ISO5852SQDWQ1 [TI]

具有分离输出和有源保护功能的汽车类 5.7kVrms、2.5A/5A 单通道隔离式栅极驱动器 | DW | 16 | -40 to 125;
ISO5852SQDWQ1
型号: ISO5852SQDWQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有分离输出和有源保护功能的汽车类 5.7kVrms、2.5A/5A 单通道隔离式栅极驱动器 | DW | 16 | -40 to 125

栅极驱动 双极性晶体管 光电二极管 接口集成电路 驱动器
文件: 总42页 (文件大小:1340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
ISO5852S-Q1 具有分离输出和有源安全特性的高 CMTI 2.5A 5A 增强型  
隔离式 IGBTMOSFET 栅极  
驱动器  
1 特性  
2 应用  
1
适用于汽车电子 应用  
具有符合 AEC-Q100 标准的下列结果:  
隔离式绝缘栅双极型晶体管 (IGBT) 和金属氧化物  
半导体场效应晶体管 (MOSFET) 驱动器:  
混合动力汽车 (HEV) 和电动车 (EV) 电源模块  
器件温度 1 级:-40°C 125°C 的环境运行温  
度范围  
工业电机控制驱动  
工业电源  
器件人体模型 (HBM) 分类等级 3A  
器件充电器件模型 (CDM) 分类等级 C6  
太阳能逆变器  
感应加热  
VCM = 1500V 时,共模瞬态抗扰度 (CMTI) 的最小  
值为 100kV/μs  
3 说明  
分离输出,可提供 2.5A 峰值拉电流和 5A 峰值灌电  
ISO5852S-Q1 器件是一款用于 IGBT MOSFET 的  
5.7 kVRMS 增强型隔离栅极驱动器,具有分离输出  
OUTH OUTL)以及 2.5A 的拉电流能力和 5A 的  
灌电流能力。输入端由 2.25V 5.5V 的单电源供电运  
行。输出端允许的电源范围为 15V 30V。两个互补  
CMOS 输入控制栅极驱动器的输出状态。76ns 的短暂  
传播时间保证了对于输出级的精确控制。中的文本由  
“3V 5.5V 单电源更改为“2.25V 5.5V 单电源中  
的文本由“IGBT 处于过载状态更改为“IGBT 处于过流  
状态”  
短暂传播延迟:76ns(典型值),  
110ns(最大值)  
2A 有源米勒钳位  
输出短路钳位  
短路期间的软关断 (STO)  
在检测到去饱和故障时通过 FLT 发出故障报警,并  
通过 RST 复位  
具有就绪 (RDY) 引脚指示的输入和输出欠压锁定  
(UVLO)  
有源输出下拉特性,在低电源或输入悬空的情况下  
默认输出低电平  
器件信息(1)  
2.25V 5.5V 输入电源电压  
器件型号  
封装  
封装尺寸(标称值)  
15V 30V 输出驱动器电源电压  
互补金属氧化物半导体 (CMOS) 兼容输入  
抑制短于 20ns 的输入脉冲和瞬态噪声  
ISO5852S-Q1  
SOIC (16)  
10.30mm x 7.50mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
功能方框图  
可承受的浪涌隔离电压达 12800VPK  
VCC1  
VCC2  
安全相关认证:  
VCC1  
UVLO1  
UVLO2  
500 µA  
符合 DIN V VDE V 0884-10 (VDE V 0884-  
10):2006-12 标准的 8000 VPK VIOTM 2121  
VPK IORM 增强型隔离  
DESAT  
GND2  
INœ  
Mute  
9 V  
V
IN+  
VCC2  
VCC1  
符合 UL 1577 标准且长达 1 分钟的 5700 VRMS  
隔离  
RDY  
Gate Drive  
and  
OUTH  
OUTL  
Ready  
CSA 组件验收通知 5AIEC 60950-1 IEC  
60601-1 终端设备标准  
Encoder  
Logic  
STO  
VCC1  
FLT  
Decoder  
Q
Q
S
R
符合 EN 61010-1 EN 60950-1 标准的 TUV  
认证  
2 V  
Fault  
CLAMP  
VCC1  
RST  
GB4943.1-2011 CQC 认证  
GND1  
VEE2  
已通过 ULVDECQCTUV 认证并规划进  
CSA 认证  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEQ2  
 
 
 
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
9
Detailed Description ............................................ 20  
9.1 Overview ................................................................. 20  
9.2 Functional Block Diagram ....................................... 20  
9.3 Feature Description................................................. 21  
9.4 Device Functional Modes........................................ 22  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Function........................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings ............................................................ 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 5  
7.5 Power Ratings........................................................... 5  
7.6 Insulation Specifications............................................ 6  
7.7 Safety Limiting Values .............................................. 7  
7.8 Safety-Related Certifications..................................... 7  
7.9 Electrical Characteristics........................................... 8  
7.10 Switching Characteristics........................................ 9  
7.11 Safety and Insulation Characteristics Curves ....... 10  
7.12 Typical Characteristics.......................................... 11  
Parameter Measurement Information ................ 18  
10 Application and Implementation........................ 23  
10.1 Application Information.......................................... 23  
10.2 Typical Applications .............................................. 23  
11 Power Supply Recommendations ..................... 33  
12 Layout................................................................... 33  
12.1 Layout Guidelines ................................................. 33  
12.2 PCB Material......................................................... 33  
12.3 Layout Example .................................................... 33  
13 器件和文档支持 ..................................................... 34  
13.1 文档支持................................................................ 34  
13.2 接收文档更新通知 ................................................. 34  
13.3 社区资源................................................................ 34  
13.4 ....................................................................... 34  
13.5 静电放电警告......................................................... 34  
13.6 Glossary................................................................ 34  
14 机械、封装和可订购信息....................................... 35  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
注释  
2016 9 月  
*
最初发布。  
2
版权 © 2016, Texas Instruments Incorporated  
 
