LDC1314-Q1 [TI]

4 通道、12 位、通用汽车类电感数字转换器;
LDC1314-Q1
型号: LDC1314-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4 通道、12 位、通用汽车类电感数字转换器

转换器
文件: 总58页 (文件大小:1360K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
LDC1312-Q1/LDC1314-Q1 适用于电感感测的多通道 12 位电感数字转换  
(LDC)  
1 特性  
2 应用  
1
适用于汽车电子 应用  
具有符合 AEC-Q100 标准的下列结果:  
汽车按钮和旋钮  
线性和旋转编码器  
滑块按钮  
器件温度 1 级:-40°C +125°C 的环境运行温  
度范围  
工业与汽车中的金属探测  
流量计  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 2  
3 说明  
器件组件充电模式 (CDM) ESD 分类等级 C5  
易于使用 配置要求极低  
LDC1312-Q1 LDC1314-Q1 分别是用于电感感测解  
决方案的 2 通道和 4 通道 12 位电感数字转换器  
(LDC)。由于具备多通道且支持远程感测,LDC1312-  
Q1 LDC1314-Q1 能以最低的成本和功耗实现高性  
能且可靠的电感感测。此类产品使用简便,仅需要传感  
器频率处于 1kHz 10MHz 的范围内即可开始工作。  
由于支持的传感器频率范围 1kHz 10MHz 较宽,因  
此还支持使用非常小的 PCB 线圈,从而进一步降低感  
测解决方案的成本和尺寸。  
单个 IC 最多可测量四个传感器  
具备多条通道,支持对环境和老化条件进行补偿  
多通道远程感测,可将系统成本降至最低  
与中等分辨率和高分辨率选项引脚兼容  
LDC1312-Q1/LDC1314-Q12/4 通道 12 位  
LDC  
LDC1612-Q1/LDC1614-Q12/4 通道 28 位  
LDC  
支持 1kHz 10MHz 的宽传感器频率范围  
器件信息(1)  
功耗:  
器件型号  
LDC1312-Q1  
LDC1314-Q1  
封装  
WSON (12)  
WQFN (16)  
封装尺寸(标称值)  
4.00mm x 4.00mm  
4.00mm x 4.00mm  
35µA(低功耗休眠模式)  
200nA(关断模式)  
3.3V 电压供电运行  
支持内部或外部基准时钟  
抗直流磁场和磁铁干扰  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
测量精度与目标距离间的关系  
简化电路原理图  
3.3 V  
2.5  
2.25  
2
3.3 V  
LDC1312  
MCU  
VDD  
CLKIN  
VDD  
SD  
40 MHz  
GPIO  
GPIO  
INTB  
1.75  
1.5  
1.25  
1
IN0A  
IN0B  
Target  
Target  
Sensor 0  
Sensor 1  
Core  
GND  
IN1A  
IN1B  
SDA  
SCL  
I2  
C
I2  
C
Peripheral  
3.3 V  
0.75  
0.5  
0.25  
0
ADDR  
GND  
Copyright © 2016, Texas Instruments Incorporated  
0
10%  
20%  
30%  
40%  
50%  
60%  
70%  
Sensing Range (Target Distance / SENSOR  
)
D001  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNOSCZ6  
 
 
 
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 20  
8.5 Programming........................................................... 20  
8.6 Register Maps......................................................... 22  
Application and Implementation ........................ 39  
9.1 Application Information............................................ 39  
9.2 Typical Application ................................................. 42  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings ............................................................ 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics .......................................... 6  
7.6 Timing Characteristics ............................................. 7  
7.7 Switching Characteristics - I2C................................. 7  
7.8 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 10  
8.1 Overview ................................................................. 10  
8.2 Functional Block Diagram ....................................... 10  
8.3 Feature Description................................................. 10  
9
10 Power Supply Recommendations ..................... 46  
11 Layout................................................................... 46  
11.1 Layout Guidelines ................................................. 46  
11.2 Layout Example .................................................... 46  
12 器件和文档支持 ..................................................... 51  
12.1 器件支持................................................................ 51  
12.2 文档支持................................................................ 51  
12.3 社区资源................................................................ 51  
12.4 相关链接................................................................ 51  
12.5 ....................................................................... 51  
12.6 静电放电警告......................................................... 51  
12.7 Glossary................................................................ 51  
13 机械、封装和可订购信息....................................... 51  
8
4 修订历史记录  
日期  
修订版本  
注释  
2016 4 月  
*
最初发布。  
2
版权 © 2016, Texas Instruments Incorporated  
 
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
5 说明 (续)  
LDC1312-Q1 LDC1314-Q1 提供匹配良好的通道,可实现差分测量与比率测量。因此,设计人员能够利用一个  
通道来补偿感测过程中的环境条件和老化条件,例如温度、湿度和机械漂移。得益于易用、低能耗、低系统成本等  
特性,这些产品有助于设计人员大幅改进现有传感解决方案,从而为所有市场(尤其是消费品和工业应用)中的产  
品引入全新的感测 功能。相比同类感测技术,电感感测具有更高的性能、可靠性和灵活性,而且系统成本与功耗更  
低。  
LDC1312-Q1 LDC1314-Q1 能够通过 I2C 接口轻松进行配置。双通道 LDC1312-Q1 采用 WSON-12 封装,四  
通道 LDC1314-Q1 采用 WQFN-16 封装。  
Copyright © 2016, Texas Instruments Incorporated  
3
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
6 Pin Configuration and Functions  
LDC1314-Q1 RGH  
16 pin WQFN  
Top View  
LDC1312-Q1 DNT  
12 pin WSON  
Top View  
SCL  
SDA  
IN1B  
IN1A  
IN0B  
IN0A  
GND  
VDD  
1
2
3
4
5
6
12  
11  
10  
9
SCL  
SDA  
1
2
3
4
12 IN1B  
CLKIN  
ADDR  
INTB  
SD  
DAP  
11 IN1A  
10 IN0B  
DAP  
CLKIN  
ADDR  
8
9
IN0A  
7
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
1
NAME  
SCL  
I
I/O  
I
I2C Clock input  
I2C Data input/output  
Master Clock input. Tie this pin to GND if internal oscillator is selected  
2
SDA  
3
CLKIN  
ADDR  
I2C Address selection pin: when ADDR=L, I2C address = 0x2A, when ADDR=H, I2C address =  
0x2B.  
4
I
5
INTB  
SD  
O
I
Configurable Interrupt output pin  
Shutdown input  
6
7
VDD  
GND  
IN0A  
IN0B  
IN1A  
IN1B  
IN2A  
IN2B  
IN3A  
IN3B  
DAP(2)  
P
Power Supply  
8
G
A
Ground  
9
External LC sensor 0 connection  
External LC sensor 0 connection  
External LC sensor 1 connection  
External LC sensor 1 connection  
External LC sensor 2 connection (LDC1314 only)  
External LC sensor 2 connection (LDC1314 only)  
External LC sensor 3 connection (LDC1314 only)  
External LC sensor 3 connection (LDC1314 only)  
Connect to Ground  
10  
11  
12  
13  
14  
15  
16  
DAP  
A
A
A
A
A
A
A
N/A  
(1) I = Input, O = Output, P=Power, G=Ground, A=Analog  
(2) There is an internal electrical connection between the exposed Die Attach Pad (DAP) and the GND pin of the device. Although the DAP  
can be left floating, for best performance the DAP should be connected to the same potential as the device's GND pin. Do not use the  
DAP as the primary ground for the device. The device GND pin must always be connected to ground.  
4
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
7 Specifications  
7.1 Absolute Maximum Ratings  
MIN  
MAX  
UNIT  
V
VDD  
Vi  
Supply Voltage  
5
Voltage on any pin  
–0.3  
–8  
VDD+0.3  
V
IA  
Input current on any INx pin  
Input current on any Digital pin  
Junction Temperature  
Storage temperature range  
8
mA  
mA  
°C  
ID  
–5  
5
Tj  
–55  
–65  
150  
150  
Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
Unless otherwise specified, all limits ensured for TA = 25°C, VDD = 3.3 V  
MIN  
2.7  
NOM  
MAX  
3.6  
UNIT  
VDD  
TA  
Supply Voltage  
V
Operating Temperature  
–40  
125  
°C  
7.4 Thermal Information  
LDC1312  
DNT (WSON)  
12 PINS  
36.7  
LDC1314  
THERMAL METRIC(1)  
RGH (WQFN)  
16 PINS  
35.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
36.2  
36.2  
14  
13.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
0.4  
ψJB  
14.2  
13.4  
RθJC(bot)  
3.5  
3.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2016, Texas Instruments Incorporated  
5
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
(1)  
7.5 Electrical Characteristics  
Unless otherwise specified, all limits ensured for TA = 25°C, VDD = 3.3 V  
PARAMETER  
TEST CONDITIONS(2)  
MIN(3)  
TYP(4)  
MAX(3)  
UNIT  
POWER  
VDD  
Supply Voltage  
TA = –40°C to +125°C  
2.7  
3.6  
V
(6)  
IDD  
Supply Current (not including  
sensor current)(5)  
CLKIN = 10MHz  
2.1  
35  
mA  
µA  
µA  
IDDSL  
ISD  
Sleep Mode Supply Current(5)  
60  
1
Shutdown Mode Supply  
Current(5)  
0.2  
SENSOR  
ISENSORMAX  
RP  
Sensor Maximum Current drive  
Sensor RP  
HIGH_CURRENT_DRV = b0  
DRIVE_CURRENT_CHx = 0xF800  
1.5  
mA  
1
100  
10  
kΩ  
IHDSENSORMAX  
High current sensor drive mode: HIGH_CURRENT_DRV = b1  
Sensor Maximum Current  
6
mA  
DRIVE_CURRENT_CH0 = 0xF800  
Channel 0 only  
RP_HD_MIN  
fSENSOR  
Minimum sensor RP  
250  
Sensor Resonance Frequency  
TA = –40°C to +125°C  
0.001  
MHz  
VSENSORMAX  
Maximum oscillation amplitude  
(peak)  
1.8  
V
NBITS  
Number of bits  
RESET_DEV.OUTPUT_GAIN=b00  
12  
bits  
RCOUNT 0x0400  
fCS  
Maximum Channel Sample Rate single active channel continuous  
conversion, SCL=400kHz  
13.3  
kSPS  
pF  
CIN  
Sensor Pin input capacitance  
4
MASTER CLOCK  
fCLKIN  
External Master Clock Input  
Frequency (CLKIN)  
TA = –40°C to +125°C  
2
40  
MHz  
CLKINDUTY_MIN  
CLKINDUTY_MAX  
External Master Clock minimum  
acceptable duty cycle (CLKIN)  
40%  
60%  
External Master Clock maximum  
acceptable duty cycle (CLKIN)  
VCLKIN_LO  
VCLKIN_HI  
CLKIN low voltage threshold  
CLKIN high voltage threshold  
0.3ˣVDD  
V
V
0.7ˣVD  
D
fINTCLK  
Internal Master Clock Frequency  
range  
35  
43.4  
–13  
55  
MHz  
TCf_int_μ  
Internal Master Clock  
Temperature Coefficient mean  
ppm/°C  
(1) Electrical Characteristics Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions  
result in very limited self-heating of the device such that TJ = TA. Absolute Maximum Ratings indicate junction temperature limits  
beyond which the device may be permanently degraded, either mechanically or electrically.  
(2) Register values are represented as either binary (b is the prefix to the digits), or hexadecimal (0x is the prefix to the digits). Decimal  
values have no prefix.  
(3) Limits are ensured by testing, design, or statistical analysis at 25°C. Limits over the operating temperature range are ensured through  
correlations using statistical quality control (SQC) method.  
(4) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and also depend on the application and configuration. The typical values are not tested and are not ensured on shipped  
production material.  
(5) I2C read/write communication and pullup resistors current through SCL, SDA not included.  
(6) Sensor inductor: 2 layer, 32 turns/layer, 14mm diameter, PCB inductor with L=19.4 µH, RP=5.7 kat 2MHz Sensor capacitor: 330 pF  
1% COG/NP0 Target: Aluminum, 1.5mm thickness Channel = Channel 0 (continuous mode) CLKIN = 40 MHz, CHx_FIN_DIVIDER =  
b0000, CHx_FREF_DIVIDER = b00 0000 0001 CH0_RCOUNT = 0xFFFF, SETTLECOUNT_CH0 = 0x0100 RP_OVERRIDE = b1,  
AUTO_AMP_DIS = b1, DRIVE_CURRENT_CH0 = 0x9800  
6
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
7.6 Timing Characteristics  
MIN  
NOM  
MAX  
UNIT  
ms  
tWAKEUP  
Wake-up Time from SD high-low transition to I2C readback  
2
tWD-TIMEOUT Sensor recovery time (after watchdog timeout)  
5.2  
ms  
7.7 Switching Characteristics - I2C  
Unless otherwise specified, all limits ensured for TA = 25°C, VDD = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOLTAGE LEVELS  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
0.7ˣVDD  
V
V
0.3ˣVDD  
VOL  
Output Low Voltage (3mA sink  
current)  
0.4  
V
V
HYS  
Hysteresis  
0.1ˣVDD  
I2C TIMING CHARACTERISTICS  
fSCL  
Clock Frequency  
Clock Low Time  
Clock High Time  
10  
1.3  
0.6  
400  
kHz  
μs  
tLOW  
tHIGH  
tHD;STA  
μs  
Hold Time (repeated) START  
condition  
After this period, the first clock  
pulse is generated  
0.6  
0.6  
μs  
μs  
tSU;STA  
Set-up time for a repeated START  
condition  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Data hold time  
0
100  
0.6  
μs  
ns  
μs  
Data setup time  
Set-up time for STOP condition  
Bus free time between a STOP  
and START condition  
1.3  
μs  
tVD;DAT  
tVD;ACK  
tSP  
Data valid time  
0.9  
0.9  
μs  
μs  
Data valid acknowledge time  
Pulse width of spikes that must be  
suppressed by the input filter(1)  
50  
ns  
(1) This parameter is specified by design and/or characterization and is not tested in production.  
SDA  
t
BUF  
t
t
f
LOW  
t
HD;STA  
t
r
t
t
SP  
t
f
r
SCL  
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 1. I2C Timing  
Copyright © 2016, Texas Instruments Incorporated  
7
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
7.8 Typical Characteristics  
Common test conditions (unless specified otherwise): Sensor inductor: 2 layer, 32 turns/layer, 14 mm diameter, PCB inductor  
with L=19.4 µH, RP=5.7 kat 2 MHz; Sensor capacitor: 330 pF 1% COG/NP0; Target: Aluminum, 1.5mm thickness; Channel  
= Channel 0 (continuous mode); CLKIN = 40 MHz, CHx_FIN_DIVIDER = 0x1, CHx_FREF_DIVIDER = 0x001, CH0_RCOUNT  
= 0xFFFF, SETTLECOUNT_CH0 = 0x0100, RP_OVERRIDE = 1, AUTO_AMP_DIS = 1, DRIVE_CURRENT_CH0 = 0x9800  
3.25  
3.225  
3.2  
3.25  
VDD = 2.7 V  
VDD = 3 V  
VDD = 3.3 V  
VDD = 3.6 V  
3.2  
3.175  
3.15  
3.125  
3.1  
3.15  
3.1  
-40°C  
-20°C  
0°C  
50°C  
85°C  
100°C  
125°C  
3.075  
3.05  
25°C  
3.05  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Temperature (°C)  
VDD (V)  
D003  
D004  
Includes 1.57 mA sensor coil current  
–40°C to +125°C  
Includes 1.57 mA sensor coil current  
Figure 2. Active Mode IDD vs. Temperature  
Figure 3. Active Mode IDD vs. VDD  
60  
55  
50  
45  
40  
35  
30  
25  
65  
60  
55  
50  
45  
40  
35  
30  
25  
VDD = 2.7 V  
VDD = 3 V  
VDD = 3.3 V  
VDD = 3.6 V  
-40°C  
-20°C  
0°C  
25°C  
50°C  
85°C  
100°C  
125°C  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Temperature (°C)  
VDD (V)  
D005  
D006  
–40°C to +125°C  
Figure 4. Sleep Mode IDD vs. Temperature  
Figure 5. Sleep Mode IDD vs. VDD  
1.4  
1.2  
1
1.6  
1.4  
1.2  
1
VDD = 2.7 V  
VDD = 3 V  
VDD = 3.3 V  
VDD = 3.6 V  
-40°C  
-20°C  
0°C  
25°C  
50°C  
85°C  
100°C  
125°C  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Temperature (°C)  
VDD (V)  
D007  
D008  
–40°C to +125°C  
Figure 6. Shutdown Mode IDD vs. Temperature  
Figure 7. Shutdown Mode IDD vs. VDD  
8
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
Typical Characteristics (continued)  
Common test conditions (unless specified otherwise): Sensor inductor: 2 layer, 32 turns/layer, 14 mm diameter, PCB inductor  
with L=19.4 µH, RP=5.7 kat 2 MHz; Sensor capacitor: 330 pF 1% COG/NP0; Target: Aluminum, 1.5mm thickness; Channel  
= Channel 0 (continuous mode); CLKIN = 40 MHz, CHx_FIN_DIVIDER = 0x1, CHx_FREF_DIVIDER = 0x001, CH0_RCOUNT  
= 0xFFFF, SETTLECOUNT_CH0 = 0x0100, RP_OVERRIDE = 1, AUTO_AMP_DIS = 1, DRIVE_CURRENT_CH0 = 0x9800  
43.4  
43.39  
43.38  
43.37  
43.36  
43.35  
43.34  
43.33  
43.32  
43.41  
VDD = 2.7 V  
VDD = 3 V  
VDD = 3.3 V  
VDD = 3.6 V  
-40°C  
-20°C  
0°C  
25°C  
50°C  
85°C  
100°C  
125°C  
43.4  
43.39  
43.38  
43.37  
43.36  
43.35  
43.34  
43.33  
43.32  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Temperature (°C)  
VDD (V)  
D009  
D010  
–40°C to +125°C  
Data based on 1 unit  
Figure 8. Internal Oscillator Frequency vs. Temperature  
Figure 9. Internal Oscillator Frequency vs. VDD  
Copyright © 2016, Texas Instruments Incorporated  
9
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
Conductive objects brought in contact with an AC electromagnetic (EM) field will induce field changes that can be  
detected using a sensor such as an inductor. Conveniently, an inductor, along with a capacitor, can be used to  
construct an L-C resonator, also known as an L-C tank, which can be used to produce an EM field. In the case of  
an L-C tank, the effect of the field disturbance is an apparent shift in the inductance of the sensor, which can be  
observed as a shift in the resonant frequency. Using this principle, the LDC1312/1314 is an inductance-to-digital  
converter (LDC) that measures the oscillation frequency of an LC resonator. The device outputs a digital value  
that is proportional to frequency. This frequency measurement can be converted to an equivalent inductance.  
8.2 Functional Block Diagram  
40 MHz  
40 MHz  
CLKIN  
CLKIN  
VDD  
SD  
VDD  
SD  
fREF  
fREF  
INTB  
INTB  
IN0A  
IN0B  
IN0A  
IN0B  
Resonant  
Circuit  
Driver  
Resonant  
Circuit  
Driver  
Core  
I2C  
Core  
I2C  
fIN  
fIN  
IN3A  
IN3B  
IN1A  
IN1B  
Resonant  
Circuit  
Driver  
Resonant  
Circuit  
Driver  
SDA  
SCL  
SDA  
SCL  
ADDR  
ADDR  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 10. Block Diagrams for the LDC1312 (Left) and LDC1314 (Right)  
The LDC1312/LDC1314 is composed of front-end resonant circuit drivers, followed by a multiplexer that  
sequences through the active channels, connecting them to the core that measures and digitizes the sensor  
frequency (fSENSOR). The core uses a reference frequency (fREF) to measure the sensor frequency. fREF is derived  
from either an internal reference clock (oscillator), or an externally supplied clock. The digitized output for each  
channel is proportional to the ratio of fSENSOR/fREF. The I2C interface is used to support device configuration and  
to transmit the digitized frequency values to a host processor. The LDC can be placed in shutdown mode, saving  
current, using the SD pin. The INTB pin may be configured to notify the host of changes in system status.  
8.3 Feature Description  
8.3.1 Clocking Architecture  
Figure 11 shows the clock dividers and multiplexers of the LDC.  
10  
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
Feature Description (continued)  
IN0A  
fSENSOR0  
Sensor 0  
Sensor 1  
÷ m  
fIN0  
IN0B  
IN1A  
CH0_FIN_DIVIDER (0x14)  
fSENSOR1  
÷ m  
fIN1  
IN1B  
tfINt  
CH1_FIN_DIVIDER (0x15)  
IN2A(1)  
Sensor 2(1)  
Sensor 3(1)  
÷ m  
fIN2  
(1)  
(1)  
(1)  
fSENSOR2  
IN2B(1)  
IN3A(1)  
CH2_FIN_DIVIDER (0x16)(1)  
(1)  
fSENSOR3  
÷ m  
fIN3  
IN3B(1)  
CONFIG (0x1A)  
MUX_CONFIG  
(0x1B)  
CH3_FIN_DIVIDER (0x17)(1)  
Core  
Data  
Output  
÷ n  
fREF0  
CH0_FREF_DIVIDER (0x14)  
REF_CLK_SRC  
(0x1A)  
÷ n  
fREF1  
CLKIN  
tfCLKIN  
t
tfREF  
t
tfCLK  
t
CH1_FREF_DIVIDER (0x15)  
tfINT  
t
(1)  
÷ n  
fREF2  
Int. Osc.  
CH2_FREF_DIVIDER (0x16)(1)  
(1)  
÷ n  
fREF3  
CONFIG (0x1A)  
MUX_CONFIG  
(0x1B)  
CH3_FREF_DIVIDER (0x17)(1)  
Copyright © 2016, Texas Instruments Incorporated  
Figure 11. Clocking Diagram  
(1) LDC1314 only  
In Figure 11, the key clocks are fIN, fREF, and fCLK. fCLK is selected from either the internal clock source or external  
clock source (CLKIN). The frequency measurement reference clock, fREF, is derived from the fCLK source. TI  
recommends that precision applications use an external master clock that offers the stability and accuracy  
requirements needed for the application. The internal oscillator may be used in applications that require low cost  
and do not require high precision. The fINx clock is derived from sensor frequency for a channel x, fSENSORx. fREFx  
and fINx must meet the requirements listed in Table 1, depending on whether fCLK (master clock) is the internal or  
external clock.  
Table 1. Clock Configuration Requirements  
SET  
SET  
VALID fREFx  
RANGE (MHz)  
VALID fINx  
RANGE  
SET  
MODE(1)  
CLKIN SOURCE  
CHx_FIN_DIVIDE CHx_SETTLECO  
CHx_RCOUNT to  
R to  
UNT to  
Multi-Channel  
Internal  
External  
fREFx < 55  
fREFx < 40  
fREFx < 35  
(2)  
< fREFx /4  
b0001  
> 3  
> 8  
Single-Channel  
Either external or  
internal  
(1) Channels 2 and 3 are only available for LDC1314  
(2) If fSENSOR 8.75 MHz, then CHx_FIN_DIVIDER must be 2  
Copyright © 2016, Texas Instruments Incorporated  
11  
 
