ISO1412BDW [TI]

具有 EMC 保护功能的 500Kbps、全双工、5kVrms 隔离式 RS-485 和 RS-422 收发器 | DW | 16 | -40 to 125;
ISO1412BDW
型号: ISO1412BDW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 EMC 保护功能的 500Kbps、全双工、5kVrms 隔离式 RS-485 和 RS-422 收发器 | DW | 16 | -40 to 125

驱动 光电二极管 接口集成电路 驱动器
文件: 总49页 (文件大小:4352K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
EMC 性能优异的 ISO14xx 5kVRMS 隔离式 RS-485/RS-422 收发器  
1 特性  
3 说明  
1
符合 TIA/EIA-485-A 标准  
5V 总线侧电源下与 PROFIBUS 兼容  
总线 I/O 保护  
ISO14xx 器件是适用于 TIA/EIA RS-485 RS-422 应  
用的电隔离差分线路收发器。这些抗噪声收发器设计用  
于恶劣的工业环境。这些器件的总线引脚可承受高级别  
IEC 静电放电 (ESD) IEC 电子快速瞬变 (EFT)  
事件,无需在总线上使用额外组件进行系统级保护。这  
些器件提供有基础型和增强型隔离可供选择(请参阅  
增强型和基础型隔离选项)。  
±30kV HBM  
±16kV IEC 61000-4-2 接触放电  
±4kV IEC 61000-4-4 电气快速瞬变  
EMI 500kbps12Mbps 50Mbps 数据速率  
1.71V 5.5V 逻辑侧电源 (VCC1)3V 5.5V 总  
器件信息(1)  
线侧电源 (VCC2  
)
器件型号  
封装  
封装尺寸(标称值)  
失效防护接收器(总线开路、短路和空闲)  
1/8 单位负载:多达 256 个总线节点  
100kV/µs(典型值)高共模瞬态抗扰度  
扩展温度范围为 -40°C +125°C  
适用于热插拔功能的无干扰加电和断电  
宽体 SOIC-16 封装  
ISO1410ISO1410B  
ISO1412ISO1412B  
ISO1430ISO1430B  
ISO1432ISO1432B  
ISO1450ISO1450B  
ISO1452ISO1452B  
SOIC (16)  
10.30mm x 7.50mm  
引脚兼容大多数隔离式 RS-485 收发器  
安全相关认证:  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
符合 DIN VDE V 0884-11:2017-01 标准的  
7071VPK VIOTM 1500VPK VIORM(增强型和基  
本型选项)  
增强型和基础型隔离选项  
特性  
ISO14xx  
加强版  
VDE 标准的浪涌测试电压 10000VPK  
ISO14xxB  
基础版  
保护级别  
UL 1577 标准下,长达 1 分钟的 5000VRMS 隔  
6000VPK  
UL 标准的隔离等级  
5000VRMS  
5000VRMS  
IEC 60950-1IEC 62368-1IEC 60601-1 和  
IEC 61010-1 认证  
1060VRMS  
1500VPK  
/
1060VRMS  
1500VPK  
/
VDE 标准的工作电压  
CQCTUV CSA 认证  
VDE(增强型)、ULCQC TUV 认证完  
成;VDE(基本型)和 CSA 审批正在处理中  
简化应用电路原理图  
2 应用  
Logic Supply  
Bus-Side Supply  
VCC1  
VCC2  
电网基础设施  
VDD  
光伏逆变器  
TI Isolated  
Transceiver  
工厂自动化与控制  
电机驱动器  
DE  
D
A
B
MCU  
RS485 Bus  
HVAC 系统和楼宇自动化  
R
RE  
GND1  
Isolated Ground  
DGND  
GND2  
Logic Ground  
Galvanic Isolation  
Barrier  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF22  
 
 
 
 
 
 
 
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
目录  
8.16 Typical Characteristics.......................................... 17  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 4  
Device Options....................................................... 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 7  
8.1 Absolute Maximum Ratings ...................................... 7  
8.2 ESD Ratings.............................................................. 7  
8.3 Recommended Operating Conditions....................... 7  
8.4 Thermal Information.................................................. 8  
8.5 Power Ratings........................................................... 8  
8.6 Insulation Specifications............................................ 9  
8.7 Safety-Related Certifications................................... 10  
8.8 Safety Limiting Values ............................................ 10  
8.9 Electrical Characteristics: Driver ............................. 11  
8.10 Electrical Characteristics: Receiver ...................... 11  
8.11 Supply Current Characteristics: Side 1 (ICC1)....... 13  
8.12 Supply Current Characteristics: Side 2 (ICC2)....... 14  
8.13 Switching Characteristics: Driver .......................... 15  
8.14 Switching Characteristics: Receiver...................... 15  
8.15 Insulation Characteristics Curves ......................... 16  
9
Parameter Measurement Information ................ 23  
10 Detailed Description ........................................... 26  
10.1 Overview ............................................................... 26  
10.2 Functional Block Diagram ..................................... 26  
10.3 Feature Description............................................... 27  
10.4 Device Functional Modes...................................... 28  
11 Application and Implementation........................ 31  
11.1 Application Information.......................................... 31  
11.2 Typical Application ................................................ 32  
12 Power Supply Recommendations ..................... 35  
13 Layout................................................................... 35  
13.1 Layout Guidelines ................................................. 35  
13.2 Layout Example .................................................... 36  
14 器件和文档支持 ..................................................... 37  
14.1 文档支持................................................................ 37  
14.2 相关链接................................................................ 37  
14.3 接收文档更新通知 ................................................. 37  
14.4 社区资源................................................................ 37  
14.5 ....................................................................... 37  
14.6 静电放电警告......................................................... 37  
14.7 Glossary................................................................ 38  
15 机械、封装和可订购信息....................................... 38  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision D (May 2019) to Revision E  
Page  
Added footnote to Pin functions table for NC pins ................................................................................................................ 5  
Changed certification information in Safety related certifications table................................................................................ 10  
Changed the Vth+ spec in Electrical characteristics: Receiver for -15 VCM 15 V from -20 mV to -10 mV................... 11  
Added 1 line item for Vth+ in Electrical characteristics: Receiver for -7 VCM 12 V....................................................... 11  
Changes from Revision C (April 2019) to Revision D  
Page  
已添加 在整个数据表中添加了 B 器件编号 ............................................................................................................................ 1  
Changes from Revision B (November 2018) to Revision C  
Page  
已更改 将整个数据表中引用的 ISO141x 更改为 ISO14xx ...................................................................................................... 1  
已添加 在器件信息表中添加了 ISO1430ISO1432ISO1450ISO1452......................................................................... 1  
Changed the position of Device Features tabels .................................................................................................................. 4  
Added footnote to Pin Functions: Full-Duplex Device............................................................................................................ 5  
Added footnote to Pin Functions: Half-Duplex Device ........................................................................................................... 6  
已添加 Typical curves for ISO143x and ISO145x in Typical Characteristics ...................................................................... 17  
已添加 Section 11.2.3 Application Curves and Section 11.2.3.1 Insulation Lifetime ........................................................... 33  
2
版权 © 2018–2019, Texas Instruments Incorporated  
 
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
www.ti.com.cn  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
Changes from Revision A (August 2018) to Revision B  
Page  
已更改 将状态更改为生产数................................................................................................................................................ 1  
Changes from Original (July 2018) to Revision A  
Page  
Changed the designator of common mode voltage in Recommended operating condition to VI .......................................... 7  
Added test condition for CMTI in Electrical characteristics: Driver ................................................................................... 11  
Added test condition for CMTI in Electrical characteristics: Receiver.................................................................................. 12  
已更改 VTEST to VCM in the Common Mode Transient Immunity (CMTI)—Full Duplex and Common Mode Transient  
Immunity (CMTI)—Half Duplex figures in the Parameter Measurement Information section .............................................. 23  
已更改 tPLH to tPZH and tPLZ to tPHZ in the first Driver Enable and Disable Times timing diagram in the Parameter  
Measurement Information section ........................................................................................................................................ 24  
已添加 tPHZ to the first Receiver Enable and Disable Times timing diagram in the Parameter Measurement  
Information section .............................................................................................................................................................. 25  
版权 © 2018–2019, Texas Instruments Incorporated  
3
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
5 说明 (续)  
这些器件用于长距离通信。隔离会破坏通信节点之间的接地回路,从而获得更大的共模电压范围。经测试,每个器  
件的对称隔离栅可在总线收发器和逻辑电平接口之间按照 UL 1577 标准提供为时 1 分钟的 5000V RMS 隔离。  
ISO14xx 器件可由 1 侧的 1.71V 5.5V 电压供电运行,此电压范围使器件能够与低压 FPGA ASIC 连接。2 侧  
上具有 3V 5.5V 的宽电源电压范围,因此无需在隔离侧提供稳压电源。这些器件支持 -40°C +125°C 的宽工  
作环境温度范围。  
6 Device Options  
Table 1 shows an overview of the options available for this family of devices.  
Table 1. Device Features  
PART NUMBER  
ISO1410, ISO1410B  
ISO1412, ISO1412B  
ISO1430, ISO1430B  
ISO1432, ISO1432B  
ISO1450, ISO1450B  
ISO1452, ISO1452B  
ISOLATION  
DUPLEX  
Half  
DATA RATE  
500 Kbps  
500 Kbps  
12 Mbps  
PACKAGE  
16-pin DW  
16-pin DW  
16-pin DW  
16-pin DW  
16-pin DW  
16-pin DW  
Full  
Half  
Reinforced, Basic  
Full  
12 Mbps  
Half  
50 Mbps  
Full  
50 Mbps  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
 
