FDC1004QDGSRQ1 [TI]

具有源屏蔽驱动器的 4 通道、16 位、汽车类电感数字转换器 | DGS | 10 | -40 to 125;
FDC1004QDGSRQ1
型号: FDC1004QDGSRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有源屏蔽驱动器的 4 通道、16 位、汽车类电感数字转换器 | DGS | 10 | -40 to 125

驱动 光电二极管 驱动器 转换器
文件: 总30页 (文件大小:1099K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
FDC1004Q  
ZHCSDR2 APRIL 2015  
FDC1004Q 面向电容式传感解决方案的 4 通道电容数字转换器  
1 特性  
3 说明  
1
符合汽车应用要求  
符合 AEC-Q100 标准的下列结果  
采用接地电容传感器的电容式感测是一种超低功耗、低  
成本且高分辨率的非接触式感测技术,适用于接近传  
感、手势识别、材料分析和远程液位感测等各类应用。  
电容式传感系统中的传感器可以采用任意金属或导体,  
因此可实现高度灵活的低成本系统设计。  
器件温度等级 1-40°C 125°C 的环境运行  
温度范围  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 2  
FDC1004Q 是一款面向电容式传感解决方案的高分辨  
4 通道电容数字转换器,并且符合 AEC-Q100 标  
准。 每个通道的满量程范围均为 ±15pF,可处理高达  
100pF 的传感器偏置电容,该偏置电容既可以在内部  
编程,也可以是一个外部电容,用于跟踪环境随时间和  
温度的变化。 凭借较高的偏置电容能力,可以使用远  
程传感器。  
器件组件充电模式 (CDM) ESD 分类等级 C5  
输入范围:±15pF  
测量分辨率:0.5fF  
最大偏置电容:100pF  
可编程输出速率:100/200/400S/s  
最大屏蔽负载:400pF  
电源电压:3.3V  
此外,FDC1004Q 还包含用于实现传感器屏蔽的屏蔽  
驱动器,不但可降低电磁干扰 (EMI),而且有助于聚焦  
电容传感器的传感方向。 FDC1004Q 外形小巧,非常  
适合空间受限类应用。 FDC1004Q 采用 10 引脚超薄  
小外形尺寸 (VSSOP) 封装,支持在量产过程中进行光  
学检测,并且具有用于连接 MCU I2C 接口。  
温度范围:–40°C 125°C  
电流消耗:  
工作时:750µA  
待机时:29µA  
接口:I2C  
通道数:4  
器件信息(1)  
2 应用  
器件型号  
FDC1004Q  
封装  
封装尺寸(标称值)  
接近传感器  
VSSOP (DGS)  
3.0mm x 3.0mm  
手势识别  
(1) 要获得订购部件号,请参见数据表末尾的可订购产品附录。  
汽车车门/脚踢传感器  
汽车雨滴传感器  
远程和直接液位传感器  
高分辨率金属分析  
///雪传感器  
材料尺寸检测  
4 典型应用  
3.3 V  
VDD  
SHLD1  
SHLD2  
Level  
Sensor  
Excitation  
Environmental  
Sensor  
3.3 V  
3.3 V  
CIN1  
CIN2  
CIN3  
CIN4  
FDC1004Q  
3.3 V  
VDD  
CHA  
MUX  
CHA  
Liquid  
Sensor  
Offset and Gain  
Calibration  
Capacitance to  
Digital Converter  
MCU  
CHB  
MUX  
SCL  
SDA  
CHB  
I2C  
Peripheral  
I2C  
Configuration and Data  
Registers  
GND  
CAPDAC  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNOSCZ4  
 
 
 
