
HYST  
Reserved. Set to b0000.  
R/W  
Hysteresis  
Defines the hysteresis for button triggering threshold. Valid values:  
[b0000:b1111].  
Hysteresis = HYST × 4  
b1000: HYST = 8, Hysteresis = 32 (Default)  
Refer to Setting Button Triggering Threshold for more information.  
版权 © 2016–2017, Texas Instruments Incorporated  
21  
 
 
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
26. Register TWIST – Address 0x19  
BIT  
7:3  
2:0  
FIELD  
TYPE  
R/W  
RESET  
b0 0000  
b000  
DESCRIPTION  
RESERVED  
ANTITWIST  
Reserved. Set to b0 0000.  
R/W  
Anti-Twist  
When set to 0, the anti-twist algorithm is not enabled.  
When greater than 0, all buttons are enabled for the anti-twist  
algorithm. The validation of all buttons is void if any button’s DATA  
is negative by a threshold.  
Anti-twist Threshold = ANTITWIST × 4.  
Refer to Overcoming Case Twisting (Anti-Twist) for more  
information.  
27. Register COMMON_DEFORM – Address 0x1A  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
ANTICOM3  
R/W  
0
Anti-Common Algorithm Setting for Channel 3 (LDC2114 Only)  
Refer to Eliminating Common-Mode Change (Anti-Common) for  
more information.  
b0: Exclude Channel 3 from the anti-common group. (Default)  
b1: Include Channel 3 in the anti-common group.  
6
5
4
3
2
1
0
ANTICOM2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
Anti-Common Algorithm Setting for Channel 2 (LDC2114 Only)  
Refer to Eliminating Common-Mode Change (Anti-Common) for  
more information.  
b0: Exclude Channel 2 from the anti-common group. (Default)  
b1: Include Channel 2 in the anti-common group.  
ANTICOM1  
Anti-Common Algorithm Setting for Channel 1  
Refer to Eliminating Common-Mode Change (Anti-Common) for  
more information.  
b0: Exclude Channel 1 from the anti-common group. (Default)  
b1: Include Channel 1 in the anti-common group.  
ANTICOM0  
Anti-Common Algorithm Setting for Channel 0  
Refer to Eliminating Common-Mode Change (Anti-Common) for  
more information.  
b0: Exclude Channel 0 from the anti-common group. (Default)  
b1: Include Channel 0 in the anti-common group.  
ANTIDFORM3  
ANTIDFORM2  
ANTIDFORM1  
ANTIDFORM0  
Anti-Deform Algorithm Setting for Channel 3 (LDC2114 Only)  
Refer to Mitigating Metal Deformation (Anti-Deform) for more  
information.  
b0: Exclude Channel 3 from the anti-deform group. (Default)  
b1: Include Channel 3 in the anti-deform group.  
Anti-Deform Algorithm Setting for Channel 2 (LDC2114 Only)  
Refer to Mitigating Metal Deformation (Anti-Deform) for more  
information.  
b0: Exclude Channel 2 from the anti-deform group. (Default)  
b1: Include Channel 2 in the anti-deform group.  
Anti-Deform Algorithm Setting for Channel 1  
Refer to Mitigating Metal Deformation (Anti-Deform) for more  
information.  
b0: Exclude Channel 1 from the anti-deform group. (Default)  
b1: Include Channel 1 in the anti-deform group.  
Anti-Deform Algorithm Setting for Channel 0  
Refer to Mitigating Metal Deformation (Anti-Deform) for more  
information.  
b0: Exclude Channel 0 from the anti-deform group. (Default)  
b1: Include Channel 0 in the anti-deform group.  
28. Register OPOL_DPOL – Address 0x1C  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
OPOL3  
R/W  
0
Output Polarity for OUT3 Pin (LDC2114 Only)  
b0: Active low (Default)  
b1: Active high  
6
OPOL2  
R/W  
0
Output Polarity for OUT2 Pin (LDC2114 Only)  
b0: Active low (Default)  
b1: Active high  
22  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
28. Register OPOL_DPOL – Address 0x1C (接下页)  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
5
OPOL1  
OPOL0  
DPOL3  
DPOL2  
DPOL1  
DPOL0  
R/W  
0
Output Polarity for OUT1 Pin  
b0: Active low (Default)  
b1: Active high  
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
0
1
1
1
1
Output Polarity for OUT0 Pin  
b0: Active low (Default)  
b1: Active high  
Data Polarity for Channel 3 (LDC2114 Only)  
b0: DATA3 decreases as fSENSOR3 increases.  
b1: DATA3 increases as fSENSOR3 increases. (Default)  
Data Polarity for Channel 2 (LDC2114 Only)  
b0: DATA2 decreases as fSENSOR2 increases.  
b1: DATA2 increases as fSENSOR2 increases. (Default)  
Data Polarity for Channel 1  
b0: DATA1 decreases as fSENSOR1 increases.  
b1: DATA1 increases as fSENSOR1 increases. (Default)  
Data Polarity for Channel 0  
b0: DATA0 decreases as fSENSOR0 increases.  
b1: DATA0 increases as fSENSOR0 increases. (Default)  
29. Register CNTSC – Address 0x1E(1)  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7:6  
CNTSC3  
R/W  
01  
Counter Scale for Channel 3 (LDC2114 Only)  
Refer to Scaling Frequency Counter Output for more information.  
b00: CNTSC3 = 0  
b01: CNTSC3 = 1 (Default)  
b10: CNTSC3 = 2  
b11: CNTSC3 = 3  
5:4  
3:2  
1:0  
CNTSC2  
CNTSC1  
CNTSC0  
R/W  
R/W  
R/W  
01  
01  
01  
Counter Scale for Channel 2 (LDC2114 Only)  
Refer to Scaling Frequency Counter Output for more information.  
b00: CNTSC2 = 0  
b01: CNTSC2 = 1 (Default)  
b10: CNTSC2 = 2  
b11: CNTSC2 = 3  
Counter Scale for Channel 1  
Refer to Scaling Frequency Counter Output for more information.  
b00: CNTSC1 = 0  
b01: CNTSC1 = 1 (Default)  
b10: CNTSC1 = 2  
b11: CNTSC1 = 3  
Counter Scale for Channel 0  
Refer to Scaling Frequency Counter Output for more information.  
b00: CNTSC0 = 0  
b01: CNTSC0 = 1 (Default)  
b10: CNTSC0 = 2  
b11: CNTSC0 = 3  
(1) The Counter Scale sets a scaling factor for the internal frequency counter to avoid data overflow. The formula for calculating counter  
scale is CNTSCn = LCDIV + ceiling(log2 (0.0861×(SENCYCn+1)/fSENSORn)), n = 0, 1, 2, or 3, where LCDIV and SENCYCn are the  
exponential and linear scalers that set the number of sensor oscillation cycles, fSENSORn is the sensor frequency in MHz.  
30. Register SENSOR0_CONFIG – Address 0x20  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
RP0  
R/W  
0
Channel 0 Sensor RP Range Select  
Set based on the actual sensor RP physical parameter.  
RP = 1/RS × L/C  
where RS is the AC series resistance in the LC resonator, L is the  
inductance, and C is the capacitance.  
Refer to Designing Sensor Parameters for more information.  
b0: 350Ω ≤ RP 4k(Default)  
b1: 800Ω ≤ RP 10kΩ  
版权 © 2016–2017, Texas Instruments Incorporated  
23  
 