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
www.ti.com.cn  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
7 Pin Configuration and Functions  
DW Package  
16-Pin SOIC  
Full-Duplex Device Top View  
VCC1  
GND1  
R
1
2
3
4
5
6
7
8
16  
VCC2  
GND2  
A
15  
14  
13  
12  
11  
10  
9
RE  
B
DE  
Z
D
Y
NC  
NC  
GND2  
GND1  
Not to scale  
Pin Functions: Full-Duplex Device  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
14  
13  
6
A
B
D
I
I
I
Receiver non-inverting input on the bus side  
Receiver inverting input on the bus side  
Driver input  
Driver enable. This pin enables the driver output when high and disables the driver  
output when low or open.  
DE  
5
I
GND1(1)  
GND1(1)  
GND2(1)  
GND2(1)  
NC(2)  
2
8
O
Ground connection for VCC1  
Ground connection for VCC1  
Ground connection for VCC2  
Ground connection for VCC2  
No internal connection  
No internal connection  
Receiver output  
9
15  
7
NC(2)  
10  
3
R
Receiver enable. This pin disables the receiver output when high or open and  
enables the receiver output when low.  
RE  
4
I
VCC1  
VCC2  
Y
1
O
Logic-side power supply  
Transceiver-side power supply  
Driver non-inverting output  
Driver inverting output  
16  
11  
12  
Z
O
(1) For Logic side, both Pin 2 and Pin 8 must be connected to GND1. For Bus side, both Pin 9 and Pin 15 must be connected to GND2.  
(2) Device functionality is not affected if NC pins are connected to supply or ground on PCB  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
DW Package  
16-Pin SOIC  
Half-Duplex Device Top View  
VCC1  
GND1  
R
1
2
3
4
5
6
7
8
16  
VCC2  
GND2  
NC  
15  
14  
13  
12  
11  
10  
9
RE  
B
DE  
A
D
NC  
NC  
NC  
GND1  
GND2  
Not to scale  
Pin Functions: Half-Duplex Device  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
12  
13  
6
A
B
D
I/O  
I/O  
I
Transceiver non-inverting input or output (I/O) on the bus side  
Transceiver inverting input or output (I/O) on the bus side  
Driver input  
Driver enable. This pin enables the driver output when high and disables the driver  
output when low or open.  
DE  
5
I
GND1(1)  
GND1(1)  
GND2(1)  
GND2(1)  
NC(2)  
NC(2)  
NC(2)  
NC(2)  
2
8
O
Ground connection for VCC1  
Ground connection for VCC1  
Ground connection for VCC2  
Ground connection for VCC2  
No internal connection  
No internal connection  
No internal connection  
No internal connection  
Receiver output  
9
15  
7
10  
11  
14  
3
R
Receiver enable. This pin disables the receiver output when high or open and  
enables the receiver output when low.  
RE  
4
I
VCC1  
VCC2  
1
Logic-side power supply  
16  
Transceiver-side power supply  
(1) For Logic side, both Pin 2 and Pin 8 must be connected to GND1. For Bus side, both Pin 9 and Pin 15 must be connected to GND2.  
(2) Device functionality is not affected if NC pins are connected to supply or ground on PCB  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
www.ti.com.cn  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
8 Specifications  
8.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
-0.5  
-0.5  
-0.5  
-15  
MAX  
UNIT  
V
VCC1  
VCC2  
VIO  
Supply voltage, side 1  
6
Supply voltage, side 2  
6
V
Logic voltage level (D, DE, RE, R)  
Output current on R pin  
VCC1+0.5(3)  
V
IO  
15  
18  
mA  
V
VBUS  
TJ  
Voltage on bus pins (A, B, Y, Z w.r.t GND2)  
Junction temperature  
-18  
-40  
150  
150  
TSTG  
Storage temperature  
-65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values.  
(3) Maximum voltage must not exceed 6 V  
8.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
V(ESD)  
V(ESD)  
Contact Discharge, per IEC 61000-4-2  
Contact Discharge, per IEC 61000-4-2  
Pins Bus terminals and GND2  
±16000  
V
ISO141x, Pins Bus terminals and GND1  
(across isolation barrier)  
±8000  
±8000  
V
ISO143x, Pins Bus terminals and GND1  
(across isolation barrier)  
All pins except bus pins(1)  
Contact Discharge, per IEC 61000-4-2  
V
V
Electrostatic discharge  
±6000  
Human body model (HBM), per  
ANSI/ESDA/JEDEC JS-001  
Bus terminals to GND2(1)  
±30000  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per  
JEDEC specification JESD22-C101  
V
All pins(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
MIN  
MAX  
1.89  
5.5  
UNIT  
Supply Voltage, Side 1, 1.8-V operation  
Supply Voltage, Side 1, 2.5-V, 3.3-V and 5.5-V operation  
Supply Voltage, Side 2  
1.71  
V
V
VCC1  
2.25  
VCC2  
VI  
3
5.5  
V
Common Mode voltage at any bus terminal: A or B  
High-level input voltage (D, DE, RE inputs)  
Low-level input voltage (D, DE, RE inputs)  
Differential input voltage, A with respect to B  
Output current, Driver  
-7  
12  
V
VIH  
VIL  
0.7*Vcc1  
Vcc1  
0.3*Vcc1  
15  
V
0
-15  
-60  
-4  
V
VID  
IO  
V
60  
mA  
mA  
Ω
IOR  
RL  
Output current, Receiver  
4
Differential load resistance  
54  
1/tUI  
1/tUI  
1/tUI  
TA  
Signaling rate ISO141x  
500  
12  
kbps  
Mbps  
Mbps  
°C  
Signaling Rate ISO143x  
Signaling rate ISO145x  
50  
Operating ambient temperature  
-40  
125  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.4 Thermal Information  
ISO14xx  
DW (SOIC)  
16 PINS  
67.9  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
27.7  
29.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
12.9  
ψJB  
28.8  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISO1410_ISO1412  
PD  
Maximum power dissipation (both sides) VCC1 = VCC2 = 5.5 V, TJ = 150°C, A-B  
556  
28  
mW  
mW  
load = 54 ||50pF, Load on R=15pF  
PD1  
Maximum power dissipation (side-1)  
Input a 250kHz 50% duty cycle square  
wave to D pin with  
VDE=VCC1, VRE=GND1  
PD2  
Maximum power dissipation (side-2)  
528  
mW  
ISO1430_ISO1432  
PD  
Maximum power dissipation (both sides) VCC1 = VCC2 = 5.5 V, TJ = 150°C, A-B  
352  
33  
mW  
mW  
load = 54 ||50pF, Load on R=15pF  
Input a 6MHz 50% duty cycle square  
wave to D pin with  
PD1  
Maximum power dissipation (side-1)  
PD2  
Maximum power dissipation (side-2)  
319  
mW  
VDE=VCC1, VRE=GND1  
ISO1450_ISO1452  
PD  
Maximum power dissipation (both sides) VCC1 = VCC2 = 5.5 V, TJ = 150°C, A-B  
588  
49  
mW  
mW  
load = 54 ||50pF, Load on R=15pF  
PD1  
Maximum power dissipation (side-1)  
Input a 25MHz 50% duty cycle square  
wave to D pin with  
VDE=VCC1, VRE=GND1  
PD2  
Maximum power dissipation (side-2)  
539  
mW  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
www.ti.com.cn  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
8.6 Insulation Specifications  
SPECIFICATIONS  
UNIT  
PARAMETER  
TEST CONDITIONS  
DW-16  
IEC 60664-1  
(1)  
CLR  
CPG  
DTI  
External clearance  
External creepage  
Side 1 to side 2 distance through air  
>8  
mm  
mm  
µm  
V
(1)  
Side 1 to side 2 distance across package surface >8  
Distance through the insulation  
Comparative tracking index  
Material Group  
Minimum internal gap (internal clearance)  
IEC 60112; UL 746A  
>17  
CTI  
>600  
I
According to IEC 60664-1  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
I-IV  
I-III  
Overvoltage category  
DIN VDE V 0884-11:2017-01(2)  
VIORM Maximum repetitive peak isolation voltage AC voltage (bipolar)  
1500  
1060  
1500  
7071  
VPK  
VRMS  
VDC  
AC voltage (sine wave); time-dependent  
dielectric breakdown (TDDB) test; see 56  
VIOWM  
Maximum working isolation voltage  
DC voltage  
VTEST = VIOTM , t = 60 s (qualification); VTEST  
1.2 × VIOTM, t = 1 s (100% production)  
=
VIOTM  
Maximum transient isolation voltage  
Maximum surge isolation voltage  
VPK  
Test method per IEC 62368-1, 1.2/50 µs  
waveform, VTEST = 1.6 × VIOSM = 10000 VPK  
(qualification)  
6250  
4615  
VPK  
(3)  
ISO141x  
VIOSM  
Test method per IEC 62368-1, 1.2/50 µs  
waveform, VTEST = 1.3 × VIOSM = 6000 VPK  
(qualification)  
Maximum surge isolation voltage  
VPK  
(3)  
ISO141xB  
Method a: After I/O safety test subgroup 2/3, Vini  
= VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM , tm = 10 5  
s
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
ISO14xx: Vpd(m) = 1.6 × VIORM , tm = 10 s  
5  
(4)  
qpd  
Apparent charge  
pC  
ISO14xxB: Vpd(m) = 1.2 × VIORM , tm = 10 s  
Method b1: At routine test (100% production)  
and preconditioning (type test), Vini = VIOTM, tini  
1 s;  
=
5  
ISO14xx: Vpd(m) = 1.875 × VIORM , tm = 1 s  
ISO14xxB: Vpd(m) = 1.5 × VIORM , tm = 1 s  
(5)  
CIO  
RIO  
Barrier capacitance, input to output  
VIO = 0.4 × sin (2 πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
1
pF  
> 1012  
> 1011  
> 109  
2
(5)  
Insulation resistance, input to output  
VIO = 500 V, 100°C TA 150°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
40/125/  
21  
UL 1577  
VTEST = VISO , t = 60 s (qualification);  
VTEST = 1.2 × VISO , t = 1 s (100% production)  
VISO  
Withstand isolation voltage  
5000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care  
should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on  
the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these specifications.  
(2) ISO14xx is suitable for safe electrical insulation and ISO14xxB is suitable for basic electrical insulation only within the safety ratings.  
Compliance with the safety ratings shall be ensured by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-pin device.  
Copyright © 2018–2019, Texas Instruments Incorporated  
9
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Certified according to EN  
61010-1:2010/A1:2019,  
EN 60950-  
1:2006/A2:2013 and EN  
62368-1:2014  
Plan to certify according  
to IEC 60950-1, IEC  
62368-1 and IEC 60601-1 Recognition Program  
Recognized under UL  
1577 Component  
Certified according to DIN  
VDE V 0884-11:2017- 01  
Certified according to  
GB4943.1-2011  
CSA 60950-1-07+A1+A2  
and IEC 60950-1 2nd Ed.,  
for pollution degree 2,  
material group I  
ISO141x, ISO143x,  
ISO145x: 800 VRMS  
reinforced isolation  
EN 61010-  
1:2010 /A1:2019  
ISO141x, ISO143x,  
ISO145x: 600 VRMS  
reinforced isolation  
ISO141xB, ISO143xB,  
ISO145xB: 1000 VRMS  
basic isolation  
----------------  
EN 60950-  
1:2006/A2:2013 and EN  
62368-1:2014  
ISO141x, ISO143x,  
ISO145x: 800 VRMS  
reinforced isolation  
ISO141xB, ISO143xB,  
ISO145xB: 1060 VRMS  
basic isolation  
Maximum transient  
isolation voltage,  
7071 VPK  
;
Maximum repetitive peak  
isolation voltage,  
ISO141xB, ISO143xB,  
Reinforced insulation,  
Altitude 5000 m,  
Tropical Climate,  
700 VRMS maximum  
working voltage  
1500 VPK  
;
ISO145xB: 800 VRMS  
Single protection,  
basic isolation  
5000 VRMS  
Maximum surge isolation  
voltage,  
ISO141x, ISO143x,  
ISO145x: 6250 VPK  
(Reinforced)  
ISO141xB, ISO143xB,  
ISO145xB: 4600 VPK  
(Basic)  
----------------  
CSA 60601- 1:14 and IEC  
60601-1 Ed. 3.1,  
ISO141x, ISO143x,  
ISO145x: 2 MOPP  
(Means of Patient  
Protection) 250 VRMS (354  
VPK) maximum working  
voltage  
Reinforced  
Certificate:40040142  
Basic certificate planned  
Certificate number:  
CQC15001121716  
Certificate planned  
File number: E181974  
Client ID number: 77311  
8.8 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DW-16 PACKAGE  
R
θJA = 67.9°C/W, VI = 5.5 V, TJ = 150°C,  
334  
511  
669  
974  
TA = 25°C, see 1  
θJA = 67.9°C/W, VI = 3.6 V, TJ = 150°C,  
TA = 25°C, see 1  
θJA = 67.9°C/W, VI = 2.75 V, TJ =  
150°C, TA = 25°C, see 1  
θJA = 67.9°C/W, VI = 1.89 V, TJ =  
150°C, TA = 25°C, see 1  
θJA = 67.9°C/W, TJ = 150°C, TA = 25°C,  
see 2  
R
IS  
Safety input, output, or supply current  
mA  
R
R
R
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
1837  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the table is that of a device installed on a high-K test board for leaded surface-mount  
packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
10  
Copyright © 2018–2019, Texas Instruments Incorporated  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
www.ti.com.cn  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
8.9 Electrical Characteristics: Driver  
All typical specs are at VCC1=3.3V, VCC2=5V, TA=27°C, (Min/Max specs are over recommended operating conditions unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Open circuit voltage, unloaded bus,  
3 V VCC2 5.5 V  
1.5  
5
VCC2  
V
RL = 60 Ω, –7 V VTEST 12 V (see 35), 3 V ≤  
1.5  
1.5  
2.3  
2.3  
V
VCC2 3.6 V, TA<100C  
RL = 60 Ω, –7 V VTEST 12 V (see 35), 3.1 V ≤  
VCC2 3.6 V, TA>100C  
Driver differential-output voltage  
magnitude  
RL = 60 Ω, –7 V VTEST 12 V,  
4.5 V < VCC2 < 5.5 V (see 35)  
|VOD  
|
2.1  
2
3.7  
4.2  
2.3  
V
V
V
RL = 100 Ω (see 36), RS-422 load  
RL = 54 Ω (see 36), RS-485 load, VCC2 = 3 V to  
3.6 V  
1.5  
RL = 54 Ω (see 36), RS-485 load,  
4.5 V < VCC2 < 5.5 V  
2.1  
3.7  
V
Change in differential output voltage  
between two states  
Δ|VOD  
|
RL = 54 Ω or RL = 100 Ω, see 36  
RL = 54 Ω or RL = 100 Ω, see 36  
RL = 54 Ω or RL = 100 Ω, see 36  
–200  
1
200  
3
mV  
V
VOC  
Common-mode output voltage  
0.5 × VCC2  
change in steady-state common-mode  
output voltage between two states  
ΔVOC(SS)  
–200  
200  
mV  
VD = VCC1 or VD = VGND1, VDE = VCC1, VCC2=3.3V ±  
10%  
–7 V V 12 V, see 45  
–250  
250  
10  
mA  
mA  
IOS  
Short-circuit output current  
VD = VCC1 or VD = VGND1, VDE = VCC1, VCC2=5V ±  
10%  
–7 V V 12 V, see 45  
250  
Ii  
Input current  
VD and VDE = 0 V or VD and VDE = VCC1  
–10  
85  
µA  
VD=VCC1 or GND1, VCC1 = 1.71 V to 5.5 V, VCM  
1200 V, ISO141x, See 38  
=
=
=
CMTI  
Common-mode transient immunity  
100  
100  
100  
kV/µs  
VD=VCC1 or GND1, VCC1 = 1.71 V to 5.5 V, VCM  
1200 V, ISO143x, See 38  
CMTI  
CMTI  
Common-mode transient immunity  
Common-mode transient immunity  
85  
85  
kV/µs  
kV/µs  
VD=VCC1 or GND1, VCC1 = 2.25 V to 5.5 V, VCM  
1200 V, ISO145x, See 38  
8.10 Electrical Characteristics: Receiver  
All typical specs are at VCC1=3.3V, VCC2=5V, TA=27°C, (Min/Max specs are over recommended operating conditions unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDE = 0 V, VCC2 = 0 V or VCC2 = 5.5 V, 500-kbps  
devices, VI = –7 V or VI = 12 V, other input at 0 V  
Ii1  
Ii1  
Ii1  
Ii1  
Bus input current  
–100  
125  
µA  
VDE = 0 V, VCC2 = 0 V or VCC2 = 5.5 V, 12-Mbps and  
50-Mbps devices, VI = –7 V or VI = 12 V,  
other input at 0 V  
Bus input current  
Bus input current  
Bus input current  
–100  
-200  
125  
125  
125  
µA  
µA  
µA  
VDE = 0 V, VCC2 = 0 V or VCC2 = 5.5 V, 500-kbps  
devices, VI = –15 V or VI = 15 V, other input at 0 V  
VDE = 0 V, VCC2 = 0 V or VCC2 = 5.5 V, 12-Mbps and  
50-Mbps devices, VI = –15 V or VI = 15 V,  
-200  
other input at 0 V  
–15 V VCM 15 V  
–7 V VCM 12 V  
(1)  
See  
-100  
-100  
–10  
–20  
mV  
mV  
VTH+  
Positive-going input threshold voltage  
(1)  
See  
Negative-going input threshold  
voltage  
(1)  
VTH–  
Vhys  
–15 V VCM 15 V  
–200  
–130  
30  
See  
mV  
Input hysteresis (VTH+ – VTH–  
)
–15 V VCM 15 V  
mV  
V
VCC1=5V ± 10%, IOH = –4 mA, VID = 200 mV  
VCC1=3.3V ± 10%, IOH = –2 mA, VID = 200 mV  
VCC1 – 0.4  
VCC1 – 0.3  
V
VOH  
Output high voltage on the R pin  
VCC1=2.5V ± 10%, 1.8V+/-5%, IOH = –1 mA, VID  
200 mV  
=
VCC1 – 0.2  
V
(1) Under any specific conditions, VTH+ is ensured to be at least Vhys higher than VTH–  
Copyright © 2018–2019, Texas Instruments Incorporated  
.
11  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Electrical Characteristics: Receiver (continued)  
All typical specs are at VCC1=3.3V, VCC2=5V, TA=27°C, (Min/Max specs are over recommended operating conditions unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCC1=5V ± 10%, IOL = 4 mA, VID = –200 mV  
VCC1=3.3V ± 10%, IOL = 2 mA, VID = –200 mV  
0.4  
V
0.3  
V
VOL  
Output low voltage on the R pin  
VCC1=2.5V ± 10%, 1.8V ± 5%, IOL = 1 mA, VID  
–200 mV  
=
0.2  
V
Output high-impedance current on  
the R pin  
IOZ  
Ii  
VR = 0 V or VR = VCC1, VRE = VCC1  
VRE = 0 V or VRE = VCC1  
–1  
–10  
85  
1
µA  
µA  
Input current on the RE pin  
10  
VCC1=1.71 V to 5.5 V, VID = 1.5 V or -1.5 V, VCM  
1200 V, ISO141x, See 38  
=
=
=
CMTI  
Common-mode transient immunity  
100  
100  
100  
kV/µs  
VCC1=1.71 V to 5.5 V, VID = 1.5 V or -1.5 V, VCM  
1200 V, ISO143x, See 38  
CMTI  
CMTI  
Common-mode transient immunity  
Common-mode transient immunity  
85  
85  
kV/µs  
kV/µs  
VCC1=2.25 V to 5.5 V, VID = 1.5 V or -1.5 V, VCM  
1200 V, ISO145x, See 38  
12  
Copyright © 2018–2019, Texas Instruments Incorporated  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
www.ti.com.cn  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
8.11 Supply Current Characteristics: Side 1 (ICC1  
)
Bus loaded or unloaded (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DRIVER ENABLED, RECEIVER DISABLED  
Logic-side  
VD = VCC1, VCC1 = 5 V ± 10%  
supply current  
2.6  
2.6  
3.2  
3.2  
3.2  
3.2  
3.6  
3.4  
4.4  
4.4  
5.1  
5.1  
5.1  
5.1  
5.3  
5.2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Logic-side  
VD = VCC1, VCC1 = 3.3 V ± 10%  
supply current  
Logic-side  
supply current  
ISO141x, D = 500-kbps square wave with 50% duty cycle, VCC1 = 5 V ± 10%  
ISO141x, D = 500-kbps square wave with 50% duty cycle, VCC1 = 3.3 V ± 10%  
ISO143x, D = 12-Mbps square wave with 50% duty cycle, VCC1 = 5 V ± 10%  
ISO143x, D = 12-Mbps square wave with 50% duty cycle, VCC1 = 3.3 V ± 10%  
ISO145x, D = 50-Mbps square wave with 50% duty cycle, VCC1 = 5 V ± 10%  
ISO145x, D = 50-Mbps square wave with 50% duty cycle, VCC1 = 3.3 V ± 10%  
Logic-side  
supply current  
Logic-side  
supply current  
Logic-side  
supply current  
Logic-side  
supply current  
Logic-side  
supply current  
DRIVER ENABLED, RECEIVER ENABLED  
Logic-side  
supply current  
VRE = VGND1, loopback if full-duplex device, VD = VCC1, VCC1 = 5 V ± 10%  
2.6  
2.6  
3.3  
3.2  
4.1  
3.8  
6.3  
5.3  
4.4  
4.4  
5.1  
5.1  
6
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Logic-side  
supply current  
VRE = VGND1, loopback if full-duplex device, VD = VCC1, VCC1 = 3.3 V ± 10%  
Logic-side  
supply current  
ISO141x, VRE = VGND1, loopback if full-duplex device, D = 500-kbps square wave with 50% duty cycle,  
VCC1 = 5 V ± 10%, CL(R)(1) = 15 pF  
Logic-side  
supply current  
ISO141x, VRE = VGND1, loopback if full-duplex device, D = 500-kbps square wave with 50% duty cycle,  
VCC1 = 3.3 V ± 10%, CL(R)(1) = 15 pF  
Logic-side  
supply current  
ISO143x, VRE = VGND1, loopback if full-duplex device, D = 12-Mbps square wave with 50% duty cycle,  
VCC1 = 5 V ± 10%, CL(R)(1) = 15 pF  
Logic-side  
supply current  
ISO143x, VRE = VGND1, loopback if full-duplex device, D= 12-Mbps square wave with 50% duty cycle,  
VCC1 = 3.3 V ± 10%, CL(R)(1) = 15 pF  
5.7  
8.9  
7.8  
Logic-side  
supply current  
ISO145x, VRE = VGND1, loopback if full-duplex device, D = 50-Mbps square wave with 50% duty cycle,  
VCC1 = 5 V ± 10%, CL(R)(1) = 15 pF  
Logic-side  
supply current  
ISO145x, VRE = VGND1, loopback if full-duplex device, D= 50-Mbps square wave with 50% duty cycle,  
VCC1 = 3.3 V ± 10%, CL(R)(1) = 15 pF  
DRIVER DISABLED, RECEIVER ENABLED  
Logic-side  
supply current  
V
(A-B) 200 mV, VD = VCC1, VCC1 = 5 V ± 10%  
(A-B) 200 mV, VD = VCC1, VCC1 = 3.3 V ± 10%  
1.6  
1.6  
1.7  
1.6  
2.6  
2.2  
4.7  
3.7  
3.1  
3.1  
3.1  
3.1  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Logic-side  
supply current  
V
(1)  
Logic-side  
supply current  
ISO141x, (A-B) = 500-kbps square wave with 50% duty cycle, VD = VCC1, VCC1 = 5 V ± 10%, CL(R)  
15 pF  
=
(1)  
Logic-side  
supply current  
ISO141x, (A-B) = 500-kbps square wave with 50% duty cycle, VD = VCC1, VCC1 = 3.3 V ± 10%, CL(R)  
= 15 pF  
(1)  
Logic-side  
supply current  
ISO143x, (A-B) = 12-Mbps square wave with 50% duty cycle, VD = VCC1, VCC1 = 5 V ± 10%, CL(R)  
15 pF  
=
(1)  
Logic-side  
supply current  
ISO143x, (A-B) = 12-Mbps square wave with 50% duty cycle, VD = VCC1, VCC1 = 3.3 V ± 10%, CL(R)  
= 15 pF  
3.7  
6.7  
5.7  
(1)  
Logic-side  
supply current  
ISO145x, (A-B) = 50-Mbps square wave with 50% duty cycle, VD = VCC1, VCC1 = 5 V ± 10%, CL(R)  
15 pF  
=
(1)  
Logic-side  
supply current  
ISO145x, (A-B) = 50-Mbps square wave with 50% duty cycle, VD = VCC1, VCC1 = 3.3 V ± 10%, CL(R)  
= 15 pF  
DRIVER DISABLED, RECEIVER DISABLED  
Logic-side  
supply current  
VDE = VGND1, VD = VCC1, VCC1 = 5 V ± 10%  
VDE = VGND1, VD = VCC1, VCC1 = 3.3 V ± 10%  
1.6  
1.6  
3.1  
3.1  
mA  
mA  
Logic-side  
supply current  
(1) CL(R) is the load capacitance on the R pin.  
Copyright © 2018–2019, Texas Instruments Incorporated  
13  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
MAX UNIT  
8.12 Supply Current Characteristics: Side 2 (ICC2  
VRE = VGND1 or VRE = VCC1 (over recommended operating conditions unless otherwise noted)  
)
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
DRIVER ENABLED, BUS UNLOADED  
Bus-side supply  
VD = VCC1, VCC2 = 3.3 V ± 10%  
4
6.1  
6.6  
mA  
mA  
current  
Bus-side supply  
current  
VD = VCC1, VCC2 = 5 V ± 10%  
4.5  
DRIVER ENABLED, BUS LOADED  
Bus-side supply  
current  
VD = VCC1, RL = 54 Ω, VCC2 = 3.3 V ± 10%  
VD = VCC1, RL = 54 Ω, VCC2 = 5 V ± 10%  
48  
74  
58  
88  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Bus-side supply  
current  
Bus-side supply ISO141x, D = 500-kbps square wave with 50% duty cycle, RL = 54 Ω, CL = 50 pF, VCC2 = 3.3 V ±  
current  
63  
95  
10%  
Bus-side supply  
current  
ISO141x, D = 500-kbps square wave with 50% duty cycle, RL = 54 Ω, CL = 50 pF, VCC2 = 5 V ± 10%  
113  
56  
160  
75  
Bus-side supply  
current  
ISO143x, D = 12-Mbps square wave with 50% duty cycle, RL = 54 Ω, CL = 50 pF, VCC2 = 3.3 V ± 10%  
ISO143x, D = 12-Mbps square wave with 50% duty cycle, RL = 54 Ω, CL = 50 pF, VCC2 = 5 V ± 10%  
ISO145x, D = 50-Mbps square wave with 50% duty cycle, RL = 54 Ω, CL = 50 pF, VCC2 = 3.3 V ± 10%  
ISO145x, D = 50-Mbps square wave with 50% duty cycle, RL = 54 Ω, CL = 50 pF, VCC2 = 5 V ± 10%  
Bus-side supply  
current  
97  
122  
103  
162  
Bus-side supply  
current  
84  
Bus-side supply  
current  
134  
DRIVER DISABLED, BUS LOADED OR UNLOADED  
Bus-side supply  
VD = VCC1, VCC2 = 3.3 V ± 10%  
current  
2.6  
2.8  
4.3  
4.5  
mA  
mA  
Bus-side supply  
VD = VCC1, VCC2 = 5 V ± 10%  
current  
14  
Copyright © 2018–2019, Texas Instruments Incorporated  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
www.ti.com.cn  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
8.13 Switching Characteristics: Driver  
All typical specs are at VCC1=3.3V, VCC2=5V, TA=27°C, (Min/Max specs are over recommended operating conditions unless  
otherwise noted)  
PARAMETER  
500-kbps DEVICES  
tr, tf Differential output rise time and fall time RL = 54 Ω, CL = 50 pF, see 37  
tPHL, tPLH Propagation delay  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
460  
310  
4
680  
570  
50  
ns  
ns  
ns  
ns  
ns  
RL = 54 Ω, CL = 50 pF, see 37  
RL = 54 Ω, CL = 50 pF, see 37  
See 40, and 41  
PWD  
Pulse width distortion(1), |tPHL – tPLH  
|
tPHZ, tPLZ Disable time  
tPZH, tPZL Enable time  
12-Mbps DEVICES  
125  
160  
200  
600  
See 40, and 41  
RL = 54 Ω, CL = 50 pF, VCC2= 4.5 V to  
5.5 V, see 37  
10  
25  
ns  
ns  
tr, tf  
Differential output rise time and fall time  
RL = 54 Ω, CL = 50 pF, VCC2= 3 V to 3.6  
V, see 37  
27.8  
tPHL, tPLH Propagation delay  
RL = 54 Ω, CL = 50 pF, see 37  
RL = 54 Ω, CL = 50 pF, see 37  
See 40, and 41  
68  
2
125  
10  
ns  
ns  
ns  
ns  
PWD  
Pulse width distortion(1), |tPHL – tPLH  
|
tPHZ, tPLZ Disable time  
tPZH, tPZL Enable time  
50-Mbps DEVICES  
75  
75  
125  
160  
See 40, and 41  
RL = 54 Ω, CL = 50 pF, VCC2= 4.5 V to  
5.5 V, see 37  
4.7  
6
ns  
ns  
tr, tf  
Differential output rise time and fall time  
RL = 54 Ω, CL = 50 pF, VCC2= 3 V to 3.6  
V, see 37  
7.8  
tPHL, tPLH Propagation delay  
RL = 54 Ω, CL = 50 pF, see 37  
RL = 54 Ω, CL = 50 pF, see 37  
See 40, and 41  
19  
1
41  
6
ns  
ns  
ns  
ns  
PWD  
Pulse width distortion(1), |tPHL – tPLH  
|
tPHZ, tPLZ Disable time  
tPZH, tPZL Enable time  
25  
32  
46  
78  
See 40, and 41  
(1) Also known as pulse skew.  
8.14 Switching Characteristics: Receiver  
All typical specs are at VCC1=3.3V, VCC2=5V, TA=27°C, (Min/Max specs are over recommended operating conditions unless  
otherwise noted)  
PARAMETER  
500-kbps DEVICES  
tr, tf Differential output rise time and fall time CL = 15 pF, see 42  
tPHL, tPLH Propagation delay  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1
92  
4.5  
9
4
135  
12.5  
30  
ns  
ns  
ns  
ns  
ns  
CL = 15 pF, see 42  
CL = 15 pF, see 42  
See 43 and 44  
See 43 and 44  
PWD  
Pulse width distortion(1), |tPHL – tPLH  
|
tPHZ, tPLZ Disable time  
tPZH, tPZL Enable time  
12-Mbps DEVICES  
5
20  
tr, tf  
Differential output rise time and fall time CL = 15 pF, see 42  
1
75  
1
4
120  
10  
ns  
ns  
ns  
ns  
ns  
tPHL, tPLH Propagation delay  
CL = 15 pF, see 42  
CL = 15 pF, see 42  
See 43 and 44  
See 43 and 44  
PWD  
Pulse width distortion(1), |tPHL – tPLH  
|
tPHZ, tPLZ Disable time  
tPZH, tPZL Enable time  
50-Mbps DEVICES  
9
30  
5
20  
tr, tf  
Differential output rise time and fall time CL = 15 pF, see 42  
1
4
ns  
ns  
tPHL, tPLH Propagation delay  
CL = 15 pF, see 42  
36  
60  
(1) Also known as pulse skew.  
Copyright © 2018–2019, Texas Instruments Incorporated  
15  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Switching Characteristics: Receiver (continued)  
All typical specs are at VCC1=3.3V, VCC2=5V, TA=27°C, (Min/Max specs are over recommended operating conditions unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CL = 15 pF, Measured with 50kHz, 50%  
Duty Clock, see 42  
PWD  
Pulse width distortion(1), |tPHL – tPLH  
|
2
6
ns  
tPHZ, tPLZ Disable time  
tPZH, tPZL Enable time  
See 43 and 44  
See 43 and 44  
9
5
30  
20  
ns  
ns  
8.15 Insulation Characteristics Curves  
1200  
2500  
2000  
1500  
1000  
500  
VCC = 1.89 V  
VCC = 2.75 V  
VCC = 3.6 V  
VCC = 5.5 V  
1000  
800  
600  
400  
200  
0
0
0
50  
100  
Ambient Temperature (èC)  
150  
200  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
D001  
d002  
1. Thermal Derating Curve for Limiting Current per VDE  
2. Thermal Derating Curve for Limiting Power per VDE  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
www.ti.com.cn  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
8.16 Typical Characteristics  
70  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
ICC1 (VCC1=3.3V)  
ICC2 (VCC2=3.3V)  
ICC2 (VCC2=5V)  
60  
50  
40  
30  
20  
10  
0
ICC1 (VCC1=3.3V)  
ICC2 (VCC2=3.3V)  
ICC2 (VCC2=5V)  
0
100  
200 300  
Data rate (kbps)  
400  
500  
0
100  
200 300  
Data rate (kbps)  
400  
500  
D001  
D002  
DE = VCC1  
RE = GND1  
TA = 25°C  
DE = VCC1  
TA = 25°C  
RE = GND1  
Driver Load = 54 Ω  
|| 50pF  
Load On R = 15 pF  
3. ISO141x Supply Current Vs Data Rate- No Load  
4. ISO141x Supply Current Vs Data Rate- With 54||50pf  
Load  
90  
80  
70  
60  
50  
40  
50  
ICC1 (VCC1=3.3V)  
ICC2 (VCC2=3.3V)  
ICC2 (VCC2=5V)  
45  
40  
35  
30  
25  
20  
15  
10  
5
ICC1 (Vcc1=3.3V)  
ICC2 (Vcc2=3.3V)  
ICC2 (Vcc2=5V)  
30  
20  
10  
0
0
100  
200 300  
Data rate (kbps)  
400  
500  
0
D003  
0
2
4
6
Data rate (Mbps)  
8
10  
12  
DE = VCC1  
TA = 25°C  
RE = GND1  
Driver Load = 120  
d001  
Ω || 50pF  
DE = VCC1  
TA = 25°C  
RE = GND1  
Load On R = 15 pF  
6. ISO143x Supply Current Vs. Data Rate - No Load  
5. ISO141x Supply Current Vs Data Rate- With 120||50pf  
Load  
100  
120  
ICC1 (VCC1=3.3V)  
ICC2 (VCC2=3.3V)  
ICC2 (VCC2=5V)  
ICC1 (VCC1=3.3V)  
ICC2 (VCC2=3.3V)  
ICC2 (VCC2=5V)  
90  
100  
80  
60  
40  
20  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
0
2
4
6
Data rate (Mbps)  
8
10  
12  
0
2
4
6
Data rate (Mbps)  
8
10  
12  
d002  
d003  
DE = VCC1  
TA = 25°C  
RE = GND1  
DE = VCC1  
TA = 25°C  
RE = GND1  
Driver Load = 120  
50pF, Load On R =  
15pf  
Driver Load = 54 Ω  
50pF, Load On R =  
15pf  
Ω || 50pF  
|| 50pF  
8. ISO143x Supply Current Vs Data Rate- 54Ω||50pF Load  
7. ISO143x Supply Current Vs. Data Rate - 120Ω||50pF  
Load  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
120  
140  
120  
100  
80  
ICC1 (VCC1=3.3V)  
ICC2 (VCC2=3.3V)  
ICC2 (VCC2=5V)  
ICC1 (VCC1=3.3V)  
ICC2 (VCC2=3.3V)  
ICC2 (VCC2=5V)  
100  
80  
60  
40  
20  
0
60  
40  
20  
0
0
5
10  
15  
20  
25  
30  
Data rate (Mbps)  
35  
40  
45  
50  
0
10  
20 30  
Data rate (Mbps)  
40  
50  
d009  
d010  
DE = VCC1  
TA = 25°C  
RE = GND1  
DE = VCC1  
TA = 25°C  
RE = GND1  
Driver Load = 120  
50pF, Load On R =  
15pf  
9. ISO145x Supply Current Vs Data Rate- No Load  
Ω || 50pF  
10. ISO145x Supply Current Vs Data Rate- 120Ω||50pF  
Load  
5
5.35  
Voh  
Vol  
5.3  
5.25  
5.2  
4.5  
4
3.5  
3
5.15  
5.1  
2.5  
2
5.05  
5
1.5  
1
4.95  
4.9  
0.5  
0
4.85  
4.8  
0
10  
20  
30  
40  
50  
60  
Driver output current (mA)  
70  
80  
90 100  
4.75  
D004  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
DE = VCC1  
TA = 25°C  
D = GND1  
VCC1 = 3.3 V  
Ambient temp ( èC )  
d011  
VCC2 = 5 V  
DE = VCC1  
TA = 25°C  
RE = GND1  
Driver Load = 54 Ω  
50pF, Load On R =  
15pf  
12. Driver Output Voltage Vs Driver Output Current  
|| 50pF  
11. ISO145x Supply Current Vs Data Rate- 54Ω||50pF  
Load  
5
4.5  
4
6
5.5  
5
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
VOD (3.3 V, 120 W)  
VOD (3.3 V, 54 W)  
VOD (5V, 120 W)  
VOD (5V, 54 W)  
1
0.5  
0
1.5  
1
0
10  
20  
30  
Driver output current (mA)  
40  
50  
60  
70  
80  
90 100  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient temperature (èC)  
D005  
D006  
DE = VCC1  
TA = 25°C  
D = GND1  
VCC1 = 3.3 V  
VCC2 = 5 V  
13. Driver Differential Output Voltage Vs Driver Output  
14. Driver Differential Output Voltage Vs Temperature  
版权 © 2018–2019, Texas Instruments Incorporated  
Current  
18  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
www.ti.com.cn  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
Typical Characteristics (接下页)  
80  
70  
60  
50  
40  
30  
20  
10  
0
580  
560  
540  
520  
500  
480  
460  
440  
420  
0
0.5  
1
1.5  
2
Supply voltage VCC2 (V)  
2.5  
3
3.5  
4
4.5  
5
5.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient temp ( èC )  
D007  
D008  
RL = 54 Ω  
DE = D = VCC1  
TA = 25°C  
VCC1 = 3.3 V  
VCC2 = 5 V  
15. Driver Output Current Vs Supply Voltage (VCC2  
)
16. ISO141x Driver Rise/fall Time (ns) Vs Temperature (c)  
9.5  
5.35  
5.3  
5.25  
5.2  
9
8.5  
8
5.15  
5.1  
5.05  
5
4.95  
4.9  
7.5  
7
4.85  
4.8  
4.75  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient temp ( èC )  
Ambient temp ( èC )  
d004  
d011  
VCC1 = 3.3 V  
VCC2 = 5 V  
VCC1 = 3.3 V  
VCC2 = 5 V  
17. ISO143x Driver Rise/Fall Time (ns) Vs Temperature (C)  
18. ISO145x Driver Rise/Fall Time (ns) Vs Temperature (C)  
350  
345  
340  
335  
330  
325  
320  
315  
310  
305  
300  
69  
68.5  
68  
67.5  
67  
66.5  
66  
65.5  
65  
64.5  
64  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient temperature ( èC )  
63.5  
D009  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
VCC1 = 3.3 V  
VCC2 = 5 V  
Ambient temp ( èC )  
d005  
VCC1 = 3.3 V  
VCC2 = 5 V  
19. ISO141x Driver Propagation Delay (ns) Vs  
20. ISO143x Driver Propagation Delay (ns) Vs  
Temperature (c)  
Temperature (C)  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
5
4.5  
4
21.5  
21  
20.5  
20  
3.5  
3
2.5  
2
19.5  
19  
1.5  
1
Voh (1.8V)  
Voh (3.3V)  
Voh (5V)  
0.5  
0
18.5  
18  
-15  
-10 -5  
High level output current (mA)  
0
D010  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TA = 25° C  
Ambient temp ( èC )  
d012  
VCC1 = 3.3 V  
VCC2 = 5 V  
22. Receiver Buffer High Level Output Voltage Vs High  
21. ISO145x Driver Propagation Delay (ns) Vs  
Level Output Current  
Temperature (C)  
91  
88  
85  
82  
79  
76  
73  
70  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOL (1.8V)  
VOL (3.3V)  
VOL((5V)  
0
2
4
6
Low level output current (mA)  
8
10  
12  
14  
16  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient temperature ( èC )  
D011  
D012  
TA = 25°C  
VCC1 = 3.3 V  
VCC2 = 5 V  
23. Receiver Buffer Low Level Output Voltage Vs Low  
24. ISO141x Receiver Propagation Delay (ns) Vs  
Level Output Current  
Temperature (c)  
80  
79  
78  
77  
76  
75  
44.5  
44  
43.5  
43  
42.5  
42  
41.5  
41  
40.5  
40  
39.5  
39  
38.5  
38  
37.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temp ( èC)  
Ambient temperature ( èC )  
d006  
d013  
VCC1 = 3.3 V  
VCC2 = 5 V  
VCC1 = 3.3 V  
VCC2 = 5 V  
25. ISO143x Receiver Propagation Delay (ns) Vs.  
26. ISO145x Receiver Propagation Delay (ns) Vs.  
Temperature (C)  
Temperature (C)  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
www.ti.com.cn  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
Typical Characteristics (接下页)  
1050  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
600  
550  
500  
450  
400  
350  
300  
250  
200  
2
3
4
5
6
Data Rate (Mbps)  
7
8
9
10  
11  
12  
0
5
10  
15  
20  
Data Rate (Mbps)  
25  
30  
35  
40  
45  
50  
d007  
d014  
For PWD ±5%  
27. ISO143x Receiver VID vs Signaling Rate  
For PWD ±5%  
28. ISO145x Receiver VID vs Signaling Rate  
VCC1 = 3.3 V  
DE = VCC1  
VCC2 = 5 V  
TA = 25° C  
VCC1 = 3.3 V  
DE = VCC1  
VCC2 = 5 V  
TA = 25° C  
29. ISO141x Driver Propagation Delay  
30. ISO143x Driver Propagation Delay  
VCC1 = 3.3 V  
DE = VCC1  
VCC2 = 5 V  
TA = 25° C  
VCC1 = 3.3 V  
DE = GND1  
VCC2 = 5 V  
RE = GND1  
TA = 25° C  
31. ISO145x Driver Propagation Delay  
32. ISO141x Receiver Propagation Delay  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
34. VCC2 Power Up/Power Down - Glitch Free Behavior  
33. VCC1 Power Up/Power Down - Glitch Free Behavior  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
www.ti.com.cn  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
9 Parameter Measurement Information  
VCC2  
375  
DE = VCC1  
A or Y  
RL  
VOD  
D = 0 or  
VCC1  
VTEST  
B or Z  
GND2  
375 ꢀ  
+
œ
35. Driver Voltages  
RL(1) / 2  
A or Y  
VOD  
B or Z  
0 V or  
VCC1  
A
VA  
VB  
D
RL(1) / 2  
B
VOC  
VOC  
GND2  
ûVOC(SS)  
VOC(PP)  
(1) RL = 100 Ω for RS422, RL = 54 Ω for RS-485  
36. Driver Voltages  
VCC1  
DE = VCC1  
VI  
50%  
VOD  
A or Y  
B or Z  
(1)  
CL  
50 pF 20%  
RL  
54 1%  
D
tPHL  
tPLH  
VOD (H)  
Input  
Generator  
90%  
90%  
tf  
50 ꢀ  
VI  
0 V  
10%  
0 V  
10%  
tr  
VOD  
VOD (L)  
GND1  
(1) CL includes fixture and instrumentation capacitance.  
37. Driver Switching Specifications  
VCC1  
DE  
VCC2  
0.1 µF  
10 µF  
10 µF  
+
VOH or VOL  
œ
VCC1  
0.1 µF  
GND1  
Y
D
54  
54 ꢀ  
Z
A
GND1  
1.5 V or 0 V  
0 V or 1.5 V  
R
RE  
B
+
VOH or VOL  
œ
CL  
15 pF(1)  
1 kꢀ  
GND1  
GND2  
+ VCM  
œ
(1) Includes probe and fixture capacitance.  
38. Common Mode Transient Immunity (CMTI)—Full Duplex  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
VCC1  
VCC2  
VCC1  
DE  
0.1 µF  
10 µF  
10 µF  
0.1 µF  
GND1  
A
B
+
VOH or VOL  
œ
D
54  
GND1  
+
VOH or VOL  
œ
R
RE  
CL  
15 pF(1)  
1 kꢀ  
GND1  
GND2  
+ VCM  
œ
(1) Includes probe and fixture capacitance.  
39. Common Mode Transient Immunity (CMTI)—Half Duplex  
A or Y  
S1  
VCC1  
D
VO  
50 % 50 %  
VI  
B or Z  
DE  
0 V  
VOH  
(1)  
CL  
50 pF  
RL  
110  
tPZH  
90%  
Input  
Generator  
50 ꢀ  
50%  
VI  
VO  
0 V  
tPHZ  
GND2  
GND1  
(1) CL includes fixture and instrumentation capacitance  
40. Driver Enable and Disable Times  
VCC2  
RL  
110  
VCC1  
A or Y  
50 % 50 %  
VI  
D
0 V  
S1  
B or Z  
tPZL  
tPLZ  
(1)  
CL  
50 pF  
DE  
VCC2  
VO  
50%  
10%  
Input  
Generator  
VOL  
50 ꢀ  
VI  
GND2  
GND1  
41. Driver Enable and Disable Times  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
www.ti.com.cn  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
Parameter Measurement Information (接下页)  
3 V  
50 %  
50 %  
A
B
VI  
R
VO  
0 V  
VOH  
Input  
Generator  
(1)  
CL  
15 pF  
1.5 V  
50  
tPLH  
tPHL  
VI  
RE  
90%  
50%  
10%  
50%  
VO  
VOL  
tr  
tf  
(1) CL includes fixture and instrumentation capacitance.  
42. Receiver Switching Specifications  
VCC1  
50%  
VI  
0 V  
tPZH  
tPHZ  
VOH  
90%  
VO  
50%  
0 V  
VCC1  
VOL  
tPZL  
tPLZ  
VO  
50%  
10%  
43. Receiver Enable and Disable Times  
VCC1  
VCC1  
VI  
50%  
A
B
1 k  
0 V  
0 V or 1.5 V  
1.5 V or 0 V  
R
VO  
CL  
15 pF  
S1  
tPZH  
VOH  
0 V  
VCC1  
VOL  
A at 1.5 V  
B at 0 V  
S1 to GND  
RE  
VO  
50%  
Input  
Generator  
tPZL  
VI  
50 ꢀ  
A at 0 V  
B at 1.5 V  
S1 to  
VO  
50%  
VCC1  
44. Receiver Enable and Disable Times  
A or Y  
A or Y  
B or Z  
Steady-State  
Logic Input  
(1 or 0)  
Steady State  
Logic Input  
(1 or 0)  
œ7 V ≤ V ≤ 12 V  
I(1)  
G
G
V
B or Z  
C
C
GND  
GND  
(1) The driver should not sustain any damage with this configuration.  
45. Short-Circuit Current Limiting  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
10 Detailed Description  
10.1 Overview  
The ISO14xx devices are isolated RS-485/RS-422 transceivers designed to operate in harsh industrial  
environments. ISO141x, ISO143x and ISO145x devices support up to 500 kbps, 12 Mbps and 50 Mbps signaling  
rates respectively. This family of devices has a 3-channel digital isolator and an RS-485 transceiver in a 16-pin  
wide-body SOIC package. The silicon-dioxide based capacitive isolation barrier supports an isolation withstand  
voltage of 5 kVRMS and an isolation working voltage of 1500 VPK. Isolation breaks the ground loop between the  
communicating nodes and allows for data transfer in the presence of large ground potential differences. These  
devices have a higher typical differential output voltage (VOD) than traditional transceivers for better noise  
immunity. A minimum differential output voltage of 2.1 V is specified at a VCC2 voltage of 5 V ±10% which meets  
the requirements for Profibus applications. The wide logic supply of the device (VCC1) supports interfacing with  
1.8-V, 2.5-V, 3.3-V, and 5-V control logic. The 3-V to 5.5-V bus side supply (VCC2) removes the need of a well-  
regulated isolated supply in end systems. 46 shows the functional block diagram of the full-duplex devices and  
47 shows the functional block diagram of a half-duplex devices.  
10.2 Functional Block Diagram  
VCC2  
VCC1  
VCC2  
Rx  
VCC  
Tx  
Tx  
Rx  
DE  
D
Y
Z
Rx  
Tx  
D
Full duplex  
B
A
R
R
RE  
GND1  
GND2  
GND2  
46. Full-Duplex Block Diagram  
VCC2  
VCC1  
VCC2  
VCC  
Tx  
Tx  
Rx  
Rx  
DE  
D
Rx  
D
A
B
Half duplex  
Tx  
R
R
RE  
GND2  
GND1  
GND2  
47. Half-Duplex Block Diagram  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
www.ti.com.cn  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
10.3 Feature Description  
10.3.1 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO14xx  
devices incorporate dedicated circuitry to protect the transceiver from ±16 kV ESD per IEC61000-4-2 and ±4 kV  
EFT per IEC 61000-4-4. System designers can achieve the ±4-kV EFT Criterion A with careful system design  
(data communication between nodes in the presence of transient noise with minimum to no data loss).  
10.3.2 Failsafe Receiver  
The differential receiver of the ISO14xx devices has failsafe protection from invalid bus states caused by:  
Open bus conditions such as a broken cable or a disconnected connector  
Shorted bus conditions such as insulation breakdown of a cable that shorts the twisted-pair  
Idle bus conditions that occur when no driver on the bus is actively driving  
The differential input of the RS-485 receiver is 0 in any of these conditions for a terminated transmission line.  
The receiver outputs a failsafe logic-high state so that the output of the receiver is not indeterminate.  
The receiver thresholds are offset in the receiver failsafe protection so that the indeterminate range of the does  
not include a 0 V differential. The receiver output must generate a logic high when the differential input (VID) is  
greater than 200 mV to comply with the RS-485 standard. The receiver output must also generate a output a  
logic low when VID is less than –200 mV to comply with the RS-485 standard. The receiver parameters that  
determine the failsafe performance are VTH+, VTH–, and VHYS. Differential signals less than –200 mV always  
cause a low receiver output as shown in the Electrical Characteristics table. Differential signals greater than 200  
mV always cause a high receiver output. A differential input signal that is near zero is still greater than the VTH+  
threshold which makes the receiver output logic high. The receiver output goes to a low state only when the  
differential input decreases by VHYS to less than VTH+  
.
The internal failsafe biasing feature removes the need for the two external resistors that are typically required  
with traditional isolated RS-485 transceivers as shown in 48.  
Traditional  
transceiver  
ISO1410  
(R1 and R2 not needed)  
VCC2  
VCC2  
VCC1  
VCC2  
VCC1  
VCC2  
R1  
A
A
RS-485  
Bus  
RS-485  
Bus  
RT  
RT  
B
B
R2  
GND2  
GND1  
GND2  
GND1  
ISO  
Ground  
ISO  
Ground  
Galvanic  
Isolation Barrier  
Galvanic  
Isolation Barrier  
48. Failsafe Transceiver  
10.3.3 Thermal Shutdown  
The ISO14xx devices have a thermal shutdown circuit to protect against damage when a fault condition occurs.  
A driver output short circuit or bus contention condition can cause the driver current to increase significantly  
which increases the power dissipation inside the device. An increase in the die temperature is monitored and the  
device is disabled when the die temperature becomes 170(typical) which lets the device decrease the  
temperature. The device is enabled when the junction temperature becomes 165(typical).  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
 
