DSD1608 [TI]

SNR 为 108dB 的 8 通道音频 DAC;
DSD1608
型号: DSD1608
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SNR 为 108dB 的 8 通道音频 DAC

文件: 总42页 (文件大小:461K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
ꢕꢎ  
Digital Filter Rolloff: Sharp or Slow Soft  
Mute  
FEATURES  
D
D
D
Supports DSD and PCM Formats  
Supports TDMCA  
Three Zero Flags  
D
D
Dual Supply Operation:  
5-V Analog, 3.3-V Digital  
Package: 52-Pin TQFP  
Accepts 16-, 18-, 20- and 24-Bit Audio Data for  
PCM Format  
D
Analog Performance (V  
= 5 V):  
CC  
Dynamic Range: 108 dB, Typical  
APPLICATIONS  
SNR: 108 dB, Typical  
D
D
D
D
Universal A/V Players  
THD+N: 0.0012%, Typical  
SACD Players  
Full-Scale Output: 4 V , Typical  
pp  
Car Audio Systems  
D
Includes 8× Oversampling Digital Filter for  
PCM Format:  
Other Applications Requiring 24-Bit Audio  
Stopband Attenuation: –60 dB  
Passband Ripple: 0.02 dB  
DESCRIPTION  
The DSD1608 is a CMOS, monolithic, 8-channel  
digital-to-analog converter which supports both PCM  
audio data format and direct stream digital (DSD) audio  
data format. The device includes an 8× digital  
interpolation filter and a digital DSD filter with three  
selectable frequency-response curves, followed by  
Texas Instruments’ enhanced multilevel delta-sigma  
modulator, which employs 4th-order noise shaping and  
8-level amplitude quantization to achieve excellent  
dynamic performance and improved tolerance to clock  
jitter. Sampling rates up to 192 kHz for the PCM mode  
and 64 × 44.1 kHz for the DSD mode are supported. A  
full set of user-programmable functions is accessible  
through a 4-wire serial control port, which supports  
register write and read functions. The DSD1608  
supports the time-division-multiplexed command and  
audio data (TDMCA) format. The DSD1608 is available  
in a 52-pin TQFP package.  
D
D
Includes Digital DSD FILTER for DSD Format:  
Passband: 50 kHz, 70 kHz, 60 kHz at –3 dB  
Sampling Frequency:  
PCM Mode: 10 kHz to 200 kHz  
DSD Mode: 64 × 44.1 kHz  
D
D
System Clock:  
128 f , 192 f , 256 f , 384 f , 512 f , 768 f  
S
S
S
S
S
S
Data Formats:  
2
Standard, I S, and Left-Justified for PCM  
Direct Stream Digital  
D
User-Programmable Mode Controls:  
Digital Attenuation  
Digital De-Emphasis  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢗꢔ ꢓ ꢀꢏ ꢇ ꢐꢑ ꢓꢊ ꢀ ꢉꢐꢉ ꢘꢙ ꢚꢛ ꢜ ꢝꢞ ꢟꢘꢛꢙ ꢘꢠ ꢡꢢ ꢜ ꢜ ꢣꢙꢟ ꢞꢠ ꢛꢚ ꢤꢢꢥ ꢦꢘꢡ ꢞꢟꢘ ꢛꢙ ꢧꢞ ꢟꢣꢨ ꢗꢜ ꢛꢧꢢ ꢡꢟꢠ  
ꢡ ꢛꢙ ꢚꢛꢜ ꢝ ꢟꢛ ꢠ ꢤꢣ ꢡ ꢘ ꢚꢘ ꢡ ꢞ ꢟꢘ ꢛꢙꢠ ꢤ ꢣꢜ ꢟꢩꢣ ꢟꢣ ꢜ ꢝꢠ ꢛꢚ ꢐꢣꢪ ꢞꢠ ꢑꢙꢠ ꢟꢜ ꢢꢝ ꢣꢙꢟ ꢠ ꢠꢟ ꢞꢙꢧ ꢞꢜ ꢧ ꢫ ꢞꢜ ꢜ ꢞ ꢙꢟꢬꢨ  
ꢗꢜ ꢛ ꢧꢢꢡ ꢟ ꢘꢛ ꢙ ꢤꢜ ꢛ ꢡ ꢣ ꢠ ꢠ ꢘꢙ ꢭ ꢧꢛ ꢣ ꢠ ꢙꢛꢟ ꢙꢣ ꢡꢣ ꢠꢠ ꢞꢜ ꢘꢦ ꢬ ꢘꢙꢡ ꢦꢢꢧ ꢣ ꢟꢣ ꢠꢟꢘ ꢙꢭ ꢛꢚ ꢞꢦ ꢦ ꢤꢞ ꢜ ꢞꢝ ꢣꢟꢣ ꢜ ꢠꢨ  
Copyright 2002, Texas Instruments Incorporated  
www.ti.com  
SLES040 − JUNE 2002  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate  
precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to  
damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION  
OPERATION  
TEMPERATURE  
RANGE  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA  
PRODUCT  
PACKAGE  
DSD1608PAH  
Tube  
DSD1608PAH  
52-lead TQFP  
PAH  
−25°C to 85°C  
DSD1608  
DSD1608PAHR  
Tape and reel  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted  
(1)  
DSD1608  
V
CC  
V
DD  
1–V  
1, V  
7
CC  
2
DD  
6.5 V  
4 V  
Supply voltage  
Supply voltage differences: V 1–V 7, V 1, V  
2
0.1 V  
CC CC DD DD  
Ground voltage differences: AGND1–6, DGND1, DGND2  
0.1 V  
Digital input voltage: PLRCK, PBCK, PDATA1–PDATA4, DSD1–DSD8, DBCK, DSCK, PSCK, RST  
Digital input voltage: MC, MS, MDI, ZERO1, ZERO2, ZERO38, MDO  
Analog input voltage  
0.3 V to 6.5 V  
0.3 V to (V  
+ 0.3 V)  
DD  
–0.3 V to (V  
+ 0.3 V)  
CC  
Input current (any pins except supplies)  
Operating temperature  
10 mA  
–40°C to 85°C  
–55°C to 150°C  
150°C  
Storage temperature  
Junction temperature  
Lead temperature (soldering)  
260°C, 5 s  
Package temperature (IR reflow, peak)  
235°C, 10 s  
(1)  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
at T = 25°C, V  
= 3.3 V, V = 5 V; in PCM mode, f = 44.1 kHz, system clock = 256 f , 24-bit data; in DSD mode, f = 2.8224 MHz  
A
DD  
CC S S S  
(= 64 × 44.1 kHz), system clock = 256 × 44.1 kHz, 1-bit data (unless otherwise noted)  
PARAMETER TEST CONDITIONS  
Resolution  
MIN  
TYP  
24  
MAX  
UNIT  
Bits  
DATA FORMAT (PCM MODE)  
Audio data interface format  
Audio data bit length  
2
Standard, I S, left justified  
16-, 18-, 20-, 24-bit selectable  
MSB first, 2s complement  
Audio data format  
f
S
Sampling frequency  
f
S
= 44.1 kHz  
10  
200  
kHz  
128 f , 192 f , 256 f , 384 f ,  
S
S
S
S
System clock frequency  
512 f , 768 f  
S
S
DATA FORMAT (DSD MODE)  
Audio data interface format  
Direct stream digital (DSD)  
1 bit  
Audio data bit length  
Sampling frequency  
System clock frequency  
f
S
f
S
f
S
= 44.1 kHz  
= 44.1 kHz  
64 f  
S
Hz  
256 f , 384 f , 512 f , 768 f  
S
kHz  
S
S
S
(1)  
(2)  
(3)  
(4)  
(5)  
Pins 50, 51, 34, 33, 37, 38–45, 46–49: PBCK, PLRCK, DSCK, PSCK, DBCK, DSD1–DSD8, PDATA1–PDATA4.  
Pins 2, 3, 4, 36: MDI, MS, MC, RST.  
Pins 5–8: MDO, ZERO1, ZERO2, ZERO38.  
Analog performance specs are measured in the averaging mode using the System Twot audio measurement system by Audio Precisiont.  
These specs are measured under the condition that the OVR1, OVR0 in mode registers are set to (0,1). (The oversampling rate of the modulator  
is 64 f .) If the OVR1, OVR0 are (0,0) (32 f oversampling: default), the specs are the same as at f = 96 kHz.  
S
S
S
2
www.ti.com  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
ELECTRICAL CHARACTERISTICS(continued)  
at T = 25°C, V  
= 3.3 V, V = 5 V; in PCM mode, f = 44.1 kHz, system clock = 256 f , 24-bit data; in DSD mode, f = 2.8224 MHz  
A
DD  
CC S S S  
(= 64 × 44.1 kHz), system clock = 256 × 44.1 kHz, 1-bit data (unless otherwise noted)  
PARAMETER  
DIGITAL INPUT/OUTPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Logic family  
TTL-compatible  
V
V
2
IH  
IL  
(1)  
Input logic level  
Vdc  
µA  
0.8  
10  
I
I
I
I
V
V
V
V
= V  
DD  
= 0 V  
IH  
IN  
IN  
(1)  
–10  
100  
–10  
IL  
Input logic current  
Output logic level  
(2)  
= V  
65  
IH  
IN  
DD  
(2)  
= 0 V  
IL  
IN  
(3)  
(3)  
V
V
I
I
= –2 mA  
= +2 mA  
2.4  
OH  
OH  
OL  
Vdc  
1
OL  
(4)  
DYNAMIC PERFORMANCE (PCM MODE)  
f
f
f
f
f
f
= 44.1 kHz  
= 96 kHz  
0.0012%  
0.0015%  
0.002%  
S
S
S
S
S
S
THD+N at V  
= 0 dB  
OUT  
OUT  
(5)  
= 192 kHz  
= 44.1 kHz  
= 96 kHz  
0.0012% 0.0018%  
0.0015%  
0.002%  
108  
THD+N at V  
= 3 dB  
(5)  
= 192 kHz  
EIAJ, A-weighted, f = 44.1 kHz  
S
EIAJ, A-weighted, f = 96 kHz  
(5)  
EIAJ, A-weighted, f = 192 kHz  
104  
104  
101  
108  
Dynamic range  
dB  
dB  
S
107  
S
EIAJ, A-weighted, f = 44.1 kHz  
S
EIAJ, A-weighted, f = 96 kHz  
(5)  
EIAJ, A-weighted, f = 192 kHz  
108  
108  
Signal-to-noise ratio  
S
107  
S
f
S
f
S
f
S
= 44.1 kHz  
= 96 kHz  
(5)  
= 192 kHz  
104  
104  
Channel separation  
Level linearity error  
dB  
dB  
103  
V
= –90 dB  
0.5  
OUT  
(4)  
DYNAMIC PERFORMANCE DSD MODE (at f = 64 × 44.1 kHz)  
S
THD+N at V  
OUT  
Dynamic range  
= 0 dB  
0.0012%  
108  
EIAJ, A-weighted  
EIAJ, A-weighted  
dB  
dB  
dB  
dB  
Signal-to-noise ratio  
Channel separation  
Level linearity error  
108  
104  
V
OUT  
= −90 dB  
0.5  
DC ACCURACY  
Gain error  
1
1
6
3
% FSR  
% FSR  
mV  
Gain mismatch, channel-to-channel  
Bipolar zero error  
V
= 0.5 V  
CC  
at BPZ  
30  
60  
OUT  
ANALOG OUTPUT  
Output voltage  
Center voltage  
Load impedance  
Full scale (0 dB)  
80% of V  
V
pp  
Vdc  
CC  
CC  
50% of V  
AC load  
4
kΩ  
(1)  
(2)  
(3)  
(4)  
(5)  
Pins 50, 51, 34, 33, 37, 38–45, 46–49: PBCK, PLRCK, DSCK, PSCK, DBCK, DSD1–DSD8, PDATA1–PDATA4.  
Pins 2, 3, 4, 36: MDI, MS, MC, RST.  
Pins 5–8: MDO, ZERO1, ZERO2, ZERO38.  
Analog performance specs are measured in the averaging mode using the System Twot audio measurement system by Audio Precisiont.  
These specs are measured under the condition that the OVR1, OVR0 in mode registers are set to (0,1). (The oversampling rate of the modulator  
is 64 f .) If the OVR1, OVR0 are (0,0) (32 f oversampling: default), the specs are the same as at f = 96 kHz.  
S
S
S
3
www.ti.com  
SLES040 − JUNE 2002  
ELECTRICAL CHARACTERISTICS(continued)  
at T = 25°C, V  
= 3.3 V, V = 5 V; in PCM mode, f = 44.1 kHz, system clock = 256 f , 24-bit data; in DSD mode, f = 2.8224 MHz  
A
DD  
CC S S S  
(= 64 × 44.1 kHz), system clock = 256 × 44.1 kHz, 1-bit data (unless otherwise noted)  
PARAMETER  
DIGITAL FILTER PERFORMANCE  
8× INTERPOLATION FILTER (SHARP ROLL OFF FILTER)  
Pass band  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.02 dB  
–3 dB  
0.454 f  
0.487 f  
Hz  
Hz  
Hz  
dB  
dB  
s
S
S
Pass band  
Stop band  
0.546 f  
S
Pass-band ripple  
0.02  
Stop-band attenuation  
Delay Time  
Stop band = 0.546 f  
–60  
S
23/f  
S
8× INTERPOLATION FILTER (SLOW ROLL OFF FILTER)  
Pass band  
–0.5 dB  
–3 dB  
0.308 f  
Hz  
Hz  
Hz  
dB  
dB  
s
S
S
Pass band  
0.432 f  
Stop band  
0.832 f  
S
Pass-band ripple  
0.308 f  
0.832 f  
0.5  
S
S
Stop-band attenuation  
Delay time  
–58  
23/f  
S
DE-EMPHASIS FILTER (PCM MODE ONLY)  
De-emphasis error  
At f = 32 kHz, 44.1 kHz or 48 kHz  
S
0.1  
dB  
DSD FILTER (FILTER-1)  
Pass band  
At –3 dB  
50  
kHz  
dB  
Stop-band attenuation  
DSD FILTER (FILTER-2)  
Pass band  
At 100 kHz  
–18  
At –3 dB  
70  
kHz  
dB  
Stop-band attenuation  
DSD FILTER (FILTER-3)  
Pass band  
At 100 kHz  
–9.8  
At –3 dB  
60  
kHz  
