INA1620RTWT [TI]

具有集成薄膜电阻器和 EMI 滤波功能的高保真音频运算放大器 | RTW | 24 | -40 to 125;
INA1620RTWT
型号: INA1620RTWT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成薄膜电阻器和 EMI 滤波功能的高保真音频运算放大器 | RTW | 24 | -40 to 125

放大器 薄膜电阻器 运算放大器
文件: 总37页 (文件大小:2627K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
INA1620  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
具有集成薄膜电阻器的 INA1620 高保真音频运算放大器和 EMI 滤波器  
1 特性  
3 说明  
1
匹配精度为 0.004%(典型值)的高质量  
薄膜电阻器  
INA1620 4 个高精度匹配薄膜电阻器对和片上 EMI  
滤波与一个低失真、高输出电流、双路音频运算放大器  
集成在一起。该放大器在 1kHz 频率下具有  
集成 EMI 滤波器  
超低噪声:1kHz 时为 2.8nV/Hz  
2.8nV/Hz 的极低噪声密度和 –119.2dB 的超低  
THD+N,能够以 150mW 的输出功率驱动一个 32Ω 的  
负载。集成式薄膜电阻器的匹配精度在 0.004% 以内,  
可用于创建大量具有极高性能的音频电路。  
超低总谐波失真 + 噪声:  
–119dB THD+N(以 142mW/通道的功率驱动  
32Ω/通道的负载)  
宽增益带宽产品:  
32MHz (G = +1000)  
INA1620 具有 ±2V ±18V 的极宽电源电压范围,每  
通道电源电流仅为 2.6mAINA1620 还具有关断模  
式,允许放大器从正常运行状态切换至待机状态(待机  
电流通常小于 5µA)。关断模式经专门设计,可消除  
进入或退出关断模式时产生的咔嗒噗噗噪声。  
高压摆率:10V/μs  
高容性负载驱动能力:> 600pF  
高开环增益:136dB600Ω 负载)  
低静态电流:每通道 2.6mA  
具有更低的噗噗咔嗒噪声的低功耗关断模式:  
每通道 5μA  
INA1620 具有独特的内部布局,可将串扰降到最低,  
即使在过驱动或过载时也不受通道间相互作用的影响。  
此器件的额定工作温度范围为 –40°C +125°C。  
短路保护  
宽电源电压范围:±2V ±18V  
采用小型 24 引脚 WQFN 封装  
器件信息(1)  
器件型号  
INA1620  
封装  
WQFN (24)  
封装尺寸(标称值)  
2 应用  
4.00mm x 4.00mm  
高保真 (HiFi) 耳机驱动器  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
专业音频设备  
模数混合控制台  
音频测试和测量  
INA1620 简化内部原理图  
快速傅立叶变换 (FFT)1kHz32Ω 负载、50mW  
0
œ20  
œ40  
œ60  
œ80  
1 k  
1 kꢀ  
1 kꢀ  
1 kꢀ  
R1C  
VCC  
GND  
R2C  
OUT A  
EN  
EMI Filtering  
œ100  
-133.6 dBc (Second Harmonic)  
œ120  
œ140  
œ160  
œ180  
4mm X 4mm QFN  
Package  
NC  
NC  
VEE  
R4C  
OUT B  
R3C  
0
5k  
10k  
15k  
20k  
EMI Filtering  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
Frequency (Hz)  
C005  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS859  
 
 
 
 
INA1620  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics: ........................................ 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 15  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagram ....................................... 15  
7.3 Feature Description................................................. 15  
7.4 Device Functional Modes........................................ 18  
8
9
Application and Implementation ........................ 20  
8.1 Application Information............................................ 20  
8.2 Typical Application ................................................. 24  
8.3 Other Application Examples.................................... 27  
Power Supply Recommendations...................... 28  
10 Layout................................................................... 28  
10.1 Layout Guidelines ................................................. 28  
10.2 Layout Example .................................................... 28  
11 器件和文档支持 ..................................................... 29  
11.1 器件支持................................................................ 29  
11.2 文档支持................................................................ 29  
11.3 接收文档更新通知 ................................................. 29  
11.4 社区资源................................................................ 29  
11.5 ....................................................................... 30  
11.6 静电放电警告......................................................... 30  
11.7 术语表 ................................................................... 30  
12 机械、封装和可订购信息....................................... 30  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (March 2018) to Revision A  
Page  
首次发布生产数据数据表 ....................................................................................................................................................... 1  
2
Copyright © 2018, Texas Instruments Incorporated  
 
INA1620  
www.ti.com.cn  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
5 Pin Configuration and Functions  
RTW Package  
24-Pin QFN  
Top View  
23  
22  
21  
20  
19  
24  
1
2
3
18  
17  
16  
R1C  
VCC  
GND  
R2C  
OUT A  
EN  
Thermal  
Pad  
4
5
6
15  
14  
13  
NC  
NC  
VEE  
R4C  
OUT B  
R3C  
7
8
9
10  
11  
12  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
GND  
EN  
NO.  
3
I
Connect to ground  
16  
22  
21  
9
Shutdown (logic low), enable (logic high)  
Noninverting input, channel A  
Inverting input, channel A  
IN+ A  
IN- A  
IN+ B  
IN- B  
NC  
I
I
I
Noninverting input, channel B  
Inverting input, channel B  
10  
4
I
O
O
No internal connection  
NC  
15  
17  
14  
24  
23  
1
No internal connection  
OUT A  
OUT B  
R1A  
Output, channel A  
Output, channel B  
Resistor pair 1, end point A  
Resistor pair 1, center point  
Resistor pair 1, end point C  
Resistor pair 2, end point A  
Resistor pair 2, center point  
Resistor pair 2, end point C  
Resistor pair 3, end point A  
Resistor pair 3, center point  
Resistor pair 3, end point C  
Resistor pair 4, end point A  
Resistor pair 4, center point  
Resistor pair 4, end point C  
Positive (highest) power supply  
Negative (lowest) power supply  
Exposed thermal die pad on underside; connect thermal die pad to V–.  
R1B  
R1C  
R2A  
19  
20  
18  
12  
11  
13  
7
R2B  
R2C  
R3A  
R3B  
R3C  
R4A  
R4B  
8
R4C  
V+  
6
2
V–  
5
Thermal pad  
Copyright © 2018, Texas Instruments Incorporated  
3
INA1620  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
40  
UNIT  
Supply voltage, VS = (V+) – (V–)  
Voltage  
Input voltage (signal inputs, enable, ground)  
Input differential voltage  
Input current (all pins except power-supply and resistor pins)  
Through each resistor  
(V–) – 0.5  
(V+) + 0.5  
±0.5  
V
±10  
mA  
°C  
Current  
30  
Output short-circuit(2)  
Continuous  
125  
Operating, TA  
–55  
–65  
Temperature  
Junction, TJ  
150  
Storage, Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Short-circuit to VS / 2 (ground in symmetrical dual supply setups), one amplifier per package.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4
NOM  
MAX  
36  
UNIT  
Single-supply  
Dual-supply  
Supply voltage, (V+) – (V–)  
V
±2  
±18  
15  
Current per resistor  
mA  
°C  
Specified temperature  
–40  
125  
6.4 Thermal Information  
INA1620  
THERMAL METRIC(1)  
RTW (QFN)  
24 PINS  
33.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
26.5  
13.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
13.1  
RθJC(bot)  
3.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2018, Texas Instruments Incorporated  
 