 
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
Table 2 shows the clock configuration registers for all channels.  
Table 2. Clock Configuration Registers  
CHANNEL(1)  
CLOCK  
REGISTER  
FIELD [ BIT(S) ]  
REF_CLK_SRC [9]  
VALUE  
fCLK = Master  
Clock Source  
CONFIG, addr  
0x1A  
b0 = internal oscillator is used as the  
master clock  
b1 = external clock source is used as the  
master clock  
All  
fREF0  
fREF1  
fREF2  
fREF3  
fIN0  
CLOCK_DIVIDER CH0_FREF_DIVIDER [9:0]  
S_CH0, addr 0x14  
fREF0 = fCLK / CH0_FREF_DIVIDER  
fREF1 = fCLK / CH1_FREF_DIVIDER  
fREF2 = fCLK / CH2_FREF_DIVIDER  
fREF3 = fCLK / CH3_FREF_DIVIDER  
fIN0 = fSENSOR0 / CH0_FIN_DIVIDER  
fIN1 = fSENSOR1 / CH1_FIN_DIVIDER  
fIN2 = fSENSOR2 / CH2_FIN_DIVIDER  
fIN3 = fSENSOR3 / CH3_FIN_DIVIDER  
0
1
2
3
0
1
2
3
CLOCK_DIVIDER CH1_FREF_DIVIDER [9:0]  
S_CH1, addr 0x15  
CLOCK_DIVIDER CH2_FREF_DIVIDER [9:0]  
S_CH2, addr 0x16  
CLOCK_DIVIDER CH3_FREF_DIVIDER [9:0]  
S_CH3, addr 0x17  
CLOCK_DIVIDER CH0_FIN_DIVIDER [15:12]  
S_CH0, addr 0x14  
fIN1  
CLOCK_DIVIDER CH1_FIN_DIVIDER [15:12]  
S_CH1, addr 0x15  
fIN2  
CLOCK_DIVIDER CH2_FIN_DIVIDER [15:12]  
S_CH2, addr 0x16  
fIN3  
CLOCK_DIVIDER CH3_FIN_DIVIDER [15:12]  
S_CH3, addr 0x17  
(1) Channels 2 and 3 are only available for LDC1314  
8.3.2 Multi-Channel and Single Channel Operation  
The multi-channel package of the LDC enables the user to save board space and support flexible system design.  
For example, temperature drift can often cause a shift in component values, resulting in a shift in resonant  
frequency of the sensor. Using a 2nd sensor as a reference provides the capability to cancel out a temperature  
shift. When operated in multi-channel mode, the LDC sequentially samples the active channels. In single channel  
mode, the LDC samples a single channel, which is selectable. Table 3 shows the registers and values that are  
used to configure either multi-channel or single channel modes.  
Table 3. Single and Multi-Channel Configuration Registers  
MODE  
REGISTER  
FIELD [ BIT(S) ]  
VALUE(1)  
00 = chan 0  
01 = chan 1  
10 = chan 2  
11 = chan 3  
CONFIG, addr 0x1A  
ACTIVE_CHAN [15:14]  
Single channel  
0 = continuous conversion on a  
single channel (default)  
MUX_CONFIG addr 0x1B  
MUX_CONFIG addr 0x1B  
AUTOSCAN_EN [15]  
AUTOSCAN_EN [15]  
1 = continuous conversion on  
multiple channels  
00 = Ch0, Ch 1  
Multi-channel  
MUX_CONFIG addr 0x1B  
RR_SEQUENCE [14:13]  
01 = Ch0, Ch 1, Ch 2  
10 = Ch0, CH1, Ch2, Ch3  
(1) Channels 2 and 3 are only available for LDC1314  
The digitized sensor measurement for each channel (DATAx) represents the ratio of the sensor frequency to the  
reference frequency. The data outputs represent the 12 MSBs of a 16-bit result:  
DATAx/ 212 = fSENSORx/fREFx  
(1)  
The sensor frequency can be calculated from:  
DATAx * ƒREFx  
ƒsensorx  
=
212  
(2)  
12  
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
Table 4 shows the registers that contain the fixed point sample values for each channel.  
Table 4. LDC1314/1312 Sample Data Registers  
CHANNEL(1)  
REGISTER  
FIELD NAME [BITS(S) ]  
VALUE  
0
DATA_MSB_CH0, addr 0x00  
DATA0 [11:0]  
12 bits of the 16 bit result.  
0x000 = under range  
0xfff = over range  
1
2
3
DATA_MSB_CH1, addr 0x02  
DATA_MSB_CH2, addr 0x04  
DATA_MSB_CH3, addr 0x06  
DATA1 [11:0]  
DATA2 [11:0]  
DATA3 [11:0]  
12 bits of the 16 bit result.  
0x000 = under range  
0xfff = over range  
12 bits of the 16 bit result.  
0x000 = under range  
0xfff = over range  
12 bits of the 16 bit result.  
0x000 = under range  
0xfff = over range  
(1) Channels 2 and 3 available for LDC1314 only.  
When the LDC sequences through the channels in multi-channel mode, the dwell time interval for each channel  
is the sum of 3 parts: sensor activation time + conversion time + channel switch delay.  
The sensor activation time is the amount of settling time required for the sensor oscillation to stabilize, as shown  
in Figure 12. The settling wait time is programmable and should be set to a value that is long enough to allow  
stable oscillation. The settling wait time for channel x is given by:  
tSx = (CHX_SETTLECOUNTˣ16)/fREFx  
(3)  
Table 5 shows the registers and values for configuring the settling time for each channel.  
Channel 0  
Sensor  
Activation  
Channel 0  
Conversion  
Channel  
switch delay Sensor  
Activation  
Channel 1  
Channel 1  
Conversion  
Channel  
switch delay Sensor  
Activation  
Channel 0  
Channel 0  
Channel 1  
Figure 12. Multi-channel Mode Sequencing  
Active Channel  
Sensor Signal  
Sensor  
Activation  
Conversion  
Conversion  
Conversion  
Amplitude  
Correction  
Amplitude  
Correction  
Amplitude  
Correction  
Figure 13. Single-channel Mode Sequencing  
Copyright © 2016, Texas Instruments Incorporated  
13  
 