dB  
Stop-band attenuation  
INTERNAL ANALOG FILTER PERFORMANCE  
At 100 kHz  
–17  
At 20 kHz  
At 44 kHz  
At 50 kHz  
At 100 kHz  
–0.02  
–0.1  
Frequency response  
dB  
–0.12  
–0.5  
POWER SUPPLY REQUIREMENTS  
V
V
3
3.3  
5.0  
28  
3.6  
5.5  
40  
DD  
CC  
Voltage range  
Vdc  
mA  
4.5  
f
f
= 44.1 kHz  
= 192 kHz  
S
74  
I
S
DD  
DSD mode  
45  
Supply current  
Power dissipation  
f
S
f
S
f
S
f
S
= 44.1 kHz  
= 192 kHz  
= 44.1 kHz  
= 192 kHz  
36  
50  
I
CC  
38  
270  
430  
380  
mW  
(1)  
(2)  
(3)  
(4)  
(5)  
Pins 50, 51, 34, 33, 37, 38–45, 46–49: PBCK, PLRCK, DSCK, PSCK, DBCK, DSD1–DSD8, PDATA1–PDATA4.  
Pins 2, 3, 4, 36: MDI, MS, MC, RST.  
Pins 5–8: MDO, ZERO1, ZERO2, ZERO38.  
Analog performance specs are measured in the averaging mode using the System Twot audio measurement system by Audio Precisiont.  
These specs are measured under the condition that the OVR1, OVR0 in mode registers are set to (0,1). (The oversampling rate of the modulator  
is 64 f .) If the OVR1, OVR0 are (0,0) (32 f oversampling: default), the specs are the same as at f = 96 kHz.  
S
S
S
4
www.ti.com  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
ELECTRICAL CHARACTERISTICS(continued)  
at T = 25°C, V  
= 3.3 V, V = 5 V; in PCM mode, f = 44.1 kHz, system clock = 256 f , 24-bit data; in DSD mode, f = 2.8224 MHz  
A
DD  
CC S S S  
(= 64 × 44.1 kHz), system clock = 256 × 44.1 kHz, 1-bit data (unless otherwise noted)  
PARAMETER TEST CONDITIONS  
TEMPERATURE RANGE  
MIN  
TYP  
MAX  
UNIT  
Operating temperature  
Thermal resistance  
–25  
85  
°C  
θ
JA  
52 TQFP  
70  
°C/W  
(1)  
(2)  
(3)  
(4)  
(5)  
Pins 50, 51, 34, 33, 37, 38–45, 46–49: PBCK, PLRCK, DSCK, PSCK, DBCK, DSD1–DSD8, PDATA1–PDATA4.  
Pins 2, 3, 4, 36: MDI, MS, MC, RST.  
Pins 5–8: MDO, ZERO1, ZERO2, ZERO38.  
Analog performance specs are measured in the averaging mode using the System Twot audio measurement system by Audio Precisiont.  
These specs are measured under the condition that the OVR1, OVR0 in mode registers are set to (0,1). (The oversampling rate of the modulator  
is 64 f .) If the OVR1, OVR0 are (0,0) (32 f oversampling: default), the specs are the same as at f = 96 kHz.  
S
S
S
PIN ASSIGNMENTS  
PAH PACKAGE  
(TOP VIEW)  
DSD3  
DSD4  
DSD5  
DSD6  
DSD7  
DSD8  
PDATA1  
PDATA2  
PDATA3  
PDATA4  
PBCK  
V
V
V
2
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
COM  
7
CC  
6
CC  
AGND5  
V
5
CC  
AGND4  
DSD1608  
V
4
CC  
AGND3  
V
3
CC  
AGND2  
V
V
V
2
1
CC  
PLRCK  
CC  
1
COM  
V
1
DD  
Audio Precision and System Two are trademarks of Audio Precision, Inc.  
Other trademarks are the property of their respective owners.  
5
www.ti.com  
SLES040 − JUNE 2002  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
13  
AGND1  
AGND2  
AGND3  
AGND4  
I
Analog ground  
17  
Analog ground  
19  
Analog ground  
21  
Analog ground  
AGND5  
AGND6  
DBCK  
DGND1  
DGND2  
DSCK  
DSD1  
DSD2  
DSD3  
DSD4  
DSD5  
DSD6  
DSD7  
DSD8  
MC  
23  
27  
37  
1
Analog ground  
Analog ground  
(3)  
DSD audio data bit clock input (DSD)  
Digital ground  
I
32  
34  
38  
39  
40  
41  
42  
43  
44  
45  
4
Digital ground  
(3)  
System clock input (DSD). Input frequency is 256, 384, 512 or 768 f  
S
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
I
DSD audio data input for V  
DSD audio data input for V  
DSD audio data input for V  
DSD audio data input for V  
DSD audio data input for V  
DSD audio data input for V  
DSD audio data input for V  
DSD audio data input for V  
1 (DSD)  
2 (DSD)  
3 (DSD)  
4 (DSD)  
5 (DSD)  
6 (DSD)  
7 (DSD)  
8 (DSD)  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
I
I
I
I
I
I
I
(1)  
I
Mode control clock input  
(1)  
MDI  
2
I
Mode control data input  
Mode control read back data output  
(1)  
(4)  
MDO  
5
O
I
MS  
3
Chip select for mode control  
Audio data bit clock input (PCM)  
(3)  
PBCK  
PDATA1  
PDATA2  
PDATA3  
PDATA4  
PLRCK  
PSCK  
RST  
50  
46  
47  
48  
49  
51  
33  
36  
15  
16  
18  
20  
22  
24  
25  
14  
I
(3)  
(3)  
(3)  
(3)  
I
Serial audio data input for V  
Serial audio data input for V  
Serial audio data input for V  
Serial audio data input for V  
1 and V  
3 and V  
5 and V  
7 and V  
2 (PCM)  
4 (PCM)  
6 (PCM)  
8 (PCM)  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
I
I
I
(3)  
I
Audio data L/R clock input (PCM)  
System clock input (PCM). Input frequency is 128, 192, 256, 384, 512 or 768 f  
(3)  
I
S
(2)  
I
System reset, active LOW  
Analog power supply, 5 V  
Analog power supply, 5 V  
Analog power supply, 5 V  
Analog power supply, 5 V  
Analog power supply, 5 V  
Analog power supply, 5 V  
Analog power supply, 5 V  
V
V
V
V
V
V
V
V
1
2
3
4
5
6
7
O
CC  
CC  
CC  
CC  
CC  
CC  
CC  
1
Common voltage output 1. This pin should be bypassed with a 10-µF capacitor to AGND.  
COM  
(1)  
(2)  
(3)  
(4)  
Schmitt-trigger input with internal pulldown.  
Schmitt-trigger input with internal pulldown, 5-V tolerant.  
Schmitt-trigger input, 5-V tolerant.  
3-state output.  
6
www.ti.com  
TERMINAL  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
Terminal Functions (continued)  
I/O  
DESCRIPTION  
NAME  
NO.  
V
V
V
V
V
V
V
V
V
V
V
2
26  
52  
35  
12  
11  
10  
9
O
O
O
O
O
O
O
O
O
O
O
O
Common voltage output 2. This pin should be bypassed with a 10-µF capacitor to AGND.  
Digital power supply, 3.3 V  
COM  
1
DD  
DD  
2
Digital power supply, 3.3 V  
1
Voltage output for audio signal corresponding to L-channel on PDATA1 or DSD1  
Voltage output for audio signal corresponding to R-channel on PDATA1 or DSD2  
Voltage output for audio signal corresponding to L-channel on PDATA2 or DSD3  
Voltage output for audio signal corresponding to R-channel on PDATA2 or DSD4  
Voltage output for audio signal corresponding to L-channel on PDATA3 or DSD5  
Voltage output for audio signal corresponding to R-channel on PDATA3 or DSD6  
Voltage output for audio signal corresponding to L-channel on PDATA4 or DSD7  
Voltage output for audio signal corresponding to R-channel on PDATA4 or DSD8  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
2
3
4
5
6
7
8
31  
30  
29  
28  
6
ZERO1  
ZERO2  
ZERO38  
Zero data flag for V  
Zero data flag for V  
Zero data flag for V  
1
OUT  
OUT  
OUT  
7
2
8
3–V  
8
OUT  
(1)  
(2)  
(3)  
(4)  
Schmitt-trigger input with internal pulldown.  
Schmitt-trigger input with internal pulldown, 5-V tolerant.  
Schmitt-trigger input, 5-V tolerant.  
3-state output.  
7
www.ti.com  
SLES040 − JUNE 2002  
BLOCK DIAGRAM  
V
1
2
Output Amp and  
Low-Pass Filter  
OUT  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DBCK  
DSD1  
DSD2  
DSD3  
DSD4  
DSD5  
DSD6  
DSD7  
DSD8  
V
OUT  
Output Amp and  
Low-Pass Filter  
DSD  
I/F  
DSD  
Filter  
V
V
1
COM  
3
4
5
6
Output Amp and  
Low-Pass Filter  
OUT  
OUT  
OUT  
OUT  
V
V
V
Output Amp and  
Low-Pass Filter  
Enhanced  
Multilevel  
Delta-Sigma  
Modulator  
PSCK  
DSCK  
System  
Clock  
System Clock  
Output Amp and  
Low-Pass Filter  
PBCK  
Output Amp and  
Low-Pass Filter  
PLRCK  
V
V
2
7
COM  
OUT  
PCM  
Filter  
(x8 DF)  
PCM  
I/F  
Output Amp and  
Low-Pass Filter  
PDATA1  
PDATA2  
PDATA3  
PDATA4  
V
OUT  
8
Output Amp and  
Low-Pass Filter  
MS  
MC  
Function  
Control  
MDI  
MDO  
Zero Detect  
Power Supply  
8
www.ti.com  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
TYPICAL PERFORMANCE CURVES  
DIGITAL FILTER—PCM MODE  
8× Interpolation Filter (De-Emphasis Off)  
AMPLITUDE  
vs  
AMPLITUDE  
vs  
FREQUENCY  
FREQUENCY  
0
−20  
0
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0
1
2
3
4
0
1
2
3
4
Frequency[x f ]  
Frequency[x f ]  
s
s
Figure 1. Frequency Response (Sharp Rolloff)  
Figure 2. Frequency Response (Slow Rolloff)  
AMPLITUDE  
vs  
AMPLITUDE  
vs  
FREQUENCY  
FREQUENCY  
0.05  
0.04  
2
1
0.03  
0
0.02  
0.01  
−1  
−2  
−3  
−4  
−5  
0.00  
−0.01  
−0.02  
−0.03  
−0.04  
−0.05  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency[x f ]  
Frequency[x f ]  
s
s
Figure 3. Pass-Band Ripple (Sharp Rolloff)  
Figure 4. Frequency Response (Slow Rolloff)  
9
www.ti.com  
SLES040 − JUNE 2002  
De-Emphasis Curves  
DE-EMPHASIS LEVEL  
DE-EMPHASIS ERROR  
vs  
vs  
FREQUENCY  
FREQUENCY  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
0.5  
0.4  
0.3  
0.2  
0.1  
V
= 5 V  
V
= 5 V  
CC  
= 32 kHz  
CC  
f = 32 kHz  
s
f
T
s
A
= 25°C  
T
A
= 25°C  
0.0  
−0.1  
−0.2  
−0.3  
−0.4  
−0.5  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
f − Frequency − kHz  
f − Frequency − kHz  
Figure 5  
Figure 6  
DE-EMPHASIS LEVEL  
vs  
DE-EMPHASIS ERROR  
vs  
FREQUENCY  
FREQUENCY  
0
0.5  
0.4  
0.3  
0.2  
0.1  
V
= 5 V  
V
= 5 V  
CC  
= 44.1 kHz  
CC  
f = 44.1 kHz  
s
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
f
T
s
= 25°C  
T
A
= 25°C  
A
0.0  
−0.1  
−0.2  
−0.3  
−0.4  
−0.5  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
f − Frequency − kHz  
f − Frequency − kHz  
Figure 7  
Figure 8  
10  
www.ti.com  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
De-Emphasis Curves (Continued)  
DE-EMPHASIS LEVEL  
DE-EMPHASIS ERROR  
vs  
vs  
FREQUENCY  
FREQUENCY  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
0.5  
0.4  
0.3  
0.2  
0.1  
V
= 5 V  
V
= 5 V  
CC  
= 48 kHz  
CC  
f = 48 kHz  
s
f
T
s
A
= 25°C  
T
A
= 25°C  
0.0  
−0.1  
−0.2  
−0.3  
−0.4  
−0.5  
0
2
4
6
8
10 12 14 16 18 20 22  
0
2
4
6
8
10 12 14 16 18 20 22  
f − Frequency − kHz  
f − Frequency − kHz  
Figure 9  
Figure 10  
