DS90UH928Q-Q1 [TI]

具有 HDCP 的 5MHz 至 85MHz 24 位彩色 FPD-Link III 转 FPD-Link 解串器;
DS90UH928Q-Q1
型号: DS90UH928Q-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 HDCP 的 5MHz 至 85MHz 24 位彩色 FPD-Link III 转 FPD-Link 解串器

光电二极管
文件: 总68页 (文件大小:1182K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
DS90UH928Q-Q1 5MHz 85MHz 24 位彩色 FPD-Link III FPD-Link  
解串器,具有 HDCP 功能  
1 特性  
3 说明  
1
支持片载密钥存储的集成型 HDCP 密码引擎  
DS90UH928Q-Q1 解串器与 DS90UH925Q-Q1 或  
DS90UH927Q-Q1 串行器配套使用,可针对汽车信息  
娱乐系统内的内容受保护数字视频的安全分发提供一套  
解决方案。。 该解串器借助嵌入式时钟(由单信号对  
(FPD-Link III) 提供)将高速串行化接口数据转换为四  
个低压差分信令 (LVDS) 数据/控制流、一个 LVDS 时  
钟对 (FPD-Link) 以及 I2S 音频数据。 数字视频和音频  
数据采用业界标准的 HDCP 复制保护方案加以保  
护。FPD-Link III 串行总线方案支持通过单个差分链路  
实现高速正向通道数据传输和低速全双工反向通道通  
信。 通过单个差分对整合音频、视频和和控制数据可  
减小互连线尺寸和重量,同时还消除了偏差问题并简化  
了系统设计。  
支持 HDCP 中继器应用  
双向控制通道接口,可连接到 I2C 兼容串行控制总  
线
低电磁干扰 (EMI) FPD-Link 视频输出  
支持高清 (720p) 数字视频  
支持 RGB888 + VSHSDE I2S 音频  
支持 5MHz85MHz 像素时钟  
多达 4 个针对环绕立体声应用的 I2S 数字音频输出  
4 条具有 2 个专用引脚的双向通用输入输出 (GPIO)  
通道  
通过 1.8V 3.3V 兼容 LVCMOS I/O 接口实现  
3.3V 单电源运行  
长达 10 米的交流耦合屏蔽双绞线 (STP) 互连  
具有嵌入式时钟的直流均衡和扰频数据  
自适应电缆均衡  
通过对串行输入数据流使用自适应输入均衡功能,可对  
传输介质损耗和确定性抖动进行补偿。 通过使用低压  
差分信令可最大限度减少电磁干扰 (EMI)。  
图像增强(白平衡和抖动)和内部图案生成  
汽车应用级产品:符合 AEC-Q100 2 级要求  
串化器和解串器上都执行 HDCP 密钥引擎。 HDCP 密  
钥被存储在片载存储器中。  
>8kV 的人体模型 (HBM) ISO 10605 静电放电  
(ESD) 额定值  
器件信息(1)  
向后兼容模式  
器件型号  
封装  
WQFN (48)  
封装尺寸(标称值)  
DS90UH928Q-Q1  
7.00mm x 7.00mm  
2 应用范围  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
汽车导航显示屏  
后座娱乐系统  
4 应用图  
FPD-Link  
FPD-Link  
VDDIO  
VDD33  
VDD33  
VDDIO  
(1.8V or 3.3V) (3.3V)  
(3.3V) (1.8V or 3.3V)  
RxIN3+/-  
RxIN2+/-  
TxOUT3+/-  
TxOUT2+/-  
FPD-Link III  
1 Pair/AC Coupled  
DOUT+  
DOUT-  
RIN+  
RIN-  
HOST  
Graphics  
Processor  
RGB Display  
720p  
24-bit Color Depth  
RxIN1+/-  
RxIN0+/-  
TxOUT1+/-  
TxOUT0+/-  
100Q STP Cable  
RxCLKIN+/-  
TxCLKOUT+/-  
INTB_IN  
DS90UH927Q-Q1  
Serializer  
DS90UH928Q-Q1  
Deserializer  
OEN  
LOCK  
PDB  
INTB  
I2S  
OSS_SEL  
PDB  
PASS  
I2S  
6
6
MAPSEL  
LFMODE  
REPEAT  
BKWD  
MAPSEL  
LFMODE  
BISTEN  
MCLK  
SCL  
SDA  
IDx  
SCL  
SDA  
IDx  
MODE_SEL  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SNLS440  
 
 
 
 
 
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 16  
8.3 Feature Description................................................. 17  
8.4 Device Functional Modes........................................ 28  
8.5 Programming........................................................... 34  
8.6 Register Maps......................................................... 36  
Application and Implementation ........................ 53  
9.1 Application Information............................................ 53  
9.2 Typical Application .................................................. 53  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
应用图 ...................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ..................................... 5  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 DC Electrical Characteristics .................................... 7  
7.6 AC Electrical Characteristics..................................... 9  
7.7 Timing Requirements for the Serial Control Bus .... 10  
7.8 Timing Requirements.............................................. 10  
7.9 DC and AC Serial Control Bus Characteristics....... 11  
7.10 Typical Characteristics.......................................... 15  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
9
10 Power Supply Recommendations ..................... 56  
11 Layout................................................................... 56  
11.1 Layout Guidelines ................................................. 56  
11.2 Layout Example .................................................... 58  
12 器件和文档支持 ..................................................... 60  
12.1 文档支持................................................................ 60  
12.2 ....................................................................... 60  
12.3 静电放电警告......................................................... 60  
12.4 术语表 ................................................................... 60  
13 机械封装和可订购信息 .......................................... 60  
8
5 修订历史记录  
Changes from Revision A (April 2013) to Revision B  
Page  
已添加 ESD 额定值表,特性描述部分,器件功能模式应用和实施部分,电源相关建议部分,布局部分,器件和文档  
支持部分以及机械、封装和可订购信息部分 ........................................................................................................................... 1  
2
Copyright © 2013–2015, Texas Instruments Incorporated  
 
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
6 Pin Configuration and Functions  
RHS Package  
48-Pin WQFN  
Top View  
I2S_DC/GPIO2  
37  
24  
TxOUT0-  
VDD33_A  
RES1  
38  
39  
23  
22  
21  
20  
19  
18  
17  
16  
15  
TxOUT0+  
TxOUT1-  
TxOUT1+  
TxOUT2-  
TxOUT2+  
RIN+ 40  
RIN- 41  
CMF 42  
DS90UH928Q-Q1  
TOP VIEW  
43  
44  
45  
46  
47  
48  
BISTC/INTB_IN  
CMLOUTP  
TxCLKOUT-  
TxCLKOUT+  
TxOUT3-  
DAP = GND  
CMLOUTN  
CAPR12  
TxOUT3+  
CAPP12  
14 GPIO0  
GPIO1  
MODE_SEL  
13  
Pin Functions  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
FPD-LINK OUTPUT INTERFACE  
TxCLKOUT-  
TxCLKOUT+  
TxOUT[3:0]-  
TxOUT[3:0]+  
18  
17  
O, LVDS  
O, LVDS  
O, LVDS  
O, LVDS  
Inverting LVDS Clock Output  
The pair requires external 100Ω differential termination for standard LVDS levels  
True LVDS Clock Output  
The pair requires external 100Ω differential termination for standard LVDS levels  
16, 20, 22,  
24  
Inverting LVDS Data Outputs  
Each pair requires external 100differential termination for standard LVDS levels  
15, 19, 21,  
23  
True LVDS Data Outputs  
Each pair requires external 100differential termination for standard LVDS levels  
LVCMOS INTERFACE  
GPIO[1:0]  
13, 14  
I/O, LVCMOS General Purpose IO  
with pulldown  
GPIO[3:2]  
36, 37  
I/O, LVCMOS General Purpose I/O  
with pulldown Shared with I2S_DD, I2S_DC  
Copyright © 2013–2015, Texas Instruments Incorporated  
3
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
GPIO_REG[8  
:5]  
8, 10, 7, 3  
I/O, LVCMOS General Purpose I/O, register access only  
with pulldown Shared with I2S_CLK, I2S_WC, I2S_DA, I2S_DB  
I2S_DA  
I2S_DB  
I2S_DC  
I2S_DD  
7
3
37  
36  
O, LVCMOS Digital Audio Interface I2S Data Outputs  
Shared with GPIO_REG6, GPIO_REG5, GPIO2, GPIO3  
INTB_IN  
43  
I, LVCMOS HDCP Interrupt Input  
with pulldown Shared with BISTC  
MCLK  
I2S_WC  
I2S_CLK  
11  
10  
8
O, LVCMOS Digital Audio Interface I2S Master Clock, Word Clock and I2S Bit Clock Outputs  
I2S_WC and I2S_CLK are shared with GPIO_REG7 and GPIO_REG8  
CONTROL AND CONFIGURATION  
BISTC  
43  
I, LVCMOS BIST Clock Select  
with pulldown Shared with INTB_IN  
Requires a 10-kpullup if set HIGH  
BISTEN  
IDx  
9
I, LVCMOS BIST Enable  
with pulldown Requires a 10-kpullup if set HIGH  
12  
I, Analog  
I2C Address Select  
External pullup to VDD33 is required under all conditions. DO NOT FLOAT.  
Connect to external pullup to VDD33 and pulldown to GND to create a voltage divider.  
See Table 6  
LFMODE  
MAPSEL  
32  
26  
48  
I, LVCMOS Low Frequency Mode Select  
with pulldown LFMODE = 0, 15 MHz TxCLKOUT 85 MHz (Default)  
LFMODE = 1, 5 MHz TxCLKOUT < 15 MHz  
Requires a 10-kpullup if set HIGH  
I, LVCMOS FPD-Link Output Map Select  
with pulldown MAPSEL = 0, LSBs on TxOUT3± (Default)  
MAPSEL = 1, MSBs on TxOUT3±  
Requires a 10-kpullup if set HIGH  
MODE_SEL  
I, Analog  
Device Configuration Select  
Configures Backwards Compatibility (BKWD), Repeater (REPEAT), I2S 4-channel (I2S_B),  
and Long Cable (LCBL) modes  
Connect to external pullup to VDD33 and pulldown to GND resistors to create a voltage  
divider. DO NOT FLOAT  
See Table 5  
OEN  
30  
35  
1
I, LVCMOS Output Enable  
with pulldown Requires a 10-kpullup if set HIGH  
See Table 4  
OSS_SEL  
PDB  
I, LVCMOS Output Sleep State Select  
with pulldown Requires a 10-kpullup if set HIGH  
See Table 4  
I, LVCMOS Power-down Mode Input Pin  
Must be driven or pulled up to VDD33. Refer to “Power Up Requirements and PDB Pin" in the  
Applications Information Section.  
PDB = H, device is enabled (normal operation)  
PDB = L, device is powered down  
When the device is in the powered down state, the LVDS and LVCMOS outputs are tri-state,  
the PLL is shutdown, and IDD is minimized. Control Registers are RESET.  
SCL  
SDA  
5
4
I/O, Open  
Drain  
I2C Clock Input/Output Interface  
Must have an external pullup to VDD33. DO NOT FLOAT  
Recommended pullup: 4.7 kΩ  
I/O, Open  
Drain  
I2C Data Input/Output Interface  
Must have an external pullup to VDD33. DO NOT FLOAT  
Recommended pullup: 4.7 kΩ  
STATUS  
LOCK  
27  
O, LVCMOS LOCK Status Output  
0: PLL is unlocked, I2S, GPIO, TxOUT[3:0]±, and TxCLKOUT± are idle with output states  
controlled by OEN and OSS_SEL. May be used to indicate Link Status or Display Enable.  
1: PLL is locked, outputs are active with output states controlled by OEN and OSS_SEL  
Route to test point or pad (Recommended). Float if unused.  
4
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
PASS  
28  
O, LVCMOS PASS Status Output  
0: One or more errors were detected in the received BIST payload (BIST Mode)  
1: Error-free transmission (BIST Mode)  
Route to test point or pad (Recommended). Float if unused.  
FPD-LINK III SERIAL INTERFACE  
CMF  
42  
45  
44  
41  
40  
Analog  
O, LVDS  
O, LVDS  
I/O, LVDS  
I/O, LVDS  
Common Mode Filter  
Requires a 0.1-µF capacitor to GND  
CMLOUTN  
CMLOUTP  
RIN-  
Inverting Loop-through Driver Output  
Monitor point for equalized forward channel differential signal  
True Loop-through Driver Output  
Monitor point for equalized forward channel differential signal  
FPD-Link III Inverting Input  
The output must be AC-coupled with a 0.1-µF capacitor  
RIN+  
FPD-Link III True Input  
The output must be AC-coupled with a 0.1-µF capacitor  
POWER AND GROUND(1)  
GND  
DAP  
Ground  
Power  
Power  
Large metal contact at the bottom center of the device package  
Connect to the ground plane (GND) with at least 9 vias  
VDD33_A  
VDD33_B  
38  
31  
3.3-V Power to on-chip regulator  
Each pin requires a 4.7-µF capacitor to GND  
VDDIO  
6
1.8 V/3.3 V LVCMOS I/O Power  
Requires a 4.7-µF capacitor to GND  
REGULATOR CAPACITOR  
CAPI2S  
2
CAP  
Decoupling capacitor connection for on-chip regulator  
Each requires a 4.7-µF decoupling capacitor to GND  
CAPLV25  
CAPLV12  
CAPR12  
CAPP12  
25  
29  
46  
47  
CAPL12  
33  
CAP  
GND  
Decoupling capacitor connection for on-chip regulator  
Requires two 4.7-µF decoupling capacitors to GND  
OTHER  
RES[1:0]  
39, 34  
Reserved  
Connect to GND  
(1) The VDD (VDD33 and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise.  
7 Specifications  
7.1 Absolute Maximum Ratings(1) (2)  
MIN  
0.3  
0.3  
MAX  
4.0  
UNIT  
V
(3)  
Supply Voltage – VDD33  
(3)  
Supply Voltage – VDDIO  
4.0  
V
LVCMOS I/O Voltage  
(VDDIO  
0.3)  
+
0.3  
0.3  
V
Deserializer Input Voltage  
2.75  
150  
V
Junction Temperature  
°C  
48 LLP Package Maximum Power Dissipation Capacity at 25°C  
Storage temperature, Tstg  
65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) For soldering specifications, see product folder at www.ti.com and SNOA549.  
(3) The DS90UH928Q-Q1VDD33 and VDDIO voltages require a specific ramp rate during power up. The power supply ramp time must be  
less than 1.5 ms with a monotonic rise.  
Copyright © 2013–2015, Texas Instruments Incorporated  
5
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
UNIT  
7.2 ESD Ratings  
VALUE  
±8000  
±1250  
±250  
Human body model (HBM), per AEC Q100-002, all pins(1)  
Charged device model (CDM), per AEC Q100-011, all pins  
Machine model (MM)  
Air Discharge (Pins 40, 41, 44, and 45)  
±15000  
±8000  
±15000  
±8000  
±15000  
(IEC, powered-up only)  
RD = 330 Ω, CS = 150 pF  
Electrostatic  
discharge  
Contact Discharge (Pins 40, 41, 44, and 45)  
Air Discharge (Pins 40, 41, 44, and 45)  
Contact Discharge (Pins 40, 41, 44, and 45)  
Air Discharge (Pins 40, 41, 44, and 45)  
V(ESD)  
V
(ISO10605)  
RD = 330 Ω, CS = 150 pF  
(ISO10605)  
RD = 2 kΩ, CS = 150 pF or  
330 pF  
Contact Discharge (Pins 40, 41, 44, and 45)  
±8000  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
MIN NOM  
MAX UNIT  
(1)  
Supply Voltage (VDD33  
)
3.0  
3.0  
3.3  
3.3  
1.8  
3.6  
3.6  
V
V
V
(1) (2)  
LVCMOS Supply Voltage (VDDIO  
)
Connect VDDIO to 3.3 V and use 3.3-V IOs  
Connect VDDIO to 1.8 V and use 1.8-V IOs  
1.71  
1.89  
Operating Free Air  
Temperature (TA)  
40  
+25  
+105  
°C  
PCLK Frequency (out of TxCLKOUT±)  
Supply Noise(3)  
5
85 MHz  
100 mVP-P  
(1) The DS90UH928Q-Q1VDD33 and VDDIO voltages require a specific ramp rate during power up. The power supply ramp time must be  
less than 1.5 ms with a monotonic rise.  
(2) VDDIO should not exceed VDD33 by more than 300 mV (VDDIO < VDD33 + 0.3 V).  
(3) Supply noise testing was done with minimum capacitors on the PCB. A sinusoidal signal is AC-coupled to the VDD33 and VDDIO supplies  
with amplitude >100 mVp-p measured at the device VDD33 and VDDIO pins. Bit error rate testing of input to the Ser and output of the  
Des with 10 meter cable shows no error when the noise frequency on the Ser is less than 50 MHz. The Des on the other hand shows no  
error when the noise frequency is less than 50 MHz.  
7.4 Thermal Information  
DS90UH928Q-Q1  
THERMAL METRIC(1)  
RHS (WQFN)  
UNIT  
48 PINS  
26.4  
4.4  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
4.3  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
4.3  
RθJC(bot)  
0.8  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6
Copyright © 2013–2015, Texas Instruments Incorporated  
 