ISO5852S-Q1  
www.ti.com.cn  
ZHCSFJ5 SEPTEMBER 2016  
5 说明 (续)  
内置的去饱和 (DESAT) 故障检测功能可识别 IGBT 何时处于过流状态。检测到 DESAT 时,静音逻辑会立即阻断  
隔离器输出,并启动软关断过程以禁用 OUTH 引脚并将 OUTL 引脚拉至低电平持续 2μs。当 OUTL 引脚达到 2V  
时(相对于最大负电源电势 VEE2),栅极驱动器会被拉至 VEE2 电势,从而立即将 IGBT 关断。已将中的文本  
并降低 OUTL 的电压持续 2μs 以上更改为并将 OUTL 拉至低电平持续 2μs”  
当发生去饱和故障时,器件会通过隔离隔栅发送故障信号,以将输入端的 FLT 输出拉为低电平并阻断隔离器的输  
入。静音逻辑在软关断期间激活。FLT 的输出状态将被锁存,并只能在 RDY 引脚变为高电平后通过 RST 输入上的  
低电平有效脉冲复位。已更改的第 3 段  
如果在由双极输出电源供电的正常运行期间关断 IGBT,输出电压会被硬钳位为 VEE2。如果输出电源为单极,那么  
可采用有源米勒钳位,这种钳位会在一条低阻抗路径上灌入米勒电流,从而防止 IGBT 在高电压瞬态状态下发生动  
态导通。  
栅极驱动器是否准备就绪待运行由两个欠压锁定电路控制,这两个电路会监视输入端和输出端的电源。如果任意一  
端电源不足,RDY 输出会变为低电平,否则该输出为高电平。  
ISO5852S-Q1 采用 16 引脚小外形尺寸集成电路 (SOIC) 封装. 此器件的额定工作环境温度范围为 -40°C +125°  
C。  
6 Pin Configuration and Function  
DW Package  
16-Pin SOIC  
Top View  
VEE2  
DESAT  
GND2  
OUTH  
VCC2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND1  
VCC1  
RST  
FLT  
RDY  
INœ  
OUTL  
CLAMP  
VEE2  
IN+  
GND1  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
CLAMP  
DESAT  
FLT  
NO.  
7
O
I
Miller clamp output  
Desaturation voltage input  
2
13  
9
O
Fault output, active-low during DESAT condition  
GND1  
Input ground  
16  
3
GND2  
IN+  
I
Gate drive common. Connect to IGBT emitter.  
Non-inverting gate drive voltage control input  
Inverting gate drive voltage control input  
Positive gate drive voltage output  
10  
11  
4
IN–  
I
OUTH  
OUTL  
RDY  
RST  
O
O
O
I
6
Negative gate drive voltage output  
12  
14  
15  
5
Power-good output, active high when both supplies are good.  
Reset input, apply a low pulse to reset fault latch.  
Positive input supply (2.25-V to 5.5-V)  
VCC1  
VCC2  
Most positive output supply potential.  
1
VEE2  
Output negative supply. Connect to GND2 for unipolar supply application.  
8
Copyright © 2016, Texas Instruments Incorporated  
3
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
GND1 – 0.3  
–0.3  
MAX  
6
UNIT  
VCC1  
Supply-voltage input side  
V
V
V
V
VCC2  
Positive supply-voltage output side  
Negative supply-voltage output side  
Total-supply output voltage  
(VCC2 – GND2)  
(VEE2 – GND2)  
35  
VEE2  
–17.5  
0.3  
35  
V(SUP2)  
V(OUTH)  
V(OUTL)  
(VCC2 - VEE2  
)
–0.3  
Positive gate-driver output voltage  
Negative gate-driver output voltage  
VEE2 – 0.3  
VEE2 – 0.3  
VCC2 + 0.3  
VCC2 + 0.3  
V
V
Maximum pulse width = 10 μs, Maximum  
duty cycle = 0.2%)  
I(OUTH)  
I(OUTL)  
Gate-driver high output current  
Gate-driver low output current  
2.7  
5.5  
A
A
Maximum pulse width = 10 μs, Maximum  
duty cycle = 0.2%)  
V(LIP)  
I(LOP)  
Voltage at IN+, IN–,FLT, RDY, RST  
Output current of FLT, RDY  
GND1 – 0.3  
VCC1 + 0.3  
10  
V
mA  
V
V(DESAT) Voltage at DESAT  
V(CLAMP) Clamp voltage  
GND2 – 0.3  
VEE2 – 0.3  
–40  
VCC2 + 0.3  
VCC2 + 0.3  
150  
V
TJ  
Junction temperature  
Storage temperature  
°C  
°C  
TSTG  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VCC1  
VCC2  
V(EE2)  
V(SUP2)  
V(IH)  
V(IL)  
tUI  
Supply-voltage input side  
2.25  
5.5  
V
V
Positive supply-voltage output side (VCC2 – GND2)  
Negative supply-voltage output side (VEE2 – GND2)  
15  
30  
–15  
0
30  
V
Total supply-voltage output side (VCC2 – VEE2  
High-level input voltage (IN+, IN–, RST)  
Low-level input voltage (IN+, IN–, RST)  
)
15  
V
0.7 × VCC1  
VCC1  
V
0
40  
0.3 × VCC1  
V
Pulse width at IN+, IN– for full output (CLOAD = 1 nF)  
Pulse width at RST for resetting fault latch  
Ambient temperature  
ns  
ns  
°C  
tRST  
800  
–40  
TA  
125  
4
Copyright © 2016, Texas Instruments Incorporated  
ISO5852S-Q1  
www.ti.com.cn  
ZHCSFJ5 SEPTEMBER 2016  
7.4 Thermal Information  
ISO5852S-Q1  
THERMAL METRIC(1)  
DW (SOIC)  
16 PINS  
99.6  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
48.5  
56.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
29.2  
ψJB  
56.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Power Ratings  
Full-chip power dissipation is derated 10.04 mW/°C beyond 25°C ambient temperature. At 125°C ambient temperature, a  
maximum of 251 mW total power dissipation is allowed. Power dissipation can be optimized depending on ambient  
temperature and board design, while ensuring that the junction temperature does not exceed 150°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1255  
175  
UNIT  
mW  
mW  
mW  
PD  
Maximum power dissipation (both sides)  
Maximum input power dissipation  
Maximum output power dissipation  
VCC1 = 5.5-V, VCC2 = 30-V, TA = 25°C  
VCC1 = 5.5-V, VCC2 = 30-V, TA = 25°C  
VCC1 = 5.5-V, VCC2 = 30-V, TA = 25°C  
PID  
POD  
1080  
Copyright © 2016, Texas Instruments Incorporated  
5
 