 
FDC1004Q  
ZHCSDR2 APRIL 2015  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 10  
8.5 Programming........................................................... 12  
8.6 Register Maps ........................................................ 15  
Applications and Implementation ...................... 19  
9.1 Application Information............................................ 19  
9.2 Typical Application ................................................. 20  
9.3 Do's and Don'ts ...................................................... 22  
9.4 Initialization Set Up ................................................ 22  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
典型应用................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information ................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 I2C Interface Voltage Level ...................................... 5  
7.7 I2C Interface Timing ................................................. 6  
7.8 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagram ......................................... 9  
8.3 Feature Description................................................... 9  
9
10 Power Supply Recommendations ..................... 22  
11 Layout................................................................... 22  
11.1 Layout Guidelines ................................................. 22  
11.2 Layout Example .................................................... 22  
12 器件和文档支持 ..................................................... 23  
12.1 文档支持 ............................................................... 23  
12.2 ....................................................................... 23  
12.3 静电放电警告......................................................... 23  
12.4 术语表 ................................................................... 23  
13 机械、封装和可订购信息....................................... 23  
8
5 修订历史记录  
日期  
修订版本  
注释  
2015 4 月  
*
首次发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
FDC1004Q  
www.ti.com.cn  
ZHCSDR2 APRIL 2015  
6 Pin Configuration and Functions  
DGS Package  
10 Pin VSSOP  
Top View  
SHLD1  
CIN1  
1
2
10  
SDA  
SCL  
9
CIN2  
CIN3  
3
4
8
7
VDD  
GND  
CIN4  
5
6
SHLD2  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
SHLD1  
1
A
A
Capacitive Input Active AC Shielding.  
Capacitive Input. The measured capacitance is connected between the CIN1 pin and GND. If  
not used, this pin should be left as an open circuit.  
CIN1  
CIN2  
CIN3  
CIN4  
2
3
4
5
Capacitive Input. The measured capacitance is connected between the CIN2 pin and GND. If  
not used, this pin should be left as an open circuit.  
A
A
A
Capacitive Input. The measured capacitance is connected between the CIN3 pin and GND. If  
not used, this pin should be left as an open circuit.  
Capacitive Input. The measured capacitance is connected between the CIN4 pin and GND. If  
not used, this pin should be left as an open circuit.  
SHLD2  
GND  
6
7
A
Capacitive Input Active AC Shielding.  
Ground  
G
Power Supply Voltage. This pin should be decoupled to GND, using a low impedance  
capacitor, for example in combination with a 1-μF tantalum and a 0.1-μF multilayer ceramic.  
VDD  
SCL  
SDA  
8
9
P
I
Serial Interface Clock Input. Connects to the master clock line. Requires pull-up resistor if not  
already provided elsewhere in the system.  
Serial Interface Bidirectional Data. Connects to the master data line. Requires a pull-up  
resistor if not provided elsewhere in the system.  
10  
I/O  
(1) P=Power, G=Ground, I=Input, O=Output, A=Analog, I/O=Bi-Directional Input/Output  
Copyright © 2015, Texas Instruments Incorporated  
3
FDC1004Q  
ZHCSDR2 APRIL 2015  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
Input voltage  
VDD  
6
SCL, SDA  
at any other pin  
at any pin  
6
VDD+0.3  
3
V
V
Input current  
Junction temperature(2)  
mA  
°C  
°C  
150  
Storage Temperature  
TSTG  
-65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The maximum power dissipation is a function of TJ(MAX), RθJA, and the ambient temperature, TA. The maximum allowable power  
dissipation at any ambient temperature is PDMAX = (TJ(MAX) - TA)/ RθJA. All numbers apply for packages soldered directly onto a PC  
board.  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
Over operating temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
3.6  
UNIT  
Supply voltage (VDD-GND)  
Temperature  
3.3  
V
–40  
125  
°C  
7.4 Thermal Information  
FDC1004Q  
THERMAL METRIC(1)  
VSSOP (DGS)  
10 PINS  
46.8  
UNIT  
RθJA  
RθJC  
RθJB  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
48.7  
70.6  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
FDC1004Q  
www.ti.com.cn  
ZHCSDR2 APRIL 2015  
7.5 Electrical Characteristics(1)  
Over recommended operating temperature range, VDD = 3.3 V, for TA = 25°C (unless otherwise noted).  
PARAMETER  
POWER SUPPLY  
IDD Supply current  
TEST CONDITION  
MIN(2)  
TYP(3)  
MAX(2)  
UNIT  
Conversion mode; Digital input to  
VDD or GND  
750  
29  
950  
70  
µA  
µA  
Standby; Digital input to VDD or  
GND  
CAPACITIVE INPUT  
ICR  
Input conversion range  
±15  
100  
pF  
pF  
COMAX  
Max input offset capacitance  
per channel, Series resistance at  
CINn n=1.4 = 0 Ω  
(4)  
(5)  
RES  
Effective resolution  
Sample rate = 100S/s  
16  
33.2  
±6  
bit  
aF/Hz  
fF  
(5)  
EON  
ERR  
Output noise  
Sample rate = 100S/s  
Absolute error  
after offset calibration  
-40°C < T < 125°C  
TcCOFF  
GERR  
tcG  
Offset deviation over temperature  
Gain error  
46  
fF  
0.2%  
-37.5  
13.6  
Gain drift vs. temperature  
DC power supply rejection  
-40°C < T < 125°C  
ppm/°C  
fF/V  
PSRR  
3 V < VDD < 3.6 V, single-ended  
mode (channel vs GND)  
CAPDAC  
FRCAPDAC  
Full-scale range  
96.9  
30  
pF  
fF  
TcCOFFCAP Offset drift vs. temperature  
-40°C < T < 125°C  
DAC  
EXCITATION  
ƒ
Frequency  
25  
2.4  
1.2  
kHz  
Vpp  
V
VAC  
VDC  
AC voltage across capacitance  
Average DC voltage across  
capacitance  
SHIELD  
DRV  
Driver capability  
ƒ = 25 kHz, SHLDn to GND, n = 1,2  
400  
pF  
(1) Electrical Characteristics Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions  
result in very limited self-heating of the device such that TJ=TA. No guarantee of parametric performance is indicated in the electrical  
tables under conditions of internal self-heating where TJ>TA. Absolute Maximum Ratings indicate junction temperature limits beyond  
which the device may be permanently degraded, either mechanically or electrically.  
(2) Limits are ensured by testing, design, or statistical analysis at 25Degree C. Limits over the operating temperature range are ensured  