11  
www.ti.com  
SLES040 − JUNE 2002  
ANALOG DYNAMIC PERFORMANCE  
Supply Voltage Characteristics  
DYNAMIC RANGE  
vs  
SUPPLY VOLTAGE  
TOTAL HARMONIC DISTORTION + NOISE (−3 dB)  
vs  
SUPPLY VOLTAGE  
110  
109  
108  
107  
106  
105  
0.0016  
V
f
T
A
= 5 V  
= 44.1 kHz  
= 25°C  
V
f
T
A
= 5 V  
= 44.1 kHz  
= 25°C  
CC  
s
CC  
s
0.0014  
192 kHz  
96 kHz  
0.0012  
0.0010  
0.0008  
192 kHz  
96 kHz  
44.1 kHz  
44.1 kHz  
4.0  
4.5  
V
5.0  
5.5  
6.0  
4.0  
4.5  
V
5.0  
5.5  
6.0  
− Supply Voltage − V  
− Supply Voltage − V  
CC  
CC  
Figure 11  
Figure 12  
CHANNEL SEPARATION  
vs  
SNR  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
106  
105  
104  
103  
102  
101  
110  
109  
108  
107  
106  
105  
V
f
T
A
= 5 V  
= 44.1 kHz  
= 25°C  
V
= 5 V  
= 44.1 kHz  
= 25°C  
CC  
s
CC  
f
T
s
A
44.1 kHz  
96 kHz  
96 kHz  
192 kHz  
192 kHz  
44.1 kHz  
4.0  
4.5  
V
5.0  
5.5  
6.0  
4.0  
4.5  
V
5.0  
5.5  
6.0  
− Supply Voltage − V  
− Supply Voltage − V  
CC  
CC  
Figure 13  
Figure 14  
All specifications at T = +25°C, V  
= 5.0 V, V = 3.3 V, f = 44.1 kHz, system clock = 384 f and 24-bit data, unless otherwise noted  
DD S S  
A
CC  
12  
www.ti.com  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
Temperature Characteristics  
TOTAL HARMONIC DISTORTION + NOISE (−3 dB)  
DYNAMIC RANGE  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
0.0018  
110  
109  
108  
107  
106  
V
= 5 V  
V
= 5 V  
CC  
= 44.1 kHz  
CC  
f = 44.1 kHz  
s
f
s
0.0016  
0.0014  
44.1 kHz  
192 kHz  
96 kHz  
0.0012  
96 kHz  
0.0010  
192 kHz  
44.1 kHz  
0.0008  
0.0006  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 15  
Figure 16  
SNR  
vs  
CHANNEL SEPARATION  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
106  
105  
104  
103  
102  
101  
110  
109  
108  
107  
106  
V
= 5 V  
= 44.1 kHz  
V
= 5 V  
CC  
CC  
f = 44.1 kHz  
s
f
s
44.1 kHz  
44.1 kHz  
96 kHz  
96 kHz  
192 kHz  
192 kHz  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 17  
Figure 18  
All specifications at T = +25°C, V  
CC  
= 5.0 V, V = 3.3 V, f = 44.1 kHz, system clock = 384 f and 24-bit data, unless otherwise noted  
DD S S  
A
13  
www.ti.com  
SLES040 − JUNE 2002  
DIGITAL FILTER—DSD MODE  
AMPLITUDE  
vs  
FREQUENCY  
5
0
Filter 3  
Filter 1  
−5  
Filter 2  
−10  
−15  
−20  
−25  
−30  
−35  
1
10  
100  
1k  
f − Frequency − kHz  
Figure 19  
SYSTEM CLOCK AND RESET FUNCTIONS  
System clock input  
The DSD1608 requires a system clock for operating the digital interpolation filter, digital DSD filter and multilevel  
delta-sigma modulator. The system clock is applied to PSCK (pin 33) in the PCM mode and to DSCK (pin 34) in the  
DSD mode. When CKCE (control register 10, B3) is not set to 1, the system clock is applied to PSCK in the DSD  
mode. The DSD1608 has a system clock detection circuit. Table 1 shows examples of system clock frequencies for  
common audio sampling rates.  
Figure 20 shows the timing requirements for the system clock input. For optimal performance, it is important to use  
a clock source with low phase jitter and noise. Texas Instruments’ PLL1700 multiclock generator is an excellent  
choice for providing the DSD1608 system.  
In the PCM mode, the oversampling rate of digital filter is 4× when a 128-f or 192-f system clock is applied to the  
S
S
DSD1608. When a 256-f , 384-f , 512-f or 768-f system clock is applied, the oversampling rate is 8×.  
S
S
S,  
S
Table 1. System Clock Rates for Common Audio Sampling Frequencies  
SYSTEM CLOCK FREQUENCY (f  
) (MHz)  
SAMPLING  
FREQUENCY  
SCLK  
MODE  
128 f  
192 f  
256 f  
384 f  
512 f  
768 f  
S
S
S
S
S
S
16kHz  
32kHz  
2.0480  
4.0960  
5.6488  
6.1440  
11.2896  
12.2880  
24.5760  
3.0720  
6.1440  
8.4672  
9.2160  
16.9344  
18.4320  
36.8640  
4.0960  
8.1920  
6.1440  
12.2880  
16.9344  
18.4320  
33.8688  
36.8640  
See Note  
16.9344  
8.1920  
16.3840  
22.5792  
24.5760  
45.1584  
49.1520  
See Note  
22.5792  
12.2880  
24.5760  
33.8688  
36.8640  
67.7376  
73.7280  
See Note  
33.8688  
44.1kHz  
48kHz  
11.2896  
12.2880  
22.5792  
24.5760  
See Note  
11.2896  
PCM  
DSD  
88.2kHz  
96kHz  
192kHz  
64×44.1kHz  
:
NOTE This system clock is not supported for the given sampling frequency.  
14  
www.ti.com  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
t
(SCKH)  
2 V  
H
L
System Clock  
(PSCK, DSCK)  
0.8 V  
t
t
(SCY)  
(SCKL)  
SYMBOL  
PARAMETERS  
MIN  
MAX  
UNIT  
ns  
t
System clock pulse cycle time  
System clock pulse duration high  
System clock pulse duration low  
13  
(SCY)  
t
0.4 t  
ns  
(SCKH)  
SCY  
t
0.4 t  
ns  
(SCKL)  
SCY  
Figure 20. System Clock Input Timing  
Power-On and External Reset Functions  
The DSD1608 includes a power-on reset function. Figure 21 shows the operation of this function. With V  
> 2 V,  
DD  
the power-on reset function is enabled. The initialization sequence requires 1024 system clocks from the time V  
DD  
> 2 V. After the initialization period, the DSD1608 is set to its reset default state, as described in the mode control  
register section of this data sheet. The DSD1608 also includes an external reset capability using the RST input (pin  
36). This allows an external controller or master reset circuit to force the DSD1608 to initialize to its reset state.  
Figure 22 shows the external reset operation and timing. The RST pin is set to logic 0 for a minimum of 20 ns. When  
the RST pin is set to a logic 0 state, the DSD1608 is initialized. The RST pin is then set to a logic 1 state, thus starting  
the initialization sequence, which requires 1024 system clock periods.  
V
DD  
2.4 V  
2 V  
1.6 V  
Reset  
Reset Removal  
Internal Reset  
1024 System Clocks  
System Clock  
(PSCK)  
Figure 21. Power-On Reset Timing  
RST (Pin 36)  
50% of V  
DD  
t
(RST)  
Reset  
Reset Removal  
Internal Reset  
System Clock  
1024 System Clocks  
SYMBOL  
PARAMETERS  
MIN  
MAX  
UNIT  
t
Reset pulse duration low  
20  
ns  
(RST)  
Figure 22. External Reset Timing  
15  
www.ti.com  
SLES040 − JUNE 2002  
Audio Serial Interface  
The DSD1608 has two audio serial interface ports: PCM audio interface port and DSD audio interface port.  
In the PCM mode, the audio interface is a 3-wire serial port. It includes PLRCK (pin 51), PBCK (pin 50), and  
PDATA1PDATA4 (pins 4649). PBCK is the serial audio bit clock, and it is used to clock the serial data present on  
PDATA14 into the audio interface serial shift register. Serial data is clocked into the DSD1608 on the rising edge  
of PBCK. PLRCK is the serial audio left/right word clock. It is used to latch serial data into the serial audio interface  
internal registers.  
The DSD1608 requires the synchronization of PLRCK to the system clock, but does not require a specific phase  
relation between PLRCK and system clock.  
If the relationship between PLRCK and system clock changes more than 6 PBCK, internal operation is initialized  
within 1/f and analog outputs are forced to 0.5 V  
until re-synchronization between PLRCK and the system clock  
S
CC  
is completed.  
In the DSD mode, the audio interface is a 2-wire serial port. DBCK (pin 37) is the serial audio bit clock, and it is used  
to clock the individual direct stream digital (DSD) audio data on DSD1DSD8 (pins 3845). DSD data is clocked into  
the DSD1608 on the rising edge of DBCK. DBCK must be synchronous with the system clock, but does not require  
a specific phase relation to the system clock. DBCK is operated at the sampling frequency f ; the f of DSD is  
S
S
64 × 44.1 kHz, nominal.  
Audio Data Formats and Timing  
2
In the PCM mode, the DSD1608 supports industry-standard audio data formats, including standard, I S, and  
left-justified. The data formats are shown in Figure 23. Data formats are selected using the format bits, FMT[2:0],  
in control register 10. The default data format is 24-bit standard format. All formats require binary 2s complement,  
MSB-first audio data. Figure 24 shows a detailed timing diagram for the serial audio interface.  
In the DSD mode, the DSD1608 supports a DSD audio data format. The data formats are shown in Figure 25.  
Figure 26 shows a detailed timing diagram for the DSD audio data interface.  
Serial Control Interface  
The serial control interface is a 4-wire serial port which operates completely asynchronously from the serial audio  
interface and the system clock. The serial control interface is used to access the on-chip mode registers. The control  
interface includes MDI (pin 2), MDO (pin 5), MC (pin 4), and MS (pin 3). MDI is the serial data input, used to program  
the mode registers. MDO is the serial data output, used to read back the values of the mode registers. MC is the serial  
bit clock, used to shift data into the control port, and MS is the chip select for the control port.  
16  
www.ti.com  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
(1) STD Format: L-Channel = H, R-Channel = L  
1/f  
S
PLRCK  
R-Channel  
L-Channel  
PBCK  
(a) Data Word = 16 Bit  
14 15 16  
1
2
15 16  
LSB  
1
2
15 16  
17 18  
PDATA1−4  
MSB  
(b) Data Word = 18 Bit  
16 17 18  
1
1
2
17 18  
LSB  
1
1
2
2
PDATA1−4  
MSB  
(c) Data Word = 20 Bit  
18 19 20  
2
19 20  
LSB  
19 20  
23 24  
PDATA1−4  
MSB  
(d) Data Word = 24 Bit  
22 23 24  
1
2
23 24  
LSB  
1
2
PDATA1−4  
MSB  
(2) IIS Format: L-Channel = L, R-Channel = H  
1/f  
S
PLRCK  
PBCK  
R-Channel  
L-Channel  
Data Word = 24 Bit  
PDATA1−4  
1
2