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
www.ti.com.cn  
UNIT  
7.6 Insulation Specifications  
PARAMETER  
TEST CONDITIONS  
VALUE  
GENERAL  
CLR  
CPG  
DTI  
External clearance(1)  
External creepage(1)  
Shortest terminal-to-terminal distance through air  
8
8
mm  
mm  
µm  
V
Shortest terminal-to-terminal distance across the  
package surface  
Distance through the insulation  
Comparative tracking index  
Material group  
Minimum internal gap (internal clearance)  
21  
DIN EN 60112 (VDE 0303-11); IEC 60112; Material  
Group I according to IEC 60664-1; UL 746A  
CTI  
>600  
I
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
I-IV  
I-III  
Overvoltage Category  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12(2)  
VIORM Maximum repetitive peak isolation voltage AC voltage (bipolar)  
2121  
1500  
2121  
8000  
VPK  
VRMS  
VDC  
AC voltage (sine wave) Time dependent dielectric  
breakdown (TDDB) test, see Figure 1  
VIOWM  
Maximum isolation working voltage  
DC voltage  
VTEST = VIOTM; t = 60 s (qualification); t = 1 s (100%  
production)  
VIOTM  
VIOSM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(3)  
VPK  
Test method per IEC 60065, 1.2/50 µs waveform,  
VTEST = 1.6 × VIOSM = 12800 VPK (qualification)  
8000  
Method a: After I/O safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s;  
5  
Vpd(m) = 1.2 × VIORM = 2545 VPK  
tm = 10 s  
,
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
5  
5  
qpd  
Apparent charge(4)  
Vpd(m) = 1.6 × VIORM = 3394 VPK  
tm = 10 s  
,
pC  
Method b1: At routine test (100% production) and  
preconditioning (type test)  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.875× VIORM = 3977 VPK  
tm = 10 s  
,
CIO  
RIO  
Barrier capacitance, input to output(5)  
Isolation resistance, input to output(5)  
VIO = 0.4 sin (2πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
1
pF  
> 1012  
> 1011  
> 109  
2
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
UL 1577  
VTEST = VISO = 5700 VRMS, t = 60 s (qualification);  
VTEST = 1.2 × VISO = 6840 VRMS, t = 1 s (100%  
production)  
VISO  
Withstand isolation voltage  
5700  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care  
should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on  
the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the maximum operating ratings. Compliance with the safety ratings shall  
be ensured by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-terminal device  
6
Copyright © 2016, Texas Instruments Incorporated  
ISO5852S-Q1  
www.ti.com.cn  
ZHCSFJ5 SEPTEMBER 2016  
7.7 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of  
the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat  
the die and damage the isolation barrier, potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RθJA = 99.6°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C,  
456  
see Figure 2  
θJA = 99.6°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C,  
see Figure 2  
θJA = 99.6°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C,  
see Figure 2  
θJA = 99.6°C/W, VI = 15 V, TJ = 150°C, TA = 25°C,  
see Figure 2  
θJA = 99.6°C/W, VI = 30 V, TJ = 150°C, TA = 25°C,  
see Figure 2  
R
346  
228  
84  
Safety input, output, or supply  
current  
R
IS  
mA  
R
R
42  
Safety input, output, or total  
power  
PS  
TS  
RθJA = 99.6°C/W, TJ = 150°C, TA = 25°C, see Figure 3  
255(1)  
150  
mW  
°C  
Maximum ambient safety  
temperature  
(1) Input, output, or the sum of input and output power should not exceed this value  
The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power  
dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines  
the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Information table is that  
of a device installed on a high-K test board for leaded surface-mount packages. The power is the recommended  
maximum input voltage times the current. The junction temperature is then the ambient temperature plus the  
power times the junction-to-air thermal resistance.  
7.8 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Certified according to  
DIN V VDE V 0884-10  
(VDE V 0884-10):2006- Acceptance Notice 5A, 1577 Component  
12 and DIN EN 61010-1 IEC 60950-1, and IEC Recognition Program  
Plan to certify under  
CSA Component  
Certified according to  
EN 61010-1:2010 (3rd Ed) and  
EN 60950-  
1:2006/A11:2009/A1:2010/  
A12:2011/A2:2013  
Recognized under UL  
Certified according to  
GB4943.1-2011  
(VDE 0411-1):2011-07  
60601-1  
Isolation Rating of 5700  
VRMS  
;
Reinforced insulation  
per CSA 60950-1-  
07+A1+A2 and IEC  
60950-1 (2nd Ed.), 800  
VRMS max working  
voltage (pollution  
degree 2, material  
group I) ;  
2 MOPP (Means of  
Patient Protection) per  
CSA 60601-1:14 and  
IEC 60601-1 Ed. 3.1,  
5700 VRMS Reinforced  
insulation per  
EN 61010-1:2010 (3rd Ed) up to  
working voltage of 600 VRMS  
Reinforced Insulation  
Maximum Transient  
isolation voltage, 8000  
Reinforced Insulation,  
VPK  
;
Single Protection, 5700  
VRMS  
Altitude 5000m, Tropical 5700 VRMS Reinforced  
climate, 400 VRMS insulation per  
maximum working voltage EN 60950-  
1:2006/A11:2009/A1:2010/  
Maximum surge isolation  
(1)  
voltage, 8000 VPK  
,
Maximum repetitive peak  
isolation voltage, 2121  
VPK  
A12:2011/A2:2013 up to  
working voltage of 800 VRMS  
250 VRMS (354 VPK  
)
max working voltage  
Certification completed  
Certificate number:  
40040142  
Certification completed  
Certificate number:  
CQC16001141761  
Certification completed  
File number: E181974  
Certification completed  
Client ID number: 77311  
Certificate planned  
(1) Production tested 6840 VRMS for 1 second in accordance with UL 1577.  
Copyright © 2016, Texas Instruments Incorporated  
7
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
www.ti.com.cn  
7.9 Electrical Characteristics  
Over recommended operating conditions unless otherwise noted. All typical values are at TA = 25°C, VCC1 = 5 V,  
VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOLTAGE SUPPLY  
Positive-going UVLO1 threshold-voltage  
input side (VCC1 – GND1)  
VIT+(UVLO1)  
VIT-(UVLO1)  
VHYS(UVLO1)  
VIT+(UVLO2)  
VIT–(UVLO2)  
VHYS(UVLO2)  
2.25  
V
V
V
V
V
V
Negative-going UVLO1 threshold-voltage  
input side (VCC1 – GND1)  
1.7  
UVLO1 Hysteresis voltage (VIT+ – VIT–  
input side  
)
0.2  
12  
11  
1
Positive-going UVLO2 threshold-voltage  
output side (VCC2 – GND2)  
13  
Negative-going UVLO2 threshold-voltage  
output side (VCC2 – GND2)  
9.5  
UVLO2 hysteresis voltage (VIT+ – VIT–  
output side  
)
IQ1  
Input-supply quiescent current  
Output-supply quiescent current  
2.8  
3.6  
4.5  
6
mA  
mA  
IQ2  
LOGIC I/O  
Positive-going input-threshold voltage (IN+,  
IN–, RST)  
VIT+(IN,RST)  
VIT–(IN,RST)  
0.7 × VCC1  
V
V
Negative-going input-threshold voltage  
(IN+, IN–, RST)  
0.3 × VCC1  
VHYS(IN,RST)  
Input hysteresis voltage (IN+, IN–, RST)  
High-level input leakage at (IN+)(1)  
Low-level input leakage at (IN–, RST)(2)  
Pullup current of FLT, RDY  
0.15 × VCC1  
100  
V
IIH  
IN+ = VCC1  
µA  
µA  
µA  
V
IIL  
IN– = GND1, RST = GND1  
V(RDY) = GND1, V(FLT) = GND1  
I(FLT) = 5 mA  
-100  
IPU  
V(OL)  
100  
Low-level output voltage at FLT, RDY  
0.2  
2
GATE DRIVER STAGE  
V(OUTPD) Active output pulldown voltage  
VOUTH  
I(OUTH/L) = 200 mA, VCC2 = open  
I(OUTH) = –20 mA  
V
V
High-level output voltage  
Low-level output voltage  
VCC2 – 0.5  
VCC2 – 0.24  
VEE2 + 13  
VOUTL  
I(OUTL) = 20 mA  
VEE2 + 50  
mV  
IN+ = high, IN– = low,  
V(OUTH) = VCC2 - 15 V  
I(OUTH)  
I(OUTL)  
I(OLF)  
High-level output peak current  
Low-level output peak current  
1.5  
3.4  
2.5  
5
A
A
IN+ = low, IN– = high,  
V(OUTL) = VEE2 + 15 V  
Low-level output current during fault  
condition  
130  
mA  
ACTIVE MILLER CLAMP  
V(CLP) Low-level clamp voltage  
I(CLP)  
I(CLP) = 20 mA  
VEE2 + 0.015  
VEE2 + 0.08  
V
A
V
Low-level clamp current  
Clamp threshold voltage  
V(CLAMP) = VEE2 + 2.5 V  
1.6  
1.6  
2.5  
2.1  
3.3  
2.5  
V(CLTH)  
SHORT CIRCUIT CLAMPING  
Clamping voltage  
V(CLP-OUTH)  
IN+ = high, IN– = low, tCLP = 10 µs,  
I(OUTH) = 500 mA  
1.1  
1.3  
1.3  
0.7  
0.7  
1.3  
1.5  
V
V
V
V
V
(VOUTH – VCC2  
)
Clamping voltage  
(VOUTL – VCC2  
IN+ = high, IN– = low, tCLP = 10 µs,  
I(OUTL) = 500 mA  
V(CLP-OUTL)  
V(CLP-CLP)  
V(CLP-CLAMP)  
)
Clamping voltage  
(VCLP – VCC2  
IN+ = high, IN– = low, tCLP = 10 µs,  
I(CLP) = 500 mA  
)
IN+ = High, IN– = Low, I(CLP) = 20  
mA  
Clamping voltage at CLAMP  
Clamping voltage at OUTL  
1.1  
1.1  
IN+ = High, IN– = Low, I(OUTL) = 20  
mA  
V(CLP-OUTL)  
(VCLP – VCC2  
)
DESAT PROTECTION  
I(CHG)  
Blanking-capacitor charge current  
Blanking-capacitor discharge current  
V(DESAT) – GND2 = 2 V  
V(DESAT) – GND2 = 6 V  
0.42  
9
0.5  
14  
0.58  
mA  
mA  
I(DCHG)  
(1) IIH for IN–, RST pin is zero as they are pulled high internally  
(2) IIL for IN+ is zero, as it is pulled low internally  
8
Copyright © 2016, Texas Instruments Incorporated  
ISO5852S-Q1  
www.ti.com.cn  
ZHCSFJ5 SEPTEMBER 2016  
Electrical Characteristics (continued)  
Over recommended operating conditions unless otherwise noted. All typical values are at TA = 25°C, VCC1 = 5 V,  
VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DESAT threshold voltage with respect to  
GND2  
V(DSTH)  
V(DSL)  
8.3  
9
9.5  
V
DESAT voltage with respect to GND2,  
when OUTH or OUTL is driven low  
0.4  
1
V
7.10 Switching Characteristics  
Over recommended operating conditions unless otherwise noted. All typical values are at TA = 25°C, VCC1 = 5 V,  
VCC2 – GND2 = 15 V, GND2 – VEE2 = 8 V  
PARAMETER  
TEST CONDITIONS  
CLOAD = 1 nF  
MIN  
12  
TYP  
18  
MAX UNIT  
tr  
Output-signal rise time at OUTH  
Output-signal fall time at OUTL  
Propagation Delay  
35  
37  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
ns  
μs  
ns  
ns  
tf  
CLOAD = 1 nF  
CLOAD = 1 nF  
CLOAD = 1 nF  
CLOAD = 1 nF  
CLOAD = 1 nF  
12  
20  
tPLH, tPHL  
tsk-p  
76  
110  
20  
Pulse skew |tPHL – tPLH  
|
See Figure 44, Figure 45,  
and Figure 46  
tsk-pp  
Part-to-part skew  
30(1)  
tGF (IN,/RST)  
tDS (90%)  
tDS (10%)  
tDS (GF)  
tDS (FLT)  
tLEB  
Glitch filter on IN+, IN–, RST  
20  
30  
553  
2
40  
DESAT sense to 90% VOUTH/L delay CLOAD = 10 nF  
DESAT sense to 10% VOUTH/L delay CLOAD = 10 nF  
760  
3.5  
DESAT-glitch filter delay  
CLOAD = 1 nF  
See Figure 46  
330  
DESAT sense to FLT-low delay  
Leading-edge blanking time  
Glitch filter on RST for resetting FLT  
1.4  
480  
800  
See Figure 44 and Figure 45  
310  
300  
400  
tGF(RSTFLT)  
VI = VCC1 / 2 + 0.4 × sin (2πft), f = 1 MHz,  
VCC1 = 5 V  
CI  
Input capacitance(2)  
2
pF  
CMTI  
Common-mode transient immunity  
VCM = 1500 V, see Figure 47  
100  
120  
kV/μs  
(1) Measured at same supply voltage and temperature condition  
(2) Measured from input pin to ground.  
Copyright © 2016, Texas Instruments Incorporated  
9
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
www.ti.com.cn  
7.11 Safety and Insulation Characteristics Curves  
1.E+11  
Safety Margin Zone: 1800 VRMS, 254 Years  
Operating Zone: 1500 VRMS, 135 Years  
TDDB Line (<1 PPM Fail Rate)  
1.E+10  
1.E+9  
1.E+8  
1.E+7  
1.E+6  
1.E+5  
1.E+4  
1.E+3  
1.E+2  
1.E+1  
87.5%  
20%  
500 1500 2500 3500 4500 5500 6500 7500 8500 9500  
Stress Voltage (VRMS  
)
TA upto 150°C  
Stress-voltage frequency = 60 Hz  
Figure 1. Reinforced High-Voltage Capacitor Lifetime Projection  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
1400  
VCC1 = 2.75 V  
VCC1 = 3.6 V  
VCC1 = 5.5 V  
VCC2 = 15 V  
Power  
1200  
1000  
800  
600  
400  
200  
0
VCC2 = 30 V  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
Figure 2. Thermal Derating Curve for Safety Limiting  
Current per VDE  
Figure 3. Thermal Derating Curve for Safety Limiting Power  
per VDE  
10  
Copyright © 2016, Texas Instruments Incorporated  
ISO5852S-Q1  
www.ti.com.cn  
ZHCSFJ5 SEPTEMBER 2016  
7.12 Typical Characteristics  
0
-0.5  
-1  
0
-0.5  
-1  
TA = -40èC  
TA = 25èC  
TA = 125èC  
-1.5  
-2  
-1.5  
-2  
-2.5  
-2.5  
-3  
-3  
VCC2 - VOUT = 2.5 V  
VCC2 - VOUT = 5 V  
VCC2 - VOUT = 10 V  
VCC2 - VOUT = 15 V  
VCC2 - VOUT = 20 V  
-3.5  
-4  
-3.5  
-4  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0
5
10  
15  
20  
25  
30  
Ambient Temperature (èC)  
VCC2 - VOUTH/L Voltage (V)  
D001  
D003  
Figure 4. Output High Drive Current vs Temperature  
Figure 5. Output High Drive Current vs Output Voltage  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
VOUT - VEE2 = 2.5 V  
VOUT - VEE2 = 5 V  
VOUT - VEE2 = 10 V  
VOUT - VEE2 = 15 V  
VOUT - VEE2 = 20 V  
TA = -40èC  
TA = 25èC  
TA = 125èC  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0
5
10  
15  
20  
25  
30  
Ambient Temperature (èC)  
VOUTH/L - VEE2 Voltage (V)  
D002  
D004  
Figure 6. Output Low Drive Current vs Temperature  
Figure 7. Output Low Drive Current vs Output Voltage  
9.2  
9.1  
9
8.9  
8.8  
8.7  
8.6  
8.5  
15 V Unipolar  
30 V Unipolar  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (èC)  
D005  
Unipolar: VCC2 – VEE2 = VCC2 – GND2  
Figure 8. DESAT Threshold Voltage vs Temperature  
Copyright © 2016, Texas Instruments Incorporated  
11  
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
50 ns / Div  
500 ns / Div  
CL = 1 nF  
RGH = 0 Ω  
RGL = 0 Ω  
CL = 10 nF  
RGH = 0 Ω  
RGL = 0 Ω  
VCC2 – VEE2 = VCC2 – GND2 = 20 V  
VCC2 – VEE2 = VCC2 – GND2 = 20 V  
Figure 9. Output Transient Waveform  
Figure 10. Output Transient Waveform  
50 ns / Div  
2 ms / Div  
CL = 1 nF  
RGH = 10 Ω  
RGL = 5 Ω  
CL = 100 nF  
RGH = 0 Ω  
RGL = 0 Ω  
VCC2 – VEE2 = VCC2 – GND2 = 20 V  
VCC2 – VEE2 = VCC2 – GND2 = 20 V  
Figure 12. Output Transient Waveform  
Figure 11. Output Transient Waveform  
500 ns / Div  
2 ms / Div  
CL = 10 nF  
RGH = 10 Ω  
RGL = 5 Ω  
CL = 100 nF  
RGH = 10 Ω  
RGL = 5 Ω  
VCC2 – VEE2 = VCC2 – GND2 = 20 V  
VCC2 – VEE2 = VCC2 – GND2 = 20 V  
Figure 13. Output Transient Waveform  
Figure 14. Output Transient Waveform  
12  
Copyright © 2016, Texas Instruments Incorporated  
ISO5852S-Q1  
www.ti.com.cn  
ZHCSFJ5 SEPTEMBER 2016  
Typical Characteristics (continued)  
OUT  
OUT  
DESAT  
/FLT  
DESAT  
FLT  
RDY  
RDY  
2 ms / Div  
1 µs/Div  
CL = 10 nF  
RGH = 0 Ω  
RGL = 0 Ω  
CL = 10 nF  
RGH = 0 Ω  
RGL = 0 Ω  
VCC2 – VEE2 = VCC2 – GND2 = 15 V  
DESAT = 220 pF  
VCC2 – VEE2 = VCC2 – GND2 = 15 V  
DESAT = 220 pF  
Figure 16. Output Transient Waveform DESAT, RDY, and  
FLT  
Figure 15. Output Transient Waveform DESAT, RDY, and  
FLT  
OUT  
OUT  
DESAT  
/FLT  
DESAT  
/FLT  
RDY  
RDY  
2 ms / Div  
1 ms / Div  
CL = 10 nF  
RGH = 0 Ω  
RGL = 0 Ω  
CL = 10 nF  
RGH = 0 Ω  
RGL = 0 Ω  
VCC2 – VEE2 = VCC2 – GND2 = 30 V  
DESAT = 220 pF  
VCC2 – VEE2 = VCC2 – GND2 = 30 V  
DESAT = 220 pF  
Figure 18. Output Transient Waveform DESAT, RDY, and  
FLT  
Figure 17. Output Transient Waveform DESAT, RDY, and  
FLT  
3.4  
3.2  
3
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
2.8  
2.6  
1.3  
2.4  
VCC1 = 3 V  
VCC1 = 3.3 V  
VCC1 = 5 V  
VCC1 = 5.5 V  
VCC1 = 3 V  
VCC1 = 3.3 V  
VCC1 = 5 V  
VCC1 = 5.5 V  
1.2  
2.2  
1.1  
1
2
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D006  
D007  
IN+ = High  
IN– = Low  
IN+ = Low  
IN– = Low  
Figure 19. ICC1 Supply Current vs Temperature  
Figure 20. ICC1 Supply Current vs Temperature  
Copyright © 2016, Texas Instruments Incorporated  
13  
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
3
5
4.5  
4
2.5  
2
1.5  
1
3.5  
3
VCC2 = 15 V  
VCC2 = 20 V  
VCC2 = 30 V  
0.5  
0
2.5  
VCC1 = 3 V  
VCC1 = 5.5 V  
2
0
50  
100  
150  
200  
250  
300  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Input Frequency - (kHz)  
Ambient Temperature (èC)  
D008  
D010  
Input frequency = 1 kHz  
Figure 21. ICC1 Supply Current vs Input Frequency  
Figure 22. ICC2 Supply Current vs Temperature  
70  
60  
50  
40  
30  
20  
10  
0
5.5  
5
4.5  
4
3.5  
3
VCC2 = 15 V  
VCC2 = 20 V  
VCC2 = 30 V  
2.5  
2
VCC2 = 15 V  
VCC2 = 30 V  
0
50  
100  
150  
200  
250  
300  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Input Frequency - (kHz)  
Load Capacitance (nF)  
D009  
D011  
No CL  
RGH = 10 Ω  
RGL = 5 Ω, 20 kHz  
Figure 23. ICC2 Supply Current vs Input Frequency  
Figure 24. ICC2 Supply Current vs Load Capacitance  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
tpLH at VCC2 = 15 V  
tpHL at VCC2 = 15 V  
tpLH at VCC2 = 30 V  
tpHL at VCC2 = 30 V  
tpLH at VCC1 = 3.3 V  
tpHL at VCC1 = 3.3 V  
tpLH at VCC1 = 5 V  
tpHL at VCC1 = 5 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D012  
D013  
CL = 1 nF  
RGH = 0 Ω  
RGL = 0 Ω  
CL = 1 nF  
RGH = 0 Ω  
RGL = 0 Ω  
VCC1 = 5 V  
VCC2 = 15 V  
Figure 25. Propagation Delay vs Temperature  
Figure 26. Propagation Delay vs Temperature  
14  
Copyright © 2016, Texas Instruments Incorporated  
ISO5852S-Q1  
www.ti.com.cn  
ZHCSFJ5 SEPTEMBER 2016  
Typical Characteristics (continued)  
1200  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
tpLH at VCC2 = 15 V  
tpLH at VCC2 = 30 V  
tpHL at VCC2 = 15 V  
tpHL at VCC2 = 30 V  
VCC2 = 15 V  
VCC2 = 30 V  
1000  
800  
600  
400  
200  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Ambient Temperature (èC)  
Load Capacitance (nF)  
D014  
D015  
RGH = 10 Ω  
RGL = 5 Ω  
VCC1 = 5 V  
RGH = 0 Ω  
RGL = 0 Ω  
VCC1 = 5 V  
Figure 27. Propagation Delay vs Load Capacitance  
Figure 28. tr Rise Time vs Load Capacitance  
600  
500  
400  
300  
200  
100  
0
6000  
5000  
4000  
3000  
2000  
1000  
0
VCC2 = 15 V  
VCC2 = 30 V  
VCC2 = 15 V  
VCC2 = 30 V  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Load Capacitance (nF)  
Load Capacitance (nF)  
D016  
D017  
RGH = 0 Ω  
RGL = 0 Ω  
VCC1 = 5 V  
RGH = 10 Ω  
RGL = 5 Ω  
VCC1 = 5 V  
Figure 29. tf Fall Time v. Load Capacitance  
Figure 30. tr Rise Time vs Load Capacitance  
2000  
1800  
1600  
1400  
1200  
1000  
800  
500  
480  
460  
440  
420  
400  
380  
360  
340  
320  
300  
VCC2 = 15 V  
VCC2 = 30 V  
600  
400  
VCC2 = 15 V  
VCC2 = 30 V  
200  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Load Capacitance (nF)  
Ambient Temperature (èC)  
D018  
D019  
RGH = 10 Ω  
RGL = 5 Ω  
VCC1 = 5 V  
Figure 31. tf Fall Time vs Load Capacitance  
Figure 32. Leading Edge Blanking Time With Temperature  
Copyright © 2016, Texas Instruments Incorporated  
15  
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
610  
590  
570  
550  
530  
510  
490  
470  
450  
4
VCC2 = 15 V  
VCC2 = 30 V  
VCC2 = 15 V  
VCC2 = 30 V  
3.5  
3
2.5  
2
1.5  
1
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D020  
D021  
CL = 10 nF  
RGH = 0 Ω  
RGL = 0 Ω  
CL = 10 nF  
RGH = 0 Ω  
RGL = 0 Ω  
Figure 33. DESAT Sense to VOUT 10% Delay vs Temperature  
Figure 34. DESAT Sense to VOUT 90% Delay vs Temperature  
5
1.25  
VCC2 = 15 V  
VCC2 = 30 V  
4.8  
4.6  
4.4  
4.2  
4
1.20  
1.15  
1.10  
1.05  
3.8  
3.6  
VCC1 = 5 V, VCC2 = 15 V  
3.4  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
D024  
Ambient Temperature (èC)  
D022  
Figure 36. Fault and RDY Low to RDY High Delay vs  
Temperature  
Figure 35. DESAT Sense to Fault Low Delay vs Temperature  
120  
5
4.5  
4
100  
80  
3.5  
3
60  
2.5  
2
40  
1.5  
1
VCC1 = 3 V  
VCC1 = 3.3 V  
VCC1 = 5 V  
VCC1 = 5.5 V  
V(CLAMP) = 2 V  
V(CLAMP) = 4 V  
V(CLAMP) = 6 V  
20  
0.5  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D023  
D025  
Figure 38. Miller Clamp Current vs Temperature  
Figure 37. Reset to Fault Delay Across Temperature  
16  
Copyright © 2016, Texas Instruments Incorporated  
ISO5852S-Q1  
www.ti.com.cn  
ZHCSFJ5 SEPTEMBER 2016  
Typical Characteristics (continued)  
1400  
1200  
1000  
800  
600  
400  
200  
0
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
20mA at VCC2 = 15V  
20mA at VCC2 = 30V  
250mA at VCC2 = 15V  
250mA at VCC2 = 30V  
500mA at VCC2 = 15V  
500mA at VCC2 = 30V  
I(OUTH/L) = 100 mA  
0.2  
I(OUTH/L) = 200 mA  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (Cè)  
Ambient Temperature (èC)  
D029  
D026  
Figure 40. VCLP_CLAMP - Short-Circuit Clamp Voltage on  
Clamp Across Temperature  
Figure 39. Active Pulldown Voltage vs Temperature  
1400  
1200  
1000  
800  
1400.0  
1200.0  
1000.0  
800.0  
600.0  
400.0  
200.0  
0.0  
20mA at VCC2 = 15V  
20mA at VCC2 = 30V  
250mA at VCC2 = 15V  
250mA at VCC2 = 30V  
500mA at VCC2 = 15V  
500mA at VCC2 = 30V  
600  
400  
20mA at VCC2 = 15V  
20mA at VCC2 = 30V  
250mA at VCC2 = 15V  
250mA at VCC2 = 30V  
500mA at VCC2 = 15V  
500mA at VCC2 = 30V  
200  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (Cè)  
Ambient Temperature (Cè)  
D028  
D027  
Figure 42. VOUTL_CLAMP - Short-Circuit Clamp Voltage on  
OUTL Across Temperature  
Figure 41. VOUTH_CLAMP - Short-Circuit Clamp Voltage on  
OUTH Across Temperature  
-400  
-420  
-440  
-460  
-480  
-500  
-520  
-540  
-560  
-580  
-600  
VDESAT = 6 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (èC)  
D030  
VCC2 = 15 V  
DESAT = 6 V  
Figure 43. Blanking Capacitor Charging Current vs Temperature  
Copyright © 2016, Texas Instruments Incorporated  
17  
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
www.ti.com.cn  
8 Parameter Measurement Information  
INœ  
0 V  
50 %  
50 %  
IN+  
tr  
tf  
90%  
50%  
10%  
OUTH/L  
tPLH  
tPHL  
Figure 44. OUTH and OUTL Propagation Delay, Non-Inverting Configuration  
INœ  
50 %  
50 %  
IN+  
VCC1  
tr  
tf  
90%  
50%  
10%  
OUTH/L  
tPLH  
tPHL  
Figure 45. OUTH and OUTL Propagation Delay, Inverting Configuration  
18  
Copyright © 2016, Texas Instruments Incorporated  
ISO5852S-Q1  
www.ti.com.cn  
ZHCSFJ5 SEPTEMBER 2016  
Parameter Measurement Information (continued)  
Inputs  
Inputs  
released  
blocked  
The inputs are muted for 5 µs by internal circuit after  
DESAT is detected. RDY is also low until the mute time.  
FLT can be reset, only if RDY goes high.  
IN+  
(INœ = GND1)  
90%  
VOUTH/L  
tDS(90%)  
10%  
tDS(10%)  
VDSTH  
tLEB  
DESAT  
FLT  
tDS(FLT)  
RDY  
RST  
tMute  
RST-rising edge  
turns FLT high  
tRST  
Figure 46. DESAT, OUTH/L, FLT, RST Delay  
5
3
15  
VCC2  
VCC1  
15V  
0.1µF  
1µF  
2.25 V- 5.5 V  
9 ,16  
14  
GND1  
GND2  
VEE2  
1,8  
6
RST  
IN+  
+
-
10  
OUTL  
+
S1  
Pass œ Fail Criterion :  
OUT must remain stable  
11  
CL  
1nF  
IN -  
13  
12  
2
-
FLT  
DESAT  
7
4
CLAMP  
OUTH  
RDY  
Copyright © 2016, Texas Instruments  
Incorporated  
-
+
VCM  
Figure 47. Common-Mode Transient Immunity Test Circuit  
Copyright © 2016, Texas Instruments Incorporated  
19  
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The ISO5852S-Q1 is an isolated gate driver for IGBTs and MOSFETs. Input CMOS logic and output power stage  
are separated by a Silicon dioxide (SiO2) capacitive isolation.  
The IO circuitry on the input side interfaces with a micro controller and consists of gate drive control and RESET  
(RST) inputs, READY (RDY) and FAULT (FLT) alarm outputs. The power stage consists of power transistors to  
supply 2.5-A pullup and 5-A pulldown currents to drive the capacitive load of the external power transistors, as  
well as DESAT detection circuitry to monitor IGBT collector-emitter overvoltage under short circuit events. The  
capacitive isolation core consists of transmit circuitry to couple signals across the capacitive isolation barrier, and  
receive circuitry to convert the resulting low-swing signals into CMOS levels. The ISO5852S-Q1 also contains  
under voltage lockout circuitry to prevent insufficient gate drive to the external IGBT, and active output pulldown  
feature which ensures that the gate-driver output is held low, if the output supply voltage is absent. The  
ISO5852S-Q1 also has an active Miller clamp function which can be used to prevent parasitic turn-on of the  
external power transistor, due to Miller effect, for unipolar supply operation.  
9.2 Functional Block Diagram  
VCC2  
VCC1  
VCC1  
UVLO1  
UVLO2  
500 µA  
DESAT  
GND2  
INœ  
Mute  
9 V  
IN+  
VCC2  
VCC1  
RDY  
Gate Drive  
and  
OUTH  
OUTL  
Ready  
Encoder  
Logic  
STO  
VCC1  
FLT  
Decoder  
Q
Q
S
R
2 V  
Fault  
CLAMP  
VCC1  
RST  
GND1  
VEE2  
Copyright © 2016, Texas Instruments Incorporated  
20  
Copyright © 2016, Texas Instruments Incorporated  
ISO5852S-Q1  
www.ti.com.cn  
ZHCSFJ5 SEPTEMBER 2016  
9.3 Feature Description  
9.3.1 Supply and Active Miller clamp  
The ISO5852S-Q1 supports both bipolar and unipolar power supply with active Miller clamp.  
For operation with bipolar supplies, the IGBT is turned off with a negative voltage on its gate with respect to its  
emitter. This prevents the IGBT from unintentionally turning on because of current induced from its collector to its  
gate due to Miller effect. In this condition it is not necessary to connect CLAMP output of the gate driver to the  
IGBT gate, but connecting CLAMP output of the gate driver to the IGBT gate is also not an issue. Typical values  
of VCC2 and VEE2 for bipolar operation are 15-V and -8-V with respect to GND2.  
For operation with unipolar supply, typically, VCC2 is connected to 15-V with respect to GND2, and VEE2 is  
connected to GND2. In this use case, the IGBT can turn on due to additional charge from IGBT Miller  
capacitance caused by a high voltage slew rate transition on the IGBT collector. To prevent IGBT to turn on, the  
CLAMP pin is connected to IGBT gate and Miller current is sinked through a low impedance CLAMP transistor.  
Miller CLAMP is designed for Miller current up to 2-A. When the IGBT is turned-off and the gate voltage  
transitions below 2-V the CLAMP current output is activated.  
9.3.2 Active Output Pulldown  
The Active output pulldown feature ensures that the IGBT gate OUTH/L is clamped to VEE2 to ensure safe IGBT  
off-state, when the output side is not connected to the power supply.  
9.3.3 Undervoltage Lockout (UVLO) With Ready (RDY) Pin Indication Output  
Undervoltage Lockout (UVLO) ensures correct switching of IGBT. The IGBT is turned-off, if the supply VCC1  
drops below VIT-(UVLO1), irrespective of IN+, IN– and RST input till VCC1 goes above VIT+(UVLO1)  
.
In similar manner, the IGBT is turned-off, if the supply VCC2 drops below VIT-(UVLO2), irrespective of IN+, IN– and  
RST input till VCC2 goes above VIT+(UVLO2)  
.
Ready (RDY) pin indicates status of input and output side Under Voltage Lock-Out (UVLO) internal protection  
feature. If either side of device have insufficient supply (VCC1 or VCC2), the RDY pin output goes low; otherwise,  
RDY pin output is high. RDY pin also serves as an indication to the micro-controller that the device is ready for  
operation.  
9.3.4 Soft Turnoff, Fault (FLT) and Reset (RST)  
During IGBT overcurrent condition, a mute logic initiates a soft-turn-off procedure which disables, OUTH, and  
pulls OUTL to low over a time span of 2 μs. When desaturation is active, a fault signal is sent across the isolation  
barrier pulling the FLT output at the input side low and blocking the isolator input. mute logic is activated through  
the soft-turn-off period. The FLT output condition is latched and can be reset only after RDY goes high, through a  
active-low pulse at the RST input. RST has an internal filter to reject noise and glitches. By asserting RST for at-  
least the specified minimum duration (800 ns), device input logic can be enabled or disabled.  
9.3.5 Short Circuit Clamp  
Under short circuit events it is possible that currents are induced back into the gate-driver OUTH/L and CLAMP  
pins due to parasitic Miller capacitance between the IGBT collector and gate terminals. Internal protection diodes  
on OUTH/L and CLAMP help to sink these currents while clamping the voltages on these pins to values slightly  
higher than the output side supply.  
Copyright © 2016, Texas Instruments Incorporated  
21  
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
www.ti.com.cn  
9.4 Device Functional Modes  
In ISO5852S-Q1 OUTH/L to follow IN+ in normal functional mode, FLT pin must be in the high state. Table 1 lists  
the device functions.  
Table 1. Function Table(1)  
VCC1  
PU  
PD  
PU  
PU  
PU  
PU  
PU  
VCC2  
PD  
IN+  
X
IN–  
X
RST  
X
RDY  
Low  
Low  
High  
Low  
High  
High  
High  
OUTH/L  
Low  
PU  
X
X
X
Low  
PU  
X
X
Low  
X
Low  
Open  
PU  
X
X
Low  
Low  
X
X
X
Low  
PU  
High  
Low  
X
Low  
PU  
High  
High  
High  
(1) PU: Power Up (VCC1 2.25 V, VCC2 13 V), PD: Power Down (VCC1 1.7 V, VCC2 9.5 V), X: Irrelevant  
22  
Copyright © 2016, Texas Instruments Incorporated  
 