 
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
Table 5. Settling Time Register Configuration  
CHANNEL(1)  
REGISTER  
SETTLECOUNT_CH0, addr 0x10  
FIELD  
CONVERSION TIME(2)  
0
1
2
3
CH0_SETTLECOUNT (15:0)  
CH1_SETTLECOUNT (15:0)  
CH2_SETTLECOUNT (15:0)  
CH3_SETTLECOUNT (15:0)  
(CH0_SETTLECOUNT*16)/fREF0  
(CH1_SETTLECOUNT*16)/fREF1  
(CH2_SETTLECOUNT*16)/fREF2  
(CH3_SETTLECOUNT*16)/fREF3  
SETTLECOUNT_CH1, addr 0x11  
SETTLECOUNT_CH2, addr 0x12  
SETTLECOUNT_CH3, addr 0x13  
(1) Channels 2 and 3 are available only in the LDC1314.  
(2) fREFx is the reference frequency configured for the channel.  
The SETTLECOUNT for any channel x must satisfy:  
CHx_SETTLECOUNT QSENSORx × fREFx / (16 × fSENSORx  
)
where  
fSENSORx = Frequency of the Sensor on Channel x  
fREFx = Reference frequency for Channel x  
QSENSORx = Quality factor of the sensor on Channel x, where Q can be calculated by:  
(4)  
(5)  
C
L
Q = RP  
Round the result to the next highest integer (for example, if Equation 4 recommends a minimum value of 6.08,  
program the register to 7 or higher).  
L, RP and C values can be obtained by using Texas Instrument’s WEBENCH® for the coil design.  
The conversion time represents the number of reference clock cycles used to measure the sensor frequency. It is  
set by the CHx_RCOUNT register for the channel. The conversion time for any channel x is:  
tCx = (CHx_RCOUNT ˣ 16 + 4) /fREFx  
(6)  
The reference count value must be chosen to support the required number of effective bits (ENOB). For details,  
refer to the application note Optimizing L Measurement Resolution for the LDC161x and LDC1101.  
Table 6. Conversion Time Configuration Registers, Channels 0 - 3(1)  
CHANNEL  
REGISTER  
RCOUNT_CH0, addr 0x08  
RCOUNT_CH1, addr 0x09  
RCOUNT_CH2, addr 0x0A  
RCOUNT_CH3, addr 0x0B  
FIELD [ BIT(S) ]  
CH0_RCOUNT (15:0)  
CONVERSION TIME  
(CH0_RCOUNT*16)/fREF0  
0
1
2
3
CH1_RCOUNT (15:0)  
CH2_RCOUNT (15:0)  
CH3_RCOUNT (15:0)  
(CH1_RCOUNT*16)/fREF1  
(CH2_RCOUNT*16)/fREF2  
(CH3_RCOUNT*16)/fREF3  
(1) Channels 2 and 3 are available only for LDC1314.  
The typical channel switch delay time between the end of conversion and the beginning of sensor activation of  
the subsequent channel is:  
Channel Switch Delay = 692 ns + 5 / fref  
(7)  
The deterministic conversion time of the LDC allows data polling at a fixed interval. A data ready flag (DRDY) is  
also available for interrupt driven system designs (see the STATUS register description in Register Maps).  
An offset value may be subtracted from each DATA value to compensate for a frequency offset or maximize the  
dynamic range of the sample data. The offset values should be < fSENSORx_MIN / fREFx. Otherwise, the offset might  
be so large that it masks the LSBs which are changing.  
14  
Copyright © 2016, Texas Instruments Incorporated  
 
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
Table 7. Frequency Offset Registers  
CHANNEL  
REGISTER  
FIELD [ BIT(S) ]  
VALUE  
(1)  
0
1
2
3
OFFSET_CH0, addr 0x0C  
OFFSET_CH1, addr 0x0D  
OFFSET_CH2, addr 0x0E  
OFFSET_CH3, addr 0x0F  
CH0_OFFSET [ 15:0 ]  
CH1_OFFSET [ 15:0 ]  
CH2_OFFSET [ 15:0 ]  
CH3_OFFSET [ 15:0 ]  
fOFFSET0 = CH0_OFFSET * (fREF0/216  
fOFFSET1 = CH1_OFFSET * (fREF1/216  
fOFFSET2 = CH2_OFFSET * (fREF2/216  
fOFFSET3 = CH3_OFFSET * (fREF3/216  
)
)
)
)
(1) Channels 2 and 3 are only available for LDC1314  
Internally, the LDC measures with 16bits of resolution, while the conversion output word width is only 12bits. For  
systems in which the sensor signal variation is less than 25% of the full scale range, the LDC can report  
conversion results with higher resolution by setting the output gain. The output gain is applied to all device  
channels. An output gain can be used to apply a 2-bit, 3-bit, or 4-bit shift to the output code for all channels,  
allowing access to the 4LSBs of the original 16-bit result. The MSBs of the sample are shifted out when a gain is  
applied. Do not use the output gain if the MSBs of any active channel are toggling, as the MSBs for that channel  
will be lost when gain is applied.  
Table 8. Output Gain Register  
CHANNEL  
EFFECTIVE  
RESOLUTION (BITS)  
REGISTER  
FIELD [ BIT(S) ]  
VALUES  
OUTPUT RANGE  
(1)  
All  
RESET_DEV, addr  
0x1C  
OUTPUT_GAIN [ 10:9 ] 00 (default): Gain =1 (0  
bits shift)  
12  
100% full scale  
01: Gain = 4 (2 bits left  
shift)  
14  
15  
16  
25% full scale  
12.5% full scale  
6.25% full scale  
10: Gain = 8 (3 bits left  
shift)  
11 : Gain = 16 (4 bits left  
shift)  
(1) Channels 2 and 3 are available for LDC1314 only.  
Example: If the conversion result for a channel is 0x07A3, with OUTPUT_GAIN=0x0, the reported output code is  
0x07A. If OUTPUT_GAIN is set to 0x3 in the same condition, then the reported output code is 0x7A3. The  
original 4 MSBs (0x0) are no longer accessible. Figure 14 shows the segments of the 16-bit sample that is  
reported for each possible gain setting.  
MSB  
LSB  
Conversion result  
Output_gain = 0x3  
Output_gain = 0x2  
Output_gain = 0x1  
15  
12  
11  
11  
8
7
4
3
0
0
11  
0
11  
0
Output_gain = 0x0  
(default)  
11  
0
11  
0
Data available in DATA_MSB_CHx.DATA_CHx [11:0]  
Figure 14. Conversion Data Output Gain  
Copyright © 2016, Texas Instruments Incorporated  
15  
 
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
The sensor frequency can be determined by:  
DATAx  
« 2(12+OUTPUT_GAIN)  
CHx_OFFSET  
216  
ƒSENSORx = CHx_FIN_DIVIDER* ƒREFx  
+
÷
where  
DATAx = Conversion result from the DATA_CHx register  
CHx_OFFSET = Offset value set in the OFFSET_CHx register  
OUTPUT_GAIN = output multiplication factor set in the RESET_DEVICE.OUTPUT_GAIN register  
(8)  
8.3.3 Current Drive Control Registers  
The registers listed in Table 9 are used to control the sensor drive current. The recommendations listed in the  
last column of Table 9 should be followed.  
Auto-calibration mode is used to determine the optimal sensor drive current for a fixed sensor design. This mode  
should only be used during system prototyping.  
The auto-amplitude correction attempts to maintain the sensor oscillation amplitude between 1.2V and 1.8V by  
adjusting the sensor drive current between conversions. When auto-amplitude correction is enabled, the output  
data may show non-monotonic behavior due to an adjustment in drive current. Auto-amplitude correction is only  
recommended for low-precision applications.  
A high sensor current drive mode can be enabled to drive sensor coils with > 1.5mA on channel 0, only in single  
channel mode. This feature can be used when the sensor RP is lower than 1k. Set the HIGH_CURRENT_DRV  
register bit to b1 to enable this mode.  
Table 9. Current Drive Control Registers  
CHANNEL(1)  
REGISTER  
CONFIG, addr 0x1A  
FIELD [ BIT(S) ]  
VALUE  
SENSOR_ACTIVATE_SEL [11]  
Sets current drive for sensor activation.  
Recommended value is b0 (Full Current  
mode).  
All  
RP_OVERRIDE_EN [12]  
AUTO_AMP_DIS [10]  
Set to b1 for normal operation (RP over  
ride enabled)  
Disables Automatic amplitude correction.  
Set to b1 for normal operation (disabled)  
CONFIG, addr 0x1A  
HIGH_CURRENT_DRV [6]  
b0 = normal current drive (1.5 mA)  
b1 = Increased current drive (> 1.5 mA)  
for Ch 0 in single channel mode only.  
Cannot be used in multi-channel mode.  
0
0
DRIVE_CURRENT_CH0, addr 0x1E CH0_IDRIVE [15:11]  
Drive current used during the settling and  
conversion time for Ch. 0 (auto-amplitude  
correction must be disabled and RP over  
ride=1 )  
CH0_INIT_IDRIVE [10:6]  
Initial drive current stored during auto-  
calibration. Not used for normal operation.  
DRIVE_CURRENT_CH1, addr 0x1F CH1_IDRIVE [15:11]  
Drive current used during the settling and  
conversion time for Ch. 1 (auto-amplitude  
correction must be disabled and RP over  
ride=1 )  
1
2
CH1_INIT_IDRIVE [10:6]  
Initial drive current stored during auto-  
calibration. Not used for normal operation.  
DRIVE_CURRENT_CH2, addr 0x20 CH2_IDRIVE [15:11]  
Drive current used during the settling and  
conversion time for Ch. 2 (auto-amplitude  
correction must be disabled and RP over  
ride=1 )  
CH2_INIT_IDRIVE [10:6]  
Initial drive current stored during auto-  
calibration. Not used for normal operation.  
(1) Channels 2 and 3 are available for LDC1314 only.  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
 
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
CHANNEL(1)  
3
ZHCSF01 APRIL 2016  
Table 9. Current Drive Control Registers (continued)  
REGISTER  
FIELD [ BIT(S) ]  
VALUE  
DRIVE_CURRENT_CH3, addr 0x21 CH3_IDRIVE [15:11]  
Drive current used during the settling and  
conversion time for Ch. 3 (auto-amplitude  
correction must be disabled and RP over  
ride=1 )  
CH3_INIT_IDRIVE [10:6]  
Initial drive current stored during auto-  
calibration. Not used for normal operation.  
If the RP value of the sensor attached to channel x is known, Table 10 can be used to select the 5-bit value to be  
programmed into the CHx_IDRIVE field for the channel. If the measured RP (at maximum spacing between the  
sensor and the target) falls between two of the table values, use the current drive value associated with the lower  
RP from Table 10. All channels that use an identical sensor/target configuration should use the same IDRIVE  
value.  
Table 10. CHx_IDRIVE Values for Maximum Measured RP.  
MEASURED RP (k)  
CHx_IDRIVE REGISTER FIELD VALUE,  
BINARY (BITS [15:11] )  
NOMINAL CURRENT (μA)  
90.0  
77.6  
66.9  
57.6  
49.7  
42.8  
36.9  
31.8  
27.4  
23.3  
20.4  
17.6  
15.1  
13.0  
11.2  
9.7  
b00000  
b00001  
b00010  
b00011  
b00100  
b00101  
b00110  
b00111  
b01000  
b01001  
b01010  
b01011  
b01100  
b01101  
b01110  
b01111  
b10000  
b10001  
b10010  
b10011  
b10100  
b10101  
b10110  
b10111  
b11000  
b11001  
b11010  
b11011  
b11100  
b11101  
b11110  
b11111  
16  
18  
20  
23  
28  
32  
40  
46  
52  
59  
72  
82  
95  
110  
127  
146  
169  
195  
212  
244  
297  
342  
424  
489  
551  
635  
763  
880  
1017  
1173  
1355  
1563  
8.4  
7.2  
6.2  
5.4  
4.6  
4.0  
3.4  
3.0  
2.5  
2.2  
1.9  
1.6  
1.4  
1.2  
1.0  
0.9  
Copyright © 2016, Texas Instruments Incorporated  
17  
 