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
7.5 DC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
(1) (2) (3)  
PARAMETER  
3.3 V LVCMOS I/O  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
VIH  
VIL  
High Level Input Voltage  
Low Level Input Voltage  
GPIO[3:0],  
REG_GPIO[8:  
5], LFMODE,  
MAPSEL,  
BISTEN,  
2.0  
VDDIO  
0.8  
V
V
VDDIO = 3.0 V to 3.6 V  
GND  
BISTC,  
INTB_IN,  
OEN,  
IIN  
Input Current  
VIN = 0 V or VIN = 3.0 V to 3.6 V  
10  
±1  
+10  
μA  
OSS_SEL  
VIH  
VIL  
High Level Input Voltage  
Low Level Input Voltage  
2.0  
VDDIO  
0.7  
V
V
GND  
(4)PDB  
VIN = 0 V or VIN = 3.0 V to 3.6 V  
IIN  
Input Current  
10  
±1  
+10  
μA  
(4)  
VOH  
VOL  
IOS  
HIGH Level Output Voltage  
LOW Level Output Voltage  
Output Short Circuit Current  
IOH = -4 mA  
IOL = +4 mA  
VOUT = 0 V(5)  
GPIO[3:0],  
REG_GPIO[8:  
5], MCLK,  
2.4  
0
VDDIO  
0.4  
V
V
55  
mA  
I2S_WC,  
I2S_CLK,  
I2S_D[A:D],  
LOCK, PASS  
IOZ  
Tri-state Output Current  
VOUT = 0 V or VDDIO, PDB = L  
20  
+20  
μA  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics conditions and/or notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD33 = 3.3 V, VDDIO = 1.8 V or 3.3 V, Ta = +25°C, and at the Recommended  
Operating Conditions at the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
(4) PDB is specified to 3.3 V LVCMOS only and must be driven or pulled up to VDD33 or to VDDIO 3.0 V.  
(5) IOS is not specified for an indefinite period of time. Do not hold in short circuit for more than 500 ms or part damage may result.  
Copyright © 2013–2015, Texas Instruments Incorporated  
7
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
MAX UNIT  
DC Electrical Characteristics (continued)  
(1) (2) (3)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
1.8 V LVCMOS I/O  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
GPIO[3:0],  
REG_GPIO[8:  
5], LFMODE,  
MAPSEL,  
BISTEN,  
0.65 *  
VDDIO  
VIH  
VIL  
High Level Input Voltage  
Low Level Input Voltage  
VDDIO  
V
V
VDDIO = 1.71 V to 1.89 V  
0.35 *  
VDDIO  
0
BISTC,  
INTB_IN,  
OEN,  
VIN = 0 V or VIN = 1.71 V to  
1.89 V  
IIN  
Input Current  
-10  
10  
μA  
OSS_SEL  
GPIO[3:0],  
REG_GPIO[8:  
5], MCLK,  
I2S_WC,  
I2S_CLK,  
VDDIO -  
0.45  
VOH  
HIGH Level Output Voltage  
IOH = -4 mA  
VDDIO  
0.45  
V
VOL  
IOS  
LOW Level Output Voltage  
Output Short Circuit Current  
IOL = +4 mA  
VOUT = 0 V(5)  
0
V
-35  
mA  
I2S_D[A:D],  
LOCK, PASS  
IOZ  
TRI-STATE® Output Current  
VOUT = 0 V or VDDIO, PDB = L,  
-20  
20  
μA  
FPD-LINK LVDS OUTPUT  
Output Voltage Swing (single-  
ended)  
VOD  
350  
450  
600  
mV  
VODp-p  
ΔVOD  
VOS  
Differential Output Voltage  
Output Voltage Unbalance  
Common Mode Voltage  
Offset Voltage Unbalance  
Output Short Circuit Current  
900  
1
mV  
mV  
V
RL = 100 Ω  
50  
1.5  
50  
TxCLK±,  
TxOUT[3:0]±  
1.0  
-500  
-50  
1.2  
1
ΔVOS  
IOS  
mV  
mA  
VOUT = GND  
-5  
OEN = GND, VOUT = VDDIO or  
GND, 0.8 VVIN1.6 V  
IOZ  
Output TRI-STATE® Current  
500  
μA  
FPD-LINK III RECEIVER  
VTH  
VTL  
VID  
Input Threshold High  
50  
mV  
mV  
mV  
V
Input Threshold Low  
VCM = 2.1 V (Internal VBIAS)  
Input Differential Threshold  
Common-mode Voltage  
100  
RIN±  
VCM  
2.1  
Internal Termination Resistance  
(Differential)  
RT  
80  
100  
120  
Ω
LOOP-THROUGH MONITOR OUTPUT  
VODp-p Differential Output Voltage  
CMLOUTP,  
CMLOUTN  
RL = 100 Ω  
360  
mV  
SUPPLY CURRENT  
IDD1  
VDD33= 3.6 V  
VDDIO = 3.6 V  
VDDIO = 1.89 V  
VDD33= 3.6 V  
VDDIO = 3.6 V  
VDDIO = 1.89 V  
VDD33 = 3.6 V  
VDDIO = 3.6 V  
VDDIO = 1.89 V  
190  
0.1  
0.1  
185  
0.1  
0.1  
3
250  
1
mA  
mA  
mA  
mA  
mA  
mA  
mA  
μA  
Checkerboard Pattern  
Random Pattern  
IDDIO1  
Supply Current  
RL = 100,  
PCLK = 85MHz  
1
IDD2  
IDDIO2  
IDDZ  
8
500  
250  
PDB = 0 V, All other LVCMOS  
inputs = 0 V  
Supply Current — Power Down  
100  
50  
IDDIOZ  
μA  
8
Copyright © 2013–2015, Texas Instruments Incorporated  
 
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
7.6 AC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
(1) (2) (3)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
GPIO  
GPIO[3:0],  
PCLK =  
5MHz to  
85MHz  
GPIO Pulse Width, Forward  
Channel  
(4)  
tGPIO,FC  
See  
>2/PCLK  
s
(4)  
(4)  
tGPIO,BC  
RESET  
tLRST  
GPIO Pulse Width, Back Channel See  
GPIO[3:0]  
20  
2
µs  
ms  
PDB Reset Low Pulse  
See  
PDB  
LOOP-THROUGH MONITOR OUTPUT  
EW  
Differential Output Eye Opening  
Width  
RL = 100 Ω, Jitter freq > f/40  
RIN±  
>0.4  
UI  
EH  
Differential Output Eye Height  
>300  
mV  
FPD-LINK LVDS OUTPUT  
tTLHT  
tTHLT  
tDCCJ  
Low to High Transition Time  
RL = 100 Ω  
TxCLK±,  
TxOUT[3:0]±  
0.25  
0.25  
0.5  
0.5  
275  
55  
ns  
ns  
ps  
High to Low Transition Time  
Cycle-to-Cycle Output Jitter  
PCLK = 5 MHz  
PCLK = 85 MHz  
TxCLK±  
170  
35  
tTTPn  
Transmitter Pulse Position  
5 MHzPCLK85 MHz  
n=[6:0] for bits [6:0]  
See Figure 13  
TxOUT[3:0]±  
0.5 + n  
UI  
UI  
ΔtTTP  
Offset Transmitter Pulse Position  
(bit 6 - bit 0)  
PCLK = 85 MHz  
<0.1  
tDD  
Delay Latency  
147*T  
900  
6
T
tTPDD  
tTXZR  
Power Down Delay Active to OFF  
Enable Delay OFF to Active  
µs  
ns  
FPD-LINK III INPUT  
tDDLT  
Lock Time(4)  
5 MHzPCLK85 MHz  
RIN±, LOCK  
LOCK, PASS  
6
40  
ms  
LVCMOS OUTPUTS  
tCLH  
Low to High Transition Time  
CL = 8 pF  
3
2
7
5
ns  
ns  
tCHL  
High to Low Transition Time  
BIST MODE  
tPASS  
BIST PASS Valid Time  
PASS  
MCLK  
800  
ns  
I2S TRANSMITTER  
tJ  
Clock Output Jitter  
2
ns  
ns  
TI2S  
I2S Clock Period  
PCLK=5 MHz to 85 MHz  
I2S_CLK,  
PCLK =  
5MHz to  
85MHz  
>2/PCL  
K or  
(4) (5)  
Figure 10,  
>77  
THC  
TLC  
I2S Clock High Time  
Figure 10,  
I2S_CLK  
0.35  
0.35  
TI2S  
TI2S  
(5)  
I2S Clock Low Time  
I2S_CLK  
(5)  
Figure 10,  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics conditions and/or notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD33 = 3.3 V, VDDIO = 1.8 V or 3.3 V, Ta = +25°C, and at the Recommended  
Operating Conditions at the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
(4) Specification is ensured by design and is not tested in production.  
(5) I2S specifications for tLC and tHC pulses must each be greater than 1 PCLK period to ensure sampling and supersedes the 0.35*TI2S_CLK  
requirement. tLC and tHC must be longer than the greater of either 0.35*TI2S_CLK or 2*PCLK.  
Copyright © 2013–2015, Texas Instruments Incorporated  
9
 
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
AC Electrical Characteristics (continued)  
(1) (2) (3)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
tsr  
thr  
I2S Set-up Time  
I2S_WC  
I2S_D[A:D]  
0.2  
TI2S  
I2S Hold Time  
I2S_WC  
0.2  
TI2S  
I2S_D[A:D]  
7.7 Timing Requirements for the Serial Control Bus  
Over 3.3-V supply and temperature ranges unless otherwise specified.  
(1) (2)  
MIN  
TYP  
MAX UNIT  
fSCL  
Standard Mode  
Fast Mode  
0
0
100 kHz  
SCL Clock Frequency  
SCL Low Period  
400 kHz  
tLOW  
Standard Mode  
Fast Mode  
4.7  
1.3  
4.0  
0.6  
4.0  
µs  
µs  
µs  
µs  
µs  
tHIGH  
Standard Mode  
Fast Mode  
SCL High Period  
tHD;STA  
Hold time for a start or a  
Standard Mode  
repeated start condition  
(3)  
Fast Mode  
0.6  
4.7  
0.6  
µs  
µs  
µs  
tSU:STA  
Set Up time for a start or a  
Standard Mode  
Fast Mode  
repeated start condition  
(3)  
tHD;DAT  
tSU;DAT  
tSU;STO  
Standard Mode  
Fast Mode  
0
0
3.45  
0.9  
µs  
µs  
ns  
ns  
µs  
Data Hold Time  
(3)  
Standard Mode  
Fast Mode  
250  
100  
4.0  
Data Set Up Time  
(3)  
Set Up Time for STOP  
Standard Mode  
Condition  
(3)  
Fast Mode  
0.6  
4.7  
1.3  
µs  
µs  
µs  
Bus Free Time  
Standard Mode  
Fast Mode  
tBUF  
Between STOP and START  
(3)  
Standard Mode  
Fast Mode  
1000  
300  
300  
300  
ns  
ns  
ns  
ns  
SCL & SDA Rise Time,  
tr  
tf  
(3)  
Standard Mode  
Fast mode  
SCL & SDA Fall Time,  
(3)  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics conditions and/or notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD33 = 3.3 V, VDDIO = 1.8 V or 3.3 V, TA = +25°C, and at the Recommended  
Operating Conditions at the time of product characterization and are not ensured.  
(3) Specification is ensured by design and is not tested in production.  
7.8 Timing Requirements  
MIN  
NOM  
430  
20  
MAX  
UNIT  
ns  
tR  
SDA RiseTime – READ  
SDA Fall Time – READ  
Set Up Time — READ  
Hold Up Time — READ  
SDA, RPU = 10 k, Cb ≤  
400 pF, Figure 9  
tF  
ns  
tSU;DAT  
tHD;DAT  
Figure 9  
Figure 9  
560  
615  
ns  
ns  
10  
Copyright © 2013–2015, Texas Instruments Incorporated  
 
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
7.9 DC and AC Serial Control Bus Characteristics  
Over 3.3-V supply and temperature ranges unless otherwise specified.  
(1) (2) (3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIH  
VIL  
0.7*  
VDDIO  
Input High Level  
SDA and SCL  
SDA and SCL  
VDD33  
V
V
0.3*  
VDD33  
Input Low Level Voltage  
Input Hysteresis  
GND  
VHY  
VOL  
Iin  
>50  
mV  
V
SDA or SCL, IOL = 1.25 mA  
0
0.36  
+10  
SDA or SCL, Vin = VDDIO or GND  
-10  
µA  
ns  
pF  
tSP  
Cin  
Input Filter  
50  
<5  
Input Capacitance  
SDA or SCL  
(1) The Electrical Characteristics tables list specifications under the listed Recommended Operating Conditions except as otherwise  
modified or specified by the Electrical Characteristics conditions and/or notes. Typical specifications are estimations only and are not  
ensured.  
(2) Typical values represent most likely parametric norms at VDD33 = 3.3 V, VDDIO = 1.8 V or 3.3 V, TA = +25°C, and at the Recommended  
Operating Conditions at the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
+VOD  
TxCLKOUT  
-VOD  
+VOD  
TxOUT3  
-VOD  
+VOD  
TxOUT2  
-VOD  
+VOD  
TxOUT1  
-VOD  
+VOD  
TxOUT0  
-VOD  
Cycle N  
Cycle N+1  
Figure 1. Checkerboard Data Pattern  
EW  
VOD (+)  
RIN  
(Diff.)  
EH  
0V  
EH  
VOD (-)  
t
(1 UI)  
BIT  
Figure 2. CML Output Driver  
V
DDIO  
80%  
20%  
GND  
t
t
CHL  
CLH  
Figure 3. LVCMOS Transition Times  
Copyright © 2013–2015, Texas Instruments Incorporated  
11  
 