 
INA1620  
www.ti.com.cn  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
6.5 Electrical Characteristics:  
at TA = 25°C, VS = ±2 V to ±18 V, VCM = VOUT = midsupply, and RL = 1 kΩ (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AUDIO PERFORMANCE  
0.000025%  
–132  
G = 1, f = 1 kHz, VOUT = 3.5 VRMS, RL = 2 kΩ,  
80-kHz measurement bandwidth  
dB  
dB  
dB  
dB  
dB  
0.000025%  
–132  
G = 1, f = 1 kHz, VOUT = 3.5 VRMS, RL = 600 Ω,  
80-kHz measurement bandwidth  
0.000071%  
–123  
G = 1, f = 1 kHz, POUT = 10 mW, RL = 128 Ω,  
80-kHz measurement bandwidth  
Total harmonic distortion +  
noise  
THD+N  
0.000158%  
–116  
G = 1, f = 1 kHz, POUT = 10 mW, RL = 32 Ω,  
80-kHz measurement bandwidth  
0.000224%  
–113  
G = 1, f = 1 kHz, POUT = 10 mW, RL = 16 Ω,  
80-kHz measurement bandwidth  
SMPTE/DIN two-tone, 4:1 (60 Hz and 7 kHz),  
0.000018%  
G = 1, VO = 3 VRMS, RL = 2 kΩ, 90-kHz measurement  
bandwidth  
–135  
dB  
dB  
IMD  
Intermodulation distortion  
0.000032%  
–130  
CCIF twin-tone (19 kHz and 20 kHz), G = 1,  
VO = 3 VRMS, RL = 2 kΩ, 90-kHz measurement bandwidth  
FREQUENCY RESPONSE  
G = 1000  
G = 1  
32  
8
GBW  
SR  
Gain-bandwidth product  
MHz  
Slew rate  
G = –1  
10  
V/μs  
MHz  
ns  
Full-power bandwidth(1)  
Overload recovery time  
Channel separation (dual)  
EMI filter corner frequency  
VO = 1 VP  
G = –10  
f = 1 kHz  
1.6  
300  
140  
500  
dB  
MHz  
NOISE  
Input voltage noise  
f = 20 Hz to 20 kHz  
f = 10 Hz  
2.1  
6.5  
3.5  
2.8  
1.6  
0.8  
μVPP  
en  
Input voltage noise density(2)  
f = 100 Hz  
f = 1 kHz  
nV/Hz  
f = 10 Hz  
In  
Input current noise density  
pA/Hz  
f = 1 kHz  
OFFSET VOLTAGE  
±0.1  
±1  
±1.2  
±2.5  
3
VOS  
Input offset voltage  
mV  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
dVOS/dT Input offset voltage drift(2)  
-0.5  
0.1  
μV/°C  
μV/V  
PSRR  
Power-supply rejection ratio  
INPUT BIAS CURRENT  
1.2  
2
2.2  
IB  
Input bias current  
Input offset current  
μA  
TA = –40°C to 125°C(2)  
TA = –40°C to 125°C(2)  
±10  
±100  
±140  
IOS  
nA  
INPUT VOLTAGE RANGE  
VCM  
Common-mode voltage range  
Common-mode rejection ratio  
(V–) + 1.5  
108  
(V+) – 1  
V
(V–) + 1.5 V VCM (V+) – 1 V, TA = –40°C to 125°C, VS  
= ±18 V  
CMRR  
127  
dB  
(1) Full-power bandwidth = SR / (2π × VP), where SR = slew rate.  
(2) Specified by design and characterization.  
Copyright © 2018, Texas Instruments Incorporated  
5
INA1620  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
www.ti.com.cn  
Electrical Characteristics: (continued)  
at TA = 25°C, VS = ±2 V to ±18 V, VCM = VOUT = midsupply, and RL = 1 kΩ (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT IMPEDANCE  
Differential  
60k || 0.8  
Ω || pF  
Ω || pF  
Common-mode  
500M || 0.9  
OPEN-LOOP GAIN  
(V–) + 2 V VO (V+) – 2 V, RL = 32 Ω, VS = ± 5 V  
114  
120  
120  
136  
AOL  
Open-loop voltage gain  
dB  
(V–) + 1.5 V VO (V+) – 1.5 V, RL = 600 Ω, VS = ± 18 V  
OUTPUT  
No load  
Positive rail  
800  
1000  
800  
RL = 600 Ω  
VO  
Voltage output swing from rail  
mV  
No load  
Negative rail  
RL = 600 Ω  
1000  
IOUT  
ZO  
Output current  
38  
40  
mA  
Ω
Open-loop output impedance  
Short-circuit current  
Capacitive load drive  
ISC  
VS = ±18 V  
+145 / –130  
mA  
pF  
CLOAD  
24  
ENABLE PIN  
0.82  
0.78  
VIH  
Logic high threshold  
V
TA = –40°C to 125°C(2)  
0.95  
VIL  
IIH  
Logic low threshold  
Input current  
V
TA = –40°C to 125°C(2)  
VEN = 1.8 V  
0.65  
1.5  
μA  
RESISTOR PAIRS  
Resistor ratio matching(3)  
Resistors in same pair  
TA = –40°C to 125°C(2)  
0.004%  
0.02%  
0.023%  
Resistor ratio matching  
temperature coefficient  
Resistors in same pair  
±0.07  
±0.15 ppm/°C  
1.15 kΩ  
Individual resistor value  
0.84  
1
2
Individual resistor temperature  
coefficient  
20 ppm/°C  
POWER SUPPLY  
2.6  
5
3.3  
mA  
4.2  
VEN = 2 V, IOUT = 0 A  
TA = –40°C to 125°C(2)  
Quiescent current  
(per channel)  
IQ  
VEN = 0 V, IOUT = 0 A  
10  
μA  
(3) Resistor ratio matching refers to the matching between the two 1-kΩ resistors in each resistor pair. There are four pairs on each  
INA1620: RXA, RXB, RXC and RXD, where X is the terminal connection number. See Resistor Tolerance for more details.  
6
版权 © 2018, Texas Instruments Incorporated  
INA1620  
www.ti.com.cn  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
6.6 Typical Characteristics  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0
D027  
D030  
VOS (mV)  
VOS Drift (mV/èC)  
9818 channels  
50 channels  
1. Input Offset Voltage Histogram  
2. Input Offset Voltage Drift Histogram  
300  
œ60  
œ62  
œ64  
œ66  
œ68  
œ70  
œ72  
œ74  
œ76  
œ78  
œ80  
VCM = -16.5 V  
200  
100  
VCM = 17 V  
0
œ100  
œ200  
œ300  
0
10  
20  
œ20  
œ10  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
VCM (V)  
Temperature (°C)  
C001  
C001  
4 typical units  
4. Input Offset Voltage vs Common-Mode Voltage  
3. Input Offset Voltage vs Temperature  
100  
10  
1
10  
1
+31  
-31  
0.1  
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
Frequency (Hz)  
Frequency (Hz)  
C307  
C306  
5. Input Voltage Noise Spectral Density vs Frequency  
6. Input Current Noise Spectral Density vs Frequency  
版权 © 2018, Texas Instruments Incorporated  
7
 