through correlations using statistical quality control (SQC) method.  
(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on  
shipped production material.  
(4) Effective resolution is the ratio of converter full scale range to RMS measurement noise.  
(5) No external capacitance connected.  
7.6 I2C Interface Voltage Level  
Over recommended operating free-air temperature range, VDD = 3.3 V, for TA = TJ = 25°C (unless otherwise noted).  
PARAMETER  
Input high voltage  
Input low voltage  
Output low voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIH  
0.7*VDD  
V
V
V
V
VIL  
0.3*VDD  
0.4  
VOL  
HYS  
Sink current 3 mA  
(1)  
Hysteresis  
0.1*VDD  
(1) This parameter is specified by design and/or characterization and is not tested in production.  
Copyright © 2015, Texas Instruments Incorporated  
5
FDC1004Q  
ZHCSDR2 APRIL 2015  
www.ti.com.cn  
7.7 I2C Interface Timing  
Over recommended operating free-air temperature range, VDD = 3.3 V, for TA = TJ = 25°C (unless otherwise noted).  
PARAMETER  
Clock frequency(1)  
Clock low time(1)  
Clock high time(1)  
TEST CONDITIONS  
MIN  
10  
TYP  
MAX  
UNIT  
kHz  
µs  
fSCL  
400  
tLOW  
1.3  
0.6  
0.6  
tHIGH  
tHD;STA  
µs  
Hold time (repeated) START  
condition(1)  
After this period, the first clock pulse  
is generated  
µs  
tSU;STA  
Set-up time for a repeated START  
condition(1)  
0.6  
µs  
tHD;DAT  
tSU;DAT  
tf  
Data hold time(1)(2)  
Data setup time(1)  
SDA fall time(1)  
Set-up time for STOP condition(1)  
0
ns  
ns  
ns  
µs  
µs  
100  
IL 3mA; CL 400pF  
300  
tSU;STO  
tBUF  
0.6  
1.3  
Bus free time between a STOP and  
START condition(1)  
tVD;DAT  
tVD;ACK  
tSP  
Data valid time(1)  
Data valid acknowledge time(1)  
0.9  
0.9  
50  
ns  
ns  
ns  
Pulse width of spikes that must be  
suppressed by the input filter(1)  
(1) This parameter is specified by design and/or characterization and is not tested in production.  
(2) The FDC1004Q provides an internal 300 ns minimum hold time to bridge the undefined region of the falling edge of SCL.  
SDA  
t
BUF  
t
t
f
LOW  
t
HD;STA  
t
r
t
t
SP  
t
f
r
SCL  
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 1. I2C Timing  
6
Copyright © 2015, Texas Instruments Incorporated  
FDC1004Q  
www.ti.com.cn  
ZHCSDR2 APRIL 2015  
7.8 Typical Characteristics  
50  
45  
40  
35  
30  
25  
20  
1300  
1200  
1100  
1000  
900  
3 V  
3.3 V  
3.6 V  
800  
700  
VDD = 3 V  
VDD = 3.3 V  
VDD = 3.6 V  
600  
500  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (°C)  
Temperature (°C)  
D002  
D001  
Figure 2. Active Conversion Mode Supply Current vs.  
Temperature  
Figure 3. Stand-by Mode Supply Current vs. Temperature  
2000  
0.1  
0.08  
0.06  
0.04  
0.02  
0
1000  
0
-1000  
-2000  
-3000  
-4000  
-5000  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
D004  
D003  
CINn = open, where n = 1...4  
Figure 5. Offset Drift vs. Temperature  
Figure 4. Gain Drift vs. Temperature  
10  
0
10.258  
10.256  
10.254  
10.252  
10.25  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
10.248  
10.246  
10.244  
10.242  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
2.9  
3
3.1  
3.2  
3.3  
Voltage (V)  
3.4  
3.5  
3.6  
3.7  
D005  
Capacitance Value = 10pF  
10-1  
100  
101  
102  
103  
104  
105  
Frequency (Hz)  
Figure 6. Capacitance vs. Voltage  
Figure 7. Frequency Response 100S/s  
Copyright © 2015, Texas Instruments Incorporated  
7
FDC1004Q  
ZHCSDR2 APRIL 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
10  
10  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-100  
-110  
-120  
-130  
-140  
-150  
10-1  
100  
101  
102  
103  
104  
105  
10-1  
100  
101  
102  
103  
104  
105  
Frequency (Hz)  
Frequency (Hz)  
Figure 8. Frequency Response 200S/s  
Figure 9. Frequency Response 400S/s  
8
Copyright © 2015, Texas Instruments Incorporated  
FDC1004Q  
www.ti.com.cn  
ZHCSDR2 APRIL 2015  
8 Detailed Description  
8.1 Overview  
The FDC1004Q is a high-resolution, 4-channel capacitance-to-digital converter for implementing capacitive  
sensing solutions. Each channel has a full scale range of ±15 pF and can handle a sensor offset capacitance of  
up to 100 pF, which can be either programmed internally or can be an external capacitor for tracking  
environmental changes over time and temperature. The large offset capacitance capability allows for the use of  
remote sensors. The FDC1004Q also includes shield drivers for sensor shields, which can reduce EMI  
interference and help focus the sensing direction of a capacitive sensor. The small footprint of the FDC1004Q  
allows for use in space-constrained applications. For more information on the basics of capacitive sensing and  
applications, refer to FDC1004: Basics of Capacitive Sensing and Applications application note (SNOA927).  
8.2 Functional Block Diagram  
CIN1  
CIN2  
VDD  
FDC1004Q  
M
U
X
CHA  
SHLD1  
SHLD2  
Capacitance to  
Digital Converter  
Offset and Gain  
Calibration  
SDA  
SCL  
Excitation  
I2C  
Configuration and Data Registers  
M
U
X
CHB  
CIN3  
CIN4  
CAPDAC  
GND  
8.3 Feature Description  
8.3.1 The Shield  
The FDC1004Q measures capacitance between CINn and ground. That means any capacitance to ground on  
signal path between the FDC1004Q CINn pins and sensor is included in the FDC1004Q conversion result.  
In some applications, the parasitic capacitance of the sensor connections can be larger than the capacitance of  
the sensor. If that parasitic capacitance is stable, it can be treated as a constant capacitive offset. However, the  
parasitic capacitance of the sensor connections can have significant variation due to environmental changes  
(such as mechanical movement, temperature shifts, humidity changes). These changes are seen as drift in the  
conversion result and may significantly compromise the system accuracy.  
To eliminate the CINn parasitic capacitance to ground, the FDC1004Q SHLDx signals can be used for shielding  
the connection between the sensor and CINn. The SHLDx output is the same signal waveform as the excitation  
of the CINn pin; the SHLDx is driven to the same voltage potential as the CINn pin. Therefore, there is no current  
between CINn and SHLDx pins, and any capacitance between these pins does not affect the CINn charge  
transfer. Ideally, the CINn to SHLD capacitance does not have any contribution to the FDC1004Q result.  
In differential measurements, SHLD1 is assigned to CHn and SHLD2 is assigned to CHm, where n < m. For  
instance in the measurement CIN1 – CIN2, where CHA = CIN1 and CHB = CIN2 (see Table 4), SHDL1 is  
assigned to CIN1 and SHDL2 is assigned to CIN2.  
Copyright © 2015, Texas Instruments Incorporated  
9
 