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
START  
BIT  
STOP  
BIT  
START  
BIT  
STOP  
BIT  
START  
BIT  
STOP  
BIT  
START STOP  
BIT BIT  
SYMBOLN+3  
SYMBOLN  
SYMBOLN+1  
SYMBOLN+2  
RIN  
DCA, DCB  
t
DD  
TxCLKOUT  
TxOUT[3:0]  
SYMBOL N-3  
SYMBOL N-2  
SYMBOL N-1  
SYMBOL N  
Figure 4. Latency Delay  
PDB  
VILmax  
RIN  
X
t
TPDD  
LOCK  
PASS  
Z
Z
TxCLKOUT  
TxOUT[3:0]  
Z
Z
Figure 5. FPD-Link & LVCMOS Power Down Delay  
PDB  
LOCK  
OEN  
t
TXZR  
VIHmin  
Z
Z
TxCLKOUT  
TxOUT[3:0]  
Figure 6. FPD-Link Outputs Enable Delay  
PDB  
VIH(min)  
RIN±  
tDDLT  
LOCK  
VOH(min)  
TRI-STATE  
Figure 7. CML PLL Lock Time  
12  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
RIN+  
RIN-  
VTL  
VCM  
VTH  
GND  
Figure 8. FPD-Link III Receiver DC VTH/VTL Definition  
V
DDIO  
I2S_CLK,  
MCLK  
1/2 V  
DDIO  
GND  
V
DDIO  
GPIO,  
I2S_WC,  
I2S_D[D:A]  
V
OHmin  
V
OLmax  
GND  
t
t
ROH  
ROS  
Figure 9. Output Data Valid (Setup and Hold) Times  
PDB = H  
VIH  
OSS_SEL  
OEN  
VIL  
VIH  
VIL  
RIN  
(Diff.)  
'RQ¶Wꢀ&DUH  
t
SEH  
t
SES  
t
t
ONH  
ONS  
TRI-STATE  
LOCK  
(HIGH)  
ACTIVE  
PASS  
HIGH  
HIGH  
GPIO,  
I2S_WC,  
I2S_D[A..D]  
TRI-STATE  
TRI-STATE  
LOW  
LOW  
TRI-STATE  
TRI-STATE  
ACTIVE  
ACTIVE  
LOW  
LOW  
I2S_CLK  
Figure 10. Output State (Setup and Hold) Times  
+VOD  
0V  
80%  
TxOUT[3:0]  
TxCLKOUT  
(Differential)  
20%  
-VOD  
t
t
HLT  
LHT  
Figure 11. Input Transition Times  
Copyright © 2013–2015, Texas Instruments Incorporated  
13  
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
TxOUT[3:0]+  
TxCLKOUT+  
VOD-  
VOD+  
TxOUT[3:0]-  
TxCLKOUT-  
VOS  
GND  
(TxOUT[3:0]+) -  
(TxOUT[3:0]-) or  
(TxCLKOUT+) -  
(TxCLKOUT-)  
VOD+  
0V  
VODp-p  
VOD-  
Figure 12. FPD-Link Single-Ended and Differential Waveforms  
T
TxCLKOUT±  
TxOUT[3:0]±  
bit 1 bit 0 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0  
t
t
t
t
t
t
t
TTP1  
TTP2  
TTP3  
TTP4  
TTP5  
TTP6  
TTP7  
0.5UI  
1.5UI  
2.5UI  
2¨t  
TTP  
3.5UI  
4.5UI  
5.5UI  
6.5UI  
Figure 13. FPD-Link Transmitter Pulse Positions  
Ideal Data  
Bit End  
Sampling  
Window  
Ideal Data Bit  
Beginning  
V
TH  
0V  
RxIN_TOL  
Left  
RxIN_TOL  
Right  
V
TL  
Ideal Center Position (t /2)  
BIT  
t
(1 UI)  
BIT  
t
IJIT = RxIN_TOL (Left + Right)  
Sampling Window = 1 UI - t  
IJIT  
Figure 14. Receiver Input Jitter Tolerance  
BISTEN  
1/2 V  
DDIO  
t
PASS  
1/2 V  
PASS  
(w/errors)  
DDIO  
Result Held  
Prior BIST Result  
Current BIST Test - Toggle on Error  
Figure 15. BIST PASS Waveform  
14  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
SDA  
SCL  
t
BUF  
t
f
t
t
HD;STA  
t
r
LOW  
t
t
f
r
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 16. Serial Control Bus Timing Diagram  
7.10 Typical Characteristics  
Input to Serializer  
Output at Deserializer  
Figure 17. Serializer Output Stream with 48MHz Input Clock  
Figure 18. 48MHz Clock at Serializer and Deserializer  
Copyright © 2013–2015, Texas Instruments Incorporated  
15  
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The DS90UH928Q-Q1 receives a 35-bit symbol over a single serial FPD-Link III pair operating at up to 2.975  
Gbps line rate and converts this stream into an FPD-Link Interface (4 LVDS data channels + 1 LVDS Clock). The  
FPD-Link III serial stream contains an embedded clock, video control signals, and the DC-balanced video data  
and audio data which enhance signal quality to support AC coupling.  
The DS90UH928Q-Q1 deserializer attains lock to a data stream without the use of a separate reference clock  
source, which greatly simplifies system complexity and overall cost. The deserializer also synchronizes to the  
serializer regardless of the data pattern, delivering true automatic “plug and lock” performance. It can lock to the  
incoming serial stream without the need of special training patterns or sync characters. The deserializer recovers  
the clock and data by extracting the embedded clock information, validating then deserializing the incoming data  
stream. It also applies decryption through a High-Bandwidth Digital Content Protection (HDCP) Cipher to this  
video and audio data stream following reception of the data from the FPD-Link III decoder. On-chip non-volatile  
memory stores the HDCP keys. All key exchange is done through the FPD-Link III bidirectional control interface.  
The decrypted FPD-Link LVDS video bus is provided to the display.  
The DS90UH928Q-Q1 deserializer incorporates an I2C compatible interface. The I2C compatible interface allows  
programming of serializer or deserializer devices from a local host controller. In addition, the devices incorporate  
a bidirectional control channel (BCC) that allows communication between serializer/deserializer as well as remote  
I2C slave devices.  
The bidirectional control channel (BCC) is implemented via embedded signaling in the high-speed forward  
channel (serializer to deserializer) combined with lower speed signaling in the reverse channel (deserializer to  
serializer). Through this interface, the BCC provides a mechanism to bridge I2C transactions across the serial link  
from one I2C bus to another. The implementation allows for arbitration with other I2C compatible masters at either  
side of the serial link.  
The DS90UH928Q-Q1 deserializer is intended for use with DS90UH925Q-Q1 or DS90UH927Q-Q1 serializers,  
but is also backward compatible with DS90UR905Q and DS90UR907Q FPD-Link II serializers.  
8.2 Functional Block Diagram  
OEN  
REGULATOR  
OSS_SEL  
CMF  
TxOUT3±  
TxOUT2±  
RIN+  
TxOUT1±  
RIN-  
TxOUT0±  
TxCLKOUT±  
8
I2S / GPIO  
Error  
Detector  
BISTEN  
BISTC  
PASS  
LFMODE  
MAPSEL  
Clock and  
Data  
Recovery  
PDB  
SCL  
SCA  
LOCK  
Timing and  
Control  
IDx  
MODE_SEL  
16  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
8.3 Feature Description  
8.3.1 High Speed Forward Channel Data Transfer  
The High Speed Forward Channel is composed of a 35-bit frame containing video data, sync signals, HDCP, I2C,  
and I2S audio transmitted from serializer to deserializer. Figure 19 illustrates the serial stream PCLK cycle. This  
data payload is optimized for signal transmission over an AC coupled link. Data is randomized, DC-balanced and  
scrambled.  
C0  
C1  
Figure 19. FPD-Link III Serial Stream  
The device supports pixel clock ranges of 5 MHz to 15 MHz (LFMODE=1) and 15 MHz to 85 MHz (LFMODE=0).  
This corresponds to an application payload rate range of 155 Mbps to 2.635 Gbps, with an actual line rate range  
of 525 Mbps to 2.975 Gbps.  
8.3.2 Low Speed Back Channel Data Transfer  
The Low-Speed Back Channel of the DS90UH928Q-Q1 provides bidirectional communication between the  
display and host processor. The back channel control data is transferred over the single serial link along with the  
high-speed forward data, DC balance coding and embedded clock information. Together, the forward channel  
and back channel for the bidirectional control channel (BCC). This architecture provides a backward path across  
the serial link together with a high speed forward channel. The back channel contains the I2C, HDCP, CRC and 4  
bits of standard GPIO information with 10 Mbps line rate.  
8.3.3 Backward Compatible Mode  
The DS90UH928Q-Q1 is also backward compatible to the DS90UR905Q and DS90UR907Q for PCLK  
frequencies ranging from 15 MHz to 65 MHz. The deserializer receives 28-bits of data over a single serial FPD-  
Link II pair operating at a payload rate of 120 Mbps to 1.8 Gbps, corresponding to a line rate of 140 Mbps to 2.1  
Gbps. The Backward Compatibility configuration can be selected through the MODE_SEL pin or programmed  
through the device control registers (Table 7). The bidirectional control channel, HDCP, bidirectional GPIOs, I2S,  
and interrupt (INTB) are not active in this mode. However, local I2C access to the serializer is still available. Note:  
PCLK frequency range in this mode is 15 MHz to 65 MHz for LFMODE=0 and 5 MHZ to <15 MHz for  
LFMODE=1.  
8.3.4 Input Equalization  
An FPD-Link III input adaptive equalizer provides compensation for transmission medium losses and reduces  
medium-induced deterministic jitter. It equalizes up to 10m STP cables with 3 connection breaks at maximum  
serializer stream payload rate of 2.975 Gbps.  
The adaptive equalizer may be set to a Long Cable Mode (LCBL), using the MODE_SEL pin (Table 5). This  
mode is typically used with longer cables where it may be desirable to start adaptive equalization from a higher  
default gain. In this mode, the device attempts to lock from a minimum floor AEQ value, defined by a value  
stored in the control registers (Table 7).  
8.3.5 Common Mode Filter Pin (CMF)  
The deserializer provides access to the center tap of the internal CML termination. A 0.1-μF capacitor must be  
connected from this pin to GND for additional common-mode filtering of the differential pair (Figure 39). This  
increases noise rejection capability in high-noise environments.  
Copyright © 2013–2015, Texas Instruments Incorporated  
17  
 
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
Feature Description (continued)  
8.3.6 Power Down (PDB)  
The deserializer has a PDB input pin to ENABLE or POWER DOWN the device. This pin may be controlled by  
an external device, or through VDDIO, where VDDIO = 3.0 V to 3.6 V or VDD33. To save power, disable the link  
when the display is not needed (PDB = LOW). Ensure that this pin is not driven HIGH before VDD33 and VDDIO  
have reached final levels. When PDB is driven low, ensure that the pin is driven to 0 V for at least 1.5 ms before  
releasing or driving high (See Recommended Operating Conditions). In the case where PDB is pulled up to VDDIO  
= 3.0 V to 3.6 V or VDD33 directly, a 10-kpullup resistor and a >10-µF capacitor to ground are required (See  
Figure 39 ).  
Toggling PDB low will POWER DOWN the device and RESET all control registers to default. During this time,  
PDB must be held low for a minimum of 2 ms (See AC Electrical Characteristics).  
8.3.7 Video Control Signals  
The video control signal bits embedded in the high-speed FPD-Link LVDS are subject to certain limitations  
relative to the video pixel clock period (PCLK). By default, the device applies a minimum pulse width filter on  
these signals to help eliminate spurious transitions.  
Normal Mode Control Signals (VS, HS, DE) have the following restrictions:  
Horizontal Sync (HS): The video control signal pulse width must be 3 PCLKs or longer when the Control  
Signal Filter (register bit 0x03[4]) is enabled (default). Disabling the Control Signal Filter removes this  
restriction (minimum is 1 PCLK). See Table 7. HS can have at most two transitions per 130 PCLKs.  
Vertical Sync (VS): The video control signal pulse is limited to 1 transition per 130 PCLKs. Thus, the minimum  
pulse width is 130 PCLKs.  
Data Enable Input (DE): The video control signal pulse width must be 3 PCLKs or longer when the Control  
Signal Filter (register bit 0x03[4]) is enabled (default). Disabling the Control Signal Filter removes this  
restriction (minimum is 1 PCLK). See Table 7. DE can have at most two transitions per 130 PCLKs.  
8.3.8 EMI Reduction Features  
8.3.8.1 LVCMOS VDDIO Option  
The 1.8 V/3.3 V LVCMOS inputs and outputs are powered from a separate VDDIO supply pin to offer  
compatibility with external system interface signals. Note: When configuring the VDDIO power supplies, all the  
single-ended control input pins (except PDB) for device need to scale together with the same operating VDDIO  
levels. If VDDIO is selected to operate in the 3.0 V to 3.6 V range, VDDIO must be operated within 300 mV of VDD33  
(See Recommended Operating Conditions).  
8.3.9 Built In Self Test (BIST)  
An optional At-Speed Built-In Self Test (BIST) feature supports testing of the high speed serial link and the low-  
speed back channel without external data connections. This is useful in the prototype stage, equipment  
production, in-system test, and system diagnostics.  
8.3.9.1 BIST Configuration and Status  
The BIST mode is enabled at the deserializer by pin (BISTEN) or BIST configuration register. The test may  
select either an external PCLK or the 33 MHz internal Oscillator clock (OSC) frequency. In the absence of PCLK,  
the user can select the internal OSC frequency at the deserializer through the BISTC pin or BIST configuration  
register.  
When BIST is activated at the deserializer, a BIST enable signal is sent to the serializer through the Back  
Channel. The serializer outputs a test pattern and drives the link at speed. The deserializer detects the test  
pattern and monitors it for errors. The deserializer PASS output pin toggles to flag each frame received  
containing one or more errors. The serializer also tracks errors indicated by the CRC fields in each back channel  
frame.  
18  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
Feature Description (continued)  
The BIST status can be monitored real time on the deserializer PASS pin, with each detected error resulting in a  
half pixel clock period toggled LOW. After BIST is deactivated, the result of the last test is held on the PASS  
output until reset (new BIST test or Power Down). A high on PASS indicates NO ERRORS were detected. A Low  
on PASS indicates one or more errors were detected. The duration of the test is controlled by the pulse width  
applied to the deserializer BISTEN pin. LOCK status is valid throughout the entire duration of BIST.  
See Figure 20 for the BIST mode flow diagram.  
8.3.9.1.1 Sample BIST Sequence  
1. BIST Mode is enabled via the BISTEN pin of Deserializer. The desired clock source is selected through the  
deserializer BISTC pin.  
2. The serializer is awakened through the back channel if it is not already on. An all-zeros pattern is balanced,  
scrambled, randomized, and sent through the FPD-Link III interface to the deserializer. Once the serializer  
and the deserializer are in BIST mode and the deserializer acquires LOCK, the PASS pin of the deserializer  
goes high and BIST starts checking the data stream. If an error in the payload (1 to 35) is detected, the  
PASS pin will switch low for one half of the clock period. During the BIST test, the PASS output can be  
monitored and counted to determine the payload error rate.  
3. To Stop BIST mode, set the BISTEN pin LOW. The deserializer stops checking the data, and the final test  
result is held on the PASS pin. If the test ran error free, the PASS output will remain HIGH. If there one or  
more errors were detected, the PASS output will output constant LOW. The PASS output state is held until a  
new BIST is run, the device is RESET, or the device is powered down. BIST duration is user-controlled and  
may be of any length.  
The link returns to normal operation after the deserializer BISTEN pin is low. Figure 21 shows the waveform  
diagram of a typical BIST test for two cases. Case 1 is error free, and Case 2 shows one with multiple errors. In  
most cases it is difficult to generate errors due to the robustness of the link (differential data transmission etc.),  
thus they may be introduced by greatly extending the cable length, faulting the interconnect medium, or reducing  
signal condition enhancements (Rx Equalization).  
Normal  
Step 1: DES in BIST  
BIST  
Wait  
Step 2: Wait, SER in BIST  
BIST  
start  
Step 3: DES in Normal  
Mode - check PASS  
BIST  
stop  
Step 4: DES/SER in Normal  
Figure 20. BIST Mode Flow Diagram  
8.3.9.2 Forward Channel and Back Channel Error Checking  
The deserializer, on locking to the serial stream, compares the recovered serial stream with all-zeroes and  
records any errors in status registers. Errors are also dynamically reported on the PASS pin of the deserializer.  
Forward channel errors may also be read from register 0x25 (Table 7).  
The back-channel data is checked for CRC errors once the serializer locks onto the back-channel serial stream,  
as indicated by link detect status (register bit 0x0C[0] - Table 7). CRC errors are recorded in an 8-bit register in  
the deserializer. The register is cleared when the serializer enters the BIST mode. As soon as the serializer  
enters BIST mode, the functional mode CRC register starts recording any back channel CRC errors. The BIST  
mode CRC error register is active in BIST mode only and keeps the record of the last BIST run until cleared or  
the serializer enters BIST mode again.  
Copyright © 2013–2015, Texas Instruments Incorporated  
19  
 