ISO5852S-Q1  
www.ti.com.cn  
ZHCSFJ5 SEPTEMBER 2016  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The ISO5852S-Q1 device is an isolated gate driver for power semiconductor devices such as IGBTs and  
MOSFETs. It is intended for use in applications such as motor control, industrial inverters and switched mode  
power supplies. In these applications, sophisticated PWM control signals are required to turn the power devices  
on and off, which at the system level eventually may determine, for example, the speed, position, and torque of  
the motor or the output voltage, frequency and phase of the inverter. These control signals are usually the  
outputs of a microcontroller, and are at low voltage levels such as 2.5 V, 3.3 V or 5 V. The gate controls required  
by the MOSFETs and IGBTs, however, are in the range of 30-V (using unipolar output supply) to 15-V (using  
bipolar output supply), and require high-current capability to drive the large capacitive loads offered by those  
power transistors. The gate drive must also be applied with reference to the emitter of the IGBT (source for  
MOSFET), and by construction, the emitter node in a gate-drive system may swing between 0 to the DC-bus  
voltage, which can be several 100s of volts in magnitude.  
The ISO5852S-Q1 device is therefore used to level shift the incoming 2.5-V, 3.3-V, and 5-V control signals from  
the microcontroller to the 30-V (using unipolar output supply) to 15-V (using bipolar output supply) drive required  
by the power transistors while ensuring high-voltage isolation between the driver side and the microcontroller  
side.  
10.2 Typical Applications  
Figure 48 shows the typical application of a three-phase inverter using six ISO5852S-Q1 isolated gate drivers.  
Three-phase inverters are used for variable-frequency drives to control the operating speed and torque of AC  
motors and for high-power applications such as high-voltage DC (HVDC) power transmission.  
The basic three-phase inverter consists of six power switches, and each switch is driven by one ISO5852S-Q1.  
The switches are driven on and off at high switching frequency with specific patterns that to converter dc bus  
voltage to three-phase AC voltages.  
ISO  
ISO  
ISO  
ISO  
5852S  
5852S  
5852S  
5852S  
1
2
3
4
5
6
PWM  
µC  
3-Phase  
Input  
M
FAULT  
ISO  
ISO  
5852S  
5852S  
Figure 48. Typical Motor-Drive Application  
Copyright © 2016, Texas Instruments Incorporated  
23  
 