INA1620  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
1000  
100  
10  
Source Resistor Noise Contribution  
Total Noise  
1
Voltage Noise Contribution  
Current Noise Contribution  
0.1  
Time (2 s/div)  
10  
100  
1k  
10k  
100k  
1M  
Source Resistance ()  
C017  
C302  
7. 0.1-Hz to 10-Hz Noise  
8. Voltage Noise vs Source Resistance  
18  
140  
225  
16  
120  
100  
80  
VS = ±15V  
14  
12  
10  
8
180  
135  
90  
60  
40  
6
VS = ±5V  
20  
4
VS = ±2V  
0
2
0
œ20  
45  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k 100k 1M 10M 100M  
Frequency (Hz)  
Frequency (Hz)  
C303  
C005  
9. Maximum Output Voltage vs Frequency  
10. Open-Loop Gain and Phase vs Frequency  
5.0  
4.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
VS = ±2 V  
VS = ±2 V  
3.0  
2.0  
1.0  
0.0  
VS = ±18 V  
VS = ±18 V  
œ1.0  
œ2.0  
œ3.0  
œ4.0  
œ5.0  
œ1.0  
œ2.0  
œ3.0  
œ4.0  
œ5.0  
0
25  
50  
75  
100 125 150  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
œ75 œ50 œ25  
Temperature (°C)  
Temperature (°C)  
C001  
C001  
600-Ω load  
11. Open-Loop Gain vs Temperature  
2-kΩ load  
12. Open-Loop Gain vs Temperature  
8
版权 © 2018, Texas Instruments Incorporated  
INA1620  
www.ti.com.cn  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
40  
0.01  
0.001  
-80  
G = +10  
G = -1, 600-Load  
G = -1  
G = +1  
G = -1, 2k-Load  
G = -1, 10k-Load  
G = +1, 600-Load  
20  
0
-100  
G = +1, 2k-Load  
G = +1, 10k-Load  
0.0001  
0.00001  
-120  
-20  
-140  
20k  
100  
1k  
10k  
100k  
1M  
10M  
20  
200  
2k  
Frequency (Hz)  
Frequency (Hz)  
C004  
C004  
C004  
C004  
3.5 VRMS, 80-kHz measurement bandwidth  
13. Closed-Loop Gain vs Frequency  
14. THD+N Ratio vs Frequency  
0.1  
-60  
0.1  
0.01  
-60  
G = -1, 128-Load  
G = -1, 32-Load  
G = -1, 16-Load  
G = +1, 128-Load  
G = +1, 32-Load  
G = +1, 16-Load  
0.01  
-80  
-80  
Inverting  
0.001  
0.0001  
-100  
-120  
-140  
0.001  
-100  
-120  
-140  
0.0001  
0.00001  
Noninverting  
2k-Load  
600-Load  
0.00001  
20  
200  
2k  
20k  
0.01  
0.1  
1
10  
Frequency (Hz)  
Output Amplitude (VRMS  
)
C004  
10 mW, 80-kHz measurement bandwidth  
1 kHz, 80-kHz measurement bandwidth  
15. THD+N Ratio vs Frequency  
16. THD+N Ratio vs Output Amplitude  
0.1  
0.01  
-60  
0.1  
-60  
2k-Load  
32-Load  
-80  
0.01  
0.001  
-80  
Inverting  
SMPTE  
0.001  
-100  
-120  
-140  
-100  
-120  
-140  
Noninverting  
0.0001  
0.00001  
0.0001  
0.00001  
128-Load  
32-Load  
16-Load  
CCIF  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Amplitude (VRMS  
)
Output Amplitude (VRMS  
)
C004  
1 kHz, 80-kHz measurement bandwidth  
90-kHz measurement bandwidth  
18. Intermodulation Distortion vs Output Amplitude  
17. THD+N Ratio vs Output Amplitude  
版权 © 2018, Texas Instruments Incorporated  
9
INA1620  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
160  
140  
120  
100  
80  
-80  
No Load  
PSRR+  
32-Load  
600-Load  
PSRR-  
-100  
-120  
-140  
-160  
60  
40  
20  
0
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
C004  
C115  
19. Channel Separation vs Frequency  
20. PSRR vs Frequency (Referred to Input)  
5
4
140  
120  
100  
80  
3
2
1
0
60  
-1  
-2  
-3  
-4  
-5  
40  
20  
0
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Temperature (°C)  
Frequency (Hz)  
C001  
C004  
21. PSRR vs Temperature  
22. CMRR vs Frequency (Referred to Input)  
1
0.8  
0.6  
0.4  
0.2  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VS = ±2 V, (Vœ) +1.5 ≤ VCM ≤ (V+) œ 1 V  
G = +1  
G = -1  
VS = ±18 V, (Vœ) +1.5 ≤ VCM ≤ (V+) œ 1V  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
200  
400  
600  
800  
1000  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
Capacitive Load (pF)  
Temperature (°C)  
C308  
C001  
24. Phase Margin vs Capacitive Load  
23. CMRR vs Temperature  
10  
版权 © 2018, Texas Instruments Incorporated  
INA1620  
www.ti.com.cn  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
Time (2.5 s/div)  
Time (2.5 s/div)  
C017  
C017  
G = 1, 10 mV  
G = 1, 10 V  
25. Small-Signal Step Response  
26. Large-Signal Step Response  
VOUT  
VIN  
VIN  
VOUT  
Time (200 ns/div)  
Time (200 ns/div)  
C017  
C017  
G = –10  
G = –10  
27. Negative Overload Recovery  
28. Positive Overload Recovery  
1.5  
1.4  
1.3  
1.2  
1.1  
1
VOUT  
VIN  
IB-  
IB+  
0.9  
Time (500 ms/div)  
0
25  
50  
75  
100  
125  
œ50  
œ25  
Temperature (ºC)  
C017  
C304  
29. No Phase Reversal  
30. IB vs Temperature  
版权 © 2018, Texas Instruments Incorporated  
11  
INA1620  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
5
1.5  
1.4  
1.3  
1.2  
1.1  
1
4
3
2
1
0
25  
50  
75  
100  
125  
œ50  
-1.5  
0
œ25  
-20  
-10  
0
10  
20  
Temperature (ºC)  
Common-Mode Voltage (V)  
C305  
C001  
VS = ±18 V  
31. IOS vs Temperature  
32. IB vs Common-Mode Voltage  
5
4.5  
4
1.3  
1.25  
1.2  
3.5  
3
VS = ±18 V  
VS = ±2 V  
2.5  
2
1.5  
1
1.15  
1.1  
0.5  
0
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
-1  
-0.5  
0
0.5  
1
1.5  
Temperature (°C)  
Common-Mode Voltage (V)  
C001  
C002  
VS = ±2 V  
34. Quiescent Current vs Temperature  
33. IB vs Common-Mode Voltage  
5
4
3
2
1
0
3
2.5  
2
125ºC  
85ºC  
1.5  
1
25ºC  
-40ºC  
0.5  
0
0.5  
1
1.5  
2
2
4
6
8
10  
12  
14  
16  
18  
20  
Enable Voltage (V)  
Supply Voltage (V)  
C002  
C001  
36. Quiescent Current vs Enable Voltage  
35. Quiescent Current vs Supply Voltage  
12  
版权 © 2018, Texas Instruments Incorporated  
INA1620  
www.ti.com.cn  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
18  
16  
14  
12  
10  
8
200  
180  
ISC, Source  
160  
140  
120  
6
ISC, Sink  
125°C  
25°C  
100  
4
80  
60  
85°C  
œ40°C  
2
0
0
20  
40  
60  
80 100 120 140 160 180 200  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
IO (mA)  
C001  
Temperature (°C)  
C001  
38. Positive Output Voltage vs Output Current  
37. Short-Circuit Current vs Temperature  
0
-2  
100  
10  
1
125°C  
25°C  
-4  
85°C  
-6  
œ40°C  
-8  
-10  
-12  
-14  
-16  
-18  
0
20  
40  
60  
80 100 120 140 160 180 200  
1
10  
100  
1k  
10k 100k 1M  
10M 100M  
IO (mA)  
C001  
Frequency (Hz)  
C001  
39. Negative Output Voltage vs Output Current  
40. Open-Loop Output Impedance vs Frequency  
25  
22.5  
20  
20  
18  
16  
14  
12  
10  
8
17.5  
15  
12.5  
10  
7.5  
5
6
4
2.5  
0
2
0
D028  
D026  
Resistance (W)  
Resistor Ratio Matching Error (%)  
19635 resistors  
19639 resistor pairs  
41. Resistor Absolute Value Histogram  
42. Resistor Pair Matching Histogram  
版权 © 2018, Texas Instruments Incorporated  
13  
 