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
If the RP is not known, the following steps for auto-calibration can be used to configure the needed drive current,  
either during system prototyping, or during normal startup if feasible:  
1. Set target at the maximum planned operating distance from the sensor.  
2. Place the device into SLEEP mode by setting CONFIG.SLEEP_MODE_EN to b0.  
3. Program the desired values of SETTLECOUNT and RCOUNT values for the channel.  
4. Enable auto-calibration by setting RP_OVERDRIVE_EN to b0.  
5. Take the device out of SLEEP mode by setting CONFIG.SLEEP_MODE_EN to b1.  
6. Allow the device to perform at least one measurement, with the target stable (fixed) at the maximum  
operating range.  
7. Read the channel current drive value from the appropriate DRIVE_CURRENT_CHx register (addresses  
0x1e, 0x1f, 0x20, or 0x21), in the CHx_INIT_DRIVE field (bits 10:6). Save this value.  
8. During startup for normal operating mode, write the value saved from the CHx_INIT_DRIVE bit field into the  
Chx_IDRIVE bit field (bits 15:11).  
9. During normal operating mode, the RP_OVERRIDE_EN must set to b1 to force the fixed current drive.  
If the current drive results in the oscillation amplitude greater than 1.8V, the internal ESD clamping circuit will  
become active. This may cause the sensor frequency to shift so that the output values no longer represent a  
valid system state. If the current drive is set at a lower value, the SNR performance of the system will decrease,  
and at near zero target range, oscillations may completely stop, and the output sample values will be all zeroes.  
18  
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
8.3.4 Device Status Registers  
The registers listed in Table 11 may be used to read device status.  
Table 11. Status Registers  
CHANNEL(1)  
REGISTER  
FIELDS [ BIT(S) ]  
VALUES  
Refer to Register Maps section  
for a description of the individual  
status bits.  
12 fields are available that  
contain various status bits [ 15:0 ]  
All  
STATUS, addr 0x18  
12 fields are available that are  
Refer to Register Maps section  
All  
ERROR_CONFIG, addr 0x19  
used to configure error reporting [ for a description of the individual  
15:0 ] error configuration bits.  
(1) Channels 2 and 3 are available for LDC1314 only.  
See the STATUS and ERROR_CONFIG register description in the Register Map section. These registers can be  
configured to trigger an interrupt on the INTB pin for certain events. The following conditions must be met:  
1. The error or status register must be unmasked by enabling the appropriate register bit in the  
ERROR_CONFIG register  
2. The INTB function must be enabled by setting CONFIG.INTB_DIS to 0  
When a bit field in the STATUS register is set, the entire STATUS register content is held until read or until the  
DATA_CHx register is read. Reading also de-asserts INTB.  
Interrupts are cleared by one of the following events:  
1. Entering Sleep Mode  
2. Power-on reset (POR)  
3. Device enters Shutdown Mode (SD is asserted)  
4. S/W reset  
5. I2C read of the STATUS register: Reading the STATUS register will clear any error status bit set in STATUS  
along with the ERR_CHAN field and de-assert INTB  
Setting register CONFIG.INTB_DIS to b1 disables the INTB function and holds the INTB pin high.  
8.3.5 Input Deglitch Filter  
The input deglitch filter suppresses EMI and ringing above the sensor frequency. It does not impact the  
conversion result as long as its bandwidth is configured to be above the maximum sensor frequency. The input  
deglitch filter can be configured in MUX_CONFIG.DEGLITCH register field as shown in Table 12. For optimal  
performance, TI recommends to select the lowest setting that exceeds the sensor oscillation frequency. For  
example, if the maximum sensor frequency is 2.0 MHz, choose MUX_CONFIG.DEGLITCH = b100 (3.3 MHz).  
Table 12. Input deglitch filter register  
CHANNEL(1)  
ALL  
MUX_CONFIG.DEGLITCH REGISTER VALUE  
DEGLITCH FREQEUNCY  
001  
100  
101  
011  
1 MHz  
3.3 MHz  
10 MHz  
33 MHz  
ALL  
ALL  
ALL  
(1) Channels 2 and 3 are available for LDC1314 only.  
Copyright © 2016, Texas Instruments Incorporated  
19  
 