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
Feature Description (continued)  
BISTEN  
(DES)  
TxCLKOUT  
TxOUT[3:0]  
7 bits/frame  
DATA  
(internal)  
PASS  
Prior Result  
Prior Result  
PASS  
FAIL  
X = bit error(s)  
DATA  
(internal)  
X
X
X
PASS  
BIST  
Result  
Held  
Normal  
SSO  
Normal  
BIST Test  
BIST Duration  
Figure 21. BIST Waveforms  
8.3.10 Internal Pattern Generation  
The DS90UH928Q-Q1 deserializer features an internal pattern generator. It allows basic testing and debugging  
of an integrated panel. The test patterns are simple and repetitive and allow for a quick visual verification of  
panel operation. As long as the device is not in power down mode, the test pattern will be displayed even if no  
input is applied. If no clock is received, the test pattern can be configured to use a programmed oscillator  
frequency. For detailed information, refer to TI Application Note: ( ).  
8.3.10.1 Pattern Options  
The DS90UH928Q-Q1 deserializer pattern generator is capable of generating 17 default patterns for use in basic  
testing and debugging of panels. Each pattern can be inverted using register bits (see Table 7). The 17 default  
patterns are listed as follows:  
1. White/Black (default/inverted)  
2. Black/White  
3. Red/Cyan  
4. Green/Magenta  
5. Blue/Yellow  
6. Horizontally Scaled Black to White/White to Black  
7. Horizontally Scaled Black to Red/Cyan to White  
8. Horizontally Scaled Black to Green/Magenta to White  
9. Horizontally Scaled Black to Blue/Yellow to White  
10. Vertically Scaled Black to White/White to Black  
11. Vertically Scaled Black to Red/Cyan to White  
12. Vertically Scaled Black to Green/Magenta to White  
13. Vertically Scaled Black to Blue/Yellow to White  
14. Custom Color / Inverted configured in PGRS  
15. Black-White/White-Black Checkerboard (or custom checkerboard color, configured in PGCTL)  
16. YCBR/RBCY VCOM pattern, orientation is configurable from PGCTL  
17. Color Bars (White, Yellow, Cyan, Green, Magenta, Red, Blue, Black) – Note: not included in the auto-  
scrolling feature  
20  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
Feature Description (continued)  
8.3.10.2 Color Modes  
By default, the Pattern Generator operates in 24-bit color mode, where all bits of the Red, Green, and Blue  
outputs are enabled. 18-bit color mode can be activated from the configuration registers (Table 7). In 18-bit  
mode, the 6 most significant bits (bits 7-2) of the Red, Green, and Blue outputs are enabled; the 2 least  
significant bits will be 0.  
8.3.10.3 Video Timing Modes  
The Pattern Generator has two video timing modes – external and internal. In external timing mode, the Pattern  
Generator detects the video frame timing present on the DE and VS inputs. If Vertical Sync signaling is not  
present on VS, the Pattern Generator determines Vertical Blank by detecting when the number of inactive pixel  
clocks (DE = 0) exceeds twice the detected active line length. In internal timing mode, the Pattern Generator  
uses custom video timing as configured in the control registers. The internal timing generation may also be  
driven by an external clock. By default, external timing mode is enabled. Internal timing or Internal timing with  
External Clock are enabled by the control registers (Table 7). If internal clock generation is used, register 0x39  
bit 1 must be set.  
8.3.10.4 External Timing  
In external timing mode, the Pattern Generator passes the incoming DE, HS, and VS signals unmodified to the  
video control outputs after a two pixel clock delay. It extracts the active frame dimensions from the incoming  
signals in order to properly scale the brightness patterns. If the incoming video stream does not use the VS  
signal, the Pattern Generator determines the Vertical Blank time by detecting a long period of pixel clocks without  
DE asserted.  
8.3.10.5 Pattern Inversion  
The Pattern Generator also incorporates a global inversion control, located in the PGCFG register, which causes  
the output pattern to be bitwise-inverted. For example, the full screen Red pattern becomes full-screen cyan, and  
the Vertically Scaled Black to Green pattern becomes Vertically Scaled White to Magenta.  
8.3.10.6 Auto Scrolling  
The Pattern Generator supports an Auto-Scrolling mode, in which the output pattern cycles through a list of  
enabled pattern types. A sequence of up to 16 patterns may be defined in the registers. The patterns may  
appear in any order in the sequence and may also appear more than once.  
8.3.10.7 Additional Features  
Additional pattern generator features can be accessed through the Pattern Generator Indirect Register Map. It  
consists of the Pattern Generator Indirect Address (PGIA — Table 7) and the Pattern Generator Indirect Data  
(PGID — Table 7).  
8.3.11 Image Enhancement Features  
Several image enhancement features are provided. The White Balance LUTs allow the user to define and map  
the color profile of the display. Adaptive Hi-FRC Dithering enables the presentation of 'true color' images on an  
18-bit display.  
8.3.11.1 White Balance  
The White Balance feature enables similar display appearance when using LCD’s from different vendors. It  
compensates for native color temperature of the display, and adjusts relative intensities of R, G, and B to  
maintain specified color temperature. Programmable control registers are used to define the contents of three  
LUTs (8-bit color value for Red, Green and Blue) for the White Balance Feature. The LUTs map input RGB  
values to new output RGB values. There are three LUTs, one LUT for each color. Each LUT contains 256  
entries, 8-bits per entry with a total size of 6144 bits (3 x 256 x 8). All entries are readable and writable.  
Calibrated values are loaded into registers through the I2C interface (deserializer is a slave device). This feature  
may also be applied to lower color depth applications such as 18–bit (666) and 16–bit (565). White balance is  
enabled and configured via serial control bus register.  
Copyright © 2013–2015, Texas Instruments Incorporated  
21  
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
Feature Description (continued)  
8.3.11.1.1 LUT Contents  
The user must define and load the contents of the LUT for each color (R,G,B). Regardless of the color depth  
being driven (888, 666, 656), the user must always provide contents for 3 complete LUTs - 256 colors x 8 bits x 3  
tables. Unused bits - LSBs -shall be set to “0” by the user.  
When 24-bit (888) input data is being driven to a 24-bit display, each LUT (R, G and B) must contain 256 unique  
8-bit entries. The 8-bit white balanced data is then available at the output of the deserializer, and driven to the  
display.  
The user must define and load the contents of the LUT for each color (R,G,B). Regardless of the color depth  
being driven (888, 666, 656), the user must always provide contents for 3 complete LUTs - 256 colors x 8 bits x 3  
tables. Unused bits - LSBs -shall be set to “0” by the user. When 24-bit (888) input data is being driven to a 24-  
bit display, each LUT (R, G and B) must contain 256 unique 8-bit entries. The 8-bit white balanced data is then  
available at the output of the deserializer, and driven to the display.  
Alternatively, with 6-bit input data the user may choose to load complete 8-bit values into each LUT. This mode  
of operation provides the user with finer resolution at the LUT output to more closely achieve the desired white  
point of the calibrated display. Although 8-bit data is loaded, only 64 unique 8-bit white balance output values are  
available for each color (R, G and B). The result is 8-bit white balanced data. Before driving to the output of the  
deserializer, the 8-bit data must be reduced to 6-bit with an FRC dithering function. To operate in this mode, the  
user must configure the deserializer to enable the FRC2 function.  
Examples of the three types of LUT configurations described are shown in Figure 22.  
8.3.11.1.2 Enabling White Balance  
The user must load all 3 LUTs prior to enabling the white balance feature. The following sequence must be  
followed by the user.  
To initialize white balance after power-on:  
1. Load contents of all 3 LUTs . This requires a sequential loading of LUTs - first RED, second GREEN, third  
BLUE. 256, 8-bit entries must be loaded to each LUT. Page registers must be set to select each LUT.  
2. Enable white balance. By default, the LUT data may not be reloaded after initialization at power-on.  
An option does exist to allow LUT reloading after power-on and initial LUT loading (as described above). This  
option may only be used after enabling the white balance reload feature via the associated serial control bus  
register. In this mode the LUTs may be reloaded by the master controller via I2C. This provides the user with the  
flexibility to refresh LUTs periodically , or upon system requirements to change to a new set of LUT values. The  
host controller loads the updated LUT values via the serial bus interface. There is no need to disable the white  
balance feature while reloading the LUT data. Refreshing the white balance to the new set of LUT data will be  
seamless - no interruption of displayed data.  
It is important to note that initial loading of LUT values requires that all 3 LUTs be loaded sequentially. When  
reloading, partial LUT updates may be made.  
22  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
Feature Description (continued)  
8-bit in / 8 bit out  
6-bit in / 6 bit out  
6-bit in / 8 bit out  
Gray level Data Out  
Gray level Data Out  
Gray level Data Out  
Entry  
(8-bits)  
Entry  
(8-bits)  
Entry  
(8-bits)  
0
1
2
3
4
5
6
7
8
9
00000000b  
00000001b  
00000011b  
00000011b  
00000110b  
00000110b  
00000111b  
00000111b  
00001000b  
00001010b  
0
00000000b  
0
00000001b  
1 N/A  
2 N/A  
3 N/A  
1 N/A  
2 N/A  
3 N/A  
4
00000100b  
4
00000110b  
5 N/A  
6 N/A  
7 N/A  
5 N/A  
6 N/A  
7 N/A  
8
00001000b  
8
00001011b  
9 N/A  
10 N/A  
11 N/A  
9 N/A  
10 N/A  
11 N/A  
10 00001001b  
11 00001011b  
248 11111010b  
249 11111010b  
250 11111011b  
251 11111011b  
252 11111110b  
253 11111101b  
254 11111101b  
255 11111111b  
248 11111000b  
249 N/A  
248 11111010b  
249 N/A  
250 N/A  
250 N/A  
251 N/A  
251 N/A  
252 11111100b  
253 N/A  
252 11111111b  
253 N/A  
254 N/A  
255 N/A  
254 N/A  
255 N/A  
Figure 22. White Balance LUT Configuration  
8.3.11.2 Adaptive Hi-FRC Dithering  
The Adaptive FRC Dithering Feature delivers product-differentiating image quality. It reduces 24-bit RGB (8 bits  
per sub-pixel) to 18-bit RGB (6 bits per sub-pixel), smoothing color gradients, and allowing the flexibility to use  
lower cost 18-bit displays. FRC (Frame Rate Control) dithering is a method to emulate “missing” colors on a  
lower color depth LCD display by changing the pixel color slightly with every frame. FRC is achieved by  
controlling on and off pixels over multiple frames (Temporal). Static dithering regulates the number of on and off  
pixels in a small defined pixel group (Spatial). The FRC module includes both Temporal and Spatial methods and  
also Hi-FRC. Conventional FRC can display only 16,194,277 colors with 6-bit RGB source. “Hi-FRC” enables full  
(16,777,216) color on an 18-bit LCD panel. The “adaptive” FRC module also includes input pixel detection to  
apply specific Spatial dithering methods for smoother gray level transitions. When enabled, the lower LSBs of  
each RGB output are not active; only 18 bit data (6 bits per R,G and B) are driven to the display. This feature is  
enabled via serial control bus register. Two FRC functional blocks are available, and may be independently  
enabled. FRC1 precedes the white balance LUT, and is intended to be used when 24-bit data is being driven to  
an 18-bit display with a white balance LUT that is calibrated for an 18-bit data source. The second FRC block,  
RC2, follows the white balance block and is intended to be used when fine adjustment of color temperature is  
required on an 18-bit color display, or when a 24-bit source drives an 18-bit display with a white balance LUT  
calibrated for 24-bit source data.  
For proper operation of the FRC dithering feature, the user must provide a description of the display timing  
control signals. The timing mode, “sync mode” (HS, VS) or “DE only” must be specified, along with the active  
polarity of the timing control signals. All this information is entered to device control registers via the serial bus  
interface.  
Adaptive Hi-FRC dithering consists of several components. Initially, the incoming 8-bit data is expanded to 9-bit  
data. This allows the effective dithered result to support a total of 16.7 million colors. The incoming 9-bit data is  
evaluated, and one of four possible algorithms is selected. The majority of incoming data sequences are  
supported by the default dithering algorithm. Certain incoming data patterns (black/white pixel, full on/off sub-  
pixel) require special algorithms designed to eliminate visual artifacts associated with these specific gray level  
transitions. Three algorithms are defined to support these critical transitions.  
An example of the default dithering algorithm is illustrated in Figure 23. The 1 or 0 value shown in the table  
describes whether the 6-bit value is increased by 1 (“1”) or left unchanged (“0”). In this case, the 3 truncated  
LSBs are “001”.  
Copyright © 2013–2015, Texas Instruments Incorporated  
23  
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
Feature Description (continued)  
F0L0  
PD1  
Frame = 0, Line = 0  
Pixel Data one  
Cell Value 010  
R[7:2]+0, G[7:2]+1, B[7:2]+0  
LSB=001  
three lsb of 9 bit data (8 to 9 for Hi-Frc)  
Pixel Index  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
PD8  
LSB = 001  
F0L0  
F0L1  
F0L2  
F0L3  
010  
101  
000  
000  
000  
000  
000  
000  
000  
000  
010  
101  
000  
000  
000  
000  
000  
101  
010  
000  
000  
000  
000  
000  
010  
000  
000  
101  
000  
000  
000  
000  
R = 4/32  
G = 4/32  
B = 4/32  
F1L0  
F1L1  
F1L2  
F1L3  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
000  
000  
000  
000  
111  
R = 4/32  
G = 4/32  
B = 4/32  
F2L0  
F2L1  
F2L2  
F2L3  
000  
000  
010  
101  
000  
000  
000  
000  
010  
101  
000  
000  
000  
000  
000  
000  
010  
000  
000  
101  
000  
000  
000  
000  
000  
101  
010  
000  
000  
000  
000  
000  
R = 4/32  
G = 4/32  
B = 4/32  
F3L0  
F3L1  
F3L2  
F3L3  
000  
000  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
111  
000  
000  
R = 4/32  
G = 4/32  
B = 4/32  
Figure 23. Default FRC Algorithm  
8.3.12 Serial Link Fault Detect  
The DS90UH928Q-Q1 can detect fault conditions in the FPD-Link III interconnect. If a fault condition occurs, the  
Link Detect Status is 0 (cable is not detected) on bit 0 of address 0x0C (Table 7). The device will detect any of  
the following conditions:  
1. Cable open  
2. RIN+ to - short  
3. RIN+ to GND short  
4. RIN- to GND short  
5. RIN+ to battery short  
6. RIN- to battery short  
7. Cable is linked incorrectly (RIN+/RIN- connections reversed)  
NOTE  
The device will detect any of the above conditions, but does not report specifically which  
one has occurred.  
8.3.13 Oscillator Output  
The deserializer provides an optional TxCLKOUT± output when the input clock (serial stream) has been lost.  
This is based on an internal oscillator and may be controlled from register 0x02, bit 5 (OSC Clock Output Enable)  
Table 7.  
8.3.14 Interrupt Pin (INTB)  
1. On the serializer, set register (HDCP_ICR) 0xC6[5] = 1 and 0xC6[0] = 1 (Table 7) to configure the interrupt.  
2. On the serializer, read from HDCP_ISR register 0xC7 to arm the interrupt for the first time.  
24  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
Feature Description (continued)  
3. When INTB_IN is set LOW, the INTB pin on the serializer also pulls low, indicating an interrupt condition.  
4. The external controller detects INTB = LOW and reads the HDCP_ISR register (Table 7) to determine the  
interrupt source. Reading this register also clears and resets the interrupt.  
8.3.15 General-Purpose I/O  
8.3.15.1 GPIO[3:0]  
In normal operation, GPIO[3:0] may be used as general purpose IOs in either forward channel (outputs) or back  
channel (inputs) mode. GPIO modes may be configured from the registers (Table 7). GPIO[1:0] are dedicated  
pins and GPIO[3:2] are shared with I2S_DC and I2S_DD respectively. Note: if the DS90UH928Q-Q1 is paired  
with a DS90UH925Q-Q1 serializer, the devices must be configured into 18-bit mode to allow usage of GPIO pins  
on the serializer. To enable 18-bit mode, set serializer register 0x12[2] = 1. 18-bit mode will be auto-loaded into  
the deserializer from the serializer. See Table 1 for GPIO enable and configuration.  
Table 1. GPIO Enable and Configuration  
DESCRIPTION  
DEVICE  
FORWARD CHANNEL  
BACK CHANNEL  
GPIO3  
DS90UH925Q-  
0x0F = 0x03  
0x0F = 0x05  
Q1/DS90UH927Q-Q1  
DS90UH928Q-Q1  
0x1F = 0x05  
0x0E = 0x30  
0x1F = 0x03  
0x0E = 0x50  
GPIO2  
GPIO1  
GPIO0  
DS90UH925Q-  
Q1/DS90UH927Q-Q1  
DS90UH928Q-Q1  
0x1E = 0x50  
0x0E = 0x03  
0x1E = 0x30  
0x0E = 0x05  
DS90UH925Q-  
Q1/DS90UH927Q-Q1  
DS90UH928Q-Q1  
0x1E = 0x05  
0x0D = 0x03  
0x1E = 0x03  
0x0D = 0x05  
DS90UH925Q-  
Q1/DS90UH927Q-Q1  
DS90UH928Q-Q1  
0x1D = 0x05  
0x1D = 0x03  
The input value present on GPIO[3:0] may also be read from register, or configured to local output mode  
(Table 7).  
8.3.15.2 GPIO[8:5]  
GPIO_REG[8:5] are register-only GPIOs and may be programmed as outputs or read as inputs through local  
register bits only. Where applicable, these bits are shared with I2S pins and will override I2S input if enabled into  
GPIO_REG mode. See Table 2 for GPIO enable and configuration.  
Note: Local GPIO value may be configured and read either through local register access, or remote register  
access through the Low-Speed Bidirectional Control Channel. Configuration and state of these pins are not  
transported from serializer to deserializer as is the case for GPIO[3:0].  
Table 2. GPIO_REG and GPIO Local Enable and Configuration  
DESCRIPTION  
REGISTER CONFIGURATION  
0x21 = 0x01  
FUNCTION  
Output, L  
GPIO_REG8  
0x21 = 0x09  
Output, H  
0x21 = 0x03  
Input, Read: 0x6F[0]  
Output, L  
GPIO_REG7  
GPIO_REG6  
0x21 = 0x01  
0x21 = 0x09  
Output, H  
0x21 = 0x03  
Input, Read: 0x6E[7]  
Output, L  
0x20 = 0x01  
0x20 = 0x09  
Output, H  
0x20 = 0x03  
Input, Read: 0x6E[6]  
Copyright © 2013–2015, Texas Instruments Incorporated  
25  
 