23 24  
LSB  
1
2
23 24  
1
MSB  
(3) Left Justified Format: L-Channel = H, R-Channel = L  
1/f  
S
PLRCK  
PBCK  
R-Channel  
L-Channel  
Data Word = 24 Bit  
PDATA1−4  
1
2
23 24  
LSB  
1
2
23 24  
1
2
MSB  
Figure 23. PCM Data Format  
17  
www.ti.com  
SLES040 − JUNE 2002  
50% of V  
DD  
PLRCK  
t
t
t
(LB)  
(BCH)  
(BCL)  
50% of V  
DD  
PBCK  
t
t
(BL)  
(BCY)  
50% of V  
DD  
PDATA1−4  
SYMBOL  
t
t
su(D)  
h(D)  
PARAMETERS  
MIN  
70  
30  
30  
10  
10  
10  
10  
MAX  
UNIT  
ns  
t
PBCK pulse cycle time  
PBCK high-level time  
PBCK low-level time  
(BCY)  
t
ns  
(BCH)  
t
ns  
(BCL)  
t
PBCK rising edge to PLRCK edge  
PLRCK edge to PBCK rising edge  
PDATA1−4 setup time  
ns  
(BL)  
(LB)  
t
ns  
t
ns  
su(D)  
t
PDATA1−4 hold time  
ns  
h(D)  
Figure 24. Timing for PCM Audio Interface  
t = 1/(64 x 44.1 kHz)  
DBCK  
D0  
D1  
D2  
D3  
D4  
DSD1−8  
Figure 25. Normal Data Output Form From DSD Decoder  
18  
www.ti.com  
DBCK  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
t
t
(BCL)  
(BCH)  
50% of V  
DD  
t
(BCY)  
50% of V  
DD  
DSD1−8  
t
t
su(D)  
h(D)  
SYMBOL  
PARAMETERS  
MIN  
(1)  
MAX  
UNIT  
ns  
t
DBCK pulse cycle time  
DBCK high-level time  
DBCK low-level time  
DSD1−8 setup time  
DSD1−8 hold time  
350  
(BCY)  
t
30  
30  
10  
10  
ns  
(BCH)  
t
ns  
(BCL)  
t
ns  
su(D)  
t
ns  
h(D)  
(1)  
2.8224 MHz = 64 × 44.1 kHz; this value is specified as a sampling rate of DSD.  
Figure 26. Timing for DSD Audio Interface  
Register Read/Write Operation  
All read/write operations for the serial control port use 16-bit data words. Figure 27 shows the control data word  
format. The most significant bit is the read/write (R/W) bit. For write operations, the R/W bit must be set to 0. For  
read operations, the R/W bit must be set to 1. There are seven bits, labeled IDX[6:0], that set the register index (or  
address) for the read or write operations. The least significant eight bits, D[7:0], contain the data to be written to the  
register specified by IDX[6:0] or to be read from the register specified by IDX[6:0].  
Figure 28 shows the functional timing diagram for writing or reading the serial control port. MS is held at a logic 1  
state until a register needs to be written or read. To start the register write or read cycle, MS is set to logic 0. Sixteen  
clocks are then provided on MC, corresponding to the 16 bits of the control data word on MDI and read back data  
on MDO. After the eighth clock cycle has completed, the data from indexed mode control register appears on MDO  
in read operation. After the sixteenth clock cycle has completed, the data is latched into the indexed mode control  
register in write operations. To write or read subsequent data, MS must be set to 1 once.  
LSB  
MSB  
R/W IDX6 IDX5 IDX4 IDX3 IDX2 IDX1 IDX0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Register Index (or Address)  
Register Data  
Figure 27. Control Data Word Format for MDI  
MS  
MC  
MDI  
X
R/W IDX6 IDX5 IDX4 IDX3 IDX2 IDX1 IDX0 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
R/W IDX6  
MDO  
High Impedance  
D7 D6 D5 D4 D3 D2 D1 D0  
When Read Mode is Instructed  
High Impedance  
Figure 28. Serial Control Format  
19  
www.ti.com  
SLES040 − JUNE 2002  
Control Interface Timing Requirements  
Figure 29 shows a detailed timing diagram for the serial control interface. These timing parameters are critical for  
proper control port operation.  
t
(MHH)  
MS  
50% of V  
DD  
t
t
(MCL)  
(MSS)  
t
t
h(MS)  
(MCH)  
MC  
50% of V  
50% of V  
50% of V  
DD  
DD  
DD  
t
(MCY)  
LSB  
MDI  
t
t
su(MD)  
t
(MOS)  
h(MD)  
MDO  
SYMBOL  
PARAMETERS  
MIN MAX  
UNIT  
t
t
t
t
t
t
t
t
t
MC pulse cycle time  
MC low level time  
MC high level time  
MS high level time  
100  
40  
40  
80  
15  
15  
15  
15  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(MCY)  
(MCL)  
(MCH)  
(MHH)  
(MSS)  
h(MS)  
h(MD)  
su(MD)  
(MOS)  
MS falling edge to MC rise edge  
(1)  
MS hold time  
MDI hold time  
MDI setup time  
MC falling edge to MDO stable  
(1)  
MC rising edge for LSB-to-MS rising edge.  
Figure 29. Control Interface Timing  
MODE CONTROL REGISTERS  
User-Programmable Mode Controls  
The DSD1608 includes a number of user programmable functions which are accessed via control registers. The  
registers are programmed using the serial control interface which was previously discussed in this data sheet. Table 2  
lists the available mode control functions, along with their reset default conditions and associated register index.  
Register Map  
The mode control register map is shown in Table 3. Each register includes an index (or address) indicated by the  
IDX[6:0] bits B[14:8].  
20  
www.ti.com  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
Table 2. User-Programmable Mode Controls  
FUNCTION  
RESET DEFAULT  
0dB, no attenuation  
Mute disabled  
REGISTER  
BIT(S)  
AT1[7:0] to AT8[7:0]  
MUT[8:1]  
PCM  
DSD  
Digital attenuation control, 0 dB to –in 0.5 dB steps  
Soft mute control  
07  
8
DAC operation control  
DAC1 to DAC8 enabled  
24-bit standard format  
Disabled  
9
DAC[8:1]  
Audio data format control  
10  
10  
10  
10  
11  
11  
11  
12  
12  
12  
FMT[2:0]  
Clock select control  
CKCE  
Attenuation rate select  
8/f  
S
ATS  
Rolloff control for 8× digital filter  
De-emphasis function control  
De-emphasis sample rate control  
Sharp rolloff  
FLT  
De-emphasis disabled  
44.1kHz  
DM12, -34, -56, -78  
DMF[1:0]  
Over sampling rate control (64 f or 128 f )  
64 f oversampling  
S
OVR[1:0]  
S
S
Output phase select  
Normal phase  
High  
DRV12, -34, -56, -78  
ZREV  
Zero flag polarity select  
Zero flag output pin select  
CH1/2 flags separately  
selectable  
AZRO  
DSD mode control  
System reset  
PCM mode  
Not operated  
Filter 1  
12  
12  
DSD  
SRST  
DSD filter select  
13, 14  
16  
FS1[1:0] to FS8[1:0]  
ZERO[8:1]  
ID[4:0]  
Zero flag status (read-only)  
Device ID (at TDMCA)  
17  
Table 3. Mode Control Register Map  
B15 B14 B13 B12 B11 B10 B9  
B8  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 0  
Register 1  
Register 2  
Register 3  
Register 4  
Register 5  
Register 6  
Register 7  
Register 8  
Register 9  
Register 10  
Register 11  
Register 12  
Register 13  
Register 14  
Register 16  
Register 17  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
0
AT17  
AT27  
AT37  
AT47  
AT57  
AT67  
AT77  
AT87  
MUT8  
DAC8  
RSV  
AT16  
AT26  
AT36  
AT46  
AT56  
AT66  
AT76  
AT86  
MUT7  
DAC7  
FLT  
AT15  
AT25  
AT35  
AT45  
AT55  
AT65  
AT75  
AT85  
MUT6  
DAC6  
ATS  
AT14  
AT24  
AT34  
AT44  
AT54  
AT64  
AT74  
AT84  
MUT5  
DAC5  
RSV  
AT13  
AT23  
AT33  
AT43  
AT53  
AT63  
AT73  
AT83  
MUT4  
DAC4  
CKCE  
DM78  
AT12  
AT22  
AT32  
AT42  
AT52  
AT62  
AT72  
AT82  
MUT3  
DAC3  
FMT2  
DM56  
AT11  
AT21  
AT31  
AT41  
AT51  
AT61  
AT71  
AT81  
MUT2  
DAC2  
FMT1  
DM34  
AT10  
AT20  
AT30  
AT40  
AT50  
AT60  
AT70  
AT80  
MUT1  
DAC1  
FMT0  
DM12  
OVR1  
SRST  
FS41  
FS81  
OVR0  
DSD  
DMF1  
AZRO  
FS31  
FS71  
DMF0  
ZREV DRV78 DRV56 DRV34 DRV12  
FS40  
FS80  
FS30  
FS70  
FS21  
FS61  
FS20  
FS60  
FS11  
FS51  
FS10  
FS50  
ZERO8 ZERO7 ZERO6 ZERO5 ZERO4 ZERO3 ZERO2 ZERO1  
RSV RSV RSV ID4 ID3 ID2 ID1 ID0  
R
21  
www.ti.com  
SLES040 − JUNE 2002  
Register Definitions  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 0  
:
R/W  
0
0
0
0
0
0
0
AT17 AT16 AT15 AT14 AT13 AT12 AT11 AT10  
Register 7  
R/W  
0
0
0
0
1
1
1
AT87 AT86 AT85 AT84 AT83 AT82 AT81 AT80  
R/W  
When R/W = 0, a write operation is performed. When R/W = 1, a read operation is performed.  
ATxy Digital Attenuation Level Setting  
Where x = register number + 1 and y = 1 to 8, corresponding to the DAC output V  
Read/Write Mode Select  
:PCM/DSD Mode  
1 to V  
8. In PCM mode, the  
OUT  
OUT  
default value, 1111 1111b, represents 0 dB. Each DAC channel (V  
1 to V  
8) includes a digital attenuation  
OUT  
OUT  
function. The attenuation level can be set from 0 dB to –119.5 dB in 0.5 dB steps or to in PCM mode, and from  
6 dB to 113.5 dB or to in DSD mode. Alternatively, the attenuation level can be set to infinite attenuation (or mute).  
The following table shows attenuation levels for various settings.  
ATxy  
DECIMAL VALUE  
ATTENUATION LEVEL SETTING  
PCM Mode  
DSD Mode  
1111 1111b  
1111 1110b  
1111 1101b  
:
255  
254  
253  
:
0 dB, no attenuation (default)  
6 dB  
–0.5 dB  
5.5 dB  
–1 dB  
5 dB  
:
–6 dB  
–6.5 dB  
:
:
1111 0011b  
1111 0010b  
:
243  
242  
:
0 dB  
–0.5 dB  
:
–56 dB  
–56.5 dB  
–57 dB  
–57.5 dB  
:
1000 0011b  
1000 0010b  
1000 0001b  
1000 0000b  
:
131  
130  
129  
128  
:
–62 dB  
–62.5 dB  
–63 dB  
–63.5 dB  
:
0111 0101b  
:
117  
:
–69 dB  
:
–63 dB  
:
0001 0000b  
0000 1111b  
:
16  
15  
:
119.5 dB  
∞  
113.5 dB  
∞  
:
:
0000 0000b  
0
∞  
∞  
B15  
R/W  
B14  
B13  
0
B12  
0
B11  
1
B10  
0
B9  
0
B8  
0
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 8  
0
MUT8  
MUT7  
MUT6 MUT5 MUT4 MUT3 MUT2 MUT1  
R/W  
When R/W = 0, a write operation is performed. When R/W = 1, a read operation is performed.  
MUTx Soft Mute Control  
Where x = 1 to 8, corresponding to the DAC output V  
Read/Write Mode Select  
:PCM/DSD Mode  
1 to V  
8. Default value: 0  
OUT  
OUT  
MUTx = 0  
MUTx = 1  
Mute disabled (default)  
Mute enabled  
The mute bits, MUT1 to MUT8, are used to enable or disable the soft mute function for the corresponding DAC  