INA1620  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = ±18 V, and RL = 2 kΩ (unless otherwise noted)  
27.5  
25  
22.5  
20  
17.5  
15  
12.5  
10  
7.5  
5
2.5  
0
D029  
Resistor Ratio Matching Drift (ppm/èC)  
64 resistor pairs  
43. Resistor Pair Matching Drift Histogram  
14  
版权 © 2018, Texas Instruments Incorporated  
INA1620  
www.ti.com.cn  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
7 Detailed Description  
7.1 Overview  
The INA1620 integrates a dual, bipolar-input, audio operational amplifier with four high-precision thin-film resistor  
pairs on the same die. The internal amplifiers and resistor pairs are pinned out to allow for many circuit  
configurations.  
The internal amplifiers of the INA1620 use a unique topology to deliver high output current with extremely low  
distortion while consuming minimal supply current. A single gain-stage architecture, combining a high-gain  
transconductance input stage and a unity-gain output stage, allows the INA1620 to achieve an open-loop gain of  
136 dB, even with 600-Ω loads.  
A separate enable circuit maintains control of the input and output stage when the amplifier is placed into its  
shutdown mode and limits transients at the amplifier output when transitioning to and from this state. The enable  
circuit features logic levels referenced to the amplifier ground pin. This configuration simplifies the interface  
between the amplifier and the ground-referenced GPIO pins of microcontrollers. The addition of a ground pin to  
the amplifier provides several additional benefits. For example, the compensation capacitor between the input  
and output stages of the INA1620 is referenced to the ground pin, greatly improving PSRR.  
7.2 Functional Block Diagram  
1 k  
1 kꢀ  
1 kꢀ  
1 kꢀ  
R1C  
VCC  
GND  
R2C  
OUT A  
EN  
EMI Filtering  
4mm X 4mm QFN  
Package  
NC  
NC  
VEE  
R4C  
OUT B  
R3C  
EMI Filtering  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
7.3 Feature Description  
7.3.1 Matched Thin-Film Resistor Pairs  
The INA1620 integrates four thin-film resistor pairs. Each pair is made up of two thin-film resistors with a nominal  
resistance of 1 kΩ. While the absolute value of the resistor is not trimmed and can vary significantly, the two  
resistors in an pair are designed to match each other extremely well. The resistors in an pair typically match to  
within 0.004% of each other's value. This matching is also preserved well over temperature, with the matching  
drift having a 0.2 ppm/°C maximum specification. Each node in the resistor pair is bonded out to a pad on the  
版权 © 2018, Texas Instruments Incorporated  
15  
INA1620  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
www.ti.com.cn  
Feature Description (接下页)  
INA1620 package allowing the resistor pairs to be used in multiple configurations. The nodes in the pair are  
protected from damage due to electrostatic discharge (ESD) events by diodes tied to the power supplies of the  
IC. For this reason, voltages beyond the power supplies cannot be applied to the resistors without forward-  
biasing the ESD protection diodes. The resistor pairs should not be used if there is no power applied to the  
INA1620. The configuration of the ESD protection diodes is shown in 44.  
V+  
V+  
V+  
1 k  
1 kꢀ  
RxC  
RxA  
V-  
V-  
V-  
RxB  
44. ESD Protection Diodes on Each Resistor Pair  
Although the resistor pairs and amplifier core are fabricated on the same silicon substrate, they can be used in  
separate circuits as long as the previously-mentioned voltage limits are observed. The functional state of the  
amplifier (enabled or shutdown) does not affect the resistor pair's performance.  
7.3.2 Power Dissipation  
The INA1620 is capable of high output current with power-supply voltages up to ±18 V. Internal power dissipation  
increases when operating at high supply voltages. The power dissipated in the op amp (POPA) is calculated using  
公式 1:  
VOUT  
POPA = V - V  
ìI  
= V - V  
ì
(
)
(
)
+
OUT  
OUT  
+
OUT  
RL  
(1)  
In order to calculate the worst-case power dissipation in the op amp, the ac and dc cases must be considered  
separately.  
In the case of constant output current (dc) to a resistive load, the maximum power dissipation in the op amp  
occurs when the output voltage is half the positive supply voltage. This calculation assumes that the op amp is  
sourcing current from the positive supply to a grounded load. If the op amp sinks current from a grounded load,  
modify 公式 2 to include the negative supply voltage instead of the positive.  
2
V
V+  
+
POPA(MAX _DC) = POPA ∆  
=
÷
2
4RL  
«
(2)  
The maximum power dissipation in the op amp for a sinusoidal output current (ac) to a resistive load occurs  
when the peak output voltage is 2/π times the supply voltage, given symmetrical supply voltages:  
2
2V  
2V+  
+
POPA(MAX _ AC) = POPA ∆  
=
÷
p2 RL  
p
«
(3)  
The dominant pathway for the INA1620 to dissipate heat is through the package thermal pad and pins to the  
PCB. Copper leadframe construction used in the INA1620 improves heat dissipation compared to conventional  
materials. PCB layout greatly affects thermal performance. Connect the INA1620 package thermal pad to a  
copper pour at the most negative supply potential. This copper pour can be connected to a larger copper plane  
within the PCB using vias to improve power dissipation. 45 shows an analogous thermal circuit that can be  
used for approximating the junction temperature of the INA1620. The power dissipated in the INA1620 is  
represented by current source PD; the ambient temperature is represented by voltage source 25ºC; and the  
junction-to-board and board-to-ambient thermal resistances are represented by resistors RθJB and RθBA  
,
respectively. The board-to-ambient thermal resistance is unique to every application. The sum of RθJB and RθBA is  
the junction-to-ambient thermal resistance of the system. The value for junction-to-ambient thermal resistance  
reported in the Thermal Information table is determined using the JEDEC standard test PCB. The voltages in the  
analogous thermal circuit at the points TJ and TPCB represent the INA1620 junction and PCB temperatures,  
respectively.  
16  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
INA1620  
www.ti.com.cn  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
Feature Description (接下页)  
TJ  
,
JB  
TPCB  
PD  
,
BA  
25ºC  
45. Approximate Thermal System Model of the INA1620 Soldered to a PCB  
7.3.3 Thermal Shutdown  
If the junction temperature of the INA1620 exceeds 175°C, a thermal shutdown circuit disables the amplifier in  
order to protect the device from damage. The amplifier is automatically re-enabled after the junction temperature  
falls below approximately 160°C. If the condition that caused excessive power dissipation has not been removed,  
the amplifier oscillates between a shutdown and enabled state until the output fault is corrected.  
7.3.4 EN Pin  
The enable pin (EN) of the INA1620 is used to toggle the amplifier enabled and disabled states. The logic levels  
defining these two states are: VEN 0.78 V (shutdown mode), and VEN 0.82 V (enabled). These threshold  
levels are referenced to the device ground (GND) pin. The EN pin can be driven by a GPIO pin from the system  
controller, discrete logic gates, or can be connected directly to the V+ supply. Do not leave the EN pin floating  
because the amplifier is prevented from being enabled. Likewise, do not place GPIO pins used to control the EN  
pin in a high-impedance state because this placement also prevents the amplifier from being enabled. A small  
current flows into the enable pin when a voltage is applied. Using the simplified internal schematic shown in 图  
46, use 公式 4 to estimate the enable pin current:  
VEN - 0.7 V  
700 k  
IEN  
=
(4)  
As illustrated in 46, the EN pin is protected by diodes to the amplifier power supplies. Do not connect the EN  
pin to voltages outside the limits defined in the Specifications section.  
To  
Amplifier  
VCC  
500 k  
EN  
VEE  
VCC  
200 kꢀ  
GND  
VEE  
46. EN Pin Simplified Internal Schematic  
版权 © 2018, Texas Instruments Incorporated  
17  
 