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
www.ti.com.cn  
Typical Applications (continued)  
10.2.1 Design Requirements  
Unlike optocoupler-based gate drivers which required external current drivers and biasing circuitry to provide the  
input control signals, the input control to the ISO5852S-Q1 device is CMOS and can be directly driven by the  
microcontroller. Other design requirements include decoupling capacitors on the input and output supplies, a  
pullup resistor on the common-drain FLT output signal and RST input signal, and a high-voltage protection diode  
between the IGBT collector and the DESAT input. Further details are explained in the subsequent sections.  
Table 2 lists the allowed range for input and output supply voltage, and the typical current output available from  
the gate-driver.  
Table 2. Design Parameters  
PARAMETER  
Input supply voltage  
VALUE  
2.25 V to 5.5 V  
15 V to 30 V  
15 V to 30 V  
0 V to 15 V  
2.5 A  
Unipolar output-supply voltage (VCC2 – GND2 = VCC2 – VEE2  
)
Bipolar output-supply voltage (VCC2 – VEE2  
)
Bipolar output-supply voltage (GND2 – VEE2  
Output current  
)
10.2.2 Detailed Design Procedure  
10.2.2.1 Recommended ISO5852S-Q1 Application Circuit  
The ISO5852S-Q1 device has both, inverting and noninverting gate-control inputs, an active-low reset input, and  
an open-drain fault output suitable for wired-OR applications. The recommended application circuit in Figure 49  
shows a typical gate-driver implementation with unipolar output supply. Figure 50 shows a typical gate-driver  
implementation with bipolar output supply using the ISO5852S-Q1 device.  
A 0.1-μF bypass capacitor, recommended at the input supply pin VCC1, and 1-μF bypass capacitor,  
recommended at the VCC2 output supply pin, provide the large transient currents required during a switching  
transition to ensure reliable operation. The 220-pF blanking capacitor disables DESAT detection during the off-to-  
on transition of the power device. The DESAT diode (DDST) and the 1-kseries resistor on the DESAT pin are  
external protection components. The RG gate resistor limits the gate-charge current and indirectly controls the  
rise and fall times of the IGBT collector voltage. The open-drain FLT output and RDY output have a passive  
10-kpullup resistor. In this application, the IGBT gate driver is disabled when a fault is detected and does not  
resume switching until the microcontroller applies a reset signal.  
10R  
10R  
ISO5852S-Q1  
ISO5852S-Q1  
15  
5
15  
5
VCC1  
GND1  
IN+  
VCC2  
GND2  
VEE2  
VCC1  
GND1  
IN+  
VCC2  
GND2  
VEE2  
+
+
+
+
2.25 to  
5 V  
2.25 to  
5 V  
15 V  
15 V  
15 V  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
œ
œ
œ
œ
3
3
9
16  
9
16  
+
0.1 µF  
œ
10  
10  
1
8
1
8
+
+
DDST  
DDST  
1 kꢀ  
1 kꢀ  
10 kꢀ  
10 kꢀ  
10 kꢀ  
10 kꢀ  
11  
12  
13  
14  
2
7
6
4
11  
12  
13  
14  
2
7
6
4
œ
œ
INœ  
DESAT  
CLAMP  
OUTL  
INœ  
DESAT  
CLAMP  
OUTL  
RDY  
FLT  
RST  
RDY  
FLT  
RST  
RGL  
RGH  
RGL  
RGH  
OUTH  
OUTH  
220 pF  
220 pF  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
Figure 49. Unipolar Output Supply  
Figure 50. Bipolar Output Supply  
24  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ISO5852S-Q1  
www.ti.com.cn  
ZHCSFJ5 SEPTEMBER 2016  
10.2.2.2 FLT and RDY Pin Circuitry  
A is 50-kΩ pullup resistor exists internally on FLT and RDY pins. The FLT and RDY pins are an open-drain  
output. A 10-kpullup resistor can be used to make it faster rise and to provide logic high when FLT and RDY is  
inactive, as shown in Figure 51.  
Fast common-mode transients can inject noise and glitches on FLT and RDY pins because of parasitic coupling.  
The injection of noise and glitches is dependent on board layout. If required, additional capacitance (100 pF to  
300 pF) can be included on the FLT and RDY pins.  
10R  
ISO5852S-Q1  
15  
VCC1  
+
2.25 to 5 V  
0.1 µF  
œ
9
GND1  
16  
10 k  
10 kꢀ  
12  
13  
14  
RDY  
FLT  
µC  
RST  
10  
11  
IN+  
INœ  
Copyright © 2016, Texas Instruments Incorporated  
Figure 51. FLT and RDY Pin Circuitry for High CMTI  
10.2.2.3 Driving the Control Inputs  
The amount of common-mode transient immunity (CMTI) can be curtailed by the capacitive coupling from the  
high-voltage output circuit to the low-voltage input side of the ISO5852S-Q1 device. For maximum CMTI  
performance, the digital control inputs, IN+ and IN–, must be actively driven by standard CMOS, push-pull drive  
circuits. This type of low-impedance signal source provides active drive signals that prevent unwanted switching  
of the ISO5852S-Q1 output under extreme common-mode transient conditions. Passive drive circuits, such as  
open-drain configurations using pullup resistors, must be avoided. A 20-ns glitch filter exists that can filter a glitch  
up to 20 ns on IN+ or IN–.  
Copyright © 2016, Texas Instruments Incorporated  
25  
 