 
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
30. Register SENSOR0_CONFIG – Address 0x20 (接下页)  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
6:5  
FREQ0  
R/W  
00  
Channel 0 Sensor Frequency Range Select  
Refer to Designing Sensor Parameters for more information.  
b00: 1 MHz to 3.3 MHz (Default)  
b01: 3.3 MHz to 10 MHz  
b10: 10 MHz to 30 MHz  
b11: Reserved  
4:0  
SENCYC0  
R/W  
b0 0100  
Channel 0 Sensor Cycle Count  
SENCYC0 sets the Channel 0 button sampling window in  
conjunction with LCDIV.  
Refer to Programming Button Sampling Window for more  
information.  
31. Register SENSOR1_CONFIG – Address 0x22  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
RP1  
R/W  
0
Channel 1 Sensor RP Range Select  
Set based on the actual sensor RP physical parameter.  
RP = 1/RS × L/C  
where RS is the AC series resistance in the LC resonator, L is the  
inductance, and C is the capacitance.  
Refer to Designing Sensor Parameters for more information.  
b0: 350 Ω ≤ RP 4 k(Default)  
b1: 800 Ω ≤ RP 10 kΩ  
6:5  
4:0  
FREQ1  
R/W  
R/W  
00  
Channel 1 Sensor Frequency Range Select  
Refer to Designing Sensor Parameters for more information.  
b00: 1 MHz to 3.3 MHz (Default)  
b01: 3.3 MHz to 10 MHz  
b10: 10 MHz to 30 MHz  
b11: Reserved  
SENCYC1  
b0 0100  
Channel 1 Sensor Cycle Count  
SENCYC1 sets the Channel 1 button sampling window in  
conjunction with LCDIV.  
Refer to Programming Button Sampling Window for more  
information.  
32. Register SENSOR2_CONFIG – Address 0x24  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
RP2  
R/W  
0
Channel 2 Sensor RP Range Select (LDC2114 Only)  
Set based on the actual sensor RP physical parameter.  
RP = 1/RS × L/C  
where RS is the AC series resistance in the LC resonator, L is the  
inductance, and C is the capacitance.  
Refer to Designing Sensor Parameters for more information.  
b0: 350 Ω ≤ RP 4 k(Default)  
b1: 800 Ω ≤ RP 10 kΩ  
6:5  
4:0  
FREQ2  
R/W  
R/W  
00  
Channel 2 Sensor Frequency Range Select (LDC2114 Only)  
Refer to Designing Sensor Parameters for more information.  
b00: 1 MHz to 3.3 MHz (Default)  
b01: 3.3 MHz to 10 MHz  
b10: 10 MHz to 30 MHz  
b11: Reserved  
SENCYC2  
b0 0100  
Channel 2 Sensor Cycle Count (LDC2114 Only)  
SENCYC2 sets the Channel 2 button sampling window in  
conjunction with LCDIV.  
Refer to Programming Button Sampling Window for more  
information.  
24  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
33. Register FTF0 – Address 0x25  
BIT  
7:3  
2:1  
FIELD  
TYPE  
R/W  
RESET  
b0 0000  
01  
DESCRIPTION  
RESERVED  
FTF0  
Reserved. Set to b0 0000.  
R/W  
Fast Tracking Factor for Channel 0  
Defines baseline tracking speed for negative values of DATA0.  
Refer to Tracking Baseline for more information.  
b00: FTF0 = 0  
b01: FTF0 = 1 (Default)  
b10: FTF0 = 2  
b11: FTF0 = 3  
0
RESERVED  
R/W  
0
Reserved. Set to b0.  
34. Register SENSOR3_CONFIG – Address 0x26  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7
RP3  
R/W  
0
Channel 3 Sensor RP Range Select (LDC2114 Only)  
Set based on the actual sensor RP physical parameter.  
RP = 1/RS × L/C  
where RS is the AC series resistance in the LC resonator, L is the  
inductance, and C is the capacitance.  
Refer to Designing Sensor Parameters for more information.  
b0: 350 Ω ≤ RP 4 k(Default)  
b1: 800 Ω ≤ RP 10 kΩ  
6:5  
4:0  
FREQ3  
R/W  
R/W  
00  
Channel 3 Sensor Frequency Range Select (LDC2114 Only)  
Refer to Designing Sensor Parameters for more information.  
b00: 1 MHz to 3.3 MHz (Default)  
b01: 3.3 MHz to 10 MHz  
b10: 10 MHz to 30 MHz  
b11: Reserved  
SENCYC3  
b0 0100  
Channel 3 Sensor Cycle Count (LDC2114 Only)  
SENCYC3 sets the Channel 3 button sampling window in  
conjunction with LCDIV.  
Refer to Programming Button Sampling Window for more  
information.  
35. Register FTF1_2 – Address 0x28  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7:6  
FTF2  
R/W  
01  
Fast Tracking Factor for Channel 2 (LDC2114 Only)  
Defines baseline tracking speed for negative values of DATA2.  
Refer to Tracking Baseline for more information.  
b00: FTF2 = 0  
b01: FTF2 = 1 (Default)  
b10: FTF2 = 2  
b11: FTF2 = 3  
5:4  
FTF1  
R/W  
01  
Fast Tracking Factor for Channel 1  
Defines baseline tracking speed for negative values of DATA1.  
Refer to Tracking Baseline for more information.  
b00: FTF1 = 0  
b01: FTF1 = 1 (Default)  
b10: FTF1 = 2  
b11: FTF1 = 3  
3:0  
RESERVED  
R/W  
b0000  
Reserved. Set to b0000.  
36. Register FTF3 – Address 0x2B  
BIT  
7:2  
1:0  
FIELD  
TYPE  
R/W  
RESET  
b00 0000  
01  
DESCRIPTION  
RESERVED  
FTF3  
Reserved. Set to b00 0000.  
R/W  
Fast Tracking Factor for Channel 3 (LDC2114 Only)  
Defines baseline tracking speed for negative values of DATA3.  
Refer to Tracking Baseline for more information.  
b00: FTF3 = 0  
b01: FTF3 = 1 (Default)  
b10: FTF3 = 2  
b11: FTF3 = 3  
版权 © 2016–2017, Texas Instruments Incorporated  
25  
 