 
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
Table 2. GPIO_REG and GPIO Local Enable and Configuration (continued)  
DESCRIPTION  
REGISTER CONFIGURATION  
0x20 = 0x01  
FUNCTION  
Output, L  
GPIO_REG5  
0x20 = 0x09  
Output, H  
0x20 = 0x03  
Input, Read: 0x6E[5]  
Output, L  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
0x1F = 0x01  
0x1F = 0x09  
0x1F = 0x03  
0x1E = 0x01  
0x1E = 0x09  
0x1E = 0x03  
0x1E = 0x01  
0x1E = 0x09  
0x1E = 0x03  
0x1D = 0x01  
0x1D = 0x09  
0x1D = 0x03  
Output, H  
Input, Read: 0x6E[3]  
Output, L  
Output, H  
Input, Read: 0x6E[2]  
Output, L  
Output, H  
Input, Read: 0x6E[1]  
Output, L  
Output, H  
Input, Read: 0x6E[0]  
8.3.16 I2S Audio Interface  
The DS90UH928Q-Q1 deserializer features six I2S output pins that, when paired with a DS90UH927Q-  
Q1serializer, supports surround sound audio applications. The bit clock (I2S_CLK) supports frequencies between  
1 MHz and the smaller of <PCLK/2 or <13 MHz. Four I2S data outputs carry two channels of I2S-formatted  
digital audio each, with each channel delineated by the word select (I2C_WC) input. The I2S audio interface is  
not available in Backwards Compatibility Mode (BKWD = 1).  
Deserializer  
System Clock  
MCLK  
Bit Clock  
I2S_CLK  
I2S Receiver  
4
Word Select  
Data  
I2S_WC  
I2S_Dx  
Figure 24. I2S Connection Diagram  
I2S_WC  
I2S_CLK  
MSB  
LSB  
MSB  
LSB  
I2S_Dx  
Figure 25. I2S Frame Timing Diagram  
When paired with a DS90UH925Q-Q1, the DS90UH928Q-Q1 I2S interface supports a single I2S data output  
through I2S_DA (24-bit video mode), or two I2S data outputs through I2S_DA and I2S_DB (18-bit video mode).  
26  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
8.3.16.1 I2S Transport Modes  
By default, packetized audio is received during video blanking periods in dedicated Data Island Transport frames.  
The transport mode is set in the serializer and auto-loaded into the deserializer by default. The audio  
configuration may be disabled from control registers if Forward Channel Frame Transport of I2S data is desired.  
In frame transport, only I2S_DA is received to the DS90UH928Q-Q1 deserializer. Surround Sound Mode, which  
transmits all four I2S data inputs (I2S_D[D:A]), may only be operated in Data Island Transport mode. This mode  
is only available when connected to a DS90UH927Q-Q1 serializer. If connected to a DS90UH925Q-Q1serializer,  
only I2S_DA and I2S_DB may be received.  
8.3.16.2 I2S Repeater  
I2S audio may be fanned-out and propagated in the repeater application. By default, data is propagated via Data  
Island Transport on the FPD-Link interface during the video blanking periods. If frame transport is desired, then  
the I2S pins should be connected from the deserializer to all serializers. Activating surround sound at the top-  
level serializer automatically configures downstream serializers and deserializers for surround sound transport  
utilizing Data Island Transport. If 4-channel operation utilizing I2S_DA and I2S_DB only is desired, this mode  
must be explicitly set in each serializer and deserializer control register throughout the repeater tree (Table 7).  
A DS90UH928Q-Q1 deserializer configured in repeater mode may also regenerate I2S audio from its I2S input  
pins in lieu of Data Island frames. See the HDCP Repeater Connection Diagram (Figure 31) and the I2C Control  
Registers (Table 7) for additional details.  
8.3.16.3 I2S Jitter Cleaning  
The DS90UH928Q-Q1 features a standalone PLL to clean the I2S data jitter, supporting high-end car audio  
systems. If I2S_CLK frequency is less than 1MHz, this feature must be disabled through register 0x2B[7]. See  
Table 7.  
8.3.16.4 MCLK  
The deserializer has an I2S Master Clock Output (MCLK). It supports x1, x2, or x4 of I2S CLK Frequency. When  
the I2S PLL is disabled, the MCLK output is off. Table 3 covers the range of I2S sample rates and MCLK  
frequencies. By default, all the MCLK output frequencies are x2 of the I2S CLK frequencies. The MCLK  
frequencies can also be enabled through the register bits 0x3A[6:4] (I2S DIVSEL), shown in Table 7. To select  
desired MCLK frequency, write 0x3A[7], then write to bit [6:4] accordingly.  
Table 3. Audio Interface Frequencies  
SAMPLE RATE  
I2S DATA WORD SIZE (BITS) I2S_CLK (MHz)  
MCLK OUTPUT (MHz)  
REGISTER 0x3A[6:4]'b  
(kHz)  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
000  
001  
010  
000  
001  
010  
000  
001  
010  
001  
010  
011  
010  
011  
100  
32  
1.024  
44.1  
48  
1.4112  
16  
1.536  
3.072  
6.144  
96  
192  
Copyright © 2013–2015, Texas Instruments Incorporated  
27  
 
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
Table 3. Audio Interface Frequencies (continued)  
SAMPLE RATE  
(kHz)  
I2S DATA WORD SIZE (BITS) I2S_CLK (MHz)  
MCLK OUTPUT (MHz)  
REGISTER 0x3A[6:4]'b  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
000  
001  
010  
001  
010  
011  
001  
010  
011  
010  
011  
100  
011  
100  
101  
001  
010  
011  
001  
010  
011  
001  
010  
011  
010  
011  
100  
011  
100  
110  
32  
44.1  
48  
1.536  
2.117  
24  
2.304  
4.608  
9.216  
2.048  
2.8224  
3.072  
6.144  
12.288  
96  
192  
32  
44.1  
48  
32  
96  
192  
8.4 Device Functional Modes  
8.4.1 Clock and Output Status  
When PDB is driven HIGH, the CDR PLL begins locking to the serial input and LOCK is TRI-STATE or LOW  
(depending on the value of the OEN setting). After the deserializer completes its lock sequence to the input serial  
data, the LOCK output is driven HIGH, indicating valid data and clock recovered from the serial input is available  
on the LVCMOS and LVDS outputs. The State of the outputs is based on the OEN and OSS_SEL setting  
(Table 4) or register bit (Table 7).  
Table 4. Output State Table  
INPUTS  
OEN  
OUTPUTS  
DATA/GPIO/I2S  
SERIAL  
INPUT  
TxCLKOUT/Tx  
OUT[3:0]  
PDB  
OSS_SEL  
LOCK  
PASS  
X
X
X
L
H
H
X
L
L
X
L
Z
Z
L
Z
Z
L
Z
Z
L
Z
L or H  
L or H  
H
28  
Copyright © 2013–2015, Texas Instruments Incorporated  
 
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
Device Functional Modes (continued)  
Table 4. Output State Table (continued)  
INPUTS  
OUTPUTS  
L/OSC (Register  
EN)  
Static  
H
H
L
L
L
L
Static  
Active  
Active  
H
H
H
H
H
H
H
L
L
L
Previous Status  
L
L
L
L
L
H
H
Valid  
Valid  
Valid  
8.4.2 FPD-Link Input Frame and Color Bit Mapping Select  
The DS90UH928Q-Q1 can be configured to output 24-bit color (RGB888) or 18-bit color (RGB666) with 2  
different mapping schemes, shown in Figure 26, or MSBs on TxOUT[3], shown in Figure 27. Each frame  
corresponds to a single pixel clock (PCLK) cycle. The LVDS clock output from TxCLKOUT± follows a 4:3 duty  
cycle scheme, with each 28-bit pixel frame starting with two LVDS bit clock periods high, three low, and ending  
with two high. The mapping scheme is controlled by MAPSEL pin or by Register (Table 7).  
TxCLKOUT  
Previous cycle  
Current cycle  
B[1]  
(bit 26)  
B[0]  
(bit 25)  
G[1]  
(bit 24)  
G[0]  
(bit 23)  
R[1]  
(bit 22)  
R[0]  
(bit 21)  
TxOUT3  
TxOUT2  
DE  
(bit 20)  
VS  
(bit 19)  
HS  
(bit 18)  
B[7]  
(bit 17)  
B[6]  
(bit 16)  
B[5]  
(bit 15)  
B[4]  
(bit 14)  
B[3]  
(bit 13)  
B[2]  
(bit 12)  
G[7]  
(bit 11)  
G[6]  
(bit 10)  
G[5]  
(bit 9)  
G[4]  
(bit 8)  
G[3]  
(bit 7)  
TxOUT1  
TxOUT0  
G[2]  
(bit 6)  
R[7]  
(bit 5)  
R[6]  
(bit 4)  
R[5]  
(bit 3)  
R[4]  
(bit 2)  
R[3]  
(bit 1)  
R[2]  
(bit 0)  
Figure 26. 24-bit Color FPD-Link Mapping: LSBs on TxOUT3 (MAPSEL=L)  
TxCLKOUT  
Previous cycle  
Current cycle  
B[7]  
(bit 26)  
B[6]  
(bit 25)  
G[7]  
(bit 24)  
G[6]  
(bit 23)  
R[7]  
(bit 22)  
R[6]  
(bit 21)  
TxOUT3  
TxOUT2  
DE  
(bit 20)  
VS  
(bit 19)  
HS  
(bit 18)  
B[5]  
(bit 17)  
B[4]  
(bit 16)  
B[3]  
(bit 15)  
B[2]  
(bit 14)  
B[1]  
(bit 13)  
B[0]  
(bit 12)  
G[5]  
(bit 11)  
G[4]  
(bit 10)  
G[3]  
(bit 9)  
G[2]  
(bit 8)  
G[1]  
(bit 7)  
TxOUT1  
TxOUT0  
G[0]  
(bit 6)  
R[5]  
(bit 5)  
R[4]  
(bit 4)  
R[3]  
(bit 3)  
R[2]  
(bit 2)  
R[1]  
(bit 1)  
R[0]  
(bit 0)  
Figure 27. 24-bit ColorFPD-Link Mapping: MSBs on TxOUT3 (MAPSEL=H)  
Copyright © 2013–2015, Texas Instruments Incorporated  
29  
 