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
Bus short circuit for an extended duration and/or beyond voltage levels specified in recommended operating  
condition should be avoided. Repeated or prolonged exposure to bus shorts can result in high junction  
temperatures and affect device reliability.  
10.3.4 Glitch-Free Power Up and Power Down  
Communication on the bus that already exist between a master node and slave node in an RS485 network must  
not be disturbed when a new node is swapped in or out of the network. No glitches on the bus occur when the  
device is:  
Hot plugged into the network in an unpowered state  
Hot plugged into the network in a powered state and disabled state  
Powered up or powered down in a disabled state when already connected to the bus  
The ISO14xx devices do not cause any false data toggling on the bus when powered up or powered down in a  
disabled state with supply ramp rates from 100 µs to 10 ms.  
10.4 Device Functional Modes  
2 shows the driver functional modes.  
2. Driver Functional table(1)  
OUTPUTS(2)  
DRIVER ENABLE  
VCC1  
VCC2  
INPUT D  
DE  
Y, A  
H
Z, B  
L
H
L
H
H
L
H
PU  
PU  
X
L
Hi-Z  
Hi-Z  
H
Hi-Z  
Hi-Z  
L
X
Open  
H
Open  
X
PD(3)  
X
PU  
PD  
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
X
X
(1) PU = Powered Up; PD = Powered Down; H = High Level; L = Low level; X = Irrelevant, Hi-Z = High impedance state  
(2) The driver outputs are Y and Z for a full-duplex device. The driver outputs are A and B for a half-duplex device.  
(3) A strongly driven input signal can weakly power the floating VCC1 through an internal protection diode and cause an undetermined  
output.  
The description that follows is specific to half-duplex device but the same logic applies to full-duplex device with  
the outputs being Y and Z.  
When the driver enable pin, DE, is logic high, the differential outputs, A and B, follow the logic states at data  
input, D. A logic high at the D input causes the A output to go high and the B output to go low. Therefore the  
differential output voltage defined by 公式 1 is positive.  
VOD = VA – VB  
(1)  
A logic low at the D input causes the B output to go high and the A output to go low. Therefore the differential  
output voltage defined by 公式 1 is negative. A logic low at the DE input causes both outputs to go to the high-  
impedance (Hi-Z) state. The logic state at the D pin is irrelevant when the DE input is logic low. The DE pin has  
an internal pulldown resistor to ground. The driver is disabled (bus outputs are in the Hi-Z) by default when the  
DE pin is left open. The D pin has an internal pullup resistor. The A output goes high and the B output goes low  
when the D pin is left open while the driver enabled.  
3 shows the receiver functional modes.  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
www.ti.com.cn  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
3. Receiver Functional Table(1)  
VCC1  
VCC2  
DIFFERENTIAL INPUT  
VID = VA – VB  
RECEIVER ENABLE RE  
OUTPUT R  
–0.02 V VID  
L
H
–0.2 V < VID < 0.02 V  
L
Indeterminate  
V
ID–0.2 V  
L
H
L
PU  
PU  
X
X
Hi-Z  
Hi-Z  
H
Open  
L
Open, Short, Idle  
PD(2)  
PU  
PD(2)  
PU  
PD  
PD  
X
X
X
X
Hi-Z  
H
L
X
Hi-Z  
(1) PU = Powered Up; PD = Powered Down; H = Logic High; L= Logic Low; X = Irrelevant, Hi-Z = High Impedance (OFF) state  
(2) A strongly driven input signal can weakly power the floating VCC1 through an internal protection diode and cause an undetermined  
output.  
The receiver is enabled when the receiver enable pin, RE, is logic low. The receiver output, R, goes high when  
the differential input voltage defined by 公式 2 is greater than the positive input threshold, VTH+  
.
VID = VA – VB  
(2)  
The receiver output, R, goes low when the differential input voltage defined by 公式 2 is less than the negative  
input threshold, VTH–. If the VID voltage is between the VTH+ and VTH– thresholds, the output is indeterminate. The  
receiver output is in the Hi-Z state and the magnitude and polarity of VID are irrelevant when the RE pin is logic  
high or left open. The internal biasing of the receiver inputs causes the output to go to a failsafe-high when the  
transceiver is disconnected from the bus (open-circuit), the bus lines are shorted to one another (short-circuit), or  
the bus is not actively driven (idle bus).  
版权 © 2018–2019, Texas Instruments Incorporated  
29  
 