 
 
 
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
37. Register MANUFACTURER_ID_LSB – Address 0xFC  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7:0  
MANUFACTURER_ID [7:0]  
R
0x49  
Manufacturer ID [7:0]  
38. Register MANUFACTURER_ID_MSB – Address 0xFD  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7:0  
MANUFACTURER_ID [15:8]  
R
0x54  
Manufacturer ID [15:8]  
39. Register DEVICE_ID_LSB – Address 0xFE  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Device ID [7:0]  
7:0  
DEVICE_ID [7:0]  
R
0x01  
(LDC2112)  
0x00  
(LDC2114)  
40. Register DEVICE_ID_MSB – Address 0xFF  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Device ID [15:8]  
7:0  
DEVICE_ID [15:8]  
R
0x20  
26  
版权 © 2016–2017, Texas Instruments Incorporated  
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
7.5.1.1 Gain Table for Registers GAIN0, GAIN1, GAIN2, and GAIN3  
41. GAINn Bit Values in Decimal and Corresponding Normalized Gain Factors  
BIT VALUE IN DECIMAL  
NORMALIZED GAIN FACTOR  
BIT VALUE IN DECIMAL  
NORMALIZED GAIN FACTOR  
0
1.0  
1.0625  
1.1875  
1.3125  
1.4375  
1.5625  
1.6875  
1.8125  
2.0  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
16  
17  
1
2
19  
3
21  
4
23  
5
25  
6
27  
7
29  
8
32  
9
2.125  
2.375  
2.625  
2.875  
3.125  
3.375  
3.625  
4.0  
34  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
38  
42  
46  
50  
54  
58  
64  
4.25  
68  
4.75  
76  
5.25  
84  
5.75  
92  
6.25  
100  
108  
116  
128  
136  
152  
168  
184  
200  
216  
232  
6.75  
7.25  
8.0  
8.5  
9.5  
10.5  
11.5  
12.5  
13.5  
14.5  
版权 © 2016–2017, Texas Instruments Incorporated  
27  
 
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LDC2112/LDC2114 supports multiple buttons. Each button can be configured in various ways for optimal  
operation.  
8.1.1 Theory of Operation  
An AC current flowing through an inductor will generate an AC magnetic field. If a conductive material, such as a  
metal object, is in close proximity to the inductor, the magnetic field will induce circulating eddy currents on the  
surface of the conductor. The eddy currents are a function of the distance, size, and composition of the  
conductor. If the conductor is deflected toward the inductor as shown in 17, more eddy currents will be  
generated.  
17. Metal Deflection  
The eddy currents create their own magnetic field, which opposes the original field generated by the inductor.  
This effect reduces the effective inductance of the system, resulting in an increase in sensor frequency. 18  
shows the inductance and frequency response of an example sensor with a diameter of 14 mm. As the sensitivity  
of an inductive sensor increases with closer targets, the conductive plate should be placed quite close to the  
sensor—typically 10% of the sensor diameter for circular coils. For rectangular or race-track-shaped coils, the  
target to sensor distance should typically be less than 10% of the shorter side of the coil.  
28  
版权 © 2016–2017, Texas Instruments Incorporated  
 
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
Application Information (接下页)  
7
6.5  
6
5
4.75  
4.5  
4.25  
5.5  
5
Sensor Inductance (μH)  
Sensor Frequency (MHz)  
4
4.5  
4
3.75  
3.5  
3.25  
3
3.5  
3
0
1
2
3
4
5
6
7
Distance between Sensor and Target (mm)  
8
9
10  
D010  
18. Sensor Inductance and Frequency vs Target Distance. Sensor Diameter = 14 mm  
The output DATAn registers (Addresses 0x02 through 0x09) of the LDC2112/LDC2114 contain the processed  
values of the changes in sensor frequencies.  
8.1.2 Designing Sensor Parameters  
Each inductive touch button uses an LC resonator sensor, as illustrated in 19, where L is the inductor, C is the  
capacitor, and RS is the AC series resistance of the sensor at the frequency of operation. The key parameters of  
the LC sensor include frequency, effective parallel resistance RP, and quality factor Q. These parameters must  
be within the ranges as specified in the Sensor section of the Electrical Characteristics table. Note that the  
effective RP and Q changes when the conductive target is in place.  
L
C
RS  
19. LC Resonator  
The LC sensor frequency, as defined by the equation below, must be between 1 MHz and 30 MHz.  
1
fSENSOR  
=
2p LC  
The sensor quality factor, as defined by the equation below, must be between 5 and 30.  
(1)  
(2)  
1
L
QSENSOR  
=
RS  
C
The series resistance can be represented as an equivalent parallel resistance, RP, which is given by  
L
RP =  
RSC  
(3)  
29  
版权 © 2016–2017, Texas Instruments Incorporated  
 