 
INA1620  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
www.ti.com.cn  
Feature Description (接下页)  
7.3.5 GND Pin  
The inclusion of a ground (GND) pin in the INA1620 architecture allows the internal enable circuitry to be  
referenced to the system ground, eliminating the need for level shifting circuitry in many applications. The internal  
amplifier compensation capacitors are also referenced to this pin, greatly increasing the ac PSRR. For highest  
performance, connect the GND pin to a low-impedance reference point with minimal noise present. As shown in  
46, the GND pin is protected by ESD diodes to the amplifier power supplies. Do not connect the GND pin to  
voltages outside the limits defined in the Specifications section.  
7.3.6 Input Protection  
The amplifier input pins of the INA1620 are protected from excessive differential voltage with back-to-back  
diodes, as 47 shows. In most circuit applications, the input protection circuitry has no consequence. However,  
in low-gain or G = +1 circuits, fast-ramping input signals can forward bias these diodes because the output of the  
amplifier cannot respond quickly enough to the input ramp. If the input signal is fast enough to create this  
forward-bias condition, the input signal current must be limited to 10 mA or less. If the input signal current is not  
inherently limited, use an input series resistor (RI) or a feedback resistor (RF) to limit the signal input current. This  
input series resistor degrades the low-noise performance of the INA1620 and is examined in the Noise  
Performance section. 47 shows an example configuration when both current-limiting input and feedback  
resistors are used.  
RF  
Device  
Output  
RI  
+
Input  
47. Pulsed Operation  
7.4 Device Functional Modes  
The INA1620 has two operating modes determined by the voltage between the EN and GND pins: a shutdown  
mode (VEN 0.78 V) and an enabled mode (VEN 0.82 V). The measured datasheet performance parameters  
specified in the Typical Characteristics and Specifications sections are given with the amplifier in the enabled  
mode, unless otherwise noted.  
7.4.1 Shutdown Mode  
When the EN pin voltage is below the logic low threshold, the INA1620 enters a shutdown mode with minimal  
power consumption. In this state the output transistors of the amplifier are not powered on. However, do not  
consider the amplifier output to be high-impedance. Applying signals to the output of the INA1620 while the  
device is in the shutdown mode can parasitically power the output stage, causing the INA1620 output to draw  
current.  
The INA1620 enable circuitry limits transients at the output when transitioning into or out of shutdown mode.  
However, small output transients do still accompany this transition, as illustrated in 48 and 49. Note that in  
both figures the time scale is 1 µs per division, indicating that the output transients are extremely brief in nature,  
and therefore not likely to be audible in headphone applications.  
18  
版权 © 2018, Texas Instruments Incorporated  
 
INA1620  
www.ti.com.cn  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
Device Functional Modes (接下页)  
Enable (2 V/div)  
Enable (2 V/div)  
Output (20 mV/div)  
Output (20 mV/div)  
Time (1 s/div)  
Time (1 s/div)  
C001  
C002  
48. INA1620 Output Voltage When EN Pin Transitions  
High (32-Ω Load Connected)  
49. INA1620 Output Voltage When EN Pin Transitions  
Low (32-Ω Load Connected)  
7.4.2 Output Transients During Power Up and Power Down  
To minimize the possibility of output transients that might produce an audible click or pop, ramp the supply  
voltages for the INA1620 symmetrically to their nominal values. Asymmetrical supply ramping can cause output  
transients during power up that can be audible in headphone applications. If possible, hold the EN pin low while  
the power supplies are ramping up or down. If the EN pin is not being independently controlled (for example, by  
a GPIO pin), use a voltage divider to hold the enable pin voltage below the logic-high threshold until the power  
supplies reach the specified minimum voltage, as shown in 50.  
VCC  
22.1 k  
To enable  
pin on IC  
10.7 kꢀ  
50. Voltage Divider Used to Hold Enable Low at Power-Up or Power-Down  
版权 © 2018, Texas Instruments Incorporated  
19  
 