FDC1004Q  
ZHCSDR2 APRIL 2015  
www.ti.com.cn  
Feature Description (continued)  
In a single ended configuration, such as CINn vs. GND, SHLD1 is internally shorted to SHLD2. In a single ended  
configuration, such as CINn vs. GND with CAPDAC enabled, SHLD1 is assigned to the selected channel,  
SHLD2 is floating.  
For best results, locate the FDC1004Q as close as possible to the capacitive sensor. Minimize the connection  
length between the sensor and FDC1004Q CINn pins and between the sensor ground and the FDC1004Q GND  
pin. Shield the PCB traces to the CINn pins and connect the shielding to the FDC1004Q SHLDx pins. In addition,  
if a shielded cable is used to connect the FDC1004Q to the sensor, the shield should be connected to the  
appropriate SHLDx pin. In applications where only one SHLDx pin is used, the unused SHLDx pin can be left  
unconnected.  
For more information on how to design a sensor with a shield, refer to Capacitive Sensing: Ins and Outs of Active  
Sensing application note (SNOA926).  
8.3.2 The CAPDAC  
The FDC1004Q full-scale input range is ±15 pF. The part can accept a higher capacitance on the input and the  
common-mode or offset (constant component) capacitance can be balanced by the programmable on-chip  
CAPDACs. The CAPDAC can be viewed as a negative capacitance connected internally to the CINn pin. The  
relation between the input capacitance and output data can be expressed as DATA = (CINn – CAPDAC), n =  
1...4. The CAPDACs have a 5-bit resolution, monotonic transfer function, are well matched to each other, and  
have a defined temperature coefficient.  
8.3.3 Capacitive System Offset Calibration  
The capacitive offset can be due to many factors including the initial capacitance of the sensor, parasitic  
capacitances of board traces, and the capacitance of any other connections between the sensor and the FDC.  
The parasitic capacitances of the FDC1004Q are calibrated out at production. If there are other sources of offset  
in the system, it may be necessary to calibrate the system capacitance offset in the application. Any offset in the  
capacitance input larger than ½ LSB of the CAPDAC should first be removed using the on-chip CAPDACs. Any  
residual offset of approximately 1 pF can then be removed by using the capacitance offset calibration register.  
The offset calibration register is reloaded by the default value at power-on or after reset. Therefore, if the offset  
calibration is not repeated after each system power-up, the calibration coefficient value should be stored by the  
host controller and reloaded as part of the FDC1004Q setup.  
8.3.4 Capacitive Gain Calibration  
The gain is factory calibrated up to ±15 pF in the production for each part individually. The factory gain coefficient  
is stored in a one-time programmable (OTP) memory.  
The gain can be temporarily changed by setting the Gain Calibration Register (registers 0x11 to 0x14) for the  
appropriate CINn pin, although the factory gain coefficient will be restored after power-up or reset.  
The part is tested and specified for use only with the default factory calibration coefficient. Adjusting the Gain  
calibration can be used to normalize the capacitance measurement of the CINn input channels.  
8.4 Device Functional Modes  
8.4.1 Single Ended Measurement  
The FDC1004Q can be used for interfacing to a single-ended capacitive sensor. In this configuration the sensor  
should be connected to the input CINn (n = 1..4) pins of the FDC1004Q and GND. The capacitance-to-digital  
convertor (without using the CAPDAC, CAPDAC= 0pF) measures the positive (or the negative) input capacitance  
in the range of 0 pF to 15 pF. The CAPDAC can be used for programmable shifting of the input range. In this  
case it is possible to measure input capacitance in the range of 0 pF to ±15 pF which are on top of an offset  
capacitance up to 100 pF. In single ended measurements with CAPDAC disabled SHLD1 is internally shorted to  
SHLD2 (see Figure 10); if CAPDAC is enabled SHLD2 is floating (see Figure 11). The single ended mode is  
enabled when the CHB register of the Measurements configuration registers (see Table 4) are set to b100 or  
b111.  
10  
Copyright © 2015, Texas Instruments Incorporated  
FDC1004Q  
www.ti.com.cn  
ZHCSDR2 APRIL 2015  
Device Functional Modes (continued)  
CIN1  
CIN2  
VDD  
FDC1004Q  
M
U
X
CHA  
SHLD1  
SHLD2  
Capacitance to  
Digital Converter  
Offset and Gain  
Calibration  
SDA  
SCL  
Excitation  
I2C  
Configuration and Data Registers  
M
U
X
CHB  
CIN3  
CIN4  
S1  
S2  
S3  
S4  
CAPDAC  
GND  
Figure 10. Single-Ended Configuration with CAPDAC Disabled  
CIN1  
VDD  
FDC1004Q  
CIN2  
M
U
X
CHA  
SHLD1  
SHLD2  
Capacitance to  
Digital Converter  
Offset and Gain  
Calibration  
SDA  
SCL  
Excitation  
I2C  
Configuration and Data Registers  
M
U
X
CHB  
CIN3  
CIN4  
S1  
S2  
S3  
S4  
CAPDAC  
GND  
Figure 11. Single-Ended Configuration with CAPDAC Enabled  
8.4.2 Differential Measurement  
When the FDC1004Q is used for interfacing to a differential capacitive sensor, each of the two input  
capacitances must be less than 115 pF. In this configuration the CAPDAC is disabled. The absolute value of the  
difference between the two input capacitances should be kept below 15 pF to avoid introducing errors in the  
measurement. In differential measurements, SHLD1 is assigned to CHn and SHLD2 is assigned to CHm, where  
n < m. For instance in the measurement CIN1 – CIN2, where CHA = CIN1 and CHB = CIN2 (see Table 4),  
Copyright © 2015, Texas Instruments Incorporated  
11  
FDC1004Q  
ZHCSDR2 APRIL 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
SHDL1 is assigned to CIN1 and SHDL2 is to CIN2. Differential sensors made with S1 versus S3 and S2 versus  
S4 are shown below in Figure 12. S1 and S2 are alternatively connected to CHA and the S3 and S4 are  
alternatively connected to CHB, the shield signals are connected as explained in previous paragraph. The  
FDC1004Q will perform a differential measurement when CHB field of the Measurements Configuration  
Registers (refer to Table 4) is less than to b100.  
This configuration is very useful in applications where environment conditions need to be tracked. The differential  
measurement between the main electrode and the environment electrode makes the measurement independent  
of the environment conditions.  
CIN1  
CIN2  
VDD  
FDC1004Q  
M
U
X
CHA  
SHLD1  
SHLD2  
Capacitance to  
Digital Converter  
Offset and Gain  
Calibration  
SDA  
SCL  
Excitation  
I2C  
Configuration and Data Registers  
M
U
X
CHB  
CIN3  
CIN4  
S1  
S2  
S3  
S4  
CAPDAC  
GND  
Figure 12. Differential Configuration  
8.5 Programming  
The FDC1004Q operates only as a slave device on the two-wire bus interface. Every device on the bus must  
have a unique address. Connection to the bus is made via the open-drain I/O lines, SDA, and SCL. The SDA  
and SCL pins feature integrated spike-suppression filters and Schmitt triggers to minimize the effects of input  
spikes and bus noise. The FDC1004Q supports fast mode frequencies 10 kHz to 400 kHz. All data bytes are  
transmitted MSB first.  
8.5.1 Serial Bus Address  
To communicate with the FDC1004Q, the master must first address slave devices via a slave address byte. The  
slave address byte consists of seven address bits and a direction bit that indicates the intent to execute a read or  
write operation. The seven bit address for the FDC1004Q is (MSB first): b101 0000.  
8.5.2 Read/Write Operations  
Access a particular register on the FDC1004Q by writing the appropriate value to the Pointer Register. The  