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
Application Information (接下页)  
C
RP  
L
20. Equivalent Parallel Circuit  
RP can be viewed as the load on the sensor driver. This load corresponds to the current drive needed to maintain  
the oscillation amplitude. RP must be between 350 and 10 k.  
In summary, the LDC2112/LDC2114 requires that the sensor parameters are within the following ranges when  
the conductive target is present:  
1 MHz fSENSOR 30 MHz  
5 Q 30  
350 Ω RP 10 kΩ  
8.1.3 Setting COM Pin Capacitor  
The COM pin requires a bypass capacitor to ground. The capacitor should be a low ESL, low ESR type. CCOM  
must be sized so that the following relationship is valid for all channels.  
100 × CSENSORn / QSENSORn < CCOM < 1250 × CSENSORn / QSENSORn  
(4)  
The value of QSENSORn when the sensor is at the minimum target distance should be used. The maximum  
acceptable value for CCOM is 20 nF. The CCOM range for a particular sensor configuration can be obtained with  
the Spiral_Inductor_Designer tab of the LDC Calculations Tool.  
8.1.4 Defining Power-On Timing  
The low power architecture of the LDC2112/LDC2114 makes it possible for the device to be active all the time.  
When not being used, the LDC2112/LDC2114 can operate in Low Power Mode with a single standby power  
button, which typically consumes less than 10 µA. If additional power-saving is desired, or in the rare event  
where a power-on reset becomes necessary (see I2C Interface), the output data will become ready after 50 ms  
startup time, about 1 ms optional register loading time, and two sampling windows for all active channels. The  
power-on timing of the LDC2112/LDC2114 is illustrated in 21 below.  
Only Channels 0 and 1 are enabled. Scan rate: 40 SPS.  
25 ms scan cycle  
25 ms scan cycle  
66 ms startup time  
Sampling  
Sampling  
VDD  
IN0  
IN1  
DATA is ready  
after all active channels  
finish two conversions.  
66 ms startup time is  
independent of scan rate.  
Events  
Power up  
21. Power-On Timing  
30  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
Application Information (接下页)  
8.1.5 Configuring Button Scan Rate  
The LDC2112/LDC2114 periodically samples all active channels at the selected scan rate. The device can  
operate at eight different scan rates to meet various power consumption requirements, where a lower scan rate  
achieves lower power consumption. In Normal Power Mode, the scan rate can be programmed to 80, 40, 20, or  
10 SPS through Register NP_SCAN_RATE (Address 0x0D). In Low Power Mode, the scan rate can be  
programmed to 5, 2.5, 1.25, or 0.625 SPS through Register LP_SCAN_RATE (Address 0x0F). The mode is  
selected by setting the LPWRB pin to VDD (Normal Power) or ground (Low Power). In either mode, each button  
can be independently enabled through a bit in Register EN (Address 0x0C). For typical distribution of the scan  
rates, refer to 9.  
42. Button Scan Rates  
SCAN RATE (SPS)  
LPSR (0x0F) SETTING  
b11  
NPSR (0x0D) SETTING  
Not Applicable  
Not Applicable  
Not Applicable  
Not Applicable  
b11  
LPWRB PIN SETTING  
0.625  
1.25  
2.5  
5
Ground  
Ground  
Ground  
Ground  
VDD  
b10  
b01  
b00  
10  
Not Applicable  
Not Applicable  
Not Applicable  
Not Applicable  
20  
b10  
VDD  
40  
b01  
VDD  
80  
b00  
VDD  
8.1.6 Programming Button Sampling Window  
The button sampling window is the actual duration per scan cycle for active data sampling of the sensor  
frequency. It is programmed with the exponential parameter, LCDIV, in Register LC_DIVIDER (Address 0x17),  
and the individual linear sensor cycle counter SENCYCn (n = 0, 1, 2, or 3) in Registers SENSORn_CONFIG (n =  
0, 1, 2, or 3, Addresses 0x20, 0x22, 0x24, 0x26). For most touch button applications, the button sampling  
window should be set to between 1 ms and 8 ms. The recommended minimum sensor conversion time is 1 ms.  
Longer conversion time can be used to achieve better signal-to-noise ratio if needed. If multiple channels are  
enabled, the active channels will sample sequentially, as illustrated in 22.  
Button Sampling Window: set by  
LCDIV, SENCYCn, and fSENSORn  
IN0  
IN1  
IN2  
IN3  
Scan Rate: set by NPSR,  
LPSR, and LPWRB pin  
22. Configurable Scan Rate and Button Sampling Window  
The LDC2112/LDC2114 is designed to work with LC resonator sensors with oscillation frequencies ranging from  
1 MHz to 30 MHz. The exact definition of the button sampling window is given by the equation below.  
版权 © 2016–2017, Texas Instruments Incorporated  
31  
 
 
 
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
Number of Sensor Oscillation Cycles  
Button Sampling Window =  
Sensor Frequency  
128ì SENCYCn +1 ì 2LCDIV  
(
)
tSAMPLE  
=
,n = 0,1, 2, or 3  
fSENSORn  
where:  
tSAMPLE is the button sampling window in µs,  
SENCYCn and LCDIV are the linear and exponential scalers that set the number of sensor oscillation cycles, and  
fSENSORn is the sensor frequency in MHz.  
(5)  
In the equation above, LCDIV (0 to 7, default 3) is the exponential LC divider that sets the approximate ranges  
for all channels, and SENCYCn (0 to 31, default 4) is the linear sensor cycle scaler that fine-tunes each  
individual channel. Together they set the number of sensor oscillation cycles used to determine the button  
sampling window.  
For example, if the LC sensor frequency is 9.2 MHz, and it is desirable to get 1 ms button sampling window, then  
this can be achieved by setting SENCYCn = 17 and LCDIV = 2.  
Alternatively, from the button sampling window and sensor frequency, the LCDIV can be read off from 23. For  
example, 1 ms button sampling window and 9.2 MHz sensor frequency intersect at the region where LCDIV = 2.  
Then SENCYCn can be calculated accordingly.  
30  
LCDIV=7  
25  
LCDIV=6  
20  
LCDIV=5  
15  
LCDIV=4  
10  
LCDIV=3  
LCDIV=2  
5
LCDIV=1  
LCDIV=0  
0
0
1
2
3
4
5
6
Button Sampling Window (ms)  
7
8
9
D008  
23. LCDIV as a Function of Sensor Frequency and Button Sampling Window  
8.1.7 Scaling Frequency Counter Output  
The LDC2112/LDC2114 requires this internal frequency counter scaler to be set based on the button sampling  
window to avoid data overflow. The scaler in Register CNTSC (Address 0x1E) must be set by the following  
formula:  
0.0861ì SENCYCn +1  
(
)
CNTSCn = LCDIV + ceiling log  
, n = 0,1, 2, or 3  
(
)
÷
÷
2
fSENSORn  
«
where:  
CNTSCn is the internal frequency counter scaler,  
SENCYCn and LCDIV are the linear and exponential scalers that set the number of sensor oscillation cycles, and  
fSENSORn is the sensor frequency in MHz.  
(6)  
32  
版权 © 2016–2017, Texas Instruments Incorporated  
 