outputs, V 1 to V 8. The soft mute function is incorporated into the digital attenuators. When mute is disabled  
OUT  
OUT  
(MUTx = 0), the attenuator and DAC operate normally. When mute is enabled by setting MUTx = 1, the digital  
attenuator for the corresponding output is decreased from the current setting to infinite attenuation, one attenuator  
step (0.5 dB) at a time. This provides pop-free muting of the DAC output. By setting MUTx = 0, the attenuator is  
incremented one step at a time to the previously programmed attenuation level.  
22  
www.ti.com  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
B15  
R/W  
B14  
0
B13  
0
B12  
0
B11  
1
B10  
0
B9  
0
B8  
1
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 9  
DAC8  
DAC7  
DAC6  
DAC5 DAC4 DAC3 DAC2 DAC1  
R/W  
When R/W = 0, a write operation is performed. When R/W = 1, a read operation is performed.  
DACx DAC Operation Control  
Where x = 1 to 8, corresponding to the DAC output V  
Read/Write Mode Select  
:PCM/DSD Mode  
1 to V  
8. Default value: 0  
OUT  
OUT  
DACx = 0  
DACx = 1  
DAC operation enabled (default)  
DAC operation disabled  
The DAC operation controls are used to enable and disable the DAC outputs, V  
the corresponding output generates the audio waveform dictated by the data present on the DATA pin. When DACx  
1 to V  
8. When DACx = 0,  
OUT  
OUT  
= 1, the corresponding output is set to the bipolar zero level, or V  
affected after the next PLRCK when the write operation occurs.  
/ 2. In the TDMCA mode, the DACx bits are  
CC  
B15  
R/W  
B14  
0
B13  
0
B12  
0
B11  
1
B10  
0
B9  
1
B8  
0
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 10  
RSV  
FLT  
ATS  
RSV  
CKCE FMT2  
FMT1  
FMT0  
R/W  
When R/W = 0, a write operation is performed. When R/W = 1, a read operation is performed.  
RSV Reserved Bit  
The RSV bit must be set to 0.  
Read/Write Mode Select  
FLT  
Digital Filter Roll-Off Control  
:PCM Mode  
Default value: 0  
FLT = 0  
FLT = 1  
Sharp rolloff (default)  
Slow rolloff  
The FLT bit allows the user to select the digital filter rolloff that is best suited to a particular application. Two filter rolloff  
selections are available: sharp and slow. The filter responses for these selections are shown in the Typical  
Performance Curves section of this data sheet.  
ATS  
Attenuation Rate Select  
:PCM/DSD Mode  
Default value: 0  
ATS = 0  
ATS = 1  
8/f (default)  
S
16/f  
S
The ATS bit is used to select the rate at which the attenuator is decremented / incremented during level transitions.  
CKCE  
Clock Select Control  
:DSD Mode  
Default value: 0  
CKCE = 0  
CKCE = 1  
System clock is applied to PSCK in the DSD mode (default).  
System clock is applied to DSCK in the DSD mode.  
The CKCE bit selects the system clock source in the DSD mode (PSCK or DSCK). The CKCE bit must be set before  
the DSD bit in register 12 can be set to 1.  
FMT[2:0]  
Audio Interface Data Format  
:PCM Mode  
Default value: 000. The FMT[2:0] bits are used to select the data format for the serial audio interface. The table below  
shows the available format options.  
23  
www.ti.com  
SLES040 − JUNE 2002  
FMT[2:0]  
000  
Audio Data Format Select  
24-bit standard format, right-justified data (default)  
20-bit standard format, right-justified data  
18-bit standard format, right-justified data  
16-bit standard format, right-justified data  
001  
010  
011  
2
100  
I S format, 24 bits  
101  
Left-justified format, 24 bits  
Reserved  
110  
111  
Reserved  
B15  
B14  
0
B13  
0
B12  
0
B11  
1
B10  
0
B9  
1
B8  
1
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 11  
R/W  
OVR1 OVR0  
DMF1 DMF0 DM78 DM56 DM34 DM12  
R/W  
Read/Write Mode Select  
When R/W = 0, a write operation is performed. When R/W = 1, a read operation is performed.  
OVR[1:0]  
Delta-Sigma Oversampling Rate Select  
Oversampling Rate Select  
Default value: 0  
OVR[1:0]  
00  
01  
1x  
64× f (default)  
S
128× f  
S
32× f  
S
The OVR[1:0] bits are used to change the oversampling rate of delta-sigma modulation. This function makes it easy  
to design a post-low-pass filter for any sampling rate.  
DMF[1:0]  
De-Emphasis Sampling Frequency Select  
Default value: 0  
DMF[1:0]  
De-Emphasis Sampling Frequency Select  
00  
01  
10  
11  
44.1 kHz (default)  
48 kHz  
32 kHz  
Reserved  
The DMF[1:0] bits are used to select the sampling frequency for the digital de-emphasis function when de-emphasis  
is enabled.  
DMxx  
De-Emphasis Function Control  
Default value: 0  
DMxx = 0  
DMxx = 1  
De-emphasis function disabled (default)  
De-emphasis function enabled  
The DMxx bits are used to enable or disable the digital de-emphasis function of selected channel pairs. Suffix 12,  
34, 56, 78 means Channel 1 and 2, 3 and 4, 5 and 6, and 7 and 8 respectively. See the plots shown in the Typical  
Performance Curves section of this data sheet.  
B15 B14 B13 B12  
R/W  
B11  
1
B10  
1
B9  
0
B8  
0
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 12  
24  
0
0
0
SRST  
DSD  
AZRO ZREV DRV78 DRV56 DRV34 DRV12  
www.ti.com  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
R/W  
When R/W = 0, a write operation is performed. When R/W = 1, a read operation is performed.  
SRST System Reset  
Default value: 0. This bit is available only in the write mode.  
Read/Write Mode Select  
:PCM/DSD Mode  
SRST = 1  
DAC system is reset once.  
The SRST bit allows the user to reset DAC system. This function is same as the power-on reset. When the SRST  
is set to 1, one reset pulse is generated internally. It is not necessary to set SRST to 0.  
DSD  
DSD Mode Control  
:PCM/DSD Mode  
Default value: 0  
DSD = 0  
DSD = 1  
PCM mode (default)  
DSD mode  
The DSD bit allows the user to select the operation mode, PCM mode or DSD mode.  
AZRO  
Zero Flag Output Pin Select  
:PCM Mode  
Default value: 0  
AZRO = 0  
AZRO = 1  
When ZREV = 0 and either the channel 1 or channel 2 data is continuously zero, the  
ZERO1 and ZERO2 pins go HIGH. When ZREV = 1 and either the channel 1 or  
channel 2 data is continuously zero, the ZERO1 and ZERO2 pins go LOW (default).  
When ZREV = 0 and both the channel 1 and channel 2 data is continuously zero, the  
ZERO1 and ZERO2 pins go HIGH. ZERO2 pin stay in LOW. When ZREV = 1 and both  
the channel 1 and channel 2 data is continuously zero, the ZERO1 and ZERO2 pins go  
LOW.  
The AZRO bit allows the user to select the output form of ZERO1 and ZERO2.  
ZREV  
Zero Flag Polarity Select  
:PCM Mode  
Default value: 0  
ZREV = 0  
ZREV = 1  
Zero flag pins HIGH at a zero detect (default)  
Zero flag pins LOW at a zero detect  
The ZREV bit allows the user to select the polarity of zero flag pins.  
DRVxx  
Output Phase Select  
:PCM/DSD Mode  
Default value: 0  
DRVxx = 0  
DRVxx = 1  
Normal output (default)  
Inverted output  
The DRVxx bits control output analog signal phase for channel pairs. The xx suffix in the register name designates  
the channel pair: -12 indicates channels 1 and 2; -34 indicates channels 3 and 4; -56 indicates channels 5 and 6; and  
-78 indicates channels 7 and 8.  
B15 B14 B13 B12  
B11  
1
B10  
1
B9  
0
B8  
1
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 13  
Register 14  
R/W  
0
0
0
FS41  
FS40  
FS31  
FS30  
FS21  
FS20  
FS11  
FS10  
R/W  
0
0
0
1
1
1
0
FS81  
FS80  
FS71  
FS70  
FS61  
FS60  
FS51  
FS50  
25  
www.ti.com  
SLES040 − JUNE 2002  
R/W  
Read/Write Mode Select  
When R/W = 0, a write operation is performed. When R/W = 1, a read operation is performed.  
FSxy  
DSD Filter Select  
:DSD Mode  
Default value: 00  
FSxy  
00  
DSD Filter Select  
Filter 1 (default)  
Filter 2  
01  
10  
Filter 3  
11  
Reserved  
The FSxy bits allow selection of the DSD filter from three kind of filters for each channel. The x suffix in the register  
name designates the channel, from 1 to 8, for which the filter is being selected. The y suffix in the register name  
designates the high or low bit of the filter selection value.  
B15 B14 B13 B12  
B11  
0
B10  
0
B9  
0
B8  
0
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 16  
R
0
0
1
ZERO8 ZERO7 ZERO6 ZERO5 ZERO4 ZERO3 ZERO2 ZERO1  
R
Read Only  
Zero Flag  
ZEROx  
ZEROx = 0  
ZEROx = 1  
Not zero detected on indexed channel  
Zero detected on indexed channel  
The ZEROx bits indicate indexed the result of ZERO detection circuit of each channels.  
B15 B14 B13 B12  
B11  
0
B10  
0
B9  
0
B8  
1
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 17  
R
0
0
1
RSV  
RSV  
RSV  
ID4  
ID3  
ID2  
ID1  
ID0  
R
Read Only  
RSV  
Reserve Bit  
The RSV bit is read as 0.  
ID[4:0] Device ID  
The ID[4:0] bits show a device ID in TDMCA mode.  
ANALOG OUTPUTS  
The DSD1608 includes eight independent output channels: V  
capable of driving 4 Vp-p typical into a 10-kac-coupled load. The internal output amplifiers for V  
biased to the dc common-mode (or bipolar zero) voltage, equal to V /2.  
1 to V  
8. These are unbalanced outputs, each  
OUT  
OUT  
1 to V  
8 are  
OUT  
OUT  
CC  
The output amplifiers include an RC continuous-time filter, which helps to reduce the out-of-band noise energy  
present at the DAC outputs due to the noise shaping characteristics of the DSD1608 delta-sigma D/A converters.  
The frequency response of this filter is shown in Figure 30. By itself, this filter is not enough to attenuate the  
out-of-band noise to an acceptable level for many applications. An external low-pass filter is required to provide  