 
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
TxCLKOUT  
Previous cycle  
Current cycle  
TxOUT3  
TxOUT2  
DE  
(bit 20)  
VS  
(bit 19)  
HS  
(bit 18)  
B[5]  
(bit 17)  
B[4]  
(bit 16)  
B[3]  
(bit 15)  
B[2]  
(bit 14)  
B[1]  
(bit 13)  
B[0]  
(bit 12)  
G[5]  
(bit 11)  
G[4]  
(bit 10)  
G[3]  
(bit 9)  
G[2]  
(bit 8)  
G[1]  
(bit 7)  
TxOUT1  
TxOUT0  
G[0]  
(bit 6)  
R[5]  
(bit 5)  
R[4]  
(bit 4)  
R[3]  
(bit 3)  
R[2]  
(bit 2)  
R[1]  
(bit 1)  
R[0]  
(bit 0)  
Figure 28. 18-bit Color FPD-Link Mapping (MAPSEL = L)  
TxCLKOUT  
Previous cycle  
Current cycle  
B[5]  
(bit 26)  
B[4]  
(bit 25)  
G[5]  
(bit 24)  
G[4]  
(bit 23)  
R[5]  
(bit 22)  
R[4]  
(bit 21)  
TxOUT3  
TxOUT2  
DE  
(bit 20)  
VS  
(bit 19)  
HS  
(bit 18)  
B[3]  
(bit 17)  
B[2]  
(bit 16)  
B[1]  
(bit 15)  
B[0]  
(bit 14)  
G[3]  
(bit 11)  
G[2]  
(bit 10)  
G[1]  
(bit 9)  
G[0]  
(bit 8)  
TxOUT1  
TxOUT0  
R[3]  
(bit 5)  
R[2]  
(bit 4)  
R[1]  
(bit 3)  
R[0]  
(bit 2)  
Figure 29. 18-bit Color FPD-Link Mapping (MAPSEL = H)  
8.4.3 Low Frequency Optimization (LFMODE)  
The LFMODE is set via register (Table 7) or by the LFMODE Pin. This mode optimizes device operation for  
lower input data clock ranges supported by the serializer. If LFMODE is Low (LFMODE=0, default), the  
TxCLKOUT± PCLK frequency is between 15 MHz and 85 MHz. If LFMODE is High (LFMODE=1), the  
TxCLKOUT± frequency is between 5 MHz and <15 MHz. Note: when the device LFMODE is changed, a PDB  
reset is required. When LFMODE is high (LFMODE=1), the line rate relative to the input data rate is multiplied by  
four. Thus, for the operating range of 5 MHz to <15 MHz, the line rate is 700 Mbps to <2.1 Gbps with an effective  
data payload of 175 Mbps to 525 Mbps. Note: for Backwards Compatibility Mode (BKWD=1), the line rate relative  
to the input data rate remains the same.  
8.4.4 Mode Select (MODE_SEL)  
Device configuration may be done via the MODE_SEL pin or via register (Table 7). A pullup resistor and a  
pulldown resistor of suggested values may be used to set the voltage ratio of the MODE_SEL input (VR4) and  
VDD33 to select one of the 9 possible selected modes. See Figure 30 and Table 5.  
30  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
V
DD33  
R
3
VR4  
MODE_SEL  
Deserializer  
R
4
Figure 30. MODE_SEL Connection Diagram  
Table 5. Configuration Select (MODE_SEL)  
Suggested  
Resistor R3  
(kΩ, 1% tol)  
Suggested  
Resistor R4  
(kΩ, 1% tol)  
Ideal Ratio  
Ideal  
VR4 (V)  
NO.  
REPEAT  
BKWD  
I2S_B  
LCBL  
(VR4/VDD33  
)
1
2
3
4
5
6
7
8
9
0
0
OPEN  
294  
255  
267  
255  
226  
205  
162  
124  
40.2  
40.2  
49.9  
76.8  
102  
130  
165  
191  
210  
L
L
L
L
L
L
L
L
L
H
L
L
0.120  
0.164  
0.223  
0.286  
0.365  
0.446  
0.541  
0.629  
0.397  
0.540  
0.737  
0.943  
1.205  
1.472  
1.786  
2.075  
L
H
L
L
H
H
L
L
H
L
L
H
H
H
H
L
L
H
L
H
H
L
H
L
8.4.5 Repeater Connections  
The HDCP Repeater requires the following connections between the HDCP Receiver and each HDCP  
Transmitter Figure 31.  
1. Video Data – Connect all FPD-Link data and clock pairs  
2. I2C – Connect SCL and SDA signals. Both signals should be pulled up to VDD33 or VDDIO = 3.0 V to 3.6 V  
with 4.7-kresistors.  
3. Audio (optional) – Connect I2S_CLK, I2S_WC, and I2S_Dx signals.  
4. IDx pin – Each Transmitter and Receiver must have an unique I2C address.  
5. REPEAT & MODE_SEL pins — All Transmitters and Receivers must be set into Repeater Mode.  
6. Interrupt pin – Connect DS90UH928Q-Q1 INTB_IN pin to the DS90UH927Q-Q1 INTB pin. The signal must  
be pulled up to VDDIO with a 10-kΩ resistor.  
Copyright © 2013–2015, Texas Instruments Incorporated  
31  
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
Deserializer  
Serializer  
RxIN0+  
TxOUT0+  
RxIN0-  
TxOUT0-  
TxOUT1+  
TxOUT1-  
RxIN1+  
RxIN1-  
RxIN2+  
RxIN2-  
TxOUT2+  
TxOUT2-  
RxIN3+  
RxIN3-  
TxOUT3+  
TxOUT3-  
RxCLKIN+  
RxCLKIN-  
TxCLKOUT+  
TxCLKOUT-  
VDD33  
VDD33  
MODE_SEL  
REPEAT  
I2S_CLK  
I2S_WC  
I2S_Dx  
I2S_CLK  
I2S_WC  
I2S_Dx  
Optional  
VDDIO  
VDD33  
VDD33  
IDx  
IDx  
INTB  
INTB_IN  
VDD33  
SDA  
SCL  
SDA  
SCL  
Figure 31. HDCP Repeater Connection Diagram  
8.4.5.1 Repeater Fan-Out Electrical Requirements  
Repeater applications requiring fan-out from one DS90UH928Q-Q1 deserializer to up to three DS90UH927Q-Q1  
serializers requires special considerations for routing and termination of the FPD-Link differential traces.  
Figure 32 details the requirements that must be met for each signal pair:  
L3 < 60 mm  
TX  
R1=100  
R2=100ꢀ  
RX  
TX  
TX  
L1 < 75 mm  
L2 < 60 mm  
L3 < 60 mm  
Figure 32. FPD-Link Fan-Out Electrical Requirements  
32  
Copyright © 2013–2015, Texas Instruments Incorporated  
 
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
8.4.6 HDCP I2S Audio Encryption  
Depending on the quality and specifications of the audiovisual source, HDCP encryption of digital audio may be  
required. When HDCP is active, packetized Data Island Transport audio is also encrypted along with the video  
data per HDCP v.1.3. I2S audio transmitted in Forward Channel Frame Transport mode is not encrypted. System  
designers should consult the specific HDCP specifications to determine if encryption of digital audio is required  
by the specific application audiovisual source.  
8.4.7 Repeater Configuration  
The HDCP Cipher function is implemented in the deserializer per HDCP v1.3 specification. The DS90UH928Q-  
Q1 provides HDCP decryption of audiovisual content when connected to an HDCP capable FPD-Link III  
serializer. HDCP authentication and shared key generation is performed using the HDCP Control Channel, which  
is embedded in the forward and backward channels of the serial link. On-chip Non-Volatile Memory (NVM) is  
used to store the HDCP keys. The confidential HDCP keys are loaded by TI during the manufacturing process  
and are not accessible external to the device.  
The supported HDCP Repeater application provides a mechanism to extend HDCP transmission over multiple  
links to multiple display devices. It authenticates all HDCP devices in the system and distributes protected  
content to the HDCP Receivers using the encryption mechanisms provided in the HDCP specification.  
1:3 Repeater  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
TX  
TX  
TX  
Source  
TX  
RX  
Display  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
Figure 33. HDCP Maximum Repeater Application  
In the HDCP repeater application, this document refers to the DS90UH927Q-Q1 or DS90UH925Q-Q1 as the  
HDCP Transmitter (TX), and refers to the DS90UH928Q-Q1 or DS90UH926Q-Q1 as the HDCP Receiver (RX).  
Figure 33 shows the maximum configuration supported for HDCP Repeater implementations. Two levels of  
HDCP Repeaters are supported with a maximum of three HDCP Transmitters per HDCP Receiver.  
In a repeater application, the I2C interface at each TX and RX is configured to transparently pass I2C  
communications upstream or downstream to any I2C device within the system. This includes a mechanism for  
assigning alternate IDs (Slave Aliases) to downstream devices in the case of duplicate addresses.  
Copyright © 2013–2015, Texas Instruments Incorporated  
33  
 
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
To support HDCP Repeater operation, the RX includes the ability to control the downstream authentication  
process, assemble the KSV list for downstream HDCP Receivers, and pass the KSV list to the upstream HDCP  
Transmitter. An I2C master within the RX communicates with the I2C slave within the TX. The TX handles  
authenticating with a downstream HDCP Receiver and makes status available through the I2C interface. The RX  
monitors the transmit port status for each TX and reads downstream KSV and KSV list values from the TX.  
In addition to the I2C interface used to control the authentication process, the HDCP Repeater implementation  
includes two other interfaces. The FPD-Link LVDS interface outputs the unencrypted video data. In addition to  
providing the video data, the LVDS interface communicates control information and packetized audio data. All  
audio and video data is decrypted at the output of the HDCP Receiver and is re-encrypted by the HDCP  
Transmitter. Figure 34 provides more detailed block diagram of a 1:2 HDCP repeater configuration.  
If the repeater node includes a local output to a display, White Balancing and Hi-FRC dithering functions should  
not be used as they will block encrypted I2S audio and HDCP authentication.  
HDCP Transmitter  
TX  
downstream  
Receiver  
or  
Repeater  
I2C  
Slave  
I2C  
I2C  
Master  
upstream  
Transmitter  
FPD-Link  
I2S Audio  
HDCP Transmitter  
TX  
HDCP Receiver  
(RX)  
downstream  
Receiver  
or  
I2C  
Slave  
Repeater  
FPD-Link III interfaces  
Figure 34. HDCP 1:2 Repeater Configuration  
8.5 Programming  
8.5.1 Serial Control Bus  
The DS90UH928Q-Q1 may also be configured by the use of an I2C compatible serial control bus. Multiple  
devices may share the serial control bus (up to 10 device addresses supported). The device address is set via a  
resistor divider (R1 and R2 — see Figure 35) connected to the IDx pin.  
VDD33  
VDD33  
R1  
R2  
VR2  
IDx  
4.7kQ  
4.7kQ  
HOST  
DES  
SCL  
SDA  
SCL  
SDA  
To other  
Devices  
Figure 35. Serial Control Bus Connection  
The serial control bus consists of two signals and an address configuration pin. SCL is a Serial Bus Clock  
Input/Output. SDA is the Serial Bus Data Input/Output signal. Both SCL and SDA signals require an external  
pullup resistor to VDD33 or VDDIO = 3.0 V to 3.6 V. For most applications, a 4.7-kpullup resistor to VDD33 is  
recommended. The signals are either pulled HIGH, or driven LOW.  
34  
Copyright © 2013–2015, Texas Instruments Incorporated  
 
 
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
Programming (continued)  
The IDx pin configures the control interface to one of 10 possible device addresses. A pullup resistor and a  
pulldown resistor should be used to set the appropriate voltage ratio between the IDx input pin (VR2) and VDD33  
,
each ratio corresponding to a specific device address. See Table 7 below.  
Table 6. Serial Control Bus Addresses for IDx  
SUGGESTED  
RESISTOR R1 kΩ  
(1% tol)  
SUGGESTED  
RESISTOR R2 kΩ  
(1% tol)  
IDEAL RATIO  
VR2 / VDD33  
IDEAL VR2  
(V)  
NO.  
ADDRESS 7'b  
ADDRESS 8'b  
1
2
0
0
OPEN  
226  
215  
200  
187  
174  
154  
150  
137  
90.9  
40.2 or >10  
97.6  
113  
0x2C  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x58  
0x66  
0x68  
0x6A  
0x6C  
0x6E  
0x70  
0x72  
0x74  
0x76  
0.995  
1.137  
1.282  
1.413  
1.570  
1.707  
1.848  
1.997  
2.535  
0.302  
0.345  
0.388  
0.428  
0.476  
0.517  
0.560  
0.605  
0.768  
3
4
127  
5
140  
6
158  
7
165  
8
191  
9
210  
10  
301  
The Serial Bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SCL transitions Low while SDA is High. A STOP occurs when SDA transitions High while SCL is also HIGH. See  
Figure 36.  
SDA  
SCL  
S
P
START condition, or  
STOP condition  
START repeat condition  
Figure 36. START and STOP Conditions  
To communicate with a remote device, the host controller (master) sends the slave address and listens for a  
response from the slave. This response is referred to as an acknowledge bit (ACK). If a slave on the bus is  
addressed correctly, it Acknowledges (ACKs) the master by driving the SDA bus LOW. If the address doesn't  
match a device's slave address, it Not-acknowledges (NACKs) the master by letting SDA be pulled HIGH. ACKs  
also occur on the bus when data is being transmitted. When the master is writing data, the slave ACKs after  
every data byte is successfully received. When the master is reading data, the master ACKs after every data  
byte is received to let the slave know it wants to receive another data byte. When the master wants to stop  
reading, it NACKs after the last data byte and creates a stop condition on the bus. All communication on the bus  
begins with either a Start condition or a Repeated Start condition. All communication on the bus ends with a Stop  
condition. A READ is shown in Figure 37 and a WRITE is shown in Figure 38.  
Register Address  
Slave Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
A
2
A
1
A
0
0
S
S
1
P
Figure 37. Serial Control Bus — READ  
Register Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
0
S
P
Figure 38. Serial Control Bus — WRITE  
Copyright © 2013–2015, Texas Instruments Incorporated  
35  
 
 
 