 
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Startup Mode  
When the LDC powers up, it enters into Sleep Mode and will wait for configuration. Once the device is  
configured, exit Sleep Mode by setting CONFIG.SLEEP_MODE_EN to b0.  
TI recommends to configure the LDC while in Sleep Mode. If a setting on the LDC needs to be changed, return  
the device to Sleep Mode, change the appropriate register, and then exit Sleep Mode.  
8.4.2 Normal (Conversion) Mode  
When operating in the normal (conversion) mode, the LDC is periodically sampling the frequency of the sensor(s)  
and generating sample outputs for the active channel(s).  
8.4.3 Sleep Mode  
Sleep Mode is entered by setting the CONFIG.SLEEP_MODE_EN register field to 1. While in this mode, the  
device configuration is maintained. To exit Sleep Mode, set the CONFIG.SLEEP_MODE_EN register field to 0.  
After setting CONFIG.SLEEP_MODE_EN to b0, sensor activation for the first conversion will begin after 16,384  
fINT clock cycles. While in Sleep Mode the I2C interface is functional so that register reads and writes can be  
performed. While in Sleep Mode, no conversions are performed. In addition, entering Sleep Mode will clear  
conversion results, any error condition and de-assert the INTB pin.  
8.4.4 Shutdown Mode  
When the SD pin is set to high, the LDC will enter Shutdown Mode. Shutdown Mode is the lowest power state.  
To exit Shutdown Mode, set the SD pin to low. Entering Shutdown Mode will return all registers to their default  
state.  
While in Shutdown Mode, no conversions are performed. In addition, entering Shutdown Mode will clear any  
error condition and de-assert the INTB pin. While the device is in Shutdown Mode, is not possible to read to or  
write from the device via the I2C interface.  
8.4.4.1 Reset  
The LDC can be reset by writing to RESET_DEV.RESET_DEV. Any active conversion will stop and all register  
values will return to their default value. This register bit will always return 0b when read.  
8.5 Programming  
The LDC device uses an I2C interface to access control and data registers.  
8.5.1 I2C Interface Specifications  
The LDC uses an extended start sequence with I2C for register access. The maximum speed of the I2C interface  
is 400kbit/s. This sequence follows the standard I2C 7bit slave address followed by an 8bit pointer register byte  
to set the register address. When the ADDR pin is set low, the LDC I2C address is 0x2A; when the ADDR pin is  
set high, the LDC I2C address is 0x2B. The ADDR pin must not change state after the LDC exits Shutdown  
Mode.  
20  
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
Programming (continued)  
1
9
1
9
SCL  
SDA  
A6 A5 A4 A3 A2 A1 A0 R/W  
R7 R6 R5 R4 R3 R2 R1 R0  
Start by  
Master  
Ack by  
Slave  
Ack by  
Slave  
Frame 1  
Serial Bus Address Byte  
from Master  
Frame 2  
Slave Register  
Address  
1
9
1
9
SCL  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
SDA  
Ack by  
Slave  
Ack by Stop by  
Slave Master  
Frame 3  
Data MSB from  
Master  
Frame 4  
Data LSB from  
Master  
Figure 15. I2C Write Register Sequence  
1
9
1
9
SCL  
SDA  
A6 A5 A4 A3 A2 A1 A0 R/W  
R7 R6 R5 R4 R3 R2 R1 R0  
Start by  
Master  
Ack by  
Slave  
Ack by  
Slave  
Frame 1  
Serial Bus Address Byte  
from Master  
Frame 2  
Slave Register  
Address  
1
9
1
9
1
9
SCL  
SDA  
A6 A5 A4 A3 A2 A1 A0 R/W  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
Start by  
Master  
Ack by  
Slave  
Ack by  
Master  
Nack by Stop by  
Master Master  
Frame 3  
Serial Bus Address Byte  
from Master  
Frame 4  
Data MSB from  
Slave  
Frame 5  
Data LSB from  
Slave  
Figure 16. I2C Read Register Sequence  
Copyright © 2016, Texas Instruments Incorporated  
21  
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
8.6 Register Maps  
8.6.1 Register List  
Fields indicated with Reserved must be written only with indicated values, otherwise improper device operation  
may occur. The R/W column indicates the Read-Write status of the corresponding field. A ‘R/W’ entry indicates  
read and write capability, a ‘R’ indicates read-only, and a ‘W’ indicates write-only.  
Figure 17. Register List  
ADDRESS  
0x00  
0x02  
0x04  
0x06  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
NAME  
DATA_CH0  
DEFAULT VALUE  
0x0000  
DESCRIPTION  
Channel 0 Conversion Result and Error Status  
Channel 1 Conversion Result and Error Status  
Channel 2 Conversion Result and Error Status (LDC1314 only)  
Channel 3 Conversion Result and Error Status (LDC1314 only)  
Reference Count setting for Channel 0  
DATA_CH1  
0x0000  
0x0000  
0x0000  
0x0080  
0x0080  
0x0080  
0x0080  
0x0000  
0x0000  
0x0000  
0x0000  
DATA_CH2  
DATA_CH3  
RCOUNT_CH0  
RCOUNT_CH1  
RCOUNT_CH2  
RCOUNT_CH3  
OFFSET_CH0  
OFFSET_CH1  
OFFSET_CH2  
OFFSET_CH3  
Reference Count setting for Channel 1  
Reference Count setting for Channel 2. (LDC1314 only)  
Reference Count setting for Channel 3.(LDC1314 only)  
Offset value for Channel 0  
Offset value for Channel 1  
Offset value for Channel 2 (LDC1314 only)  
Offset value for Channel 3 (LDC1314 only)  
Channel 0 Settling Reference Count  
SETTLECOUNT_CH0 0x0000  
SETTLECOUNT_CH1 0x0000  
SETTLECOUNT_CH2 0x0000  
SETTLECOUNT_CH3 0x0000  
Channel 1 Settling Reference Count  
Channel 2 Settling Reference Count (LDC1314 only)  
Channel 3 Settling Reference Count (LDC1314 only)  
Reference and Sensor Divider settings for Channel 0  
CLOCK_DIVIDERS_C 0x0000  
H0  
0x15  
0x16  
0x17  
CLOCK_DIVIDERS_C 0x0000  
H1  
Reference and Sensor Divider settings for Channel 1  
CLOCK_DIVIDERS_C 0x0000  
H2  
Reference and Sensor Divider settings for Channel 2 (LDC1314 only)  
Reference and Sensor Divider settings for Channel 3 (LDC1314 only)  
CLOCK_DIVIDERS_C 0x0000  
H3  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1E  
STATUS  
0x0000  
0x0000  
0x2801  
0x020F  
0x0000  
Device Status Report  
ERROR_CONFIG  
CONFIG  
Error Reporting Configuration  
Conversion Configuration  
MUX_CONFIG  
RESET_DEV  
Channel Multiplexing Configuration  
Reset Device  
DRIVE_CURRENT_CH 0x0000  
0
Channel 0 sensor current drive configuration  
0x1F  
0x20  
0x21  
DRIVE_CURRENT_CH 0x0000  
1
Channel 1 sensor current drive configuration  
DRIVE_CURRENT_CH 0x0000  
2
Channel 2 sensor current drive configuration (LDC1314 only)  
Channel 3 sensor current drive configuration (LDC1314 only)  
DRIVE_CURRENT_CH 0x0000  
3
0x7E  
0x7F  
MANUFACTURER_ID 0x5449  
Manufacturer ID  
Device ID  
DEVICE_ID  
0x3054  
22  
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
8.6.2 Address 0x00, DATA_CH0  
Figure 18. Address 0x00, DATA_CH0  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
CH0_ERR_UR CH0_ERR_OR CH0_ERR_WD CH0_ERR_AE  
DATA0[11:0]  
7
6
5
4
3
DATA0[11:0]  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 13. Address 0x00, DATA_CH0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
CH0_ERR_UR  
R
0
Channel 0 Conversion Under-range Error Flag. Cleared by  
reading the bit.  
14  
13  
CH0_ERR_OR  
CH0_ERR_WD  
CH0_ERR_AE  
DATA0[11:0]  
R
R
R
R
0
0
0
Channel 0 Conversion Over-range Error Flag. Cleared by  
reading the bit.  
Channel 0 Conversion Watchdog Timeout Error Flag. Cleared by  
reading the bit.  
12  
Channel 0 Conversion Watchdog Timeout Error Flag. Cleared by  
reading the bit.  
11:0  
0000 0000 Channel 0 Conversion Result  
0000  
8.6.3 Address 0x02, DATA_CH1  
Figure 19. Address 0x02, DATA_CH1  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
CH1_ERR_UR CH1_ERR_OR CH1_ERR_WD CH1_ERR_AE  
DATA1[11:0]  
7
6
5
4
3
DATA1[11:0]  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 14. Address 0x02, DATA_CH1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
CH1_ERR_UR  
R
0
Channel 1 Conversion Under-range Error Flag. Cleared by  
reading the bit.  
14  
13  
CH1_ERR_OR  
CH1_ERR_WD  
CH1_ERR_AE  
DATA1[11:0]  
R
R
R
R
0
0
0
Channel 1 Conversion Over-range Error Flag. Cleared by  
reading the bit.  
Channel 1 Conversion Watchdog Timeout Error Flag. Cleared by  
reading the bit.  
12  
Channel 1 Conversion Watchdog Timeout Error Flag. Cleared by  
reading the bit.  
11:0  
0000 0000 Channel 1 Conversion Result  
0000  
Copyright © 2016, Texas Instruments Incorporated  
23  
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
8.6.4 Address 0x04, DATA_CH2 (LDC1314 only)  
Figure 20. Address 0x04, DATA_CH2  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
CH2_ERR_UR CH2_ERR_OR CH2_ERR_WD CH2_ERR_AE  
DATA2[11:0]  
7
6
5
4
3
DATA2[11:0]  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 15. Address 0x04, DATA_CH2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
CH2_ERR_UR  
R
0
Channel 2 Conversion Under-range Error Flag. Cleared by  
reading the bit.  
14  
13  
CH2_ERR_OR  
CH2_ERR_WD  
CH2_ERR_AE  
DATA2[11:0]  
R
R
R
R
0
0
0
Channel 2 Conversion Over-range Error Flag. Cleared by  
reading the bit.  
Channel 2 Conversion Watchdog Timeout Error Flag. Cleared by  
reading the bit.  
12  
Channel 2 Conversion Watchdog Timeout Error Flag. Cleared by  
reading the bit.  
11:0  
0000 0000 Channel 2 Conversion Result  
0000  
8.6.5 Address 0x06, DATA_CH3 (LDC1314 only)  
Figure 21. Address 0x06, DATA_CH3  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
CH3_ERR_UR CH3_ERR_OR CH3_ERR_WD CH3_ERR_AE  
DATA3[11:0]  
7
6
5
4
3
DATA3[11:0]  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 16. Address 0x06, DATA_CH3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
CH3_ERR_UR  
R
0
Channel 3 Conversion Under-range Error Flag. Cleared by  
reading the bit.  
14  
13  
CH3_ERR_OR  
CH3_ERR_WD  
CH3_ERR_AE  
DATA3[11:0]  
R
R
R
R
0
0
0
Channel 3 Conversion Over-range Error Flag. Cleared by  
reading the bit.  
Channel 3 Conversion Watchdog Timeout Error Flag. Cleared by  
reading the bit.  
12  
Channel 3 Conversion Watchdog Timeout Error Flag. Cleared by  
reading the bit.  
11:0  
0000 0000 Channel 3 Conversion Result  
0000  
24  
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
8.6.6 Address 0x08, RCOUNT_CH0  
Figure 22. Address 0x08, RCOUNT_CH0  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
CH0_RCOUNT  
CH0_RCOUNT  
5
4
3
2
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 17. Address 0x08, RCOUNT_CH0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
CH0_RCOUNT  
R/W  
0000 0000  
1000 0000  
Channel 0 Reference Count Conversion Interval Time  
0x0000-0x0004: Reserved  
0x0005-0xFFFF: Conversion Time (tC0) =  
(CH0_RCOUNTˣ16)/fREF0  
8.6.7 Address 0x09, RCOUNT_CH1  
Figure 23. Address 0x09, RCOUNT_CH1  
15  
14  
13  
12  
11  
10  
9
1
8
0
CH1_RCOUNT  
7
6
5
4
3
2
CH1_RCOUNT  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 18. Address 0x09, RCOUNT_CH1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
CH1_RCOUNT  
R/W  
0000 0000  
1000 0000  
Channel 1 Reference Count Conversion Interval Time  
0x0000-0x0004: Reserved  
0x0005-0xFFFF: Conversion Time (tC1)=  
(CH1_RCOUNTˣ16)/fREF1  
8.6.8 Address 0x0A, RCOUNT_CH2 (LDC1314 only)  
Figure 24. Address 0x0A, RCOUNT_CH2  
15  
14  
13  
12  
11  
10  
9
1
8
0
CH2_RCOUNT  
7
6
5
4
3
2
CH2_RCOUNT  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 19. Address 0x0A, RCOUNT_CH2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
CH2_RCOUNT  
R/W  
0000 0000  
1000 0000  
Channel 2 Reference Count Conversion Interval Time  
0x0000-0x0004: Reserved  
0x0005-0xFFFF: Conversion Time (tC2)=  
(CH2_RCOUNTˣ16)/fREF2  
Copyright © 2016, Texas Instruments Incorporated  
25  
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
8.6.9 Address 0x0B, RCOUNT_CH3 (LDC1314 only)  
Figure 25. Address 0x0B, RCOUNT_CH3  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
CH3_RCOUNT  
CH3_RCOUNT  
5
4
3
2
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 20. Address 0x0B, RCOUNT_CH3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
CH3_RCOUNT  
R/W  
0000 0000  
1000 0000  
Channel 3 Reference Count Conversion Interval Time  
0x0000-0x0004: Reserved  
0x0005-0xFFFF: Conversion Time (tC3)=  
(CH3_RCOUNTˣ16)/fREF3  
8.6.10 Address 0x0C, OFFSET_CH0  
Figure 26. Address 0x0C, CH0_OFFSET  
15  
14  
13  
12  
11  
10  
9
1
8
0
CH0_OFFSET  
7
6
5
4
3
2
CH0_OFFSET  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 21. CH0_OFFSET Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
CH0_OFFSET  
R/W  
0000 0000  
0000 0000  
Channel 0 Conversion Offset. fOFFSET_0  
(CH0_OFFSET/216)*fREF0  
=
8.6.11 Address 0x0D, OFFSET_CH1  
Figure 27. Address 0x0D, OFFSET_CH1  
15  
14  
13  
12  
11  
10  
9
1
8
0
CH1_OFFSET  
7
6
5
4
3
2
CH1_OFFSET  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 22. Address 0x0D, OFFSET_CH1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
CH1_OFFSET  
R/W  
0000 0000  
0000 0000  
Channel 1 Conversion Offset. fOFFSET_1  
(CH1_OFFSET/216)*fREF1  
=
26  
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
8.6.12 Address 0x0E, OFFSET_CH2 (LDC1314 only)  
Figure 28. Address 0x0E, OFFSET_CH2  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
CH2_OFFSET  
CH2_OFFSET  
5
4
3
2
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 23. Address 0x0E, OFFSET_CH2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
CH2_OFFSET  
R/W  
0000 0000  
0000 0000  
Channel 2 Conversion Offset. fOFFSET_2  
(CH2_OFFSET/216)*fREF2  
=
8.6.13 Address 0x0F, OFFSET_CH3 (LDC1314 only)  
Figure 29. Address 0x0F, OFFSET_CH3  
15  
14  
13  
12  
11  
10  
9
1
8
0
CH3_OFFSET  
7
6
5
4
3
2
CH3_OFFSET  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 24. Address 0x0F, OFFSET_CH3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
CH3_OFFSET  
R/W  
0000 0000 Channel 3 Conversion Offset. fOFFSET_3  
0000 0000 (CH3_OFFSET/216)*fREF3  
=
8.6.14 Address 0x10, SETTLECOUNT_CH0  
Figure 30. Address 0x10, SETTLECOUNT_CH0  
15  
14  
13  
12  
11  
10  
9
1
8
0
CH0_SETTLECOUNT  
7
6
5
4
3
2
CH0_SETTLECOUNT  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 25. Address 0x11, SETTLECOUNT_CH0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
CH0_SETTLECOUNT  
R/W  
0000 0000 Channel 0 Conversion Settling  
0000 0000 The LDC will use this settling time to allow the LC sensor to  
stabilize before initiation of a conversion on Channel 0.  
If the amplitude has not settled prior to the conversion start, an  
Amplitude error will be generated if reporting of this type of error  
is enabled.  
0x0000: Settle Time (tS0)= 32 ÷ fREF0  
0x0001: Settle Time (tS0)= 32 ÷ fREF0  
0x0002- 0xFFFF: Settle Time (tS0)= (CH0_SETTLECOUNTˣ16)  
÷ fREF0  
Copyright © 2016, Texas Instruments Incorporated  
27  
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
8.6.15 Address 0x11, SETTLECOUNT_CH1  
Figure 31. Address 0x11, SETTLECOUNT_CH1  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
CH1_SETTLECOUNT  
5
4
3
2
CH1_SETTLECOUNT  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 26. Address 0x12, SETTLECOUNT_CH1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
CH1_SETTLECOUNT  
R/W  
0000 0000 Channel 1 Conversion Settling  
0000 0000 The LDC will use this settling time to allow the LC sensor to  
stabilize before initiation of a conversion on a Channel 1.  
If the amplitude has not settled prior to the conversion start, an  
Amplitude error will be generated if reporting of this type of error  
is enabled.  
0x0000: Settle Time (tS1)= 32 ÷ fREF1  
0x0001: Settle Time (tS1)= 32 ÷ fREF1  
0x0002- 0xFFFF: Settle Time (tS1)= (CH1_SETTLECOUNTˣ16)  
÷ fREF1  
8.6.16 Address 0x12, SETTLECOUNT_CH2 (LDC1314 only)  
Figure 32. Address 0x12, SETTLECOUNT_CH2  
15  
14  
13  
12  
11  
10  
9
1
8
0
CH2_SETTLECOUNT  
7
6
5
4
3
2
CH2_SETTLECOUNT  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 27. Address 0x12, SETTLECOUNT_CH2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
CH2_SETTLECOUNT  
R/W  
0000 0000 Channel 2 Conversion Settling  
0000 0000 The LDC will use this settling time to allow the LC sensor to  
stabilize before initiation of a conversion on Channel 2.  
If the amplitude has not settled prior to the conversion start, an  
Amplitude error will be generated if reporting of this type of error  
is enabled.  
0x0000: Settle Time (tS2)= 32 ÷ fREF2  
0x0001: Settle Time (tS2)= 32 ÷ fREF2  
0x0002- 0xFFFF: Settle Time (tS2)= (CH2_SETTLECOUNTˣ16)  
÷ fREF2  
28  
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
8.6.17 Address 0x13, SETTLECOUNT_CH3 (LDC1314 only)  
Figure 33. Address 0x13, SETTLECOUNT_CH3  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
CH3_SETTLECOUNT  
5
4
3
2
CH3_SETTLECOUNT  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 28. Address 0x13, SETTLECOUNT_CH3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
CH3_SETTLECOUNT  
R/W  
0000 0000 Channel 3 Conversion Settling  
0000 0000 The LDC will use this settling time to allow the LC sensor to  
stabilize before initiation of a conversion on Channel 3.  
If the amplitude has not settled prior to the conversion start, an  
Amplitude error will be generated if reporting of this type of error  
is enabled  
0x0000: Settle Time (tS3)= 32 ÷ fREF3  
0x0001: Settle Time (tS3)= 32 ÷ fREF3  
0x0002- 0xFFFF: Settle Time (tS3)= (CH3_SETTLECOUNTˣ16)  
÷ fREF3  
8.6.18 Address 0x14, CLOCK_DIVIDERS_CH0  
Figure 34. Address 0x14, CLOCK_DIVIDERS_CH0  
15  
14  
13  
12  
11  
10  
9
8
CH0_FIN_DIVIDER  
RESERVED  
CH0_FREF_DIVIDER  
7
6
5
4
3
2
1
0
CH0_FREF_DIVIDER  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 29. Address 0x14, CLOCK_DIVIDERS_CH0 Field Descriptions  
Bit  
15:12  
11:10  
9:0  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
0000  
Channel 0 Input Divider Sets the divider for Channel 0 input.  
Must be set to 2 if the Sensor frequency is 8.75MHz  
b0000: Reserved. Do not use.  
CH0_FIN_DIVIDERb0001:  
fin0 = fSENSOR0/CH0_FIN_DIVIDER  
CH0_FIN_DIVIDER  
RESERVED  
00  
Reserved. Set to b00.  
00 0000  
0000  
Channel 0 Reference Divider Sets the divider for Channel 0  
reference. Use this to scale the maximum conversion frequency.  
b00’0000’0000: Reserved. Do not use.  
CH0_FREF_DIVIDER  
CH0_FREF_DIVIDERb00’0000’0001:  
fREF0 = fCLK/CH0_FREF_DIVIDER  
Copyright © 2016, Texas Instruments Incorporated  
29  
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
8.6.19 Address 0x15, CLOCK_DIVIDERS_CH1  
Figure 35. Address 0x15, CLOCK_DIVIDERS_CH1  
15  
7
14  
13  
12  
11  
10  
9
8
CH1_FIN_DIVIDER  
RESERVED  
CH1_FREF_DIVIDER  
6
5
4
3
2
1
0
CH1_FREF_DIVIDER  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 30. Address 0x15, CLOCK_DIVIDERS_CH1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0000  
Channel 1 Input Divider. Sets the divider for Channel 1 input.  
Used when the Sensor frequency is greater than the maximum  
FIN  
.
15:12  
CH1_FIN_DIVIDER  
R/W  
b0000: Reserved. Do not use.  
CH1_FIN_DIVIDERb0001:  
fin1 = fSENSOR1/CH1_FIN_DIVIDER  
11:10  
9:0  
RESERVED  
R/W  
R/W  
00  
Reserved. Set to b00.  
00 0000  
0000  
Channel 1 Reference Divider. Sets the divider for Channel 1  
reference. Use this to scale the maximum conversion frequency.  
b00’0000’0000: Reserved. Do not use.  
CH1_FREF_DIVIDER  
CH1_FREF_DIVIDERb00’0000’0001:  
fREF1 = fCLK/CH1_FREF_DIVIDER  
8.6.20 Address 0x16, CLOCK_DIVIDERS_CH2 (LDC1314 only)  
Figure 36. Address 0x16, CLOCK_DIVIDERS_CH2  
15  
14  
13  
12  
11  
10  
9
8
CH2_FIN_DIVIDER  
RESERVED  
CH2_FREF_DIVIDER  
7
6
5
4
3
2
1
0
CH2_FREF_DIVIDER  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 31. Address 0x16, CLOCK_DIVIDERS_CH2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:12  
CH2_FIN_DIVIDER  
R/W  
0000  
Channel 2 Input Divider. Sets the divider for Channel 2 input.  
Must be set to 2 if the Sensor frequency is 8.75MHz.  
b0000: Reserved. Do not use.  
CH2_FIN_DIVIDERb0001:  
fIN2 = fSENSOR2/CH2_FIN_DIVIDER  
11:10  
9:0  
RESERVED  
R/W  
R/W  
00  
Reserved. Set to b00  
CH2_FREF_DIVIDER  
00 0000  
0000  
Channel 2 Reference Divider. Sets the divider for Channel 2  
reference. Use this to scale the maximum conversion frequency.  
b00’0000’0000: Reserved. Do not use.  
CH2_FREF_DIVIDER b00’0000’0001: fREF2  
=
fCLK/CH2_FREF_DIVIDER  
30  
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
8.6.21 Address 0x17, CLOCK_DIVIDERS_CH3 (LDC1314 only)  
Figure 37. Address 0x17, CLOCK_DIVIDERS_CH3  
15  
7
14  
13  
12  
11  
10  
9
8
CH3_FIN_DIVIDER  
RESERVED  
CH3_FREF_DIVIDER  
6
5
4
3
2
1
0
CH3_FREF_DIVIDER  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 32. Address 0x17, CLOCK_DIVIDERS_CH3  
Bit  
Field  
Type  
Reset  
Description  
15:12  
CH3_FIN_DIVIDER  
R/W  
0000  
Channel 3 Input Divider. Sets the divider for Channel 3 input.  
Must be set to 2 if the Sensor frequency is 8.75MHz.  
b0000: Reserved. Do not use.  
CH3_FIN_DIVIDERb0001:  
fIN3 = fSENSOR3/CH3_FIN_DIVIDER  
11:10  
9:0  
RESERVED  
R/W  
R/W  
00  
Reserved. Set to b00  
CH3_FREF_DIVIDER  
00 0000  
0000  
Channel 3 Reference Divider. Sets the divider for Channel 3  
reference. Use this to scale the maximum conversion frequency.  
b00’0000’0000: reserved  
CH3_FREF_DIVIDER b00’0000’0001: fREF3  
=
fCLK/CH3_FREF_DIVIDER  
8.6.22 Address 0x18, STATUS  
Figure 38. Address 0x18, STATUS  
15  
7
14  
13  
12  
11  
10  
9
8
ERR_CHAN  
ERR_UR  
ERR_OR  
ERR_WD  
ERR_AHE  
ERR_ALE  
ERR_ZC  
6
5
4
3
2
1
0
RESERVED  
DRDY  
RESERVED  
CH0_UNREA  
DCONV  
CH1_  
CH2_  
CH3_  
UNREADCONV UNREADCONV UNREADCONV  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 33. Address 0x18, STATUS Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14  
ERR_CHAN  
R
00  
Error Channel  
Indicates which channel has generated a Flag or Error. Once  
flagged, any reported error is latched and maintained until either  
the STATUS register or the DATA_CHx register corresponding  
to the Error Channel is read.  
b00: Channel 0 is source of flag or error.  
b01: Channel 1 is source of flag or error.  
b10: Channel 2 is source of flag or error (LDC1314 only).  
b11: Channel 3 is source of flag or error (LDC1314 only).  
13  
12  
ERR_UR  
ERR_OR  
R
R
0
0
Conversion Under-range Error  
b0: No Conversion Under-range error was recorded since the  
last read of the STATUS register.  
b1: An active channel has generated a Conversion Under-range  
error. Refer to STATUS.ERR_CHAN field to determine which  
channel is the source of this error.  
Conversion Over-range Error.  
b0: No Conversion Over-range error was recorded since the last  
read of the STATUS register.  
b1: An active channel has generated a Conversion Over-range  
error. Refer to STATUS.ERR_CHAN field to determine which  
channel is the source of this error.  
Copyright © 2016, Texas Instruments Incorporated  
31  
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
Table 33. Address 0x18, STATUS Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
11  
ERR_WD  
R
0
Watchdog Timeout Error  
b0: No Watchdog Timeout error was recorded since the last  
read of the STATUS register.  
b1: An active channel has generated a Watchdog Timeout error.  
Refer to STATUS.ERR_CHAN field to determine which channel  
is the source of this error.  
10  
ERR_AHE  
ERR_ALE  
ERR_ZC  
DRDY  
R
R
R
R
0
0
0
0
Amplitude High Error  
b0: No Amplitude High error was recorded since the last read of  
the STATUS register.  
b1: An active channel has generated an Amplitude High error.  
Refer to STATUS.ERR_CHAN field to determine which channel  
is the source of this error.  
9
Amplitude Low Error  
b0: No Amplitude Low error was recorded since the last read of  
the STATUS register.  
b1: An active channel has generated an Amplitude Low error.  
Refer to STATUS.ERR_CHAN field to determine which channel  
is the source of this error.  
8
Zero Count Error  
b0: No Zero Count error was recorded since the last read of the  
STATUS register.  
b1: An active channel has generated a Zero Count error. Refer  
to STATUS.ERR_CHAN field to determine which channel is the  
source of this error.  
6
Data Ready Flag.  
b0: No new conversion result was recorded in the STATUS  
register.  
b1: A new conversion result is ready. When in Single Channel  
Conversion, this indicates a single conversion is available. When  
in sequential mode, this indicates that a new conversion result  
for all active channels is now available.  
3
2
1
CH0_UNREADCONV  
CH1_ UNREADCONV  
CH2_ UNREADCONV  
R
R
R
0
0
0
Channel 0 Unread Conversion b0: No unread conversion is  
present for Channel 0.  
b1: An unread conversion is present for Channel 0.  
Read Register DATA_CH0 to retrieve conversion results.  
Channel 1 Unread Conversion b0: No unread conversion is  
present for Channel 1.  
b1: An unread conversion is present for Channel 1.  
Read Register DATA_CH1 to retrieve conversion results.  
Channel 2 Unread Conversion b0: No unread conversion is  
present for Channel 2.  
b1: An unread conversion is present for Channel 2.  
Read Register DATA_CH2 to retrieve conversion results  
(LDC1314 only)  
0
CH3_ UNREADCONV  
R
0
Channel 3 Unread Conversion  
b0: No unread conversion is present for Channel 3.  
b1: An unread conversion is present for Channel 3.  
Read Register DATA_CH3 to retrieve conversion results  
(LDC1314 only)  
8.6.23 Address 0x19, ERROR_CONFIG  
Figure 39. Address 0x19, ERROR_CONFIG  
15  
14  
13  
12  
11  
10  
9
8
UR_ERR2OUT OR_ERR2OUT  
WD_  
AH_ERR2OUT AL_ERR2OUT  
RESERVED  
ERR2OUT  
7
6
5
4
3
2
1
0
UR_ERR2INT  
OR_ERR2INT WD_ERR2INT  
AH_ERR2INT  
AL_ERR2INT  
ZC_ERR2INT  
Reserved  
DRDY_2INT  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
32  
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
Table 34. Address 0x19, ERROR_CONFIG  
Bit  
Field  
Type  
Reset  
Description  
15  
UR_ERR2OUT  
R/W  
0
Under-range Error to Output Register  
b0: Do not report Under-range errors in the DATA_CHx  
registers.  
b1: Report Under-range errors in the DATA_CHx.CHx_ERR_UR  
register field corresponding to the channel that generated the  
error.  
14  
13  
OR_ERR2OUT  
WD_ ERR2OUT  
R/W  
R/W  
0
0
Over-range Error to Output Register  
b0: Do not report Over-range errors in the DATA_CHx registers.  
b1: Report Over-range errors in the DATA_CHx.CHx_ERR_OR  
register field corresponding to the channel that generated the  
error.  
Watchdog Timeout Error to Output Register  
b0: Do not report Watchdog Timeout errors in the DATA_CHx  
registers.  
b1: Report Watchdog Timeout errors in the  
DATA_CHx.CHx_ERR_WD register field corresponding to the  
channel that generated the error.  
12  
11  
AH_ERR2OUT  
AL_ERR2OUT  
R/W  
R/W  
0
0
Amplitude High Error to Output Register  
b0:Do not report Amplitude High errors in the DATA_CHx  
registers.  
b1: Report Amplitude High errors in the  
DATA_CHx.CHx_ERR_AE register field corresponding to the  
channel that generated the error.  
Amplitude Low Error to Output Register  
b0: Do not report Amplitude High errors in the DATA_CHx  
registers.  
b1: Report Amplitude High errors in the  
DATA_CHx.CHx_ERR_AE register field corresponding to the  
channel that generated the error.  
7
6
UR_ERR2INT  
OR_ERR2INT  
R/W  
R/W  
0
0
Under-range Error to INTB  
b0: Do not report Under-range errors by asserting INTB pin and  
STATUS register.  
b1: Report Under-range errors by asserting INTB pin and  
updating STATUS.ERR_UR register field.  
Over-range Error to INTB  
b0: Do not report Over-range errors by asserting INTB pin and  
STATUS register.  
b1: Report Over-range errors by asserting INTB pin and  
updating STATUS.ERR_OR register field.  
5
4
3
2
WD_ERR2INT  
AH_ERR2INT  
AL_ERR2INT  
ZC_ERR2INT  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Watchdog Timeout Error to INTB b0: Do not report Under-range  
errors by asserting INTB pin and STATUS register.  
b1: Report Watchdog Timeout errors by asserting INTB pin and  
updating STATUS.ERR_WD register field.  
Amplitude High Error to INTB b0: Do not report Amplitude High  
errors by asserting INTB pin and STATUS register.  
b1: Report Amplitude High errors by asserting INTB pin and  
updating STATUS.ERR_AHE register field.  
Amplitude Low Error to INTB b0: Do not report Amplitude Low  
errors by asserting INTB pin and STATUS register.  
b1: Report Amplitude Low errors by asserting INTB pin and  
updating STATUS.ERR_ALE register field.  
Zero Count Error to INTB b0: Do not report Zero Count errors by  
asserting INTB pin and STATUS register.  
b1: Report Zero Count errors by asserting INTB pin and  
updating STATUS. ERR_ZC register field.  
1
0
Reserved  
R/W  
R/W  
0
0
Reserved (set to b0)  
DRDY_2INT  
Data Ready Flag to INTB b0: Do not report Data Ready Flag by  
asserting INTB pin and STATUS register.  
b1: Report Data Ready Flag by asserting INTB pin and updating  
STATUS. DRDY register field.  
Copyright © 2016, Texas Instruments Incorporated  
33  
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
8.6.24 Address 0x1A, CONFIG  
Figure 40. Address 0x1A, CONFIG  
15  
14  
6
13  
12  
11  
10  
9
8
ACTIVE_CHAN  
SLEEP_MODE RP_OVERRID SENSOR_ACTI AUTO_AMP_DI REF_CLK_SR  
RESERVED  
_EN  
5
E_EN  
4
VATE_SEL  
3
S
2
C
1
7
0
INTB_DIS  
HIGH_CURRE  
NT_DRV  
RESERVED  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 35. Address 0x1A, CONFIG Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14  
ACTIVE_CHAN  
R/W  
00  
Active Channel Selection  
Selects channel for continuous conversions when  
MUX_CONFIG.SEQUENTIAL is 0.  
b00: Perform continuous conversions on Channel 0  
b01: Perform continuous conversions on Channel 1  
b10: Perform continuous conversions on Channel 2 (LDC1314  
only)  
b11: Perform continuous conversions on Channel 3 (LDC1314  
only)  
13  
12  
SLEEP_MODE_EN  
RP_OVERRIDE_EN  
R/W  
R/W  
1
0
Sleep Mode Enable  
Enter or exit low power Sleep Mode.  
b0: Device is active.  
b1: Device is in Sleep Mode.  
Sensor RP Override Enable  
Provides control over Sensor current drive used during the  
conversion time for Ch. x, based on the programmed value in  
the CHx_IDRIVE field.  
b0: Override off  
b1: RP Override on  
11  
SENSOR_ACTIVATE_SEL  
R/W  
1
Sensor Activation Mode Selection.  
Set the mode for sensor initialization.  
b0: Full Current Activation Mode – the LDC will drive maximum  
sensor current for a shorter sensor activation time.  
b1: Low Power Activation Mode – the LDC uses the value  
programmed in DRIVE_CURRENT_CHx during sensor  
activation to minimize power consumption.  
10  
AUTO_AMP_DIS  
REF_CLK_SRC  
R/W  
R/W  
0
0
Automatic Sensor Amplitude Correction Disable  
Setting this bit will disable the automatic Amplitude correction  
algorithm and stop the updating of the CHx_INIT_IDRIVE field.  
b0: Automatic Amplitude correction enabled  
b1: Automatic Amplitude correction is disabled. Recommended  
for precision applications.  
9
Select Reference Frequency Source b0:  
Use Internal oscillator as reference frequency  
b1: Reference frequency is provided from CLKIN pin.  
8
7
RESERVED  
INTB_DIS  
R/W  
R/W  
0
0
Reserved. Set to b0.  
INTB Disable  
b0: INTB pin will be asserted when status register updates.  
b1: INTB pin will not be asserted when status register updates  
6
HIGH_CURRENT_DRV  
R/W  
0
High Current Sensor Drive  
b0: The LDC will drive all channels with normal sensor current  
(1.5mA max).  
b1: The LDC will drive channel 0 with current >1.5mA.  
This mode is not supported if AUTOSCAN_EN = b1 (multi-  
channel mode)  
5:0  
RESERVED  
R/W  
00 0001  
Reserved Set to b00’0001  
34  
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
8.6.25 Address 0x1B, MUX_CONFIG  
Figure 41. Address 0x1B, MUX_CONFIG  
15  
14  
13  
12  
11  
10  
9
8
0
AUTOSCAN_E  
N
RR_SEQUENCE  
RESERVED  
7
6
5
4
3
2
1
RESERVED  
DEGLITCH  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 36. Address 0x1B, MUX_CONFIG Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
AUTOSCAN_EN  
R/W  
0
Auto-Scan Mode Enable  
b0: Continuous conversion on the single channel selected by  
CONFIG.ACTIVE_CHAN register field.  
b1: Auto-Scan conversions as selected by  
MUX_CONFIG.RR_SEQUENCE register field.  
14:13  
RR_SEQUENCE  
R/W  
00  
Auto-Scan Sequence Configuration  
Configure multiplexing channel sequence. The LDC will perform  
a single conversion on each channel in the sequence selected,  
and then restart the sequence continuously.  
b00: Ch0, Ch1  
b01: Ch0, Ch1, Ch2 (LDC1314 only)  
b10: Ch0, Ch1, Ch2, Ch3 (LDC1314 only)  
b11: Ch0, Ch1  
12:3  
2:0  
RESERVED  
DEGLITCH  
R/W  
R/W  
00 0100  
0001  
Reserved. Must be set to 00 0100 0001  
111  
Input deglitch filter bandwidth.  
Select the lowest setting that exceeds the oscillation tank  
oscillation frequency.  
b001: 1MHz  
b100: 3.3MHz  
b101: 10MHz  
b111: 33MHz  
8.6.26 Address 0x1C, RESET_DEV  
Figure 42. Address 0x1C, RESET_DEV  
15  
14  
13  
12  
11  
10  
OUTPUT_GAIN  
9
1
8
RESET_DEV  
RESERVED  
RESERVED  
7
6
5
4
3
2
0
RESERVED  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 37. Address 0x1C, RESET_DEV Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
RESET_DEV  
R/W  
0
Device Reset  
Write b1 to reset the device. Will always readback 0.  
14:11  
10:9  
RESERVED  
R/W  
R/W  
0000  
00  
Reserved. Set to b0000  
OUTPUT_GAIN  
Output gain control  
00: Gain = 1 (0 bits shift)  
01: Gain = 4 (2 bits shift)  
10: Gain = 8 (3 bits shift)  
11: Gain = 16 (4 bits shift)  
8:0  
RESERVED  
R/W  
0 0000  
0000  
Reserved, Set to b0 0000 0000  
Copyright © 2016, Texas Instruments Incorporated  
35  
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
8.6.27 Address 0x1E, DRIVE_CURRENT_CH0  
Figure 43. Address 0x1E, DRIVE_CURRENT_CH0  
15  
7
14  
6
13  
12  
11  
10  
9
8
0
CH0_IDRIVE  
CH0_INIT_IDRIVE  
5
4
3
2
1
CH0_INIT_IDRIVE  
RESERVED  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 38. Address 0x1E, DRIVE_CURRENT_CH0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
CH0_IDRIVE  
R/W  
0 0000  
Channel 0 L-C Sensor drive current  
This field defines the Drive Current used during the settling +  
conversion time of Channel 0 sensor clock.  
RP_OVERRIDE_EN bit must be set to 1.  
10:6  
CH0_INIT_IDRIVE  
R
0 0000  
Channel 0 Sensor Current Drive  
This field stores the Initial Drive Current calculated during the  
initial Amplitude Calibration phase.  
It is updated after each Amplitude Correction phase of the  
sensor clock if the AUTO_AMP_DIS field is NOT set.  
5:0  
RESERVED  
00 0000  
Reserved  
8.6.28 Address 0x1F, DRIVE_CURRENT_CH1  
Figure 44. Address 0x1F, DRIVE_CURRENT_CH1  
15  
14  
13  
12  
11  
10  
9
8
0
CH1_IDRIVE  
CH1_INIT_IDRIVE  
7
6
5
4
3
2
1
CH1_INIT_IDRIVE  
RESERVED  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 39. Address 0x1F, DRIVE_CURRENT_CH1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
CH1_IDRIVE  
R/W  
0 0000  
Channel 1 L-C Sensor drive current  
This field defines the Drive Current used during the settling +  
conversion time of Channel 1 sensor clock.  
RP_OVERRIDE_EN bit must be set to 1.  
10:6  
5:0  
CH1_INIT_IDRIVE  
RESERVED  
R
-
0 0000  
Channel 1 Sensor Current Drive  
This field stores the Initial Drive Current calculated during the  
initial Amplitude Calibration phase.  
It is updated after each Amplitude Correction phase of the  
sensor clock if the AUTO_AMP_DIS field is NOT set.  
00 0000  
Reserved  
36  
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
8.6.29 Address 0x20, DRIVE_CURRENT_CH2 (LDC1314 only)  
Figure 45. Address 0x20, DRIVE_CURRENT_CH2  
15  
7
14  
6
13  
12  
11  
10  
9
8
0
CH2_IDRIVE  
CH2_INIT_IDRIVE  
5
4
3
2
1
CH2_INIT_IDRIVE  
RESERVED  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 40. Address 0x20, DRIVE_CURRENT_CH2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
CH2_IDRIVE  
R/W  
0 0000  
Channel 2 L-C Sensor drive current  
This field defines the Drive Current to be used during the settling  
+ conversion time of Channel 2 sensor clock.  
RP_OVERRIDE_EN bit must be set to 1.  
10:6  
CH2_INIT_IDRIVE  
R
0 0000  
Channel 2 Sensor Current Drive  
This field stores the Initial Drive Current calculated during the  
initial Amplitude Calibration phase.  
It is updated after each Amplitude Correction phase of the  
sensor clock if the AUTO_AMP_DIS field is NOT set.  
5:0  
RESERVED  
00 0000  
Reserved  
8.6.30 Address 0x21, DRIVE_CURRENT_CH3 (LDC1314 only)  
Figure 46. Address 0x21, DRIVE_CURRENT_CH3  
15  
14  
13  
12  
11  
10  
9
8
0
CH3_IDRIVE  
CH3_INIT_IDRIVE  
7
6
5
4
3
2
1
CH3_INIT_IDRIVE  
RESERVED  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 41. DRIVE_CURRENT_CH3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
CH3_IDRIVE  
R/W  
0 0000  
Channel 3 L-C Sensor drive current  
This field defines the Drive Current to be used during the settling  
+ conversion time of Channel 3 sensor clock.  
RP_OVERRIDE_EN bit must be set to 1.  
10:6  
5:0  
CH3_INIT_IDRIVE  
RESERVED  
R
0 0000  
Channel 3 Sensor Current Drive  
This field stores the Initial Drive Current calculated during the  
initial Amplitude Calibration phase.  
It is updated after each Amplitude Correction phase of the  
sensor clock if the AUTO_AMP_DIS field is NOT set.  
00 0000  
Reserved  
Copyright © 2016, Texas Instruments Incorporated  
37  
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
8.6.31 Address 0x7E, MANUFACTURER_ID  
Figure 47. Address 0x7E, MANUFACTURER_ID  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
MANUFACTURER_ID  
5
4
3
2
MANUFACTURER_ID  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 42. Address 0x7E, MANUFACTURER_ID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
MANUFACTURER_ID  
R
0101 0100 Manufacturer ID = 0x5449  
0100 1001  
8.6.32 Address 0x7F, DEVICE_ID  
Figure 48. Address 0x7F, DEVICE_ID  
7
6
5
4
3
2
1
0
DEVICE_ID  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 43. Address 0x7F, DEVICE_ID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
DEVICE_ID  
R
0011 0000 Device ID = 0x3054  
0101 0100  
38  
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Theory of Operation  
9.1.1.1 Conductive Objects in an EM Field  
An AC current flowing through an inductor will generate an AC magnetic field. If a conductive material, such as a  
metal object, is brought into the vicinity of the inductor, the magnetic field will induce a circulating current (eddy  
current) on the surface of the conductor.  
Conductive  
Target  
Eddy  
d
Current  
Figure 49. Conductor in AC Magnetic Field  
The eddy current is a function of the distance, size, and composition of the conductor. The eddy current  
generates its own magnetic field, which opposes the original field generated by the sensor inductor. This effect is  
equivalent to a set of coupled inductors, where the sensor inductor is the primary winding and the eddy current in  
the target object represents the secondary inductor. The coupling between the inductors is a function of the  
sensor inductor, and the resistivity, distance, size, and shape of the conductive target. The resistance and  
inductance of the secondary winding caused by the eddy current can be modeled as a distance dependent  
resistive and inductive component on the primary side (coil). Figure 49 shows a simplified circuit model of the  
sensor and the target as coupled coils.  
9.1.1.2 L-C Resonators  
An EM field can be generated using an L-C resonator, or L-C tank. One topology for an L-C tank is a parallel R-  
L-C construction, as shown in Figure 50.  
Copyright © 2016, Texas Instruments Incorporated  
39  
 