sufficient out-of-band noise rejection. Further discussion of DAC post-filter circuits is provided in the Applications  
Information section of this data sheet.  
26  
www.ti.com  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
RESPONSE  
vs  
FREQUENCY  
10  
0
−10  
−20  
−30  
−40  
−50  
−60  
100  
1k  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
Figure 30. Analog Output Filter Performance (100 Hz−10 MHz)  
ZERO FLAGS  
The DSD1608 includes circuitry for detecting an all-zero data condition for the audio data input pin and output pins  
for indicating the result.  
Zero Detect Condition  
Zero detection for each channel or combination of channels is independent from any other.  
In PCM mode, if the data for a given channel or channel combination remains at a 0 level for 1024 sample periods  
(or PLRCK clock periods), a zero-detect condition exists for that channel or combination of channels.  
In DSD mode, zero detection is not available.  
Zero Output Flags  
Given that a zero-detect condition exists for each channel or combination of channels, the zero flag pins for those  
conditions will be set to a logic 1 state. There are three zero flag pins for channel 1, ZERO1 (pin 6), for channel 2,  
ZERO2 (pin 7) and for a logical AND of channels 3 through 8, ZERO38 (pin 8). These pins can be used to operate  
external mute circuits, or used as status indicators for a microcontroller, audio signal processor, or other digitally  
controlled circuit.  
The active polarity of the zero flag outputs can be inverted by setting the ZREV bit of control register 12 to 1. The  
reset default is active-high output, or ZREV = 0.  
27  
www.ti.com  
SLES040 − JUNE 2002  
APPLICATION INFORMATION  
CONNECTION DIAGRAMS  
A basic connection diagram is shown in Figure 31, with the necessary power supply bypass and decoupling  
components.  
The use of series resistors (22 to 100 ) is recommended for the xSCK, PLRCK, xBCK, PDATAX, and DSDx inputs.  
The series resistor combines with the stray PCB and device input capacitance to form a low-pass filter which reduces  
high-frequency noise emissions and helps to dampen glitches and ringing present on clock and data lines.  
POWER SUPPLIES AND GROUNDING  
The DSD1608 requires a 5-V analog supply and a 3.3-V digital supply. The 5-V supply is used to power the DAC  
analog and output filter circuitry, while the 3.3-V supply is used to power the digital filter and serial interface circuitry.  
For best performance, the 3.3-V digital supply should be derived from the 5-V supply by using a linear regulator. Texas  
Instruments’ REG1117-3.3 is an ideal choice for this application.  
Proper power supply bypassing is shown in Figure 31. The 10-µF capacitors should be tantalum or aluminum  
electrolytic, while the 0.1-µF capacitors are ceramic (the X7R type is recommended for surface-mount applications).  
28  
www.ti.com  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
PLL1700  
27 MHz Master Clock  
5 V  
GND  
Analog  
REG117  
3.3 V  
+
+
+
+
+
+
+
+
+
V
2
7
6
26  
25  
24  
40 DSD3  
41 DSD4  
42 DSD5  
43 DSD6  
44 DSD7  
45 DSD8  
46 PDATA1  
47 PDATA2  
48 PDATA3  
49 PDATA4  
50 PBCK  
51 PLRCK  
COM  
+
V
V
CC  
CC  
Audio DSP  
or  
Decoder  
(DSD)  
AGND5 23  
V
5 22  
CC  
AGND4 21  
Output  
Low-Pass  
Filter  
DSD1608  
V
4 20  
CC  
AGND3 19  
Audio DSP  
or  
Decoder  
(PCM)  
V
3 18  
CC  
AGND2 17  
V
V
2
1
1
16  
15  
14  
CC  
CC  
V
52  
V
1
DD  
COM  
+
+
µC/µP  
+
+
+
+
Figure 31. Basic Connection Diagram  
29  
www.ti.com  
SLES040 − JUNE 2002  
D/A OUTPUT FILTER CIRCUITS: POST-LOW-PASS FILTER  
The DSD1608 requires a third- or second-order analog low-pass filter to achieve the frequency response  
recommended by the SACD standard and reduce the out-of-band noise produced by the delta-sigma modulator.  
Figure 32 shows the recommended external low-pass filter circuit. This circuit is a third-order Butterworth filter using  
the Sallen-Key circuit arrangement. The filter response and corner frequency are determined by the frequency  
response recommended by the SACD standard. Figure 32 lists the standard values for resistors and capacitors  
corresponding with the DSD digital filter on DSD1608. This filter can be used in either the PCM or the DSD modes.  
C2  
680 pF  
R1  
R2  
R3  
2.7 kΩ  
6.8 kΩ  
15 kΩ  
+
C1  
1500 pF  
C3  
100 pF  
R4  
10 kΩ  
R5  
10 kΩ  
Figure 32. Post-Low-Pass Filter Circuit  
TDMCA FORMAT  
The DSD1608 supports the time division multiplexed command and audio data (TDMCA) format to reduce any host  
control serial interface. The TDMCA format is designed for not only McBSP of TI DSPs but also any programmable  
devices. The TDMCA format can transfer not only audio data but also command data so that it can be used with any  
kind of device that supports the TDMCA format. The TDMCA frame consists of a command field, extended command  
field, and some audio data fields. The audio data are transported to IN devices (such as DAC) and/or from OUT  
devices (such as ADC). The DSD1608 is an IN device. PLRCK and PBCK are shared both IN and OUT devices so  
that the sample frequency must be united in one system. The TDMCA mode supports a maximum of 30 device IDs.  
The maximum number of audio channel depends on the PBCK frequency.  
TDMCA Mode Determination  
The DSD1608 recognizes the TDMCA mode by receiving PLRCK which pulse width is two PBCK clocks. The  
DSD1608 goes into the TDMCA after two continuous TDMCA frames. Figure 33 shows the PLRCK and PBCK timing  
required for the TDMCA mode. Any TDMCA commands can be issued the next TDMCA frame after entering the  
TDMCA mode. If operation in the TDMCA mode operation is not required, PLRCK must be a 50%-duty-cycle square  
wave.  
Command  
Accept  
Pre TDMCA Frame  
TDMCA Frame  
PLRCK  
PBCK  
2PBCK  
Figure 33. PLRCK and PBCK Timing for the TDMCA Mode  
30  
www.ti.com  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
TDMCA Terminals  
TDMCA requires six signals, of which four are for command and audio data interface and two are for the daisy chain.  
Signals that can be shared are as indicated in the following table. The host interface signals, MS, MC and MDO  
change to DCI, DCO, and PDO respectively. The MDO signal is 3-state output so that it can be connected directly  
to other PDO terminals.  
TERMINAL (SIGNAL) NAME  
PROPERTY  
DESCRIPTION  
PLRCK  
Input  
TDMCA frame-start signal. The frequency of PLRCK must be the same as the sampling  
frequency.  
PBCK  
Input  
TDMCA clock. The frequency of PBCK must be high enough to communicate the TDMCA  
frame within a PLRCK clock cycle.  
PDATA1/PDI  
MDO/PDO  
MS/DCI  
Input  
TDMCA command and audio data input signal  
TDMCA command data three-state output signal  
TDMCA daisy chain input signal  
Output  
Input  
MC/DCO  
Output  
TDMCA daisy chain output signal  
Device ID Determination  
The TDMCA mode also supports a multi-chip implementation in one system. This means that the host controller  
(DSP) can support several PCM devices and/or other devices simultaneously. The PCM devices are categorized as  
IN device, OUT device, IN/OUT device, and NO device. The IN device has an input port to receive audio data. The  
OUT device has a output port to provide audio data. The IN/OUT device has both input and output ports for audio  
data. The NO device has no port for audio data but needs command data from the host. A DAC is an IN device, an  
ADC is an OUT device, a CODEC is an IN/OUT device, and a PLL is a NO device. The DSD1608 is an IN device.  
To distinguish devices from the host controller, each device is given its own device ID by the daisy chain. A device  
gets its own device ID automatically by connecting its DCO to the DCI of the next device in the daisy chain. There  
are actually two completely independent and equivalent daisy chains, which are categorized as the IN chain and the  
OUT chain. Figure 34 shows the daisy chain connection. If a system needs to chain a DSD1608 and a NO device  
in the same IN chain, the NO device should be chained at the back of the IN chain because it doesnt require any  
audio data. Figure 35 shows an example of a TDMCA system that includes an IN chain and an OUT chain with a  
TI DSP. For chained devices to get their own device IDs, the DID signal should be set to 1 (the details are described  
later) and PLRCK and PBCK should be driven to initiate the TDMCA mode for all devices which are chained. The  
device at the top of the chain determines its device ID is 1 when DCI is fixed HIGH. Every other device determines  
its position in the chain by counting PBCK pulses and observing its own DCI signal. Figure 36 shows the initialization  
of each device ID. If all devices do not need separate device IDs, each DCI should be held high, causing the  
corresponding device IDs to be 1.  
IN Chain  
IN Device  
IN Device  
IN  
IN  
NO Device  
NO Device  
NO Device  
NO Device  
INOUT  
OUT  
INOUT  
OUT  
OUT Device  
OUT Device  
OUT Chain  
Figure 34. Daisy Chain Connection  
31  
www.ti.com  
SLES040 − JUNE 2002  
PLRCK  
PBCK  
PDI  
DCI  
IN Device  
(DSD1608)  
DCO  
PDO  
Device ID = 1  
PLRCK  
PBCK  
PDI  
DCI  
NO Device  
DCO  
PDO  
Device ID = 2  
FSX  
FSR  
CLKX  
CLKR  
PLRCK  
PBCK  
PDI  
DCI  
OUT Device  
DX  
DCO  
DR  
PDO  
Device ID = 1  
TI DSP  
PLRCK  
PBCK  
PDI  
DCI  
OUT Device  
DCO  
PDO  
Device ID = 2  