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
8.1.8 Setting Button Triggering Threshold  
Every material shows some hysteresis when it deforms then returns to the original state. The amount of  
hysteresis is a function of material properties and physical parameters, such as size and thickness. This feature  
modifies the hysteresis of the button signal threshold according to different materials and various button shapes  
and sizes. Hysteresis can be programmed in Register HYST (Address 0x18). By default, the button triggering  
hysteresis is set to 32. The nominal button triggering threshold is 128. With hysteresis, the effective on-threshold  
is 128 + 32 = 160. This means if the DATAn (n = 0, 1, 2, or 3) reaches 160, the LDC considers that as a button  
press. When the DATAn decreases to 128 – 32 = 96, the LDC considers the button to be released.  
ThresholdON = 128 +Hysteresis  
ThresholdOFF = 128 -Hysteresis  
(7)  
(8)  
OUTn  
High=Button  
Press Detected  
Low=No Button  
Press Detected  
DATAn  
ThresholdOFF  
128  
ThresholdON  
24. Button Triggering Threshold with Hysteresis. Output Polarity: Active High  
8.1.9 Tracking Baseline  
The LDC2112/LDC2114 automatically tracks slow changes in the baseline signal and compensates for  
environmental drifts and variations. In Normal Power Mode, the effective baseline increment per scan cycle  
(BINCNP) can be determined by 公式 9:  
2NPBI  
BINCNP  
=
72  
where:  
NPBI is the Normal Power Baseline Increment index that can be configured in Register NP_BASE_INC (Address  
0x15).  
(9)  
In Low Power Mode, the effective baseline increment per scan cycle (BINCLP) can be determined by 公式 10:  
2LPBI  
BINCLP  
=
9
where:  
LPBI the Low Power Baseline Increment index that can be configured in Register LP_BASE_INC (Address 0x13).  
(10)  
As a result of baseline tracking, a button press with a constant force only lasts for a finite amount of time. The  
duration of a button press is defined by 公式 11 (DATAn > ThresholdON).  
DATAn - ThresholdOFF  
Duration of Button Press =  
BINC  
where:  
Duration of Button Press is the number of scan cycles that the channel is asserted,  
DATAn is the button signal at the beginning of a press, and  
BINC is the baseline increment per scan cycle.  
(11)  
33  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
Button Released  
Button Pressed  
Baseline  
DATAn  
Baseline Increment  
Fast tracking if DATAn is  
negative  
25. Baseline Tracking in the Presence of a Button Press  
The baseline tracking for a particular channel can be paused when the channel output is asserted. This is  
achieved by setting the corresponding BTPAUSE bit in Register BTPAUSE_MAXWIN (Address 0x16) to b1.  
If DATAn is negative, the tracking speed will be scaled by the fast tracking factor as specified in Registers FTF0  
(Address 0x25), FTF1_2 (Address 0x28), or FTF3 (Address 0x2B). The scaling factors for various FTFn settings  
are shown in 43.  
BINC (DATAn < 0) = Fast_Tracking_Factor_n × BINC (DATAn > 0)  
(12)  
43. Fast Tracking Factor Settings  
FTFn Setting  
Fast Tracking Factor  
b00  
b01  
b10  
b11  
1
4
8
16  
8.1.10 Mitigating False Button Detections  
The LDC2112/LDC2114 offers several algorithms that can mitigate false button detections due to mechanical  
non-idealities associated with groups of buttons. These are listed below.  
8.1.10.1 Eliminating Common-Mode Change (Anti-Common)  
This algorithm eliminates false detection when a user presses the middle of two or more buttons, which could  
lead to a common-mode response on multiple buttons. All the buttons can be individually enabled to have this  
feature by programming Register COMMON_DEFORM (Address 0x1A).  
34  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
Button 0  
Button 1  
Intentional Press  
of Button 1  
Common-mode change  
to both Buttons 0 and 1.  
DATA  
Threshold = 128+Hysteresis  
Time  
Button 0  
OUTPUT without  
Anti-common  
(High = Button  
Press Detected)  
Button 1  
Time  
Button 0  
OUTPUT with  
Anti-common  
(High = Button  
Press Detected)  
Button 1  
Time  
26. Illustration of the Anti-Common Feature  
8.1.10.2 Resolving Simultaneous Button Presses (Max-Win)  
This algorithm enables the system to select the button pressed with maximum force when multiple buttons are  
pressed at the same time. This could happen when two buttons are physically very close to each other, and  
pressing one causes a residual reaction on the other. Buttons can be individually enabled to join the “max-win”  
group by configuring Register BTPAUSE_MAXWIN (Address 0x16).  
Intentional Press of Button 0  
with coupled response of  
Button 1  
Intentional Press of  
Button 0  
Button 1  
Button 1  
DATA  
Threshold = 128+Hysteresis  
Time  
Button 0  
OUTPUT  
without Max-Win  
(High = Button  
Press Detected)  
Button 1  
Time  
Button 0  
OUTPUT with  
Max-Win  
(High = Button  
Press Detected)  
Button 1  
Time  
27. Illustration of the Max-Win Feature  
版权 © 2016–2017, Texas Instruments Incorporated  
35  
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
8.1.10.3 Overcoming Case Twisting (Anti-Twist)  
The anti-twist algorithm reduces the likelihood of false detection when the case is twisted, which could cause  
unintended mechanical activation of the buttons, or an opposite reaction in two adjacent buttons. When this  
algorithm is enabled, detection of button presses is suppressed if any button’s output data is negative by a  
configurable threshold. The anti-twist algorithm can be enabled by configuring Register TWIST (Address 0x19).  
Button 0  
Button 1  
Intentional Press of  
Button 1.  
Twisting effect of  
Buttons 0 and 1.  
DATA  
Threshold = 128+Hysteresis  
Time  
Button 0  
OUTPUT without  
Anti-twist  
(High = Button  
Press Detected)  
Button 1  
Time  
Button 0  
OUTPUT with  
Anti-twist  
(High = Button  
Press Detected)  
Button 1  
Time  
28. Illustration of the Anti-Twist Feature  
8.1.10.4 Mitigating Metal Deformation (Anti-Deform)  
This function filters changes due to metal deformation in the vicinity of one or more buttons. Such metal  
deformation can be accidentally caused by pressing a neighboring button that does not have sufficient  
mechanical isolation. The user can specify which buttons to join the anti-deform group by configuring Register  
COMMON_DEFORM (Address 0x1A).  
8.1.11 Reporting Interrupts for Button Presses and Error Conditions  
INTB, the LDC2112/LDC2114 interrupt pin, is asserted when a button press or an error condition occurs. The  
default polarity is active low and can be configured through Register INTPOL (Address 0x11).  
29 shows the LDC2112/LDC2114 response to a single button press on Channel 0. At the end of the button  
sampling window following a press of Button 0, the OUT0 pin and INTB pin are asserted. The OUT_STATUS bit  
changes from 0 to 1, and remains so until a read of the STATUS register clears it. The OUTn (n = 0, 1, 2, or 3)  
and INTB pins are asserted until the end of the button sampling window following the release of the button.  
36  
版权 © 2016–2017, Texas Instruments Incorporated  
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
OUTn and INTB are programmed to —Active Low“. Scan Rate: 40 SPS.  
25 ms scan cycle  
25 ms scan cycle  
25 ms scan cycle  
Sampling  
Sampling  
Sampling  
OUT0  
Pin  
INTB  
Pin  
STATUS  
Register  
OUT0 and  
Reading the Status  
Register clears the  
OUT_STATUS bit.  
INTB asserted,  
OUT_STATUS  
bit asserted  
Button 0  
pressed  
Button 0  
Events  
OUT0 de-asserted  
released  
29. Timing Diagram of a Single Button Press  
30 shows the LDC2112/LDC2114 response to multiple button presses. In this example, after Button 0 is  
pressed, the OUT0 pin is asserted. After that, Button 1 is also pressed, following which Button 0 is released. The  
OUT0 pin is de-asserted and OUT1 pin asserted at the end of the next button sampling window. The INTB pin  
remains continuously asserted as long as at least one of the buttons is pressed. The OUT_STATUS bit only  
changes from 0 to 1 after the first button assertion.  
OUTn and INTB are programmed to —Active Low“. Scan Rate: 40 SPS.  
25 ms scan cycle  
25 ms scan cycle  
25 ms scan cycle  
Sampling  
Sampling  
Sampling  
OUT0  
Pin  
OUT1  
Pin  
INTB  
Pin  
STATUS  
Register  
Button 1 Button 0  
pressed released  
OUT0 de-asserted  
OUT1 asserted  
Button 1  
released  
OUT1 and INTB  
de-asserted  
Button 0  
pressed  
OUT0 and  
INTB asserted  
Events  
Reading the Status Register  
clears the OUT_STATUS bit.  
30. Timing Diagram of Multiple Button Presses  
The INTB pin also reports any error event. If an error occurs, the INTB pin is asserted and the error is reported in  
the STATUS register (Address 0x00). Refer to Register STATUS (Address 0x00) for possible error events.  
版权 © 2016–2017, Texas Instruments Incorporated  
37  
 