INA1620  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The low noise and distortion of the INA1620 make the device useful for a variety of applications in professional  
and consumer audio products. However, these same performance metrics also make the INA1620 useful for  
industrial, test-and-measurement, and data-acquisition applications. The example shown here is only one  
possible application where the INA1620 provides exceptional performance.  
8.1.1 Noise Performance  
51 shows the total circuit noise for varying source impedances with the op amp in a unity-gain configuration  
(no feedback resistor network, and therefore no additional noise contributions).  
The INA1620 is shown with total circuit noise calculated. The op amp contributes both a voltage noise  
component and a current noise component. The voltage noise is commonly modeled as a time-varying  
component of the offset voltage. The current noise is modeled as the time-varying component of the input bias  
current, and reacts with the source resistance to create a voltage component of noise. Therefore, the lowest  
noise op amp for a given application depends on the source impedance. For low source impedance, current  
noise is negligible, and voltage noise generally dominates. The low voltage and current noise of the INA1620  
internal op amps make the device an excellent choice for use in applications where the source impedance is less  
than 10 kΩ as shown in 51.  
1000  
Source Resistor Noise Contribution  
100  
10  
Total Noise  
1
Voltage Noise Contribution  
Current Noise Contribution  
0.1  
10  
100  
1k  
10k  
100k  
1M  
Source Resistance ()  
C302  
51. Noise Performance of the INA1620 Internal Amplifiers  
20  
版权 © 2018, Texas Instruments Incorporated  
 
INA1620  
www.ti.com.cn  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
Application Information (接下页)  
8.1.2 Resistor Tolerance  
The INA1620 integrated resistor pairs use an advanced thin film process to create resistor pairs that have  
excellent matching. Each specific resistor pair is specifically designed for accurate matching between the two  
resistors. 42 shows the distribution of resistor matching for a typical device population. The equation used to  
calculate matching between resistors in a pair is shown in 公式 5.  
RXA -RXB  
Resistor Ratio Matching % =  
ì100  
(
)
Average RXA,RXB  
(
)
(5)  
In addition to excellent matching between resistors in each resistor pair, all resistors on a single INA1620 achieve  
good matching due to inherent process matching across each device. 52 shows a typical distribution of the  
worst-case matching across all resistors on a single INA1620. The matching was calculated using the highest  
value resistance on a device matched with the lowest resistance value on the same device.  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
D032  
Resistor Matching, Maximum to Minimum (%)  
52. Matching Histogram, Maximum to Minimum  
8.1.3 EMI Rejection  
The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational  
amplifiers. An adverse effect that is common to many op amps is a change in the offset voltage as a result of RF  
signal rectification. An op amp that is more efficient at rejecting this change in offset as a result of EMI has a  
higher EMIRR and is quantified by a decibel value. Measuring EMIRR can be performed in many ways, but this  
section provides the EMIRR IN+, which specifically describes the EMIRR performance when the RF signal is  
applied to the noninverting input pin of the op amp. In general, only the noninverting input is tested for EMIRR for  
the following three reasons:  
Op amp input pins are known to be the most sensitive to EMI, and typically rectify RF signals better than the  
supply or output pins.  
The noninverting and inverting op amp inputs have symmetrical physical layouts and exhibit approximately  
matching EMIRR performance.  
EMIRR is easier to measure on noninverting pins than on other pins because the noninverting input pin can  
be isolated on a PCB. This isolation allows the RF signal to be applied directly to the noninverting input  
terminal with no complex interactions from other components or connecting PCB traces.  
High-frequency signals conducted or radiated to any pin of the operational amplifier result in adverse effects, as  
the amplifier does not have sufficient loop gain to correct for signals with spectral content outside its bandwidth.  
Conducted or radiated EMI on inputs, power supply, or output may result in unexpected DC offsets, transient  
voltages, or other unknown behavior. Take care to properly shield and isolate sensitive analog nodes from noisy  
radio signals and digital clocks and interfaces.  
The EMIRR IN+ of the INA1620 amplifiers is plotted versus frequency as shown in 53. See also EMI Rejection  
Ratio of Operational Amplifiers, available for download from www.ti.com.  
版权 © 2018, Texas Instruments Incorporated  
21  
 
 
INA1620  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
www.ti.com.cn  
Application Information (接下页)  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
100M  
1G  
10G  
Frequency (Hz)  
D033  
53. INA1620 EMIRR IN+  
1 lists the EMIRR IN+ values for the INA1620 at particular frequencies commonly encountered in real-world  
applications. Applications listed in 1 may be centered on or operated near the particular frequency shown.  
This information may be of special interest to designers working with these types of applications, or working in  
other fields likely to encounter RF interference from broad sources, such as the industrial, scientific, and medical  
(ISM) radio band.  
1. INA1620 EMIRR IN+ for Frequencies of Interest  
FREQUENCY  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5 GHz  
APPLICATION OR ALLOCATION  
EMIRR IN+  
18 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
33 dB  
26 dB  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
40 dB  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
55 dB  
22  
版权 © 2018, Texas Instruments Incorporated  
 
INA1620  
www.ti.com.cn  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
8.1.4 EMIRR +IN Test Configuration  
54 shows the circuit configuration for testing the EMIRR IN+. An RF source connects to the op amp  
noninverting input pin using a transmission line. The op amp is configured in a unity-gain buffer topology with the  
output connected to a low-pass filter (LPF) and a digital multimeter (DMM). A large impedance mismatch at the  
op amp input causes a voltage reflection; however, this effect is characterized and accounted for when  
determining the EMIRR IN+. A multimeter samples and measures the resulting DC offset voltage. The LPF  
isolates the multimeter from residual RF signals that may interfere with multimeter accuracy.  
Ambient temperature: 25˘C  
+VS  
œ
50  
Low-Pass Filter  
+
RF source  
DC Bias: 0 V  
Modulation: None (CW)  
-VS  
Sample /  
Averaging  
Digital Multimeter  
Not shown: 0.1 µF and 10 µF  
supply decoupling  
Frequency Sweep: 201 pt. Log  
54. EMIRR +IN Test Configuration  
版权 © 2018, Texas Instruments Incorporated  
23  
 