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
www.ti.com.cn  
10.2.2.4 Local Shutdown and Reset  
In applications with local shutdown and reset, the FLT output of each gate driver is polled separately, and the  
individual reset lines are independently asserted low to reset the motor controller after a fault condition.  
10R  
10R  
ISO 5852S œ Q1  
VCC1  
ISO 5852S œ Q1  
VCC1  
15  
15  
0.1µF  
0.1µF  
2.25V-5.5V  
2.25V-5.5V  
9, 16  
9, 16  
GND1  
GND1  
10k  
10k  
10k  
10k  
12  
13  
12  
13  
RDY  
FLT  
RDY  
FLT  
µC  
µC  
14  
10  
14  
10  
RST  
IN +  
RST  
IN +  
11  
11  
IN -  
IN -  
Copyright © 2016, Texas Instruments  
Incorporated  
Figure 52. Local Shutdown and Reset for Noninverting (left) and Inverting Input Configuration (right)  
26  
Copyright © 2016, Texas Instruments Incorporated  
ISO5852S-Q1  
www.ti.com.cn  
ZHCSFJ5 SEPTEMBER 2016  
10.2.2.5 Global-Shutdown and Reset  
When configured for inverting operation, the ISO5852S-Q1 device can be configured to shutdown automatically  
in the event of a fault condition by tying the FLT output to IN+. For high reliability drives, the open drain FLT  
outputs of multiple ISO5852S-Q1 devices can be wired together forming a single, common fault bus for  
interfacing directly to the microcontroller. When any of the six gate drivers of a three-phase inverter detects a  
fault, the active-low FLT output disables all six gate drivers simultaneously.  
10R  
ISO5852S œ Q1  
VCC1  
15  
0.1µF  
2.25 V- 5.5 V  
9, 16  
GND1  
10k  
10k  
12  
13  
RDY  
FLT  
µC  
14  
10  
RST  
IN +  
11  
IN -  
to other  
RSTs  
to other  
FLTs  
Copyright © 2016, Texas Instruments  
Incorporated  
Figure 53. Global Shutdown With Inverting Input Configuration  
Copyright © 2016, Texas Instruments Incorporated  
27  
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
www.ti.com.cn  
10.2.2.6 Auto-Reset  
In this case, the gate control signal at IN+ is also applied to the RST input to reset the fault latch every switching  
cycle. Incorrect RST makes output go low. A fault condition, however, the gate driver remains in the latched fault  
state until the gate control signal changes to the gate-low state and resets the fault latch.  
If the gate control signal is a continuous PWM signal, the fault latch is always reset before IN+ goes high again.  
This configuration protects the IGBT on a cycle-by-cycle basis and automatically resets before the next on cycle.  
10R  
10R  
ISO 5852S - Q1  
VCC1  
ISO 5852S - Q1  
VCC1  
15  
15  
2.25 V- 5.5 V  
0.1µF  
0.1µF  
2.25 V- 5.5 V  
9, 16  
9, 16  
GND1  
GND1  
10k  
10k  
10k  
10k  
12  
13  
12  
13  
RDY  
FLT  
RDY  
FLT  
µ
C
µC  
14  
10  
14  
10  
RST  
IN +  
IN -  
RST  
IN +  
IN -  
11  
11  
Copyright © 2016, Texas Instruments  
Incorporated  
Figure 54. Auto Reset for Noninverting and Inverting Input Configuration  
28  
Copyright © 2016, Texas Instruments Incorporated  
ISO5852S-Q1  
www.ti.com.cn  
ZHCSFJ5 SEPTEMBER 2016  
10.2.2.7 DESAT Pin Protection  
Switching inductive loads causes large, instantaneous forward-voltage transients across the freewheeling diodes  
of the IGBTs. These transients result in large negative-voltage spikes on the DESAT pin which draw substantial  
current out of the device. To limit this current below damaging levels, a 100-to 1-kresistor is connected in  
series with the DESAT diode.  
Further protection is possible through an optional Schottky diode, whose low-forward voltage assures clamping of  
the DESAT input to GND2 potential at low-voltage levels.  
ISO5852S-Q1  
5
3
VCC2  
+
15 V  
15 V  
1 µF  
œ
GND2  
VEE2  
+
0.1 µF  
œ
1
8
DDST  
RS  
2
7
6
DESAT  
CLAMP  
OUTL  
œ
RGL  
RGH  
VFW-Inst  
4
+
OUTH  
VFW  
220 pF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 55. DESAT Pin Protection With Series Resistor and Schottky Diode  
Copyright © 2016, Texas Instruments Incorporated  
29  
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
www.ti.com.cn  
10.2.2.8 DESAT Diode and DESAT Threshold  
The function of the DESAT diode is to conduct forward current, allowing sensing of the saturated collector-to-  
emitter voltage of the IGBT, V(DESAT), (when the IGBT is on), and to block high voltages (when the IGBT is off).  
During the short transition time when the IGBT is switching, a commonly high dVCE/dt voltage ramp rate occurs  
across the IGBT. This ramp rate results in a charging current I(CHARGE) = C(D-DESAT) × dVCE/dt, charging the  
blanking capacitor. C(D-DESAT) is the diode capacitance at DESAT.  
To minimize this current and avoid false DESAT triggering, fast switching diodes with low capacitance are  
recommended. As the diode capacitance builds a voltage divider with the blanking capacitor, large collector  
voltage transients appear at DESAT attenuated by the ratio of 1+ C(BLANK) / C(D-DESAT)  
.
Because the sum of the DESAT diode forward-voltage and the IGBT collector-emitter voltage make up the  
voltage at the DESAT-pin, VF + VCE = V(DESAT), the VCE level, which triggers a fault condition, can be modified by  
adding multiple DESAT diodes in series: VCE-FAULT(TH) = 9 V – n × VF (where n is the number of DESAT diodes).  
When using two diodes instead of one, diodes with half the required maximum reverse-voltage rating can be  
selected.  
10.2.2.9 Determining the Maximum Available, Dynamic Output Power, POD-max  
The ISO5852S-Q1 maximum-allowed total power consumption of PD = 251 mW consists of the total input power,  
PID, the total output power, POD, and the output power under load, POL  
:
PD = PID + POD + POL  
(1)  
(2)  
(3)  
(4)  
With:  
PID = VCC1-max × ICC1-max = 5.5 V × 4.5 mA = 24.75 mW  
and:  
POD = (VCC2 – VEE2) × ICC2-max = (15 V – [–8 V]) × 6 mA = 138 mW  
then:  
POL = PD – PID – POD = 251 mW – 24.75 mW – 138 mW = 88.25 mW  
In comparison to POL, the actual dynamic output power under worst case condition, POL-WC, depends on a variety  
of parameters:  
æ
ç
è
ö
÷
ø
ron-max  
roff-max  
POL-WC = 0.5 ´ f  
´ QG  
´
V
- VEE2  
´
+
(
)
INP  
CC2  
ron-max + RG  
roff-max + RG  
where  
fINP = signal frequency at the control input IN+  
QG = power device gate charge  
VCC2 = positive output supply with respect to GND2  
VEE2 = negative output supply with respect to GND2  
ron-max = worst case output resistance in the on-state: 4  
roff-max = worst case output resistance in the off-state: 2.5 Ω  
RG = gate resistor  
(5)  
30  
Copyright © 2016, Texas Instruments Incorporated  
 