pointer value is the first byte transferred after the slave address byte with the R/W bit low. Every write operation  
to the FDC1004Q requires a value for the pointer register. When reading from the FDC1004Q, the last value  
stored in the pointer by a write operation is used to determine which register is read by a read operation. To  
change the pointer register for a read operation, a new value must be written to the pointer. This transaction is  
accomplished by issuing the slave address byte with the R/W bit low, followed by the pointer byte. No additional  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
FDC1004Q  
www.ti.com.cn  
ZHCSDR2 APRIL 2015  
Programming (continued)  
data is required. The master can then generate a START condition and send the slave address byte with the  
R/W bit high to initiate the read command. Note that register bytes are sent MSB first, followed by the LSB. A  
write operation in a read only registers such as MANUFACTURER ID or SERIAL ID returns a NACK after each  
data byte; read/write operation to unused address returns a NACK after the pointer; a read/write operation with  
incorrect I2C address returns a NACK after the I2C address.  
1
9
1
9
SCL  
SDA  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
R/W  
Start by  
Master  
Ack by  
Slave  
Ack by  
Slave  
Frame 1  
7-bit Serial Bus Address Byte  
Frame 2  
Pointer Register Byte  
1
9
1
9
SCL  
SDA  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Ack by  
Slave  
Ack by  
Slave  
Stop by  
Master  
Frame 3  
Data MSB from  
MASTER  
Frame 4  
Data LSB from  
MASTER  
Figure 13. Write Frame  
1
9
1
9
SCL  
SDA  
A6 A5 A4 A3 A2 A1 A0 R/W  
P7 P6 P5 P4 P3 P2 P1 P0  
Start by  
Master  
Ack by  
Slave  
Ack by  
Slave  
Frame 1  
Frame 2  
7-bit Serial Bus Address Byte  
Pointer Register Byte  
1
9
1
9
1
9
SCL  
SDA  
A6 A5 A4 A3 A2 A1 A0 R/W  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
Start by  
Master  
Ack by  
Slave  
Ack by  
Master  
Nack by Stop by  
Master Master  
Frame 4  
Data MSB from  
Slave  
Frame 5  
Data LSB from  
Slave  
Frame 3  
7-bit Serial Bus Address Byte  
Figure 14. Read Frame  
8.5.3 Device Usage  
The basic usage model of the FDC1004Q is to simply follow these steps:  
1. Configure measurements (for details, refer to Measurement Configuration).  
2. Trigger a measurement set (for details, refer to Triggering Measurements).  
3. Wait for measurement completion (for details, refer to Wait for Measurement Completion).  
4. Read measurement data (for details, refer to Read of Measurement Result).  
8.5.3.1 Measurement Configuration  
Configuring a measurement involves setting the input channels and the type of measurement (single-ended or  
differential).  
The FDC1004Q can be configured with up to 4 separate measurements, where each measurement can be any  
valid configuration (that is, a specific channel can be used in multiple measurements). There is a dedicated  
configuration register for each of the 4 possible measurements (e.g MEAS_CONF1 in register 0x08 configures  
measurement 1, MEAS_CONF2 in register 0x09 configures measurement 2, ...). Configuring only one  
measurement is allowed, and it can be one of the 4 possible measurement configurations.  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
FDC1004Q  
ZHCSDR2 APRIL 2015  
www.ti.com.cn  
Programming (continued)  
1. Setup the input channels for each measurement. Determine which of the 4 measurement configuration  
registers to use (registers 0x08 to 0x0A) and set the following:  
(a) For single-ended measurement:  
(a) Select the positive input pin for the measurement by setting the CHA field (bits[15:13]).  
(b) Set CAPDAC (bits[9:5]) if the channel offset capacitance is more than 15pF.  
(b) For a differential measurement:  
(a) Select the positive input pin for the measurement by setting the CHA field (bits[15:13]).  
(b) Select the negative input pin for the measurement by setting the CHB field (bits[12:10]). Note that the  
CAPDAC setting has no effect for a differential measurement.  
2. Determine the appropriate sample rate. The sample rate sets the resolution of the measurement. Lower the  
sample rate higher is the resolution of the measurement.  
8.5.3.2 Triggering Measurements  
For a single measurement, trigger the desired measurement (i.e. which one of the configured measurements)  
when needed by:  
1. Setting REPEAT (Register 0x0C:bit[8]) to 0.  
2. Setting the corresponding MEAS_x field (Register 0x0C:bit[7:4]) to 1.  
For example, to trigger a single measurement of Measurement 2 at a rate of 100S/s, set Address 0x0C to  
0x0540.  
Note that, at a given time, only one measurement of the configured measurements can be triggered in this  
manner (i.e. MEAS_1 and MEAS_2 cannot both be triggered in a single operation).  
The FDC1004Q can also trigger a new measurement on the completion of the previous measurement (repeated  
measurements). This is setup by:  
1. Setting REPEAT (Register 0x0C:bit[8]) to 1.  
2. Setting the corresponding MEAS_x field (Register 0x0C:bit[7:4]) to 1.  
When the FDC1004Q is setup for repeated measurements, multiple configured measurements (up to a maximum  
of 4) can be performed in this manner, but Register 0x0C must be written in a single transaction.  
8.5.3.3 Wait for Measurement Completion  
Wait for the triggered measurements to complete. When the measurements are complete, the corresponding  
DONE_x field (Register 0x0C:bits[3:0]) will be set to 1.  
8.5.3.4 Read of Measurement Result  
Read the result of the measurement from the corresponding registers:  
0x00/0x01 for Measurement 1  
0x02/0x03 for Measurement 2  
0x04/0x05 for Measurement 3  
0x06/0x07 for Measurement 4  
The measurement results span 2 register addresses; both registers must be read to have a complete conversion  
result. The lower address (e.g. 0x00 for Measurement 1) must be read first, then the upper address read  
afterwards (for example, 0x01 for Measurement 1).  
Once the measurement read is complete, the corresponding DONE_x field (Register 0x0C:bits[3:0]) will return to  
0.  
If an additional single triggered measurement is desired, simply perform the Trigger, Wait, Read steps again.  
If the FDC1004Q is setup for repeated measurements (Register 0x0C:bit[8]) = 1), the FDC1004Q will  
continuously measure until the REPEAT field (Register 0x0C:bit[8]) is set to 0, even if the results are not read  
back.  
14  
Copyright © 2015, Texas Instruments Incorporated  
FDC1004Q  
www.ti.com.cn  
ZHCSDR2 APRIL 2015  
8.6 Register Maps  
Table 1. Register Map  
Pointer  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0xFE  
0xFF  
Register Name  
Reset Value  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x1C00  
0x1C00  
0x1C00  
0x1C00  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x4000  
0x4000  
0x4000  
0x4000  
0x5449  
0x1004  
Description  
MEAS1_MSB  
MEAS1_LSB  
MSB portion of Measurement 1  
LSB portion of Measurement 1  
MSB portion of Measurement 2  
LSB portion of Measurement 2  
MSB portion of Measurement 3  
LSB portion of Measurement 3  
MSB portion of Measurement 4  
LSB portion of Measurement 4  
Measurement 1 Configuration  
Measurement 2 Configuration  
Measurement 3 Configuration  
Measurement 4 Configuration  
MEAS2_MSB  
MEAS2_LSB  
MEAS3_MSB  
MEAS3_LSB  
MEAS4_MSB  
MEAS4_LSB  
CONF_MEAS1  
CONF_MEAS2  
CONF_MEAS3  
CONF_MEAS4  
FDC_CONF  
Capacitance to Digital Configuration  
CIN1 Offset Calibration  
CIN2 Offset Calibration  
CIN3 Offset Calibration  
CIN4 Offset Calibration  
CIN1 Gain Calibration  
CIN2 Gain Calibration  
CIN3 Gain Calibration  
CIN4 Gain Calibration  
ID of Texas Instruments  
ID of FDC1004Q device  
OFFSET_CAL_CIN1  