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
Application Information (continued)  
5istance-dependent coupling  
a(d)  
9ddy  
/urrent  
CPAR  
5istꢀnce (d)  
Çarget wesistance  
/oil {eries  
wesistance (ws)  
I
RP(d)  
L(d)  
CPAR + CTANK  
ꢀarallel 9lectrical  
ꢁodel, [-/ Çank  
Copyright © 2016, Texas Instruments Incorporated  
Figure 50. Electrical Model of the L-C Tank Sensor  
An oscillator can be constructed by combining a frequency selective circuit (resonator) with a gain block in a  
closed loop. The criteria for oscillation are: (1) loop gain > 1, and (2) closed loop phase shift of 2π radians. The  
R-L-C resonator provides the frequency selectivity and contributes to the phase shift. At resonance, the  
impedance of the reactive components (L and C) cancels, leaving only RP, the lossy (resistive) element in the  
circuit. The voltage amplitude is maximized. The RP can be used to determine the sensor drive current. A lower  
RP requires a larger sensor current to maintain a constant oscillation amplitude. The sensor oscillation frequency  
is given by:  
1
1
Q2  
5 *10-9  
1
ƒSENSOR  
=
* 1-  
-
ö
2p LC  
Q LC  
2p LC  
where  
C is the sensor capacitance (CTANK + CPAR  
)
L is the inductance  
Q is the quality factor of the resonator. Q can be approximated by:  
(9)  
C
L
Q = RP  
where  
RS is the AC series resistance of the inductor  
(10)  
40  
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
Application Information (continued)  
Texas Instruments' WEBENCH design tool can be used for coil design, in which the parameter values for RP, L  
and C are calculated. See http://www.ti.com/webench.  
RP is a function of target distance, target material, and sensor characteristics. Figure 51 shows that RP is directly  
proportional to the distance between the sensor and the target. The graph represents a 14-mm diameter PCB  
coil (23 turns, 4-mil trace width, 4-mil spacing between traces, 1-oz copper thickness, FR4).  
18  
16  
14  
12  
10  
8
6
4
2
0
0
1
2
3
4
5
6
7
8
Distance (mm)  
Figure 51. Example RP vs. Distance with a 14-mm PCB Coil and 2mm Thick Stainless Steel Target  
It is important to configure the LDC current drive so that the sensor will still oscillate at the minimum RP value.  
For example, if the closest target distance in a system with the response shown in Figure 51 is 1mm, then the  
LDC RP value is 5 k. The objective is to maintain a sufficient sensor oscillation voltage so that the sensor  
frequency can be measured even at the minimum operating distance. See section Current Drive Control  
Registers for details on setting the current drive.  
The inductance that is measured by the LDC is  
1
L(d) = Linf -M(d) =  
(2p* ƒSENSOR )2 *C  
where  
L(d) is the measured sensor inductance, for a distance d between the sensor coil and target  
Linf is the inductance of the sensing coil without a conductive target (target at infinite distance)  
M(d) is the mutual inductance  
fSENSOR = sensor oscillation frequency for a distance d between the sensor coil and target  
C = CTANK + CPAR  
(11)  
Figure 52 shows an example of variation in sensor frequency and inductance as a function of distance for a 14-  
mm diameter PCB coil (23 turns, 4-mil trace width, 4-mil spacing between traces, 1-oz copper thickness, FR4).  
Copyright © 2016, Texas Instruments Incorporated  
41  
 