Figure 35. IN and OUT Daisy Chain Connection for Multichip System  
PLRCK  
PBCK  
Command Field  
PDI  
DID  
Device ID = 1  
Device ID = 2  
DCO1  
DCO1  
DCI2  
Device ID = 3  
DCO2  
DCI3  
58 BCKs  
DCO29  
DCI30  
Device ID = 30  
Figure 36. Device ID Determination Sequence  
32  
www.ti.com  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
TDMCA Frame  
In general, the TDMCA frame consists of a command field, an extended command (EMD) field, and an audio data  
field. All fields are 32 bits in length, but the LS byte has no meaning. The MSB is transferred first for each field. The  
command field is always transferred as the first packet of the frame. The EMD field is transferred if the EMD flag of  
the command field is high. If any EMD packets are transferred, no audio data follow after those EMD packets. This  
frame is for quick initialization. All devices of the daisy chain should respond to the command field and extended  
command field. The DSD1608 has eight audio channels that can be selected in register 41. If the corresponding flags  
are preset low, those audio channels are transferred. Figure 37 shows a general TDMCA frame. If some DACs are  
enabled although the corresponding audio data packets are not transferred, the analog outputs of those DACs are  
unpredictable.  
1/f  
S
PLRCK  
PBCK  
[For Initialization]  
Don’t  
Care  
PDI  
EMD  
CMD  
CMD  
EMD  
EMD  
CMD  
EMD  
EMD  
32 Bits  
PDO  
CMD  
CMD  
CMD  
CMD  
CMD  
CMD  
[For Operation]  
Don’t  
Care  
Ch(n)  
Ch2  
Ch2  
Ch4  
Ch4  
CMD  
Ch1  
Ch1  
Ch3  
Ch3  
PDI  
PDO  
CMD  
Ch(m)  
Figure 37. General TDMCA Frame  
1/f (256 PBCK Clocks)  
S
7 Packets x 32 Bits  
PLRCK  
PBCK  
Don’t  
Care  
PDI  
CMD  
Ch4  
IN and OUT Channel Orders are Completely Independent  
Ch1 Ch2  
Ch6  
Ch7  
Ch8  
Ch3  
CMD  
Ch5  
PDO  
CMD  
Figure 38. TDMCA Frame Example of 6-Ch DAC and 2-Ch ADC With Command Read  
33  
www.ti.com  
SLES040 − JUNE 2002  
Command Field  
The command field is defined as follows. The DID field (MSB) has another meaning, that this frame is for device ID  
determination.  
31  
30  
29  
28  
24 23 22  
R/W  
21  
20  
16 15  
8
7
0
command  
DID  
EMD DCS  
Device ID  
Register ID  
Data  
Not used  
Bit 31: Device ID Enable Flag  
The DSD1608 operates to get its own device ID if this bit is HIGH. This is for TDMCA initialization.  
Bit 30: Extended Command Enable Flag  
An EMD packet is transferred if this bit is HIGH, otherwise skipped. When the bit is HIGH, this frame does not contain  
any audio data. This is for system initialization.  
Bit 29: Daisy Chain Selection Flag  
HIGH means OUT chain devices, LOW means IN chain devices. The DSD1608 is an IN device, so the DCS bit must  
be set to LOW.  
Bit [28:24]: Device ID  
The device ID is 5 bits in length, and it can be defined. IDs of devices follow the order of an IN or OUT daisy chain.  
The top device of the daisy chain has device ID 1 and the next device in the chain has device ID 2, etc. The ID for  
any device that has its DCI set HIGH is also 1. The maximum device ID each in the IN or OUT chain is 30. If a device  
ID is 0x1F, all devices are selected as broadcast when in the write mode. If any device ID is 0x00, no device is  
selected.  
Bit 23: Command Read/Write Flag  
If it is HIGH, the command is a read operation.  
Bit [22:16]: Register ID  
The register ID is 7 bits in length. See Table 3.  
Bit [15:18]: Command Data  
The command data is 8 bits in length. Any valid data can be chosen for each register. See Table 3.  
Bit [7:0]: Not used  
These bits are never transported when a read operation is performed.  
Extended Command Field  
The extended command field is almost the same as the command field. The only difference is that it does not have  
a DID flag.  
31  
30  
29  
28  
24 23 22  
R/W  
21  
20  
16 15  
8
7
0
Extended command RSVD EMD DCS  
Device ID  
Register ID  
Data  
Not Used  
Audio Field  
The audio field is 32 bits in length and the audio data is transferred MSB first. When transferring audio data of less  
than 32 bits, the unused portion of the field must be padded with 0s, as the following figure shows.  
31  
16  
12  
8
7
0
Audio data  
MSB  
MSB  
MSB  
24 bits  
20 bits  
16 bits  
LSB  
All 0s  
LSB  
All 0s  
LSB  
All 0s  
TDMCA Register Requirements  
The TDMCA mode requires device ID and audio channel information, previously described. Register 9 indicates the  
audio channels and register 17 indicates the device ID. Register 17 is used only in the TDMCA mode. See the Mode  
Control Register Map, Table 3.  
34  
www.ti.com  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
Register Write/Read Operation  
The command supports register write and read operations. If the command requests to read one register, the read  
data is transferred on PDO during the data phase portion of the timing cycle. The PDI signal can be retrieved on the  
positive edge of PBCK and the PDO signal is driven on the negative edge of PBCK. The PDO is activated one cycle  
early due to compensate for the output delay caused by high impedance. Figure 39 shows the TDMCA write and read  
timing.  
Register ID Phase  
Data Phase  
PBCK  
Read Mode and Proper Register ID  
Write Data Retrieved, if Write Mode  
PDI  
Read Data Driven, if Read Mode  
1 PBCK Early  
PDO  
PDOEN  
(Internal)  
Figure 39. TDMCA Write and Read Operation Timing  
TDMCA Mode Operation  
DCO specifies the owner of the next audio channel in TDMCA operation. When one device retrieves its own audio  
channel data, the DCO becomes HIGH during last audio channel period. Figure 40 shows the DCO output timing  
during a TDMCA-mode operation. The host controller is not affected by the behavior of DCI and DCO. DCO indicates  
the last audio channel of each device. Therefore, DCI means that the next audio channel is allocated.  
35  
www.ti.com  
SLES040 − JUNE 2002  
1/f (384 PBCK Clocks)  
S
9 Packets x 32 Bits  
PLRCK  
PBCK  
IN Daisy Chain  
Ch2 Ch3 Ch4 Ch5  
CMD Ch1  
Ch6 Ch7 Ch8  
Don’t Care  
CMD  
PDI  
DCI1  
DID = 1  
DID = 2  
DCO1  
DCI2  
DCO2  
DCI3  
DID = 3  
DID = 4  
DCO3  
DCI4  
DCO4  
IN Daisy Chain  
PDI  
CMD  
CMD  
Ch1  
Ch2 Ch3 Ch4  
Ch5  
Ch6 Ch7 Ch8  
DCI1  
DID = 1  
DID = 2  
DID = 3  
DID = 4  
DCO1  
DCI2  
DCO2  
DCI3  
DCO3  
DCI4  
DCO4  
Figure 40. DCO Output Timing in TDMCA-Mode Operation  
1/f (768 PBCK Clocks)  
S
17 Packets x 32 Bits  
PLRCK  
PBCK  
IN Daisy Chain  
Ch7 Ch8  
Ch16  
Ch15  
PDI  
Ch1  
Ch9  
Don’t Care  
CMD  
CMD  
DCI1  
DID = 1  
DID = 2  
DCO1  
DCI2  
DCO2  
DCI3  
DID = 3  
Figure 41. DCO Output Timing Example for 16-Ch Audio Data of Two DSD1608s  
36  
www.ti.com  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
If some devices are skipped due to lack of an active audio channel, each skipped device must notify the next device  
that the DCO will be passed through the next DCI. Figure 42 and Figure 43 show DCO timing with skip operation.  
Figure 44 shows the ac timing of daisy chain signals.  
1/f (256 PBCK Clocks)  
S
5 Packets x 32 Bits  
PRLCK  
PBCK  
PDI  
DCI  
CMD  
Ch1  
Ch2  
Ch15  
Ch16  
Don’t Care  
CMD  
DID = 1  
DID = 2  
DCO  
DCI  
2 PBCK Delay  
14 PBCK Delay  
DCO  
DCI  
DID = 8  
DCO  
Figure 42. DCO Output Timing With Skip Operation  
Command Packet  
PLRCK  
PBCK  
PDI  
DID EMD  
DCO1  
DCO2  
Figure 43. DCO Output Timing With Skip Operation (for Command Packet 1)  
37  
www.ti.com  
SLES040 − JUNE 2002  
PLRCK  
t
t
(BL)  
(LB)  
PBCK  
PDI  
t
t
t
(DH)  
(BCY)  
(DS)  
t
(DOE)  
PDO  
DCI  
t
t
(DH)  
(DS)  
t
(COE)  
DCO  
SYMBOL  
PARAMETERS  
PBCK pulse cycle time  
PLRCK setup time  
PLRCK hold time  
PDI setup time  
MIN MAX  
UNIT  
ns  
t
t
t
t
t
t
t
t
t
20  
0
(BCY)  
ns  
(LB)  
3
ns  
(BL)  
0
ns  
CDS)  
(DH)  
(DS)  
PDI hold time  
3
ns  
DCI setup time  
0
ns  
DCI hold time  
3
ns  
(DH)  
(DOE)  
(COE)  
(1)  
PDO output delay  
DCO output delay  
8
ns  
(1)  
6
ns  
(1)  
Load capacitance is 10 pF.  
Figure 44. AC Timing of Daisy Chain Signals  
38  
www.ti.com  
ꢀ ꢁꢀ ꢂꢃ ꢄꢅ  
SLES040 − JUNE 2002  
HOST CONTROL FLOW  
The host controller can control the TDMCA mode as follows:  
1. Decides daisy chain to initialize PLRCK and PBCK signals generator  
2. Generates TDMCA mode determination sequence  
3. Sets DID flag in command to fix device ID automatically  
4. Checks all device IDs if necessary  
5. Initializes all devices  
6. Communicates audio data and commands  
No  
Use TDMCA Mode?  
Yes  
Normal-Mode Operation  
(1) Initialize Serial Port (McBSP)  
Set FSX, CLKX Periods, Word,  
Frame Length, ...  
(2) Generates TDMCA Mode  
Determination Timing With DID  
Flag, Then Device ID Is  
Determined Automatically  
(3) Confirms Each Device ID  
and Initialize All Devices Using  
EMD Packet  
(4)(5) Sends Command  
and Audio Data  
Figure 45. TDMCA Control Flow From Host  
39  
www.ti.com  
SLES040 − JUNE 2002  
MECHANICAL DATA  
PAH (S-PQFP-G52)  
PLASTIC QUAD FLATPACK  
0,38  
0,22  
M
0,13  
0,65  
39  
27  
40  
26  
52  
14  
0,13 NOM  
1
13  
7,80 TYP  
Gage Plane  
10,20  
SQ  
9,80  
12,20  
SQ  
0,25  
11,80  
0,05 MIN  
0°ā7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,10  
1,20 MAX  
4040281/C 11/96  
NOTES:A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
40  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DSD1608PAH  
ACTIVE  
TQFP  
PAH  
52  
160  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 85  
DSD1608  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