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
8.1.12 Estimating Supply Current  
When the LDC2112/LDC2114 is active (in either Normal Power Mode or Low Power Mode), its current can be  
characterized by 公式 13:  
12  
IACTIVEn = 1.6 +  
1.21 + 0.011ìfSENSORn  
1+16ìRPn  
where  
IACTIVEn is the supply current in mA during active sampling,  
RPn is the sensor parallel resonant impedance in kΩ,  
fSENSORn is the sensor frequency in MHz, and  
n is the channel index, i.e. n = 0 or 1 for LDC2112; n = 0, 1, 2, or 3 for LDC2114.  
(13)  
The LDC2112/LDC2114 is only actively sampling the enabled channels during a fraction of the scan window. So  
the average supply current is:  
1
IDD  
=
ì∆ IACTIVEn ì tSAMPLEn ÷ + 0.005  
ƒ  
÷
tSCAN  
« n  
where  
IDD is the average supply current in mA,  
tSCAN is the scan window (set by the scan rate) in ms,  
IACTIVEn is the supply current when the device is active as defined by 公式 13, and  
tSAMPLE is the button sampling window in ms.  
(14)  
8.2 Typical Application  
8.2.1 Touch Button Design  
The low power architecture of LDC2112/LDC2114 makes them suitable for driving button sensors in consumer  
electronics, such as mobile phones. Most mobile phones today have three buttons along the edges, namely the  
power button, volume up, and volume down. The LDC2112 can support two buttons, and LDC2114 can support  
four.  
On a typical smartphone, the two volume buttons are next to each other, so they may be susceptible to false  
detections such as simultaneous button presses. To prevent such mis-triggers, they can be grouped together to  
take advantage of the various features that mitigate false detections as explained in Mitigating False Button  
Detections. For example, if Max-win is applied to the two volume buttons, only the one with the greater force will  
be triggered.  
The inductive touch solution does not require any mechanical cutouts at the button locations. This can support  
reduced manufacturing cost for the phone case and enhance the case’s resistance to moisture, dust, and dirt.  
This is a great advantage compared to mechanical buttons in the market today.  
8.2.1.1 Design Requirements  
The sensor parameters, including frequency, RP, and Q factor have to be within the design space of the  
LDC2112/LDC2114 as specified in Electrical Characteristics.  
8.2.1.2 Detailed Design Procedure  
The LDC2112/LDC2114 is a multi-channel device. The italic n in the parameters below refers to the channel  
index, i.e., n = 0 or 1 for LDC2112, and n = 0, 1, 2, or 3 for LDC2114.  
1. Select system-based options:  
Select Normal or Low Power Mode of operation by setting the LPWRB pin to VDD or Ground, respectively.  
Configure the enable bits for all channels in Register EN (Address 0x0C).  
Select the polarities of OUTn and INTB pins by configuring Register OPOL_DPOL (Address 0x1C) and  
Register INTPOL (Address 0x11).  
38  
版权 © 2016–2017, Texas Instruments Incorporated  
 