OFFSET_CAL_CIN2  
OFFSET_CAL_CIN3  
OFFSET_CAL_CIN4  
GAIN_CAL_CIN1  
GAIN_CAL_CIN2  
GAIN_CAL_CIN3  
GAIN_CAL_CIN4  
Manufacturer ID  
Device ID  
Registers from 0x15 to 0xFD are reserved and should not be written to.  
Copyright © 2015, Texas Instruments Incorporated  
15  
FDC1004Q  
ZHCSDR2 APRIL 2015  
www.ti.com.cn  
8.6.1 Registers  
The FDC1004Q has an 8-bit pointer used to address a given data register. The pointer identifies which of the  
data registers should respond to a read or write command on the two-wire bus. This register is set with every  
write command. A write command must be issued to set the proper value in the pointer before executing a read  
command. The power-on reset (POR) value of the pointer is 0x00.  
8.6.1.1 Capacitive Measurement Registers  
The capacitance measurement registers are 24-bit result registers in binary format (the 8 LSBs D[7:0] are always  
0x00). The result of the acquisition is always a 24 bit value, while the accuracy is related to the selected  
conversion time (refer to ). The data is encoded in a Two’s complement format. The result of the measurement  
can be calculated by the following formula:  
Capacitance (pf) = ((Two's Complement (measurement [23:0])) /219) + Coffset  
where  
Coffset is based on the CAPDAC setting.  
(1)  
Table 2. Measurement Registers Description (0x00, 0x02, 0x04, 0x06)  
Field Name  
MSB_MEASn(1)  
Bits  
[15:0]  
Description  
Most significant 16 bits of Measurement n (read only)  
(1) MSB_MEAS1 = register 0x00, MSB_MEAS2 = register 0x02, MSB_MEAS3 = register 0x04, MSB_MEAS4 = register 0x06  
Table 3. Measurement Registers Description (0x01, 0x03, 0x05, 0x07)  
Field Name  
LSB_MEASn(1)  
Bits  
[15:8]  
[7:0]  
Description  
Least significant 8 bits of Measurement n (read only)  
Reserved, always 0 (read only)  
Reserved  
(1) LSB_MEAS1 = register 0x01, LSB_MEAS2 = register 0x03, LSB_MEAS3 = register 0x05, LSB_MEAS4 = register 0x07  
8.6.2 Measurement Configuration Registers  
These registers configure the input channels and CAPDAC setting for a measurement.  
Table 4. Measurement Configuration Registers Description (0x08, 0x09, 0x0A, 0x0B)  
Field Name  
Bits  
Description  
CHA(1)(2)  
[15:13]  
Positive input b000  
CIN1  
channel  
capacitive to  
digital  
converter  
b001  
CIN2  
b010  
b011  
b000  
b001  
b010  
b011  
b100  
b111  
b00000  
- - - - -  
CIN3  
CIN4  
CHB(1)(2)  
[12:10]  
Negative  
CIN1  
input channel  
capacitive to  
digital  
CIN2  
CIN3  
converter  
CIN4  
CAPDAC  
DISABLED  
CAPDAC  
[9:5]  
Offset  
Capacitance  
0pF (minimum programmable offset)  
Configure the single-ended measurement capacitive offset:  
Coffset = CAPDAC x 3.125pF  
b11111  
96.875pF (maximum programmable offset)  
Reserved, always 0 (read only)  
RESERVED  
[04:00]  
Reserved  
(1) It is not permitted to configure a measurement where the CHA field and CHB field hold the same value (for example, if  
CHA=b010, CHB cannot also be set to b010).  
(2) It is not permitted to configure a differential measurement between CHA and CHB where CHA > CHB (for example, if CHA=  
b010, CHB cannot be b001 or b000).  
16  
Copyright © 2015, Texas Instruments Incorporated  
FDC1004Q  
www.ti.com.cn  
ZHCSDR2 APRIL 2015  
8.6.3 FDC Configuration Register  
This register configures measurement triggering and reports measurement completion.  
Table 5. FDC Register Description (0x0C)  
Field Name  
Bits  
[15]  
Description  
RST  
Reset  
0
1
Normal operation  
Software reset: write a 1 to initiate a device reset; after completion of reset this  
field will return to 0  
RESERVED  
RATE  
[14:12]  
[11:10]  
Reserved  
Reserved, always 0 (read only)  
Measurement b00 Reserved  
Rate  
b01 100S/s  
b10 200S/s  
b11 400S/s  
RESERVED  
REPEAT  
[9]  
[8]  
Reserved  
Reserved, always 0 (read only)  
Repeat  
Measurements  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Repeat disabled  
Repeat enabled, all the enabled measurement are repeated  
Measurement 1 disabled  
MEAS_1  
MEAS_2  
MEAS_3  
MEAS_4  
DONE_1  
DONE_2  
DONE_3  
DONE_4  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
Initiate  
Measurements  
Measurement 1 enabled  
Initiate  
Measurements  
Measurement 2 disabled  
Measurement 2 enabled  
Initiate  
Measurements  
Measurement 3 disabled  
Measurement 3 enabled  
Initiate  
Measurements  
Measurement 4 disabled  
Measurement 4 enabled  
Measurement  
Done  
Measurement 1 not completed  
Measurement 1 completed  
Measurement 2 not completed  
Measurement 2 completed  
Measurement 3 not completed  
Measurement 3 completed  
Measurement 4 not completed  
Measurement 4 completed  
Measurement  
Done  
Measurement  
Done  
Measurement  
Done  
8.6.4 Offset Calibration Registers  
These registers configure a digitized capacitance value in the range of -16 pF to 16 pF (max residual offset 250  
aF) that can be added to each channel in order to remove parasitic capacitance due to external circuitry. In  
addition to the offset calibration capacitance which is a fine-tune offset capacitance, it is possible to support a  
larger offset by using the CAPDAC (for up to 100 pF). These 16-bit registers are formatted as a fixed point  
number, where the first 5 bits represents the integer portion of the capacitance in Two’s complement format, and  
the remaining 11 bits represent the fractional portion of the capacitance.  
Table 6. Offset Calibration Registers Description (0x0D, 0x0E, 0x0F, 0x10)  
Field Name  
Bits  
Description  
OFFSET_CALn(1) [15:11]  
Integer part  
Decimal part  
Integer portion of the Offset Calibration of Channel CINn  
Decimal portion of the Offset Calibration of Channel CINn  
[10:0]  
(1) OFFSET_CAL1 = register 0x0D, OFFSET_CAL2 = register 0x0E, OFFSET_CAL3 = register 0x0F, OFFSET_CAL4 = register 0x10  
Copyright © 2015, Texas Instruments Incorporated  
17  
FDC1004Q  
ZHCSDR2 APRIL 2015  
www.ti.com.cn  
8.6.5 Gain Calibration Registers  
These registers contain a gain factor correction in the range of 0 to 4 that can be applied to each channel in  
order to remove gain mismatch due to the external circuitry. This 16-bit register is formatted as a fixed point  
number, where the 2 MSBs of the GAIN_CALn register correspond to an integer portion of the gain correction,  
and the remaining 14 bits represent the fractional portion of the gain correction. The result of the conversion  
represents a number without dimensions.  
The Gain can be set according to the following formula:  
Gain = GAIN_CAL[15:0]/214  
Table 7. Gain Calibration Registers Description (0x11, 0x12, 0x13, 0x14)  
Field Name  
GAIN_CALn(1)  
Bits  
[15:14]  
[13:0]  
Description  
Integer part  
Decimal part  
Integer portion of the Gain Calibration of Channel CINn  
Decimal portion of the Gain Calibration of Channel CINn  
(1) GAIN_CAL1 = register 0x11, GAIN_CAL2 = register 0x12, GAIN_CAL3 = register 0x13, GAIN_CAL4 = register 0x14  
8.6.6 Manufacturer ID Register  
This register contains a factory-programmable identification value that identifies this device as being  
manufactured by Texas Instruments. This register distinguishes this device from other devices that are on the  
same I2C bus. The manufacturer ID reads 0x5449.  
Table 8. Manufacturer ID Register Description (0xFE)  
Field Name  
Bits  
Description  
MANUFACTURER [15:0]  
ID  
Manufacturer 0x5449h  
ID  
Texas instruments ID (read only)  
8.6.7 Device ID Register  
This register contains a factory-programmable identification value that identifies this device as a FDC1004Q. This  
register distinguishes this device from other devices that are on the same I2C bus. The Device ID for the  
FDC1004Q is 0x1004.  