INA1620  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
www.ti.com.cn  
8.2 Typical Application  
The low distortion and high output-current capabilities of the INA1620 make this device an excellent choice for  
headphone-amplifier applications in portable or studio applications. These applications typically employ an audio  
digital-to-analog converter (DAC) and a separate headphone amplifier circuit connected to the DAC output. High-  
performance audio DACs can have an output signal that is either a varying current or voltage. Voltage output  
configurations require less external circuitry, and therefore have advantages in cost, power consumption, and  
solution size. However, these configurations can offer slightly lower performance than current output  
configurations. Differential outputs are standard on both types of DACs. Differential outputs double the output  
signal levels that can be delivered on a single, low-voltage supply, and also allow for even-harmonics common to  
both outputs to be cancelled by external circuitry. A simplified representation of a voltage-output audio DAC is  
shown in 55. Two ac voltage sources (VAC) deliver the output signal to the complementary outputs through  
their associated output impedances (ROUT). Both output signals have a dc component as well, represented by dc  
voltage source VDC. The headphone amplifier circuit connected to the output of an audio DAC must convert the  
differential output into a single-ended signal and be capable of producing signals of sufficient amplitude at the  
headphones to achieve reasonable listening levels.  
100 pF  
ROUT  
1 k  
1 kꢀ  
5V  
VAC  
œ
Headphone Output  
+
VDC  
VAC  
-5V  
ROUT  
1 kꢀ  
1 kꢀ  
INA1620  
Audio DAC  
100 pF  
55. INA1620 Used as a Headphone Amplifier for a Voltage-Output Audio DAC  
8.2.1 Design Requirements  
±5-V power supplies  
150-mW output power (32-Ω load)  
< –110-dB THD+N at maximum output (32-Ω load)  
< 0.01-dB magnitude deviation (20 Hz to 20 kHz)  
8.2.2 Detailed Design Procedure  
55 shows a schematic of a headphone amplifier circuit for voltage output DACs. An op amp is configured as a  
difference amplifier that converts the differential output voltage to single-ended.  
The gain of the difference amplifier in 55 is determined by the resistor values, and includes the output  
impedance of the DAC. For R2 = R4 and R1 = R3, the output voltage of the headphone amplifier circuit is shown  
in 公式 6:  
R2  
VOUT = V  
DAC R1 + ROUT  
(6)  
The output voltage required for headphones depends on the headphone impedance, as well as the headphone  
efficiency (η), a measure of the sound pressure level (SPL, measured in dB) for a certain input power level  
(typically given at 1 mW). The headphone SPL at other power levels is calculated using 公式 7:  
24  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
INA1620  
www.ti.com.cn  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
Typical Application (接下页)  
P
IN  
SPL(dB) = h +10log  
«
÷
1 mW  
where  
η = efficiency  
PIN = input power to the headphones  
(7)  
56 shows the input power required to produce certain SPLs for different headphone efficiencies. Typically,  
over-the-ear style headphones have lower efficiencies than in-ear types with 95 dB/mW being a common value.  
150  
140  
130  
120  
110  
100  
90-dB/mW  
90  
80  
70  
60  
95-dB/mW  
100-dB/mW  
105-dB/mW  
110-dB/mW  
115-dB/mW  
0.01  
0.1  
1
10  
100  
1000  
Input Power (mW)  
C001  
56. Sound Pressure Level vs Input Power for Headphones of Various Efficiencies  
In-ear headphones can have efficiencies of 115 dB/mW or greater, and therefore have much lower power  
requirements. The output power goal for this design is 150 mW — sufficient power to produce extremely loud  
sound pressure levels in a wide range of headphones. A 32-Ω headphone impedance is used for this  
requirement because 32 Ω is a very common value in headphones for portable applications. 公式 8 shows the  
voltage required for 32-Ω headphones:  
VO = PìR = 150 mW ì32 = 2.191 VRMS  
(8)  
Capacitors C1 and C2 limit the bandwidth of the circuit to prevent the unnecessary amplification of interfering  
signals. The maximum value of these capacitors is determined by the limitations on frequency response  
magnitude deviation detailed in the Design Requirements section. C1 and C2 combine with resistors R2 and R4 to  
form a pole, as shown in 公式 9:  
1
fP =  
2p(R2,R4 )(C1,C2 )  
(9)  
Calculate the minimum pole frequency allowable to meet the magnitude deviation requirements using 公式 10:  
f
20 kHz  
fP í  
í
í 416.6 kHz  
2
2
1
1
-1  
-1  
«
÷
«
÷
G
0.999  
where  
G represents the gain in decimal for a –0.01-dB deviation at 20 kHz.  
(10)  
25  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
 
INA1620  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
www.ti.com.cn  
Typical Application (接下页)  
Use 公式 11 to calculate the upper limit for the value of C1 and C2 in order to meet the goal for minimal  
magnitude deviation at 20 kHz.  
1
1
C1,C2 Ç  
Ç
Ç 382 pF  
2p(R2,R4 )FP 2p(1 k)(416.6 kHz)  
(11)  
For this design, 100-pF capacitors were used because they meet the design requirements for amplitude  
deviation in the audio bandwidth.  
8.2.3 Application Curves  
57 shows the maximum output voltage achievable for a 32-Ω load before the onset of clipping (±5-V supplies),  
indicated by a sharp increase in distortion. As more current is delivered by the output transistors of an amplifier,  
additional distortion is produced. At low frequencies, this distortion is corrected by the feedback loop of the  
amplifier. However, as the loop gain of the amplifier begins to decline at high frequencies, the overall distortion  
begins to climb. The unique output stage design of the INA1620 greatly reduces the additional distortion at high  
frequency when delivering large currents, as shown in 58. High-ordered harmonics (above the 2nd and 3rd)  
are also kept to a minimal level at high output powers, as shown in 59.  
-60  
-70  
-80  
-82  
-84  
Left Channel  
Right Channel  
Left Channel  
Right Channel  
-86  
-88  
-80  
-90  
-92  
-94  
-96  
-90  
-98  
-100  
-110  
-120  
-100  
-102  
-104  
-106  
-108  
-110  
0.01  
0.1  
1
5
10  
100  
1k  
10k  
Output Level (Vrms)  
Frequency (Hz)  
22.4-kHz measurement bandwidth  
90-kHz measurement bandwidth, 1-VRMS output  
57. THD+N vs Output Voltage for a 32-Ω Load  
58. THD+N vs Frequency for a 32-Ω Load  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
0
5000  
10000  
Frequency (Hz)  
15000  
20000  
1 kHz, 32-Ω load, 1 VRMS  
59. Output Spectrum  
26  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
INA1620  
www.ti.com.cn  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
8.3 Other Application Examples  
8.3.1 Preamplifier for Professional Microphones  
60 shows a preamplifier designed for high performance applications that require low-noise and high common-  
mode rejection. Both channels of the INA1620 are configured as a two-op amp instrumentation amplifier with a  
variable gain from 6 to 40 dB. The excellent matching of the integrated 1kΩ resistors allows for high common-  
mode rejection in the circuit. An OPA197 is configured as a buffered power supply divider to provide a biasing  
voltage to the circuit, allowing the system to operate properly on a single 9-V battery. The additional components  
at the INA1620 inputs are for phantom power, EMI, and ESD protection.  
9 V  
9 V  
0.1 F  
100 kꢁ  
OPA197  
+
VBIAS  
œ
1 F  
100 kꢁ  
10-kPotentiometer  
(Logarithmic)  
20 ꢁ  
VBIAS  
R3B  
R2B  
1 kꢁ  
48 V Phantom Power  
R2A  
R2C R3A  
R3C  
1 kꢁ  
1 kꢁ  
1 kꢁ  
9 V  
9 V  
D1  
0.1 F  
47 kꢁ  
VCC  
GND  
OUTA  
IN-B  
10 V  
6.8 kꢁ  
6.8 kꢁ  
D2  
IN-A  
47 F  
68 ꢁ  
œ
œ
47 F  
Microphone  
Input  
Output  
INA1620  
+
+
OUTB  
68 ꢁ  
30 ꢁ  
IN+A  
100  
pF  
47 kꢁ  
VBIAS  
2.2 kꢁ  
IN+B  
2
3
100  
pF  
1
22 kꢁ  
68 ꢁ  
100  
pF  
2.2 kꢁ  
47 F  
30 ꢁ  
XLR Connector  
D3  
D4  
Copyright © 2018, Texas Instruments Incorporated  
60. Preamplifier for Professional Microphones  
版权 © 2018, Texas Instruments Incorporated  
27  
 