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
To support I2C transactions over the BCC. the I2C Master located at the DS90UH928Q-Q1 deserializer must  
support I2C clock stretching. For more information on I2C interface requirements and throughput considerations,  
please refer to TI Application Note SNLA131.  
8.6 Register Maps  
Table 7. Serial Control Bus Registers(1) (2)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
0
0x00 I2C Device ID  
7:1  
RW  
IDx  
Device ID  
7–bit address of Deserializer  
Note: Read-only unless bit 0 is set  
0
RW  
ID Setting  
I2C ID Setting  
0: Device ID is from IDx pin  
1: Register I2C Device ID overrides IDx pin  
1
0x01 Reset  
7:3  
2
0x04  
Reserved  
RW  
RW  
BC Enable Back Channel Enable  
0: Disable  
1: Enable  
1
0
7
Digital  
RESET1  
Reset the entire digital block including registers  
This bit is self-clearing.  
0: Normal operation (default)  
1: Reset  
RW  
RW  
Digital  
RESET0  
Reset the entire digital block except registers  
This bit is self-clearing  
0: Normal operation (default)  
1: Reset  
2
0x02 General  
Configuration 0  
0x00  
OEN  
LVCMOS Output Enable. Self-clearing on loss of  
LOCK  
0: Disable, Tristate Outputs (default)  
1: Enable  
6
5
RW  
RW  
OEN/OSS_ Output Enable and Output Sleep State Select override  
SEL  
Override  
0: Disable over-write (default)  
1: Enable over-write  
Auto Clock OSC Clock Output. Enable On loss of lock, OSC  
Enable  
clock is output onto TxCLK±  
0: Disable (default)  
1: Enable  
4
RW  
OSS_SEL  
Output Sleep State Select. Enable Select to control  
output state during lock low period  
0: Disable, Tri-State Outputs (default)  
1: Enable  
3
2
1
0
RW  
RW  
RW  
RW  
BKWD  
Override  
Backwards Compatibility Mode Override  
0: Use MODE_SEL pin (default)  
1: Use register bit to set BKWD mode  
BKWD  
Mode  
Backwards Compatibility Mode Select  
0: Backwards Compatibility Mode disabled (default)  
1: Backwards Compatibility Mode enabled  
LFMODE  
Override  
Low Frequency Mode Override  
0: Use LFMODE pin (default)  
1: User register bit to set LFMODE  
LFMODE  
Low Frequency Mode  
0: 15MHz PCLK 85MHz (default)  
1: 5MHz PCLK < 15MHz  
(1) Addresses not listed are reserved.  
(2) Do not alter Reserved fields from their default values.  
36  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
Register Maps (continued)  
Table 7. Serial Control Bus Registers(1) (2) (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
3
0x03 General  
Configuration 1  
7
6
0xF0  
Reserved  
RW  
Back  
channel  
CRC  
Back Channel CRC Generator Enable  
0: Disable  
1: Enable (default)  
Generator  
Enable  
5
4
RW  
RW  
Failsafe  
Outputs Failsafe Mode. Determines the pull direction  
for undriven LVCMOS inputs  
0: Pullup  
1: Pulldown (default)  
Filter  
Enable  
HS, VS, DE two clock filter. When enabled, pulses  
less than two full PCLK cycles on the DE, HS, and VS  
inputs will be rejected  
0: Filtering disable  
1: Filtering enable (default)  
3
2
RW  
I2C Pass-  
Through  
I2C Pass-Through Mode  
Read/Write transactions matching any entry in the  
DeviceAlias registers will be passed through to the  
remote serializer I2C interface.  
0: Pass-Through Disabled (default)  
1: Pass-Through Enabled  
RW  
RW  
Auto ACK  
Automatically Acknowledge I2C transactions  
independent of the forward channel Lock state.  
0: Disable (default)  
1: Enable  
1:0  
7:1  
Reserved  
4
0x04 BCC Watchdog  
Control  
0xFE  
BCC  
Watchdog  
Timer  
BCC Watchdog Timer The watchdog timer allows  
termination of a control channel transaction if it fails to  
complete within a programmed amount of time. This  
field sets the Bidirectional Control Channel Watchdog  
Timeout value in units of 2 milliseconds. This field  
should not be set to 0.  
0
RW  
RW  
RW  
RW  
BCC  
Watchdog  
Disable  
Disable Bidirectional Control Channel Watchdog  
Timer  
0: Enable (default)  
1: Disable  
5
0x05 I2C Control 1  
7
0x1E  
I2C Pass-  
All  
I2C Pass-Through All Transactions. Pass all local I2C  
transactions to the remote serializer.  
0: Disable (default)  
1: Enable  
6:4  
3:0  
I2C SDA  
Hold  
Internal I2C SDA Hold Time  
This field configures the amount of internal hold time  
is provided for the SDA input relative to the SCL input.  
Units are 50ns.  
I2C Filter  
Depth  
I2C Glitch Filter Depth  
This field configures the maximum width of glitch  
pulses on the SCL and SDA inputs that will be  
rejected. Units are 5 nanoseconds.  
Copyright © 2013–2015, Texas Instruments Incorporated  
37  
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 7. Serial Control Bus Registers(1) (2) (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
6
0x06 I2C Control 2  
7
RW  
0x00  
Forward  
Channel  
Sequence  
Error  
Control Channel Sequence Error Detected  
Indicates a sequence error has been detected in  
forward control channel. It this bit is set, an error may  
have occurred in the control channel operation.  
6
RW  
Clear  
Sequence  
Error  
Clears the Sequence Error Detect bit This bit is not  
self-clearing.  
5
Reserved  
4:3  
RW  
SDA Output SDA Output Delay  
Delay This field configures output delay on the SDA output.  
Setting this value will increase output delay in units of  
50ns. Nominal output delay values for SCL to SDA  
are:  
00: 250ns (default)  
01: 300ns  
10: 350ns  
11: 400ns  
2
RW  
Local Write Disable Remote Writes to Local Registers through  
Disable  
Serializer (Does not affect remote access to I2C  
slaves)  
0: Remote write to local device registers (default)  
1: Stop remote write to local device registers  
1
0
RW  
RW  
I2C Bus  
Timer  
Speedup  
Speed up I2C Bus Watchdog Timer  
0: Timer expires after approximately 1s (default)  
1: Timer expires after approximately 50µs  
I2C Bus  
Timer  
Disable  
Disable I2C Bus Watchdog Timer.  
When the I2C Watchdog Timer may be used to detect  
when the I2C bus is free or hung up following an  
invalid termination of a transaction. If SDA is high and  
no signaling occurs for approximately 1 second, the  
I2C bus is assumed to be free. If SDA is low and no  
signaling occurs, the device will attempt to clear the  
bus by driving 9 clocks on SCL  
7
8
0x07 Remote ID  
7:1  
0
R
0x00  
0x00  
Remote ID Remote Serializer ID  
RW if bit 0 is set  
RW  
Freeze  
Freeze Serializer Device ID  
Device ID  
0: Auto-load Serializer Device ID (default)  
1: Prevent auto-loading of Serializer Device ID from  
the remote device. The ID will be frozen at the value  
written.  
0x08 Slave ID[0]  
7:1  
RW  
RW  
Slave  
7-bit Remote Slave Device ID 0  
Device ID0 Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[0], the transaction will be re-mapped to this  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
9
0x09 Slave ID[1]  
7:1  
0x00  
Slave  
7-bit Remote Slave Device ID1  
Device ID1 Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[1], the transaction will be re-mapped to this  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
38  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
Register Maps (continued)  
Table 7. Serial Control Bus Registers(1) (2) (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
10  
11  
12  
13  
14  
15  
16  
0x0A Slave ID[2]  
0x0B Slave ID[3]  
0x0C Slave ID[4]  
0x0D Slave ID[5]  
0x0E Slave ID[6]  
0x0F Slave ID[7]  
0x10 Slave Alias[0]  
7:1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Slave  
7-bit Remote Slave Device ID2  
Device ID2 Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[2], the transaction will be re-mapped to this  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
7-bit Remote Slave Device ID3  
Device ID3 Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[3], the transaction will be re-mapped to this  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
7-bit Remote Slave Device ID4  
Device ID4 Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[4], the transaction will be re-mapped to this  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
7-bit Remote Slave Device ID5  
Device ID5 Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[5], the transaction will be re-mapped to this  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
7-bit Remote Slave Device ID6  
Device ID6 Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[6], the transaction will be re-mapped to this  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
7-bit Remote Slave Device ID 7  
Device ID7 Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[7], the transaction will be re-mapped to this  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
7-bit Remote Slave Alias 0  
Device  
Alias 0  
Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[0], the transaction will be re-mapped to the ID  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
Copyright © 2013–2015, Texas Instruments Incorporated  
39  
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 7. Serial Control Bus Registers(1) (2) (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
17  
18  
19  
20  
21  
22  
23  
0x11 Slave Alias[1]  
0x12 Slave Alias[2]  
0x13 Slave Alias[3]  
0x14 Slave Alias[4]  
0x15 Slave Alias[5]  
0x16 Slave Alias[6]  
0x17 Slave Alias[7]  
7:1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Slave  
Device  
Alias 1  
7-bit Remote Slave Alias 1  
Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[1], the transaction will be re-mapped to the ID  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
Device  
Alias 2  
7-bit Remote Slave Alias 2  
Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[2], the transaction will be re-mapped to the ID  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
Device  
Alias 3  
7-bit Remote Slave Alias 3  
Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[3], the transaction will be re-mapped to the ID  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
Device  
Alias 4  
7-bit Remote Slave Alias 4  
Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[4], the transaction will be re-mapped to the ID  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
Device  
Alias 5  
7-bit Remote Slave Alias 5  
Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[5], the transaction will be re-mapped to the ID  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
Device  
Alias 6  
7-bit Remote Slave Alias 6  
Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[6], the transaction will be re-mapped to the ID  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
7:1  
Slave  
7-bit Remote Slave Alias 7  
Device  
Alias 7  
Configures the physical I2C address of the remote  
I2C Slave device attached to the remote Serializer. If  
an I2C transaction is addressed to the Slave Alias  
ID[7], the transaction will be re-mapped to the ID  
address before passing the transaction across the  
Bidirectional Control Channel to the Serializer.  
0
Reserved  
40  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
Register Maps (continued)  
Table 7. Serial Control Bus Registers(1) (2) (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
24  
25  
27  
0x18 Mailbox[0]  
7:0  
RW  
RW  
RW  
0x00  
0x00  
0x00  
Mailbox  
Register 0  
Mailbox Register 0  
This register may be used to temporarily store  
temporary data, such as status or multi-master  
arbitration  
0x19 Mailbox[1]  
7:0  
7:0  
Mailbox  
Register 1  
Mailbox Register 1  
This register may be used to temporarily store  
temporary data, such as status or multi-master  
arbitration  
0x1B Frequency  
Counter  
Frequency  
Count  
Frequency Counter control  
A write to this register will enable a frequency counter  
to count the number of pixel clock during a specified  
time interval. The time interval is equal to the value  
written multiplied by the oscillator clock period  
(nominally 50ns). A read of the register returns the  
number of pixel clock edges seen during the enabled  
interval. The frequency counter will saturate at 0xff if it  
reaches the maximum value. The frequency counter  
will provide a rough estimate of the pixel clock period.  
If the pixel clock frequency is known, the frequency  
counter may be used to determine the actual oscillator  
clock frequency.  
28  
0x1C General Status  
7:4  
3
0x00  
Reserved  
R
R
I2S Locked I2S Lock Status  
0: I2S PLL controller not locked (default)  
1: I2S PLL controller locked to input I2S clock  
2
CRC Error  
CRC Error Detected  
0: No CRC errors detected  
1: CRC errors detected  
1
0
Reserved  
R
LOCK  
Deserializer CDR and PLL Locked to recovered clock  
frequency  
0: Deserializer not Locked (default)  
1: Deserializer Locked to recovered clock  
29  
0x1D GPIO0  
Configuration  
7:4  
3
R
0x20  
Revision ID Device Revision ID:  
0010: Production Device  
RW  
GPIO0  
Output  
Value  
Local GPIO Output Value This value is output on the  
GPIO pin when the GPIO function is enabled, the  
local GPIO direction is Output, and remote GPIO  
control is disabled.  
0: Output LOW (default)  
1: Output HIGH  
2
RW  
GPIO0  
Remote  
Enable  
Remote GPIO Control  
0: Disable GPIO control from remote device (default)  
1: Enable GPIO control from remote device. The  
GPIO pin will be an output, and the value is received  
from the remote device.  
1
0
RW  
RW  
GPIO0  
Direction  
Local GPIO Direction  
0: Output (default)  
1: Input  
GPIO0  
Enable  
GPIO Function Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
Copyright © 2013–2015, Texas Instruments Incorporated  
41  
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 7. Serial Control Bus Registers(1) (2) (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
30  
0x1E GPIO1 and  
GPIO2  
7
RW  
0x00  
GPIO2  
Output  
Value  
Local GPIO Output Value This value is output on the  
GPIO pin when the GPIO function is enabled, the  
local GPIO direction is Output, and remote GPIO  
control is disabled.  
Configuration  
0: Output LOW (default)  
1: Output HIGH  
6
RW  
GPIO2  
Remote  
Enable  
Remote GPIO Control  
0: Disable GPIO control from remote device (default)  
1: Enable GPIO control from remote device. The  
GPIO pin will be an output, and the value is received  
from the remote device.  
5
4
3
RW  
RW  
RW  
GPIO2  
Direction  
Local GPIO Direction  
0: Output (default)  
1: Input  
GPIO2  
Enable  
GPIO Function Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
GPIO1  
Output  
Value  
Local GPIO Output Value This value is output on the  
GPIO pin when the GPIO function is enabled, the  
local GPIO direction is Output, and remote GPIO  
control is disabled.  
0: Output LOW (default)  
1: Output HIGH  
2
RW  
GPIO1  
Remote  
Enable  
Remote GPIO Control  
0: Disable GPIO control from remote device (default)  
1: Enable GPIO control from remote device. The  
GPIO pin will be an output, and the value is received  
from the remote device.  
1
0
RW  
RW  
GPIO1  
Direction  
Local GPIO Direction  
1: Input  
0: Output  
GPIO1  
Enable  
GPIO function enable  
1: Enable GPIO operation  
0: Enable normal operation  
31  
0x1F GPIO3  
Configuration  
7:4  
3
0x00  
Reserved  
RW  
RW  
GPIO3  
Output  
Value  
Local GPIO Output Value This value is output on the  
GPIO pin when the GPIO function is enabled, the  
local GPIO direction is Output, and remote GPIO  
control is disabled.  
0: Output LOW (default)  
1: Output HIGH  
2
GPIO3  
Remote  
Enable  
Remote GPIO Control  
0: Disable GPIO control from remote device (default)  
1: Enable GPIO control from remote device. The  
GPIO pin will be an output, and the value is received  
from the remote device.  
1
0
RW  
RW  
GPIO3  
Direction  
Local GPIO Direction  
0: Output (default)  
1: Input  
GPIO3  
Enable  
GPIO Function Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
42  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
Register Maps (continued)  
Table 7. Serial Control Bus Registers(1) (2) (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
32  
0x20 GPIO_REG5  
and  
7
RW  
0x00  
GPIO_REG Local GPIO Output Value This value is output on the  
6 Output  
Value  
GPIO pin when the GPIO function is enabled, and the  
local GPIO direction is Output.  
0: Output LOW (default)  
GPIO_REG6  
Configuration  
1: Output HIGH  
6
5
Reserved  
RW  
RW  
RW  
GPIO_REG Local GPIO Direction  
6 Direction 0: Output (default)  
1: Input  
4
3
GPIO_REG GPIO Function Enable  
6 Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
GPIO_REG Local GPIO Output Value This value is output on the  
5 Output  
Value  
GPIO pin when the GPIO function is enabled, and the  
local GPIO direction is Output.  
0: Output LOW (default)  
1: Output HIGH  
2
1
Reserved  
RW  
RW  
RW  
GPIO_REG GPIO Function Enable  