Table 9. Device ID Register Description (0xFF)  
Field Name  
Bits  
[15:0]  
Description  
DEVICE ID  
Device ID  
0x1004  
FDC1004Q Device ID (read only)  
18  
Copyright © 2015, Texas Instruments Incorporated  
FDC1004Q  
www.ti.com.cn  
ZHCSDR2 APRIL 2015  
9 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Liquid Level Sensor  
The FDC1004Q can be used to measure liquid level in non-conductive containers. Capacitive sensors can be  
attached to the outside of the container or be located remotely from the container, allowing for contact-less  
measurements. The working principle is based on a ratiometric measurement; Figure 15 shows a possible  
system implementation which uses three electrodes. The Level electrode provides a capacitance value  
proportional to the liquid level. The Reference Environmental electrode and the Reference Liquid electrode are  
used as references. The Reference Liquid electrode accounts for the liquid dielectric constant and its variation,  
while the Reference Environmental electrode is used to compensate for any other environmental variations that  
are not due to the liquid itself. Note that the Reference Environmental electrode and the Reference Liquid  
electrode are the same physical size (hREF).  
For this application, single-ended measurements on the appropriate channels are appropriate, as the tank is  
grounded.  
Use the following formula to determine the liquid level from the measured capacitances:  
CLev  CLev (0)  
CRL  CRE  
Level   href  
where  
CRE is the capacitance of the Reference Environmental electrode,  
CRL is the capacitance of the Reference Liquid electrode,  
CLev is the current value of the capacitance measured at the Level electrode sensor,  
CLev(0) is the capacitance of the Level electrode when the container is empty, and  
hREF is the height in the desired units of the Container or Liquid Reference electrodes.  
The ratio between the capacitance of the level and the reference electrodes allows simple calculation of the liquid  
level inside the container itself. Very high sensitivity values (that is, many LSB/mm) can be obtained due to the  
high resolution of the FDC1004Q, even when the sensors are located remotely from the container.  
For more information on a robust liquid level sensing technique, refer to Capacitive Sensing: Out-of-Phase Liquid  
Level Technique application note (SNOA925) and the Capacitive-Based Liquid Level Sensing Sensor Reference  
Design (TIDA-00317).  
Copyright © 2015, Texas Instruments Incorporated  
19  
FDC1004Q  
ZHCSDR2 APRIL 2015  
www.ti.com.cn  
9.2 Typical Application  
3.3 V  
VDD  
SHLD1  
SHLD2  
Level  
Sensor  
Excitation  
Environmental  
Sensor  
3.3 V  
3.3 V  
CIN1  
CIN2  
CIN3  
CIN4  
FDC1004Q  
3.3 V  
CHA  
MUX  
CHA  
VDD  
Liquid  
Sensor  
Offset and Gain  
Calibration  
Capacitance to  
Digital Converter  
MCU  
CHB  
MUX  
SCL  
SDA  
CHB  
I2C  
Peripheral  
I2C  
Configuration and Data  
Registers  
GND  
CAPDAC  
GND  
Figure 15. FDC1004Q (Liquid Level Measurement)  
9.2.1 Design Requirements  
The liquid level measurement should be independent of the liquid, which can be achieved using the 3-electrode  
design described above. Moreover, the sensor should be immune to environmental interferers such as a human  
body, other objects, or EMI. This can be achieved by shielding the side of the sensor which does not face the  
container.  
9.2.2 Detailed Design Procedure  
In capacitive sensing systems, the design of the sensor plays an important role in determining system  
performance and capabilities. In most cases the sensor is simply a metal plate that can be designed on the PCB.  
The sensor used in this example is implemented with a two-layer PCB. On the top layer, which faces the tank,  
there are the 3 electrodes (Reference Environmental, Reference Liquid, and Level) with a ground plane  
surrounding the electrodes. The bottom layer is covered with a shield plane in order to isolate the electrodes  
from any external interference sources.  
Depending on the shape of the container, the FDC1004Q can be located on the sensor PCB to minimize the  
length of the traces between the input channels and the sensors and increase the immunity from EMI sources. In  
case the shape of the container or other mechanical constraints do not allow having the sensors and the  
FDC1004Q on the same PCB, the traces which connect the channels to the sensor need to be shielded with the  
appropriate shield. In this design example all of the channels are shielded with SHLD1. For this configuration, the  
FDC1004Q measures the capacitance of the 3 channels versus ground; and so the SHLD1 and SHLD2 pins are  
internally shorted in the FDC1004Q (see The Shield).  
9.2.3 Application Performance Plot  
The data shown below has been collected with the FDC1004QEVM. A liquid level sensor with 3 electrodes like  
the one shown in the schematic was connected to the EVM. The plot shows the capacitance measured by the 3  
electrodes at different levels of liquid in the tank. The capacitance of the Reference Liquid (the RF trace in the  
graph below) and Reference Environmental (the RE trace) sensors have a steady value when the liquid is above  
their height while the capacitance of the level sensor (Level) increases linearly with the height of the liquid in the  
tank.  
20  
Copyright © 2015, Texas Instruments Incorporated  
FDC1004Q  
www.ti.com.cn  
ZHCSDR2 APRIL 2015  
Typical Application (continued)  
4.5  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4
RF  
RE  
Level  
4
3.5  
3
2.5  
2
1.5  
1
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Level (mm)  
Figure 16. Electrodes' Capacitance vs. Liquid Level  
Copyright © 2015, Texas Instruments Incorporated  
21  
FDC1004Q  
ZHCSDR2 APRIL 2015  
www.ti.com.cn  
9.3 Do's and Don'ts  
Avoid long traces to connect the sensor to the FDC1004Q. Short traces reduce parasitic capacitances between  
shield versus input channel and parasitic resistance between input channel versus GND and shield versus GND.  
Since the sensor in many cases is simply a metal surface on a PCB, it needs to be protected with solder resist to  
avoid short circuits and limit any corrosion. Any change in the sensor may result in a change in system  
performance.  
9.4 Initialization Set Up  
At power on the device is in stand-by. It stays in this mode until a measurement is triggered.  
10 Power Supply Recommendations  
The FDC1004Q requires a voltage supply within 3 V and 3.6 V. Two multilayer ceramic bypass X7R capacitors  
of 0.1 μF and 1 μF, respectively between VDD and GND pin are recommended. The 0.1-μF capacitor should be  
closer to the VDD pin than the 1-μF capacitor.  
11 Layout  
11.1 Layout Guidelines  
The FDC1004Q measures the capacitances connected between the CINn (n=1..4) pins and GND. To get the  
best result, locate the FDC1004Q as close as possible to the capacitive sensor. Minimize the connection length  
between the sensor and FDC1004Q CINn pins and between the sensor ground and the FDC1004Q GND pin. If  
a shielded cable is used for remote sensor connection, the shield should be connected to the SHLDm (m=1...2)  
pin according to the configured measurement.  
11.2 Layout Example  
Figure 17 below is optimized for applications where the sensor is not too far from the FDC1004Q. Each channel  
trace runs between 2 shield traces. This layout allows the measurements of 4 single ended capacitance or 2  
differential capacitance. The ground plane needs to be far from the channel traces, it is mandatory around or  
below the I2C pin.  
TOP LAYER  
BOTTOM LAYER  
Figure 17. Layout  
22  
版权 © 2015, Texas Instruments Incorporated  
 