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
10.4.1 Device I/O Schematics  
D and RE Inputs  
VCC1 VCC1  
DE Input  
VCC1  
VCC1  
VCC1  
VCC1  
VCC1  
1.5 M  
985 ꢀ  
985 ꢀ  
Input  
Input  
1.5 Mꢀ  
R Output  
VCC1  
~20 ꢀ  
R
49. Device I/O Schematics  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
www.ti.com.cn  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
11 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
11.1 Application Information  
The ISO14xx devices are designed for bidirectional data transfer on multipoint RS-485 networks. The design of  
each RS-485 node in the network requires an ISO14xx device and an isolated power supply as shown in 52.  
An RS-485 bus has multiple transceivers that connect in parallel to a bus cable. Both cable ends are terminated  
with a termination resistor, RT, to remove line reflections. The value of RT matches the characteristic impedance,  
Z0, of the cable. This method, known as parallel termination, lets higher data rates be used over a longer cable  
length.  
Full-duplex implementation, as shown in 50, requires two signal pairs (four wires). Full-duplex implementation  
lets each node to transmit data on one pair while simultaneously receiving data on the other pair. In half-duplex  
implementation, as shown in 51, the driver and receiver enable pins let any node at any given moment be  
configured in either transmit or receive mode which decreases cable requirements.  
Y
Z
A
B
RT  
RT  
R
RE  
DE  
D
R
RE  
DE  
D
ISO1412  
Master  
ISO1412  
Slave  
B
A
Z
Y
RT  
RT  
A
B
Z
Y
50. Typical RS-485 Network With Full-Duplex Isolated Transceivers  
版权 © 2018–2019, Texas Instruments Incorporated  
31  
 