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
Application Information (continued)  
4
24  
21  
18  
15  
12  
9
Target D = 0.5 x coil  
Target D = 1 x coil •  
3.5  
3
2.5  
2
1.5  
1
Sensor Frequency (MHz)  
Inductance (µH)  
6
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
Target Distance D (mm)  
D011  
Figure 52. Example Sensor Frequency, Inductance vs. Target Distance  
with 14-mm PCB Coil and 1.5 mm Thick Aluminum Target  
In the absence of magnetic materials, such as ferrous metals and ferrites, the inductance shift, and therefore the  
measured frequency shift, depends only on current flow geometries. Temperature drift is dominated by physical  
expansion of the inductor and other mechanical system components over temperature which alter current flow  
geometries. Note that the additional temperature drift of the sensor capacitor must also be taken into account.  
For additional information on temperature effects and temperature compensation, see LDC1000 Temperature  
Compensation (SNAA212)  
9.2 Typical Application  
Example of a multi-channel implementation using the LDC1312. This example is representative of an axial  
displacement application, in which the target movement is perpendicular to the plane of the coil. The second  
channel can be used to sense proximity of a second target, or it can be used for temperature compensation by  
connecting a reference coil.  
3.3 V  
3.3 V  
LDC1312  
MCU  
VDD  
CLKIN  
VDD  
40 MHz  
SD  
GPIO  
INTB  
GPIO  
IN0A  
IN0B  
Target  
Sensor 0  
Core  
GND  
IN1A  
SDA  
I2C  
Peripheral  
Target  
I2C  
IN1B  
SCL  
3.3 V  
ADDR  
Sensor 1  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 53. Example Multi-Channel Application - LDC1312  
42  
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
Typical Application (continued)  
9.2.1 Design Requirements  
Design example in which Sensor 0 is used for proximity measurement and Sensor 1 is used for temperature  
compensation:  
Using WEBENCH for coil design  
Target distance = 0.1 cm  
Distance resolution = 0.2 µm  
Target diameter = 1 cm  
Target material = stainless steel (SS416)  
Number of PCB layers for the coil = 2  
The application requires 500SPS ( TSAMPLE = 2000 µs)  
9.2.2 Detailed Design Procedure  
The target distance, resolution and diameter are used as inputs to WEBENCH to design the sensor coil, The  
resulting coil design is a 2 layer coil, with an area of 2.5 cm2, diameter of 1.77 cm, and 39 turns. The values  
for RP, L and C are: RP = 6.6 kΩ, L = 43.9 µH, C = 100 pF.  
Using L and C, fSENSOR = 1/2π√(LC) = 1/2π√(43.9*10-6 * 100*10-12) = 2.4 MHz  
Using a system master clock of 40 MHz applied to the CLKIN pin allows flexibility for setting the internal  
clock frequencies. The sensor coil is connected to channel 0 (IN0A and IN0B pins).  
After powering on the LDC, it will be in Sleep Mode. Program the registers as follows (example sets registers  
for channel 0 only; channel 1 registers can use equivalent configuration):  
1. Set the dividers for channel 0.  
(a) Because the sensor freqeuncy is less than 8.75 MHz, the sensor divider can be set to 1, which means  
setting field CH0_FIN_DIVIDER to 0x1. By default, fIN0 = fSENSOR = 2.4MHz.  
(b) The design constraint for fREF0 is > 4 × fSENSOR. A 20 MHz reference frequency satisfies this constraint,  
so the reference divider should be set to 2. This is done by setting the CH0_FREF_DIVIDER field to  
0x02.  
(c) The combined value for Chan. 0 divider register (0x14) is 0x1002.  
2. Program the settling time for Channel 0. The calculated Q of the coil is 10 (see Multi-Channel and Single  
Channel Operation).  
(a) CH0_SETTLECOUNT Q × fREF0 / (16 × fSENSOR0) 5.2, rounded up to 6. To provide margin to account  
for system tolerances, a higher value of 10 is chosen.  
(b) Register 0x10 should be programmed to a minimum of 10.  
(c) The settle time is: (10 x 16)/20,000,000 = 8 µs  
(d) The value for Chan. 0 SETTLECOUNT register (0x10) is 0x000A.  
3. The channel switching delay is ~1μs for fREF = 20 MHz (see Multi-Channel and Single Channel Operation)  
4. Set the conversion time by the programming the reference count for Channel 0. The budget for the  
conversion time is : TSAMPLE – settling time – channel switching delay = 1000 – 8 – 1 = 991 µs  
(a) To determine the conversion time register value, use the following equation and solve for  
CH0_RCOUNT: Conversion Time (tC0)= (CH0_RCOUNTˣ16)/fREF0  
.
(b) This results in CH0_RCOUNT having a value of 1238 decimal (rounded down)  
(c) Set the CH0_RCOUNT register (0x08) to 0x04D6.  
5. Use the default values for the ERROR_CONFIG register (address 0x19). By default, no interrupts are  
enabled  
6. Sensor drive current: to set the CH0_IDRIVE field value, read the value from Table 10 using RP = 6.6 kΩ. In  
this case the IDRIVE value should be set to 18 (decimal). The INIT_DRIVE current field should be set to  
0x00. The combined value for the DRIVE_CURRENT_CH0 register (addr 0x1E) is 0x9000.  
7. Program the MUX_CONFIG register  
(a) Set the AUTOSCAN_EN to b1 bit to enable sequential mode  
(b) Set RR_SEQUENCE to b00 to enable data conversion on two channels (channel 0, channel 1)  
(c) Set DEGLITCH to b100 to set the input deglitch filter bandwidth to 3.3MHz, the lowest setting that  
exceeds the oscillation tank frequency.  
(d) The combined value for the MUX_CONFIG register (address 0x1B) is 0x820C  
Copyright © 2016, Texas Instruments Incorporated  
43  
 