DSD1608PAH

8-CHANNEL, ENHANCED MULTIFORMAT, DELTA-SIGMA, DIGITAL-TO-ANALOG CONVERTER
BB

DSD1608PAH

SNR 为 108dB 的 8 通道音频 DAC | PAH | 52 | -40 to 85
TI

DSD1608PAHG4

SERIAL INPUT LOADING, 24-BIT DAC, PQFP52, GREEN, PLASTIC, TQFP-52
TI

DSD1608PAHR

8-CHANNEL, ENHANCED MULTIFORMAT, DELTA-SIGMA, DIGITAL-TO-ANALOG CONVERTER
BB

DSD1700

Direct Stream Digital⑩ DSD⑩ TM Audio DIGITAL-TO-ANALOG CONVERTER
BB

DSD1700E

Direct Stream Digital⑩ DSD⑩ TM Audio DIGITAL-TO-ANALOG CONVERTER
BB

DSD1700E/2K

PARALLEL, WORD INPUT LOADING, 8-BIT DAC, PDSO28, PLASTIC, SSOP-28
TI

DSD1702

ENHANCED MULTIFORMAT, DELTA-SIGMA, AUDIO DIGITAL-TO-ANALOG CONVERTER
BB

DSD1702E

ENHANCED MULTIFORMAT, DELTA-SIGMA, AUDIO DIGITAL-TO-ANALOG CONVERTER
BB

DSD1702E/2K

ENHANCED MULTIFORMAT, DELTA-SIGMA, AUDIO DIGITAL-TO-ANALOG CONVERTER
BB

DSD1702E/2KG4

SERIAL INPUT LOADING, 24-BIT DAC, PDSO20, GREEN, QSOP-20
TI

DSD1702EG4

SERIAL INPUT LOADING, 24-BIT DAC, PDSO20, GREEN, QSOP-20
TI