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Application Information (接下页)  
Integrated isolation barrier allows for communication between  
nodes with ground potential differences of up to 1500 V  
R
R
A
B
A
B
RE  
DE  
D
RE  
DE  
D
ISO1410  
RT  
RT  
ISO1410  
A
B
A
B
51. Typical RS-485 Network With Half-Duplex Isolated Transceivers  
11.2 Typical Application  
52 shows the application circuit of the ISO1410 device.  
4
8
1
3
5
4
GND  
D2  
IN  
OUT  
NC  
EN  
SN6505  
3
2
7
6
3.3 V  
TPS76350  
EN  
VCC  
2
GND  
1
5
CLK  
D1  
1
2
16  
VCC2  
0.1 F  
VDD  
3
14  
13  
GPIO1  
4
5
MCU  
GPIO2  
ISO1410  
12  
A
6
L1 3.3V  
NC 10,11  
GPIO3  
DGND  
Optional bus  
protection  
N
PSU  
7
8
0V  
PE  
9,15  
Galvanic  
Isolation Barrier  
Protective Chasis  
Earth  
Digital  
Ground  
ISO  
Ground  
Ground  
52. Application Circuit of ISO1410  
11.2.1 Design Requirements  
Unlike an optocoupler-based solution, which requires several external components to improve performance,  
provide bias, or limit current, the ISO14xx devices only require external bypass capacitors to operate.  
32  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
www.ti.com.cn  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
Typical Application (接下页)  
11.2.2 Detailed Design Procedure  
The RS-485 bus is a robust electrical interface suitable for long-distance communications. The RS-485 interface  
can be used in a wide range of applications with varying requirements of distance of communication, data rate,  
and number of nodes.  
11.2.2.1 Data Rate and Bus Length  
The RS-485 standard has typical curves similar to those shown in 53. These curves show the inverse  
relationship between signaling rate and cable length. If the data rate of the payload between two nodes is lower,  
the cable length between the nodes can be longer.  
10000  
5%, 10%, and 20% Jitter  
1000  
Conservative  
Characteristics  
100  
10  
100  
1k  
10k  
100 k  
1M  
10M  
100 M  
Data Rate (bps)  
53. Cable Length vs Data Rate Characteristics  
Use 53 as a guideline for cable selection, data rate, cable length and subsequent jitter budgeting.  
11.2.2.2 Stub Length  
In an RS-485 network, the distance between the transceiver inputs and the cable trunk is known as the stub. The  
stub should be as short as possible when a node is connected to the bus. Stubs are a non-terminated piece of  
bus line that can introduce reflections of varying phase as the length of the stub increases. The electrical length,  
or round-trip delay, of a stub should be less than one-tenth of the rise time of the driver as a general guideline.  
Therefore, the maximum physical stub length (L(STUB)) is calculated as shown in 公式 3.  
L(STUB) 0.1 × tr × v × c  
where  
tr is the 10/90 rise time of the driver.  
c is the speed of light (3 × 108 m/s).  
v is the signal velocity of the cable or trace as a factor of c.  
(3)  
11.2.2.3 Bus Loading  
The current supplied by the driver must supply into a load because the output of the driver depends on this  
current. Add transceivers to the bus to increase the total bus loading. The RS-485 standard specifies a  
hypothetical term of a unit load (UL) to estimate the maximum number of possible bus loads. The UL represents  
a load impedance of approximately 12 kΩ. Standard-compliant drivers must be able to drive 32 of these ULs.  
The ISO14xx devices have 1/8 UL impedance transceiver and can connect up to 256 nodes to the bus.  
11.2.3 Application Curves  
Below eye diagram of ISO145x device indicates low jitter and wide open eye at maximum data rate of 50 Mbps.  
版权 © 2018–2019, Texas Instruments Incorporated  
33  
 