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
Typical Application (接下页)  
Configure the sensor frequency setting in Registers SENSORn_CONFIG (Addresses 0x20, 0x22, 0x24,  
0x26).  
2. Choose the sampling rate (80, 40, 20, 10, 5, 2.5, 1.25, or 0.625 SPS) based on system power consumption  
requirement, and configure Register NP_SCAN_RATE (Address 0x0D) or Register LP_SCAN_RATE (Address  
0x0F).  
3. Choose the button sampling window based on power consumption and noise requirements (recommended: 1  
ms to 8 ms). While a longer button sampling window provides better noise performance, 1 ms is typically  
sufficient for most applications. Set SENCYCn and LCDIV in Registers SENSORn_CONFIG (Addresses 0x20,  
0x22, 0x24, 0x26) and Register LC_DIVIDER (Address 0x17) in the following steps:  
Calculate LCDIV = ceiling (log2 (fSENSORn × tSAMPLEn) – 12), where fSENSORn is the sensor frequency in MHz,  
tSAMPLEn is the button sampling window in µs  
If LCDIV < 0, set it to 0  
Adjust SENCYCn to get desired tSAMPLEn according to tSAMPLEn = 128 × (SENCYCn + 1) × 2LCDIV / fSENSORn  
4. Calibrate gain in the appropriate Registers GAINn (Addresses 0x0E, 0x10, 0x12, 0x14). The gain setting can  
be used to tune the sensitivity of the touch button. GAINn is a 6-bit field with 64 different gain levels  
corresponding to normalized gains between 1 and 232. A good mechanical and sensor design typically requires  
a gain level of around 32 to 50, corresponding to relative gains of 16 to 76 (normalized to gain level of 0). Use  
the following sequence to determine the appropriate gain for each button:  
Apply minimum desired force to the button.  
Read initial DATAn value after the button press. Note that the baseline tracking will affect this value.  
Calculate gain factor needed to increase DATAn to the programmed threshold (default is 160).  
Look up the Gain Table to find the required gain setting.  
5. Enable special features to mitigate button interference if there is any. Registers BTPAUSE_MAXWIN, TWIST,  
COMMON_DEFORM (Addresses 0x16, 0x19, 0x1A).  
For more information on inductive touch system design, including mechanical design and sensor electrical  
design, refer to Inductive Touch System Design Guide.  
8.2.1.3 Application Curves  
31 shows a sequence of button presses of 150 grams force, two presses to Channel 0, then two presses to  
Channel 1. Each button press response is greater than the threshold.  
400  
Channel 0  
Channel 1  
Threshold  
350  
300  
250  
200  
150  
100  
50  
0
-50  
0
2
4
6
8
Time (s)  
D009  
31. Conversion DATA vs Time for Channels 0 and 1  
版权 © 2016–2017, Texas Instruments Incorporated  
39  
 
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
9 Power Supply Recommendations  
The LDC2112/LDC2114 power supply should be bypassed with a 1 µF and a 0.1 µF pair of capacitors in parallel  
to ground. The capacitors should be placed as close to the LDC as possible. The smaller value 0.1 µF capacitor  
should be placed closer to the VDD pin than the 1 µF capacitor. The capacitors should be a low ESL, low ESR  
type. To enable close positioning of the capacitors, use of 0201 footprint devices for the bypass capacitors is  
recommended for the DSBGA package.  
Refer to Recommended Operating Conditions for more details.  
10 Layout  
10.1 Layout Guidelines  
The COM pin must be bypassed to ground with an appropriate value capacitor. For details of how to choose the  
capacitor value, refer to Setting COM Pin Capacitor. CCOM should be placed as close as possible to the COM  
pin. The COM signal should be tied to a small copper fill placed underneath the INn signals. The INn signals  
should stay clear of other high frequency traces.  
Each active channel needs to have an LC resonator connected to the corresponding INn pins. The sensor  
capacitor should be placed within 10 mm of the corresponding INn pin, and the inductor (NOT shown in 32)  
should be placed at the appropriate location next to (but not touching) the metal target. The INn traces should be  
at least 6 mil (0.15 mm) wide to minimize parasitic inductances.  
For the DSBGA package, the inner four device pads (INTB, OUT3, LPWRB, and SDA) should be routed out on  
an inner layer through vias, with the traces offset to reduce coupling with other signals. These four vias may  
need to use blind vias or microvias to bring the signals out. The PCB layer stack should use a thinner (4 mil or  
0.1 mm thickness) dielectric between the top copper and next copper layer so that microvias can be used.  
10.2 Layout Example  
32. Layout of LDC2114 (DSBGA-16) With Decoupling Capacitors and Sensor Capacitors  
40  
版权 © 2016–2017, Texas Instruments Incorporated  
 