ISO5852S-Q1  
www.ti.com.cn  
ZHCSFJ5 SEPTEMBER 2016  
When RG is determined, Equation 5 is to be used to verify whether POL-WC < POL. Figure 56 shows a simplified  
output stage model for calculating POL-WC  
.
ISO5852S-Q1  
VCC2  
+
œ
Ron-max  
15 V  
RG  
OUTH/L  
QG  
Roff-max  
+
8 V  
œ
VEE2  
Copyright © 2016, Texas Instruments Incorporated  
Figure 56. Simplified Output Model for Calculating POL-WC  
10.2.2.10 Example  
This examples considers an IGBT drive with the following parameters:  
ION-PK = 2 A  
QG = 650 nC  
fINP = 20 kHz  
VCC2 = 15 V  
VEE2 = –8 V  
Applying the value of the gate resistor RG = 10 Ω.  
Then, calculating the worst-case output-power consumption as a function of RG, using Equation 5 ron-max = worst  
case output resistance in the on-state: 4 Ω, roff-max = worst case output resistance in the off-state: 2.5 Ω, RG  
=
gate resistor yields  
4 Ω  
2.5 Ω  
æ
ö
POL-WC = 0.5´20 kHz´650 nC´ 15 V -( -8 V) ´  
+
4 Ω + 10 Ω 2.5 Ω + 10 Ω  
= 72.61 mW  
(
)
ç
è
÷
ø
(6)  
Because POL-WC = 72.61 mW is less than the calculated maximum of POL = 88.25 mW, the resistor value of RG =  
10 is suitable for this application.  
Copyright © 2016, Texas Instruments Incorporated  
31  
 