 
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Application (接下页)  
54. Eye Diagram at 50 Mbps Clock, VCC2 = 5 V, 25°C  
11.2.3.1 Insulation Lifetime  
Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown  
(TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal  
device and high voltage applied between the two sides; See 55 for TDDB test setup. The insulation  
breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced  
insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million  
(ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation  
voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 87.5% for  
lifetime which translates into minimum required insulation lifetime of 37.5 years at a working voltage that's 20%  
higher than the specified value.  
56 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime. Based  
on the TDDB data, the intrinsic capability of the insulation is 1060 VRMS with a lifetime of 220 years. Other  
factors, such as package size, pollution degree, material group, etc. can further limit the working voltage of the  
component. The working voltage of DW-16 is specified up to 1060 VRMS . At the lower working voltages, the  
corresponding insulation lifetime is much longer than 220 years.  
A
Vcc 1  
Vcc 2  
Time Counter  
> 1 mA  
DUT  
GND 1  
GND 2  
V
S
Oven at 150 °C  
55. Test Setup for Insulation Lifetime Measurement  
34  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
www.ti.com.cn  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
Typical Application (接下页)  
Working Isolation Voltage = 1060 VRMS  
TA up to 150°C  
Projected Insulation Lifetime = 220 Years  
Applied Voltage Frequency = 60 Hz  
56. Insulation Lifetime Projection Data  
12 Power Supply Recommendations  
To make sure device operation is reliable at all data rates and supply voltages, a 0.1-μF bypass capacitor is  
recommended at the logic and transceiver supply pins (VCC1 and VCC2). The capacitors should be placed as near  
to the supply pins as possible. Additionally, a 10 µF bulk capacitor on VCC2 improves transceiver performance  
during bus transitions in transmit mode. If only one primary-side power supply is available in an application,  
isolated power can be generated for the secondary-side with the help of a transformer driver such as TI's  
SN6505B device. For such applications, detailed power supply design and transformer selection  
recommendations are available in the SN6505 Low-Noise 1-A Transformer Drivers for Isolated Power Supplies  
data sheet.  
13 Layout  
13.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 57). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
Copyright © 2018–2019, Texas Instruments Incorporated  
35  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Layout Guidelines (continued)  
58 shows the recommended placement and routing of the device bypass capacitors and optional TVS diodes.  
Put the VCC2 bypass capacitors on the top layer and as near to the device pins as possible. Do not use vias to  
complete the connection to the VCC2 and GND2 pins. If an additional supply voltage plane or signal layer is  
needed, add a second power or ground plane system to the stack to keep it symmetrical. This makes the stack  
mechanically stable and prevents it from warping. Also the power and ground plane of each power system can  
be placed closer together, thus increasing the high-frequency bypass capacitance significantly.  
Refer to the Digital Isolator Design Guide for detailed layout recommendations.  
13.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and  
stiffness, and the self-extinguishing flammability-characteristics.  
13.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this space  
FR-4  
free from planes,  
traces, pads, and  
vias  
40 mils  
0r ~ 4.5  
Power plane  
10 mils  
Low-speed traces  
Figure 57. Recommended Layer Stack  
Minimize  
distance to  
supply pins  
VCC1  
VCC2  
Optional bus  
protection  
0.1 µF  
VCC1  
GND1  
R
VCC2  
GND2  
NC  
0.1 µF  
C
C
MCU  
RE  
B
D1  
RS-485  
DE  
A
D
NC  
NC  
NC  
GND1  
GND2  
GND1  
Plane  
GND2  
Plane  
58. Layout Example  
36  
版权 © 2018–2019, Texas Instruments Incorporated  
 