LDC2112, LDC2114  
www.ti.com.cn  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
Layout Example (接下页)  
33. Layout of LDC2114 (TSSOP-16) With Decoupling Capacitors and Sensor Capacitors  
10.3 DSBGA Light Sensitivity  
Exposing the DSBGA device to direct light may cause incorrect operation of the device. Light sources such as  
halogen lamps can affect electrical performance if they are situated in proximity to the device. Light with  
wavelengths in the red and infrared part of the spectrum have the most detrimental effect.  
版权 © 2016–2017, Texas Instruments Incorporated  
41  
LDC2112, LDC2114  
ZHCSGN4B DECEMBER 2016REVISED APRIL 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
LDC 计算工具  
《电感应触控系统设计指南》  
11.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即购买的快速链接。  
44. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
LDC2112  
LDC2114  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至德州仪器 TI.com.cn 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可  
收到任意产品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 出口管制提示  
接收方同意:如果美国或其他适用法律限制或禁止将通过本协议的披露方获得的任何产品或技术数据(其中包括软  
件)(见美国、欧盟和其他出口管理条例之定义)、或者其他适用国家条例限制的任何受管制产品或此项技术的任  
何直接产品出口或再出口至任何目的地,那么在没有事先获得美国商务部和其他相关政府机构授权的情况下,接收  
方不得在知情的情况下,以直接或间接的方式将其出口。  
11.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
42  
版权 © 2016–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LDC2112PWR  
LDC2112PWT  
LDC2112YFDR  
LDC2112YFDT  
LDC2114PWR  
LDC2114PWT  
LDC2114YFDR  
LDC2114YFDT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
DSBGA  
DSBGA  
TSSOP  
TSSOP  
DSBGA  
DSBGA  
PW  
PW  
16  
16  
16  
16  
16  
16  
16  
16  
2000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
LDC2112  
NIPDAU  
SNAGCU  
SNAGCU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
LDC2112  
17M  
YFD  
YFD  
PW  
17M  
LDC2114  
LDC2114  
14G  
PW  
YFD  
YFD  
14G  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Oct-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LDC2112PWR  
LDC2112YFDR  
LDC2112YFDT  
LDC2114PWR  
LDC2114YFDR  
LDC2114YFDT  
TSSOP  
DSBGA  
DSBGA  
TSSOP  
DSBGA  
DSBGA  
PW  
YFD  
YFD  
PW  
16  
16  
16  
16  
16  
16  
2000  
3000  
250  
330.0  
180.0  
180.0  
330.0  
180.0  
180.0  
12.4  
8.4  
6.9  
1.69  
1.69  
6.9  
5.6  
1.69  
1.69  
5.6  
1.6  
0.46  
0.46  
1.6  
8.0  
4.0  
4.0  
8.0  
4.0  
4.0  
12.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
8.4  
8.0  
2000  
3000  
250  
12.4  
8.4  
12.0  
8.0  
YFD  
YFD  
1.69  
1.69  
1.69  
1.69  
0.46  
0.46  
8.4  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Oct-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LDC2112PWR  
LDC2112YFDR  
LDC2112YFDT  
LDC2114PWR  
LDC2114YFDR  
LDC2114YFDT  
TSSOP  
DSBGA  
DSBGA  
TSSOP  
DSBGA  
DSBGA  
PW  
YFD  
YFD  
PW  
16  
16  
16  
16  
16  
16  
2000  
3000  
250  
350.0  
182.0  
182.0  
350.0  
182.0  
182.0  
350.0  
182.0  
182.0  
350.0  
182.0  
182.0  
43.0  
20.0  
20.0  
43.0  
20.0  
20.0  
2000  
3000  
250  
YFD  
YFD  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
YFD0016  
DSBGA - 0.4 mm max height  
SCALE 8.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
0.4 MAX  
C
SEATING PLANE  
0.05 C  
0.175  
0.125  
BALL TYP  
1.2  
TYP  
SYMM  
D
C
B
A
1.2  
TYP  
SYMM  
D: Max = 1.625 mm, Min =1.565 mm  
E: Max = 1.625 mm, Min =1.565 mm  
0.4  
TYP  
1
2
3
4
0.285  
16X  
C A  
0.185  
0.015  
B
0.4  
TYP  
4222547/A 12/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFD0016  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
16X ( 0.225)  
A
(0.4) TYP  
B
C
SYMM  
D
2
3
4
1
SYMM  
LAND PATTERN EXAMPLE  
SCALE:40X  
0.05 MAX  
0.05 MIN  
(
0.225)  
METAL  
METAL UNDER  
SOLDER MASK  
(
0.225)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222547/A 12/2015  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
Refer to Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFD0016  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
16X ( 0.25)  
A
B
(0.4)  
TYP  
SYMM  
METAL  
TYP  
C
D
1
2
3
4
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:40X  
4222547/A 12/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LDC2114PWR

适用于低功耗触摸按钮、具有基线跟踪功能的 4 通道电感数字转换器 | PW | 16 | -40 to 85
TI

LDC2114PWT

适用于低功耗触摸按钮、具有基线跟踪功能的 4 通道电感数字转换器 | PW | 16 | -40 to 85
TI

LDC2114YFDR

适用于低功耗触摸按钮、具有基线跟踪功能的 4 通道电感数字转换器 | YFD | 16 | -40 to 85
TI

LDC2114YFDT

适用于低功耗触摸按钮、具有基线跟踪功能的 4 通道电感数字转换器 | YFD | 16 | -40 to 85
TI

LDC211G4416B-027

Directional Coupler, 1429MHz Min, 1453MHz Max, 0.24dB Insertion Loss-Max,
MURATA

LDC211G4417L-053

Directional Coupler, 1429MHz Min, 1453MHz Max, 0.32dB Insertion Loss-Max,
MURATA

LDC211G7410H-057

Directional Coupler, 1710MHz Min, 1785MHz Max, 0.95dB Insertion Loss-Max
MURATA

LDC211G7412B-032

Directional Coupler, 1710MHz Min, 1785MHz Max, 0.5dB Insertion Loss-Max,
MURATA

LDC211G7420H-055

Directional Coupler, 1710MHz Min, 1785MHz Max, 0.45dB Insertion Loss-Max,
MURATA

LDC211G8814B-027

Directional Coupler, 1850MHz Min, 1910MHz Max, 0.37dB Insertion Loss-Max,
MURATA

LDC211G8820B-042

Directional Coupler, 1850MHz Min, 1910MHz Max, 0.23dB Insertion Loss-Max,
MURATA

LDC211G9014B-027

Directional Coupler, 1895MHz Min, 1920MHz Max, 0.33dB Insertion Loss-Max,
MURATA