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
www.ti.com.cn  
10.2.2.11 Higher Output Current Using an External Current Buffer  
To increase the IGBT gate drive current, a non-inverting current buffer (such as the npn/pnp buffer shown in  
Figure 57) can be used. Inverting types are not compatible with the desaturation fault protection circuitry and  
must be avoided. The MJD44H11/MJD45H11 pair is appropriate for currents up to 8 A, the D44VH10/ D45VH10  
pair for up to 15 A maximum.  
ISO5852S-Q1  
5
3
VCC2  
+
15 V  
15 V  
1 µF  
œ
GND2  
VEE2  
+
0.1 µF  
œ
1
8
DDST  
1 k  
2
7
6
DESAT  
CLAMP  
OUTL  
RG  
10 ꢀ  
10 ꢀ  
4
OUTH  
220 pF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 57. Current Buffer for Increased Drive Current  
10.2.3 Application Curves  
5 µs/Div  
5 µs/Div  
CL = 1 nF  
VCC2 – GND2 = 15 V  
(VCC2 – VEE2 = 23 V)  
RGH = 10 Ω  
RGL = 10 Ω  
CL = 1 nF  
RGH = 10 Ω  
RGL = 10 Ω  
GND2 - VEE2 = 8 V  
VCC2 – VEE2 = VCC2 - GND2 = 20 V  
Figure 58. Normal Operation - Bipolar Supply  
Figure 59. Normal Operation - Unipolar Supply  
32  
Copyright © 2016, Texas Instruments Incorporated  
 
ISO5852S-Q1  
www.ti.com.cn  
ZHCSFJ5 SEPTEMBER 2016  
11 Power Supply Recommendations  
To help ensure reliable operation at all data rates and supply voltages, a 0.1-μF bypass capacitor is  
recommended at the VCC1 input supply pin and a 1-μF bypass capacitor is recommended at the VCC2output  
supply pin. The capacitors should be placed as close to the supply pins as possible. The recommended  
placement of the capacitors is 2 mm (maximum) from the input and output power supply pins (VCC1 and VCC2).  
12 Layout  
12.1 Layout Guidelines  
minimum of four layers is required to accomplish a low EMI PCB design (see Figure 60). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-current or sensitive traces on the top layer avoids the use of vias (and the introduction of  
their inductances) and allows for clean interconnects between the gate driver and the microcontroller and  
power transistors. Gate driver control input, Gate driver output OUTH/L and DESAT should be routed in the  
top layer.  
Placing a solid ground plane next to the sensitive signal layer provides an excellent low-inductance path for  
the return current flow. On the driver side, use GND2 as the ground plane.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/inch2. On the gate-driver VEE2 and VCC2 can be used as power planes. They can share  
the same layer on the PCB as long as they are not connected together.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
For more detailed layout recommendations, including placement of capacitors, impact of vias, reference planes,  
routing, and other details, see the Digital Isolator Design Guide.  
12.2 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and  
stiffness, and the self-extinguishing flammability-characteristics.  
12.3 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Yeep this  
FR-4  
0 ~ 4.5  
space free  
from planes,  
traces, pads,  
and vias  
40 mils  
10 mils  
r
Power plane  
Low-speed traces  
Figure 60. Recommended Layer Stack  
版权 © 2016, Texas Instruments Incorporated  
33  
 
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
www.ti.com.cn  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档ꢀ  
相关文档如下:  
数字隔离器设计指南  
ISO5852S 评估模块 (EVM) 用户指南》  
隔离相关术语  
13.2 接收文档更新通知  
要接收文档更新通知,请访问 www.ti.com.cn 您器件对应的产品文件夹。点击右上角的提醒我 (Alert me) 注册后,  
即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档的修订历史记录。  
13.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
34  
版权 © 2016, Texas Instruments Incorporated  
ISO5852S-Q1  
www.ti.com.cn  
ZHCSFJ5 SEPTEMBER 2016  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
35  
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
www.ti.com.cn  
PACKAGE OUTLINE  
DW0016B  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.38  
0.25  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4221009/A 08/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MO-013, variation AA.  
www.ti.com  
36  
版权 © 2016, Texas Instruments Incorporated  
ISO5852S-Q1  
www.ti.com.cn  
ZHCSFJ5 SEPTEMBER 2016  
EXAMPLE BOARD LAYOUT  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
16X (1.65)  
16X (0.6)  
SEE  
DETAILS  
SEE  
DETAILS  
1
1
16  
16  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
9
9
8
8
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221009/A 08/2013  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
版权 © 2016, Texas Instruments Incorporated  
37  
ISO5852S-Q1  
ZHCSFJ5 SEPTEMBER 2016  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (0.6)  
16X (2)  
1
1
16  
16  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
8
9
8
9
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4221009/A 08/2013  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
38  
版权 © 2016, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO5852SQDWQ1  
ISO5852SQDWRQ1  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
DW  
DW  
16  
16  
40  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
ISO5852SQ  
ISO5852SQ  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

ISO5852SQDWRQ1

具有分离输出和有源保护功能的汽车类 5.7kVrms、2.5A/5A 单通道隔离式栅极驱动器 | DW | 16 | -40 to 125
TI

ISO5852S_15

High-CMTI 2.5-A / 5-A Isolated IGBT, MOSFET Gate Driver with Split Outputs and Active Safety Features
TI

ISO6720

ISO672x-Q1 General Purpose Reinforced and Basic Dual-Channel Automotive Digital Isolators with Robust EMC
TI

ISO6720-Q1

ISO672x-Q1 General Purpose Reinforced and Basic Dual-Channel Automotive Digital Isolators with Robust EMC
TI

ISO6720-Q1_V01

ISO672x-Q1 General Purpose Reinforced and Basic Dual-Channel Digital Isolators with Robust EMC
TI

ISO6720-Q1_V02

ISO672x-Q1 General Purpose Reinforced and Basic Dual-Channel Digital Isolators with Robust EMC
TI

ISO6720-Q1_V03

ISO672x-Q1 General Purpose Reinforced and Basic Dual-Channel Automotive Digital Isolators with Robust EMC
TI

ISO6720B

ISO672x General Purpose Basic Dual-Channel Digital Isolators with Robust EMC
TI

ISO6720B-Q1

ISO672x-Q1 General Purpose Reinforced and Basic Dual-Channel Automotive Digital Isolators with Robust EMC
TI

ISO6720BDR

ISO672x General Purpose Basic Dual-Channel Digital Isolators with Robust EMC
TI

ISO6720BQDRQ1

ISO672x-Q1 General Purpose Reinforced and Basic Dual-Channel Automotive Digital Isolators with Robust EMC
TI

ISO6720F-Q1

ISO672x-Q1 General Purpose Reinforced and Basic Dual-Channel Automotive Digital Isolators with Robust EMC
TI