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
www.ti.com.cn  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
14 器件和文档支持  
14.1 文档支持  
14.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《数字隔离器设计指南》  
德州仪器 (TI)《隔离相关术语》  
德州仪器 (TI)《隔离式 RS-485 半双工评估模块》用户指南  
德州仪器 (TI)《如何隔离 RS-485 系统的信号和电源》TI 技术手册  
德州仪器 (TI) 《适用于工业长途通信的可靠隔离式 RS-485TI 技术手册  
14.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
4. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
ISO1410  
ISO1412  
ISO1430  
ISO1432  
ISO1450  
ISO1452  
ISO1410B  
ISO1412B  
ISO1430B  
ISO1432B  
ISO1450B  
ISO1452B  
14.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
14.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
14.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
14.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
版权 © 2018–2019, Texas Instruments Incorporated  
37  
ISO1410, ISO1412, ISO1430, ISO1432  
ISO1450, ISO1452  
ZHCSID5E APRIL 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
14.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
15 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
38  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO1410BDW  
ISO1410BDWR  
ISO1410DW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
40  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
ISO1410B  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ISO1410B  
ISO1410  
ISO1410  
ISO1412B  
ISO1412B  
ISO1412  
ISO1412  
ISO1430B  
ISO1430B  
ISO1430  
ISO1430  
ISO1432B  
ISO1432B  
ISO1432  
ISO1432  
ISO1450B  
ISO1450B  
ISO1450  
ISO1450  
ISO1410DWR  
ISO1412BDW  
ISO1412BDWR  
ISO1412DW  
ISO1412DWR  
ISO1430BDW  
ISO1430BDWR  
ISO1430DW  
ISO1430DWR  
ISO1432BDW  
ISO1432BDWR  
ISO1432DW  
ISO1432DWR  
ISO1450BDW  
ISO1450BDWR  
ISO1450DW  
ISO1450DWR  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO1452BDW  
ISO1452BDWR  
ISO1452DW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DW  
DW  
DW  
16  
16  
16  
16  
40  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
ISO1452B  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
ISO1452B  
ISO1452  
ISO1452  
ISO1452DWR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO1410BDWR  
ISO1410DWR  
ISO1412BDWR  
ISO1412DWR  
ISO1430BDWR  
ISO1430DWR  
ISO1432BDWR  
ISO1432DWR  
ISO1450BDWR  
ISO1450DWR  
ISO1452BDWR  
ISO1452DWR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
10.75 10.7  
10.75 10.7  
10.75 10.7  
10.75 10.7  
10.75 10.7  
10.75 10.7  
10.75 10.7  
10.75 10.7  
10.75 10.7  
10.75 10.7  
10.75 10.7  
10.75 10.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO1410BDWR  
ISO1410DWR  
ISO1412BDWR  
ISO1412DWR  
ISO1430BDWR  
ISO1430DWR  
ISO1432BDWR  
ISO1432DWR  
ISO1450BDWR  
ISO1450DWR  
ISO1452BDWR  
ISO1452DWR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISO1410BDW  
ISO1410DW  
ISO1412BDW  
ISO1412DW  
ISO1430BDW  
ISO1430DW  
ISO1432BDW  
ISO1432DW  
ISO1450BDW  
ISO1450DW  
ISO1452BDW  
ISO1452DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
DW  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
506.98  
506.98  
506.98  
506.98  
506.98  
506.98  
506.98  
506.98  
506.98  
506.98  
506.98  
506.98  
12.7  
12.7  
12.7  
12.7  
12.7  
12.7  
12.7  
12.7  
12.7  
12.7  
12.7  
12.7  
4826  
4826  
4826  
4826  
4826  
4826  
4826  
4826  
4826  
4826  
4826  
4826  
6.6  
6.6  
6.6  
6.6  
6.6  
6.6  
6.6  
6.6  
6.6  
6.6  
6.6  
6.6  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
DW 16  
7.5 x 10.3, 1.27 mm pitch  
SOIC - 2.65 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224780/A  
www.ti.com  
PACKAGE OUTLINE  
DW0016B  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4221009/B 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
1
16X (1.65)  
SEE  
DETAILS  
SEE  
DETAILS  
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
R0.05 TYP  
9
9
8
8
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221009/B 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (2)  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
8
9
8
9
R0.05 TYP  
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4221009/B 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ISO1412BDWR