INA1620  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
www.ti.com.cn  
9 Power Supply Recommendations  
The INA1620 operates from ±2-V to ±18-V supplies, while maintaining excellent performance. However, some  
applications do not require equal positive and negative output voltage swing. With the INA1620, power-supply  
voltages do not need to be equal. For example, the positive supply could be set to 25 V with the negative supply  
at –5 V.  
In all cases, the common-mode voltage must be maintained within the specified range. Key parameters are  
specified over the temperature range of TA = –40°C to 125°C. Parameters that vary with operating voltage or  
temperature are shown in the Typical Characteristics section.  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close  
as possible to the device. A single bypass capacitor from V+ to ground is applicable for single-supply  
applications. The bypass capacitors are used to reduce the coupled noise by providing low-impedance power  
sources local to the analog circuitry, because noise can propagate into analog circuitry through the power  
pins of the circuit as a whole and the op amp specifically.  
Connect the device ground pin to a low-impedance, low-noise, system reference point, such as an analog  
ground.  
Place the external components as close to the device as possible. As shown in 61, keep feedback  
resistors close to the inverting input to minimize parasitic capacitance and the feedback loop area.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
For proper amplifier function, connect the package thermal pad to the most negative supply voltage (VEE).  
10.2 Layout Example  
IN-  
Minimize capacitance  
at amplifier inputs  
IN+  
Minimize feedback  
loop area  
1 k  
1 kꢀ  
1 kꢀ  
1 kꢀ  
GND  
EMI Filtering  
Place bypass  
capacitors as close to  
IC as possible  
OUT A  
EN  
OUT  
VCC  
GND  
GND  
IC ground pin  
connected to low-  
impedance, low-noise  
system ground  
NC  
NC  
VEE  
OUT  
OUT B  
EMI Filtering  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
GND  
IN+  
IN-  
Copper pour for thermal  
pad must be connected to  
negative supply (VEE)  
61. Board Layout for a Difference Amplifier Configuration  
28  
版权 © 2018, Texas Instruments Incorporated  
 
INA1620  
www.ti.com.cn  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 TINA-TI™(免费软件下载)  
TINA-TI 软件是一款简单易用、功能强大且基于 SPICE 引擎的电路仿真程序。TINA-TI 软件是 TINA 软件的一款免  
费的全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI 提供所有传统  
SPICE 直流、瞬态和频域分析以及其他设计功能。  
TINA-TI 软件可从模拟电子实验室设计中心免费下载,它可提供广泛的后处理功能,使用户能够以多种方式设置结  
果的格式。虚拟仪器提供选择输入波形和探测电路节点、电压和波形的功能,从而创建一个动态的快速入门工具。  
这些文件需要安装 TINA 软件(由 DesignSoft™提供)或者 TINA-TI 软件。请从 TINA-TI 文  
件夹 中下载免费的 TINA-TI 软件。  
11.1.1.2 TI 高精度设计  
欲获取 TI 高精度设计,请访问 http://www.ti.com.cn/ww/analog/precision-designs/TI 高精度设计是由 TI 公司高  
精度模拟 应用 专家创建的模拟解决方案,提供了许多实用电路的工作原理、组件选择、仿真、完整印刷电路板  
(PCB) 电路原理图和布局布线、物料清单以及性能测量结果。  
11.2 文档支持  
11.2.1 相关文档  
如需相关文档,请参阅:  
《反馈曲线图定义运算放大器交流性能》  
《电路板布局技巧》SLOA089  
《适用于电压输出音频 DAC 的耳机放大器参考设计》  
《面向耳机应用的差分放大器稳定化 》  
《减少 CMOS 模拟开关导致的失真》  
《运算放大器的电磁干扰 (EMI) 抑制比》  
《高保真音响电路设计》  
11.3 接收文档更新通知  
要接收文档更新通知,请在 ti.com.cn 上查找器件产品文件夹。单击右上角的通知我 即可接收产品信息更改每周摘  
要。有关更改的详细信息,请参阅任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
版权 © 2018, Texas Instruments Incorporated  
29  
INA1620  
ZHCSHW8B MARCH 2018REVISED JULY 2018  
www.ti.com.cn  
11.5 商标  
E2E is a trademark of Texas Instruments.  
TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
DesignSoft is a trademark of DesignSoft, Inc.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
30  
版权 © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA1620RTWR  
INA1620RTWT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
INA1620  
INA1620  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RTW 24  
4 x 4, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224801/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

INA163

Low-Noise, Low-Distortion INSTRUMENTATION AMPLIFIER
BB

INA163

低噪声、低失真仪表放大器
TI

INA163UA

Low-Noise, Low-Distortion INSTRUMENTATION AMPLIFIER
BB

INA163UA

低噪声、低失真仪表放大器 | D | 14 | -40 to 85
TI

INA163UA/2K5

Low-Noise, Low-Distortion INSTRUMENTATION AMPLIFIER
BB

INA163UA/2K5

低噪声、低失真仪表放大器 | D | 14 | -40 to 85
TI

INA163UA/2K5E4

Low-Noise, Low-Distortion INSTRUMENTATION AMPLIFIER
BB

INA163UA/2K5E4

低噪声、低失真仪表放大器 | D | 14 | -40 to 85
TI

INA163UAE4

Low-Noise, Low-Distortion INSTRUMENTATION AMPLIFIER
BB

INA163UAE4

低噪声、低失真仪表放大器 | D | 14 | -40 to 85
TI

INA163_06

Low-Noise, Low-Distortion INSTRUMENTATION AMPLIFIER
BB

INA1650

双路 SoundPlus™ 高共模抑制 (91dB)、低 THD+N (-120dB) 差分线路接收器
TI