FDC1004Q  
www.ti.com.cn  
ZHCSDR2 APRIL 2015  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
应用报告《IC 封装热指标》SPRA953  
应用手册  
FDC1004:电容式传感基础和应用》(文献编号:SNOA927)  
《电容传感:有源传感的输入和输出》(文献编号:SNOA926)  
《电容传感:异相液位技术》(文献编号:SNOA925)  
《采用 FDC1004 的电容式接近传感》(文献编号:SNOA928)  
《采用 TI 的电容式传感技术的结冰检测 - FDC1004(文献编号:SLLA355)  
TI 参考设计  
《基于电容的液位感测传感器》(文献编号:TIDA-00317)  
《汽车电容式接近一脚踢开尾门检测》(文献编号:TIDA-00506)  
《用于系统唤醒和中断的基于电容的人体接近检测》(文献编号:TIDA-00220)  
《基于环境光传感器和接近传感器的背光和智能照明控制》(文献编号:TIDA-00373)  
12.2 商标  
All trademarks are the property of their respective owners.  
12.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
23  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
FDC1004QDGSRQ1  
FDC1004QDGSTQ1  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGS  
DGS  
10  
10  
3500 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
ZAOX  
ZAOX  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

FDC1004QDGSTQ1

具有源屏蔽驱动器的 4 通道、16 位、汽车类电感数字转换器 | DGS | 10 | -40 to 125
TI

FDC15

15 WATT DC/DC CONVERTER, SINGLE & DUAL OUTPUTS
ETC

FDC15-24D05

15 WATT DC/DC CONVERTER, SINGLE & DUAL OUTPUTS
VOLGEN

FDC15-24D05

15 WATTS OUTPUT POWER
P-DUKE

FDC15-24D12

15 WATT DC/DC CONVERTER, SINGLE & DUAL OUTPUTS
VOLGEN

FDC15-24D12

15 WATTS OUTPUT POWER
P-DUKE

FDC15-24D15

15 WATT DC/DC CONVERTER, SINGLE & DUAL OUTPUTS
VOLGEN

FDC15-24D15

15 WATTS OUTPUT POWER
P-DUKE

FDC15-24S05

15 WATT DC/DC CONVERTER, SINGLE & DUAL OUTPUTS
VOLGEN

FDC15-24S05

15 WATTS OUTPUT POWER
P-DUKE

FDC15-24S12

15 WATT DC/DC CONVERTER, SINGLE & DUAL OUTPUTS
VOLGEN

FDC15-24S12

15 WATTS OUTPUT POWER
P-DUKE