具有 EMC 保护功能的 500Kbps、全双工、5kVrms 隔离式 RS-485 和 RS-422 收发器 | DW | 16 | -40 to 125
TI

ISO1412DW

具有 EMC 保护功能的 500Kbps、全双工、5kVrms 隔离式 RS-485 和 RS-422 收发器 | DW | 16 | -40 to 125
TI

ISO1412DWR

具有 EMC 保护功能的 500Kbps、全双工、5kVrms 隔离式 RS-485 和 RS-422 收发器 | DW | 16 | -40 to 125
TI

ISO1430

具有 EMC 保护功能的 12Mbps、半双工、5kVrms 隔离式 RS-485 和 RS-422 收发器
TI

ISO1430BDW

具有 EMC 保护功能的 12Mbps、半双工、5kVrms 隔离式 RS-485 和 RS-422 收发器 | DW | 16 | -40 to 125
TI

ISO1430BDWR

具有 EMC 保护功能的 12Mbps、半双工、5kVrms 隔离式 RS-485 和 RS-422 收发器 | DW | 16 | -40 to 125
TI

ISO1430DW

具有 EMC 保护功能的 12Mbps、半双工、5kVrms 隔离式 RS-485 和 RS-422 收发器 | DW | 16 | -40 to 125
TI

ISO1430DWR

具有 EMC 保护功能的 12Mbps、半双工、5kVrms 隔离式 RS-485 和 RS-422 收发器 | DW | 16 | -40 to 125
TI

ISO1432

具有 EMC 保护功能的 12Mbps、全双工、5kVrms 隔离式 RS-485 和 RS-422 收发器
TI

ISO1432BDW

具有 EMC 保护功能的 12Mbps、全双工、5kVrms 隔离式 RS-485 和 RS-422 收发器 | DW | 16 | -40 to 125
TI

ISO1432BDWR

具有 EMC 保护功能的 12Mbps、全双工、5kVrms 隔离式 RS-485 和 RS-422 收发器 | DW | 16 | -40 to 125
TI

ISO1432DW

具有 EMC 保护功能的 12Mbps、全双工、5kVrms 隔离式 RS-485 和 RS-422 收发器 | DW | 16 | -40 to 125
TI