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
Typical Application (continued)  
8. Finally, program the CONFIG register as follows:  
(a) Set the ACTIVE_CHAN field to b00 to select channel 0.  
(b) Set SLEEP_MODE_EN field to b0 to enable conversion.  
(c) Set RP_OVERRIDE_EN to b1 to disable auto-calibration.  
(d) Set SENSOR_ACTIVATE_SEL = b0, for full current drive during sensor activation  
(e) Set the AUTO_AMP_DIS field to b1 to disable auto-amplitude correction  
(f) Set the REF_CLK_SRC field to b1 to use the external clock source.  
(g) Set the other fields to their default values.  
(h) The combined value for the CONFIG register (address 0x1A) is 0x1601.  
We then read the conversion results for channel 0 and channel 1 every 1000 µs from register addresses  
0x00 and 0x02.  
9.2.2.1 Recommended Initial Register Configuration Values  
Based on the example configuration in section Detailed Design Procedure, the following register write sequence  
is recommended:  
Table 44. Recommended Initial Register Configuration Values (Single-channel Operation)  
Address  
Value  
Register Name  
Comments  
0x08  
0x04D6  
RCOUNT_CH0  
Reference count calculated from timing requirements (1 kSPS) and resolution  
requirements  
0x10  
0x14  
0x000A  
0x1002  
SETTLECOUNT_ Minimum settling time for chosen sensor  
CH0  
CLOCK_DIVIDER CH0_FIN_DIVIDER = 1, CH0_FREF_DIVIDER = 2  
S_CH0  
0x19  
0x1B  
0x1E  
0x0000  
0x020C  
0x9000  
ERROR_CONFIG Can be changed from default to report status and error conditions  
MUX_CONFIG  
Enable Ch 0 (continuous mode), set Input deglitch bandwidth to 3.3MHz  
DRIVE_CURREN Sets sensor drive current on ch 0  
T_CH0  
0x1A  
0x1601  
CONFIG  
Select active channel = ch 0, disable auto-amplitude correction and auto-  
calibration, enable full current drive during sensor activation, select external  
clock source, wake up device to start conversion. This register write must  
occur last because device configuration is not permitted while the LDC is in  
active mode.  
Table 45. Recommended Initial Register Configuration Values (Multi-channel Operation)  
Address  
Value  
Register Name  
Comments  
0x08  
0x04D6  
RCOUNT_CH0  
Reference count calculated from timing requirements (1 kSPS) and resolution  
requirements  
0x09  
0x10  
0x11  
0x14  
0x15  
0x04D6  
0x000A  
0x000A  
0x1002  
0x1002  
RCOUNT_CH1  
Reference count calculated from timing requirements (1 kSPS) and resolution  
requirements  
SETTLECOUNT_ Minimum settling time for chosen sensor  
CH0  
SETTLECOUNT_ Minimum settling time for chosen sensor  
CH1  
CLOCK_DIVIDER CH0_FIN_DIVIDER = 1, CH0_FREF_DIVIDER = 2  
S_CH0  
CLOCK_DIVIDER CH1_FIN_DIVIDER = 1, CH1_FREF_DIVIDER = 2  
S_CH1  
0x19  
0x1B  
0x0000  
0x820C  
ERROR_CONFIG Can be changed from default to report status and error conditions  
MUX_CONFIG  
Enable Ch 0 and Ch 1 (sequential mode), set Input deglitch bandwidth to  
3.3MHz  
0x1E  
0x1F  
0x9000  
0x9000  
DRIVE_CURREN Sets sensor drive current on ch 0  
T_CH0  
DRIVE_CURREN Sets sensor drive current on ch 1  
T_CH1  
44  
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
Table 45. Recommended Initial Register Configuration Values (Multi-channel Operation) (continued)  
Address  
Value  
Register Name  
Comments  
0x1A  
0x1601  
CONFIG  
disable auto-amplitude correction and auto-calibration, enable full current  
drive during sensor activation, select external clock source, wake up device  
to start conversion. This register write must occur last because device  
configuration is not permitted while the LDC is in active mode.  
9.2.2.2 Inductor Self-Resonant Frequency  
Every inductor has a distributed parasitic capacitance, which is dependent on construction and geometry. At the  
Self-Resonant Frequency (SRF), the reactance of the inductor cancels the reactance of the parasitic  
capacitance. Above the SRF, the inductor will electrically appear to be a capacitor. Because the parasitic  
capacitance is not well-controlled or stable, TI recommends that: fSENSOR < 0.8 × fSR  
.
175.0  
150.0  
125.0  
100.0  
75.0  
50.0  
25.0  
0.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
Frequency (MHz)  
Figure 54. Example Coil Inductance vs. Frequency  
In Figure 54, the inductor has a SRF at 6.38 MHz; therefore the inductor should not be operated above 0.8×6.38  
MHz, or 5.1 MHz.  
9.2.3 Application Curves  
Common test conditions (unless specified otherwise):  
Sensor inductor: 2 layer, 32 turns/layer, 14mm diameter, PCB inductor with L=19.4 µH, RP=5.7 kat 2 MHz  
Sensor capacitor: 330pF 1% COG/NP0  
Target: Aluminum, 1.5 mm thickness  
Channel = Channel 0 (continuous mode)  
CLKIN = 40MHz, CHx_FIN_DIVIDER = 0x01, CHx_FREF_DIVIDER = 0x001  
CH0_RCOUNT = 0xFFFF, SETTLECOUNT_CH0 = 0x0100  
RP_OVERRIDE = 1, AUTO_AMP_DIS = 1, DRIVE_CURRENT_CH0 = 0x9800  
Copyright © 2016, Texas Instruments Incorporated  
45  
 
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
3500  
3000  
2.5  
2.25  
2
Average Code (DEC)  
1.75  
1.5  
1.25  
1
2500  
Target Distance =  
0.5 x coil diameter  
Target Distance =  
1 x coil diameter  
2000  
0.75  
0.5  
0.25  
0
1500  
1000  
0
20%  
40%  
60%  
80%  
100%  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
Target Distance / SENSOR  
Target Distance / SENSOR  
D012  
D013  
Figure 55. Typical Output Code vs. Target Distance (0 to  
14mm)  
Figure 56. Measurement precision in Distance vs. Target  
Distance (0 to 10mm)  
10 Power Supply Recommendations  
The LDC requires a voltage supply within 2.7 V and 3.6 V. A multilayer ceramic bypass X7R capacitor of 1μF  
between the VDD and GND pins is recommended. If the supply is located more than a few inches from the  
LDC, additional bulk capacitance may be required in addition to the ceramic bypass capacitor. An electrolytic  
capacitor with a value of 10μF is a typical choice.  
The optimum placement is closest to the VDD and GND terminals of the device. Care should be taken to  
minimize the loop area formed by the bypass capacitor connection, the VDD terminal, and the GND terminal  
of the IC. See Figure 57 and Figure 58 for a layout example.  
11 Layout  
11.1 Layout Guidelines  
Avoid long traces to connect the sensor to the LDC. Short traces reduce parasitic capacitances between sensor  
inductor and offer higher system performance.  
11.2 Layout Example  
Figure 57 to Figure 60 show the LDC1312 evaluation module (EVM) layout.  
46  
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
Layout Example (continued)  
Figure 57. Example PCB Layout: Top Layer (Signal)  
Copyright © 2016, Texas Instruments Incorporated  
47  
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
Layout Example (continued)  
Figure 58. Example PCB Layout: Mid-layer 1 (GND)  
48  
Copyright © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
Layout Example (continued)  
Figure 59. Example PCB Layout: Mid-layer 2 (Power)  
Copyright © 2016, Texas Instruments Incorporated  
49  
LDC1312-Q1, LDC1314-Q1  
ZHCSF01 APRIL 2016  
www.ti.com.cn  
Layout Example (continued)  
Figure 60. Example PCB Layout: Bottom Layer (Signal)  
50  
版权 © 2016, Texas Instruments Incorporated  
LDC1312-Q1, LDC1314-Q1  
www.ti.com.cn  
ZHCSF01 APRIL 2016  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
相关链接如下:  
德州仪器 (TI) WEBENCH 工具:http://www.ti.com.cn/webench  
12.2 文档支持  
12.2.1 相关文档ꢀ  
相关文档如下:  
LDC1000 温度补偿》(文献编号:SNAA212)  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 相关链接  
46 下面的表格中列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问  
样片或购买链接。  
46. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
LDC1312-Q1  
LDC1314-Q1  
12.5 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
51  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LDC1312QDNTRQ1  
LDC1312QDNTTQ1  
ACTIVE  
WSON  
WSON  
DNT  
12  
12  
4500 RoHS & Green  
250 RoHS & Green  
4500 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
LC1312Q  
Q1  
ACTIVE  
DNT  
SN  
LDC1312  
Q1  
LDC1314QRGHRQ1  
LDC1314QRGHTQ1  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RGH  
RGH  
16  
16  
SN  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
LC1314Q  
LC1314Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
DNT0012B  
WSON - 0.8 mm max height  
SCALE 3.000  
PLASTIC SMALL OUTLINE - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
4.1  
3.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
(0.1) TYP  
2.6 0.1  
6
7
2X  
2.5  
3
0.1  
10X 0.5  
12  
1
0.3  
0.2  
12X  
0.1  
C A B  
C
0.5  
0.3  
PIN 1 ID  
(45 X 0.25)  
12X  
0.05  
4214928/C 10/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DNT0012B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(2.6)  
SYMM  
12X (0.6)  
1
12  
12X (0.25)  
(1.25)  
SYMM  
(3)  
10X (0.5)  
7
6
(R0.05) TYP  
(
0.2) VIA  
TYP  
(1.05)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214928/C 10/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DNT0012B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
METAL  
TYP  
(0.68)  
12X (0.6)  
1
12  
12X (0.25)  
(0.76)  
SYMM  
10X (0.5)  
4X  
(1.31)  
(R0.05) TYP  
6
7
4X (1.15)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
77% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4214928/C 10/2021  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LDC1314QRGHRQ1

4 通道、12 位、通用汽车类电感数字转换器 | RGH | 16 | -40 to 125
TI

LDC1314QRGHTQ1

4 通道、12 位、通用汽车类电感数字转换器 | RGH | 16 | -40 to 125
TI

LDC1314RGHR

4 通道、12 位、通用电感数字转换器 | RGH | 16 | -40 to 125
TI

LDC1314RGHT

4 通道、12 位、通用电感数字转换器 | RGH | 16 | -40 to 125
TI

LDC1350

Electric Fuse, Time Delay Blow, 1350A, 600VAC, 600VDC, 200000A (IR), Inline/holder,
LITTELFUSE

LDC1400

Electric Fuse, Time Delay Blow, 1400A, 600VAC, 600VDC, 200000A (IR), Inline/holder,
LITTELFUSE

LDC150

Electric Fuse, Time Delay Blow, 150A, 600VAC, 600VDC, 200000A (IR), Inline/holder
LITTELFUSE

LDC1500

Electric Fuse, Time Delay Blow, 1500A, 600VAC, 600VDC, 200000A (IR), Inline/holder,
LITTELFUSE

LDC151G4418Q-352

Directional Coupler, 1429MHz Min, 1453MHz Max, 0.23dB Insertion Loss-Max,
MURATA

LDC151G7313Q-360

Directional Coupler, 1710MHz Min, 1755MHz Max, 0.42dB Insertion Loss-Max,
MURATA

LDC151G7421Q-359

Directional Coupler, 1710MHz Min, 1785MHz Max, 0.22dB Insertion Loss-Max,
MURATA

LDC151G7424Q-392

Directional Coupler, 1709.5MHz Min, 1784.5MHz Max, 0.2dB Insertion Loss-Max
MURATA