5 Direction 0: Enable normal operation (default)  
1: Enable GPIO operation  
0
7
GPIO_REG GPIO Function Enable  
5 Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
33  
0x21 GPIO_REG7  
and  
0x00  
GPIO_REG Local GPIO Output Value This value is output on the  
8 Output  
Value  
GPIO pin when the GPIO function is enabled, and the  
local GPIO direction is Output.  
0: Output LOW (default)  
GPIO_REG8  
Configuration  
1: Output HIGH  
6
5
Reserved  
RW  
RW  
RW  
GPIO_REG Local GPIO Direction  
8 Direction 0: Output (default)  
1: Input  
4
3
GPIO_REG GPIO Function Enable  
8 Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
GPIO_REG Local GPIO Output Value This value is output on the  
7 Output  
Value  
GPIO pin when the GPIO function is enabled, and the  
local GPIO direction is Output.  
0: Output LOW (default)  
1: Output HIGH  
2
1
Reserved  
RW  
RW  
GPIO_REG Local GPIO Direction  
7 Direction 0: Output (default)  
1: Input  
0
GPO_REG GPIO Function Enable  
7 Enable  
0: Enable normal operation (default)  
1: Enable GPIO operation  
Copyright © 2013–2015, Texas Instruments Incorporated  
43  
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 7. Serial Control Bus Registers(1) (2) (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
34  
0x22 Data Path  
Control  
7
RW  
0x00  
Override FC Override Configuration Loaded by Forward Channel  
Configuratio 0: Allow forward channel loading of this register  
n
(default)  
1: Disable loading of this register from the forward  
channel, keeping locally written values intact  
Bits [6:0] are RW if this bit is set  
6
R
Pass RGB  
Pass RGB on DE  
Setting this bit causes RGB data to be sent  
independent of DE in DS90UH928, which can be  
used to allow DS90UH928 to interoperate with  
DS90UB925 and DS90UB926. However, setting this  
bit prevents HDCP operation and blocks packetized  
audio. This bit does not need to be set in Backward  
Compatibility mode.  
0: Normal operation (default)  
1: Pass RGB independent of DE  
5
4
3
R
R
R
DE Polarity This bit indicates the polarity of the DE (Data Enable)  
signal.  
0: DE is positive (active high, idle low) (default)  
1: DE is inverted (active low, idle high)  
I2S  
Repeater  
Regen  
Regenerate I2S Data From Repeater I2S Pins  
0: Output packetized audio on RGB video output pins.  
(default)  
1: Repeater regenerates I2S from I2S pins  
I2S  
I2S Channel B Override  
Channel B  
Enable  
Override  
0: Set I2S Channel B Disabled (default)  
1: Set I2S Channel B Enable from register  
2
1
R
R
18-bit Video Video Color Depth Mode  
Select  
0: Select 24-bit video mode (default)  
1: Select 18-bit video mode  
I2S  
Select I2S Transport Mode  
Transport  
Select  
0: Enable I2S Data Island Transport (default)  
1: Enable I2S Data Forward Channel Frame  
Transport  
0
7
R
I2S  
Channel B  
Enable  
I2S Channel B Enable  
0: I2S Channel B disabled (default)  
1: Enable I2S Channel B  
35  
0x23 Rx Mode Status  
RW  
0x10  
RGB  
Rx RGB Checksum Enable  
Checksum  
Enable  
Setting this bit enables the Receiver to validate a one-  
byte checksum following each video line. Checksum  
failures are reported in the HDCP_STS register.  
0: Disabled (default)  
1: Enabled  
6:4  
3
Reserved  
R
R
R
R
LFMODE  
Status  
Low Frequency Mode (LFMODE) pin status  
0: 15 TxCLKOUT 85MHz (default)  
1: 5 TxCLKOUT < 15MHz  
2
1
0
REPEAT  
Status  
Repeater Mode (REPEAT) pin Status  
0: Non-repeater (default)  
1: Repeater  
BKWD  
Status  
Backward Compatible Mode (BKWD) Status  
0: Compatible to DS90UB925/7Q (default)  
1: Backward compatible to DS90UR905/7Q  
I2S  
Channel B  
Status  
I2S Channel B Mode (I2S_DB) Status  
0: I2S_DB inactive (default)  
1: I2S_DB active  
44  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
Register Maps (continued)  
Table 7. Serial Control Bus Registers(1) (2) (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
36  
0x24 BIST Control  
7:4  
3
0x08  
Reserved  
RW  
RW  
BIST Pin  
Config  
BIST Pin Configuration  
0: BIST enabled from register  
1: BIST enabled from pin (default)  
2:1  
OSC Clock Internal OSC clock select for Functional Mode or  
Source  
BIST. Functional Mode when PCLK is not present and  
0x03[1]=1.  
00: 33 MHz Oscillator (default)  
01: 33 MHz Oscillator  
Note: In LFMODE=1, the internal oscillator is  
12.5MHz  
0
RW  
R
BIST  
Enable  
BIST Control  
0: Disabled (default)  
1: Enabled  
37  
0x25 BIST Error  
7:0  
0x00  
BIST Error Errors Detected During BIST  
Count  
Records the number (up to 255) of forward-channel  
errors detected during BIST. The value stored in this  
register is only valid after BIST terminates (BISTEN =  
0). Resets on PDB = 0 or start of another BIST  
(BISTEN = 1).  
38  
39  
0x26 SCL High Time  
0x27 SCL Low Time  
7:0  
7:0  
RW  
RW  
0x83  
0x84  
SCL High  
Time  
I2C Master SCL High Time  
This field configures the high pulse width of the SCL  
output when the deserializer is the Master on the local  
I2C bus. Units are 50 ns for the nominal oscillator  
clock frequency.  
SCL Low  
Time  
I2C SCL Low Time  
This field configures the low pulse width of the SCL  
output when the deserializer is the Master on the local  
I2C bus. This value is also used as the SDA setup  
time by the I2C Slave for providing data prior to  
releasing SCL during accesses over the Bidirectional  
Control Channel. Units are 50 ns for the nominal  
oscillator clock frequency.  
40  
0x28 Data Path  
Control 2  
7
RW  
0x00  
Block I2S  
Override Forward Channel Configuration  
Auto Config 0: Enable forward-channel loading of this register  
1: Disable loading of this register from the forward  
channel, keeping local values intact  
6:4  
3
Reserved  
RW  
RW  
Aux I2S  
Enable  
Auxiliary I2S Channel Enable  
0: Normal GPIO[1:0] operation  
1: Enable Aux I2S channel on GPIO1 (AUX word  
select) and GPIO0 (AUX data)  
2
I2S Disable Disable All I2S Outputs  
0: I2S Outputs Enabled (default)  
1: I2S Outputs Disabled  
1
0
Reserved  
RW  
I2S  
Surround  
Enable 5.1- or 7.1-channel I2S audio transport  
0: 2-channel or 4-channel I2S audio is enabled as  
configured in register or MODE_SEL (default)  
1: 5.1- or 7.1-channel audio is enabled  
Note that I2S Data Island Transport is the only option  
for surround audio. Also note that in a repeater, this  
bit may be overridden by the in-band I2S mode  
detection.  
Copyright © 2013–2015, Texas Instruments Incorporated  
45  
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 7. Serial Control Bus Registers(1) (2) (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
41  
0x29 FRC Control  
7
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0x00  
Timing  
Mode  
Select  
Select Display Timing Mode  
0: DE only Mode (default)  
1: Sync Mode (VS,HS)  
6
5
HS Polarity Horizontal Sync Polarity Select  
0: Active High (default)  
1: Active Low  
VS Polarity Vertical Sync Polarity Select  
0: Active High (default)  
1: Active Low  
4
DE Polarity Data Enable Sync Polarity Select  
0: Active High (default)  
1: Active Low  
3
FRC2  
Enable  
FRC2 Enable  
0: FRC2 disable (default)  
1: FRC2 enable  
2
FRC1  
Enable  
FRC1 Enable  
0: FRC1 disable (default)  
1: FRC1 enable  
1
Hi-FRC2  
Enable  
Hi-FRC2 Enable  
0: Hi-FRC2 enable (default)  
1: Hi-FRC2 disable  
0
Hi-FRC1  
Enable  
Hi-FRC1 Enable  
0: Hi-FRC1 enable (default)  
1: Hi-FRC1 disable  
42  
0x2A White Balance  
Control  
7:6  
0x00  
Page  
Setting  
Control/LUT Setting Page Select  
00: Configuration Registers (default)  
01: Red LUT  
10: Green LUT  
11: Blue LUT  
5
4
RW  
RW  
White  
Balance  
Enable  
White Balance Enable  
0: White Balance Disabled (default)  
1: White Balance Enabled  
LUT Reload Enable LUT Reload  
Enable  
0: Reload Disable (default)  
1: Reload Enable  
3:0  
7
Reserved  
43  
0x2B I2S Control  
RW  
RW  
0x00  
I2S PLL  
Override  
Override I2S PLL  
0: PLL override disabled (default)  
1: PLL override enabled  
6
I2S PLL  
Enable  
Enable I2S PLL  
0: I2S PLL is on for I2S data jitter cleaning (default)  
1: I2S PLL is off. No jitter cleaning  
5:1  
0
Reserved  
RW  
I2S Clock  
Edge  
I2S Clock Edge Select  
0: I2S Data is strobed on the Falling Clock Edge  
(default)  
1: I2S Data is strobed on the Rising Clock Edge  
46  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
Register Maps (continued)  
Table 7. Serial Control Bus Registers(1) (2) (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
53  
0x35 AEQ Control  
7
6
0x00  
Reserved  
RW  
AEQ  
Restart  
Restart AEQ adaptation from initial (Floor) values  
0: Normal operation (default)  
1: Restart AEQ adaptation  
Note: This bit is not self-clearing. It must be set, then  
reset.  
5
4
RW  
RW  
LCBL  
Override  
Override LCBL Mode Set by MODE_SEL  
0: LCBL controlled by MODE_SEL pin  
1: LCBL controlled by register  
LCBL  
Set LCBL Mode  
0: LCBL Mode disabled  
1: LCBL Mode enabled. AEQ Floor value is controlled  
from Adaptive EQ MIN/MAX register  
3:0  
7:2  
1
Reserved  
Reserved  
57  
0x39 PG Internal  
Clock Enable  
0x00  
RW  
PG INT  
CLK  
Enable Pattern Generator Internal Clock  
This bit must be set to use the Pattern Generator  
Internal Clock Generation  
0: Pattern Generator with external PCLK  
1: Pattern Generator with internal PCLK  
See TI Application Note ( ) for details  
0
7
Reserved  
58  
0x3A I2S DIVSEL  
RW  
RW  
0x00  
MCLK Div  
Override  
Override MCLK Divider Setting  
0: No override for MCLK divider (default)  
1: Override divider select for MCLK  
6:4  
3:0  
7:6  
5:0  
MCLK Div  
See Table 3  
Reserved  
Reserved  
59  
68  
0x3B Adaptive EQ  
Status  
EQ Status  
Equalizer Status  
Current equalizer level set by AEQ or Override  
Register  
0x44 Adaptive  
Equalizer  
7:5  
RW  
0x60  
EQ Stage 1 EQ Stage 1 select value. Used if adaptive EQ is  
Select  
Value  
bypassed. Used if adaptive EQ is bypassed.  
Bypass  
4
Reserved  
3:1  
RW  
RW  
EQ Stage 2 EQ Stage 2 select value. Used if adaptive EQ is  
Select  
Value  
bypassed Used if adaptive EQ is bypassed.  
0
Adaptive  
Bypass Adaptive EQ  
EQ Bypass Overrides Adaptive EQ search and sets the EQ to the  
static value configured in this register  
0: Enable adaptive EQ (default)  
1: Disable adaptive EQ (to write EQ select values)  
69  
73  
0x45 Adaptive EQ  
MIN/MAX  
7:4  
3:0  
RW  
RW  
0x88  
0x00  
Reserved  
Adaptive  
EQ Floor  
Adaptive Equalizer Floor Value  
Sets the AEQ floor value when Long Cable Mode  
(LCBL) is enabled by register or MODE_SEL  
0x49 Map Select  
7
6
R
MAPSEL  
Pin Status  
Returns Status of MAPSEL pin  
RW  
MAPSEL  
Override  
Map Select (MAPSEL) Setting Override  
0: MAPSEL set from pin  
1: MAPSEL set from register  
5
RW  
MAPSEL  
Map Select (MAPSEL) Setting  
0: LSBs on TxOUT3±  
1: MSBs on TxOUT3±  
4:0  
Reserved  
Copyright © 2013–2015, Texas Instruments Incorporated  
47  
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 7. Serial Control Bus Registers(1) (2) (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
86  
0x56 Loop-Through  
Driver  
7:4  
3
0x08  
Reserved  
RW  
RW  
Loop-  
Through  
Driver  
Enable CML Loop-Through Driver  
(CMLOUTP/CMLOUTN)  
0: Enable  
Enable  
1: Disable (default)  
2:0  
7:4  
Reserved  
100  
0x64 Pattern  
Generator  
Control  
0x10  
Pattern  
Generator  
Select  
Fixed Pattern Select  
Selects the pattern to output when in Fixed Pattern  
Mode. Scaled patterns are evenly distributed across  
the horizontal or vertical active regions. This field is  
ignored when Auto-Scrolling Mode is enabled.  
xxxx: normal/inverted  
0000: Checkerboard  
0001: White/Black (default)  
0010: Black/White  
0011: Red/Cyan  
0100: Green/Magenta  
0101: Blue/Yellow  
0110: Horizontal Black-White/White-Black  
0111: Horizontal Black-Red/White-Cyan  
1000: Horizontal Black-Green/White-Magenta  
1001: Horizontal Black-Blue/White-Yellow  
1010: Vertical Black-White/White— Black  
1011: Vertically Scaled Black to Red/White to Cyan  
1100: Vertical Black-Green/White-Magenta  
1101: Vertical Black-Blue/White-Yellow  
1110: Custom color (or its inversion) configured in  
PGRS, PGGS, PGBS registers  
1111: VCOM  
See TI App Note AN-2198 ().  
3
2
Reserved  
RW  
Color Bars Enable Color Bars Pattern  
Pattern  
0: Color Bars disabled (default)  
1: Color Bars enabled  
Overrides the selection from bits [7:4]  
1
0
RW  
RW  
VCOM  
Pattern  
Reverse  
Reverse order of color bands in VCOM pattern  
0: Color sequence from top left is (YCBR) (default)  
1: Color sequence from top left is (RBCY)  
Pattern  
Pattern Generator Enable  
Generator  
Enable  
0: Disable Pattern Generator (default)  
1: Enable Pattern Generator  
See TI App Note AN-2198 ().  
48  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
Register Maps (continued)  
Table 7. Serial Control Bus Registers(1) (2) (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
101  
0x65 Pattern  
Generator  
Configuration  
7
6
0x00  
Reserved  
Checkerboa Scale Checkerboard Patterns:  
RW  
rd Scale  
0: Normal operation (each square is 1x1 pixel)  
(default)  
1: Scale checkered patterns (VCOM and  
checkerboard) by 8 (each square is 8x8 pixels)  
Setting this bit gives better visibility of the checkered  
patterns.  
5
4
RW  
RW  
Custom  
Use Custom Checkerboard Color  
Checkerboa 0: Use white and black in the Checkerboard pattern  
rd  
(default)  
1: Use the Custom Color and black in the  
Checkerboard pattern  
PG 18–bit  
Mode  
18-bit Mode Select:  
0: Enable 24-bit pattern generation. Scaled patterns  
use 256 levels of brightness. (default)  
1: Enable 18-bit color pattern generation. Scaled  
patterns will have 64 levels of brightness and the R,  
G, and B outputs use the six most significant color  
bits.  
3
2
RW  
RW  
External  
Clock  
Select External Clock Source:  
0: Selects the internal divided clock when using  
internal timing (default)  
1: Selects the external pixel clock when using internal  
timing. This bit has no effect in external timing mode  
(PATGEN_TSEL = 0).  
Timing  
Select  
Timing Select Control:  
0: the Pattern Generator uses external video timing  
from the pixel clock, Data Enable, Horizontal Sync,  
and Vertical Sync signals. (default)  
1: The Pattern Generator creates its own video timing  
as configured in the Pattern Generator Total Frame  
Size, Active Frame Size. Horizontal Sync Width,  
Vertical Sync Width, Horizontal Back Porch, Vertical  
Back Porch, and Sync Configuration registers.  
1
0
RW  
RW  
Color Invert Enable Inverted Color Patterns:  
0: Do not invert the color output. (default)  
1: Invert the color output.  
Auto Scroll Auto Scroll Enable:  
0: The Pattern Generator retains the current pattern.  
(default)  
1: The Pattern Generator will automatically move to  
the next enabled pattern after the number of frames  
specified in the Pattern Generator Frame Time  
(PGFT) register.  
See TI App Note AN-2198 ().  
102  
103  
0x66 PGIA  
7:0  
7:0  
RW  
RW  
0x00  
0x00  
PG Indirect This 8-bit field sets the indirect address for accesses  
Address  
to indirectly-mapped registers. It should be written  
prior to reading or writing the Pattern Generator  
Indirect Data register.  
See TI App Note AN-2198 ().  
0x67 PGID  
PG Indirect When writing to indirect registers, this register  
Data  
contains the data to be written. When reading from  
indirect registers, this register contains the read back  
value.  
See TI App Note AN-2198 ().  
Copyright © 2013–2015, Texas Instruments Incorporated  
49  
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 7. Serial Control Bus Registers(1) (2) (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
110  
0x6E GPI Pin Status  
1
7
R
R
R
0x00  
GPI7 Pin  
Status  
GPI7 Pin Status. Readable when REG_GPIO7 is set  
as an input.  
6
5
GPI6 Pin  
Status  
GPI6 Pin Status. Readable when REG_GPIO6 is set  
as an input.  
GPI5 Pin  
Status  
GPI5 Pin Status. Readable when REG_GPIO5 is set  
as an input.  
4
3
Reserved  
R
R
R
R
GPI3 Pin  
Status  
GPI3 Pin Status. Readable when GPIO3 is set as an  
input.  
2
1
0
GPI2 Pin  
Status  
GPI2 Pin Status. Readable when GPIO2 is set as an  
input.  
GPI1 Pin  
Status  
GPI1 Pin Status. Readable when GPIO1 is set as an  
input.  
GPI0 Pin  
Status  
GPI0 Pin Status. Readable when GPIO0 is set as an  
input.  
111  
0x6D GPI Pin Status  
2
7:1  
0
0x00  
Reserved  
R
GPI8 Pin  
Status  
GPI8 Pin Status. Readable when REG_GPIO8 is set  
as an input.  
128  
129  
130  
131  
132  
144  
145  
146  
147  
148  
152  
153  
154  
155  
156  
157  
158  
159  
0x80 RX_BKSV0  
0x81 RX_BKSV1  
0x82 RX_BKSV2  
0x83 RX_BKSV3  
0x84 RX_BKSV4  
0x90 TX_KSV0  
0x91 TX_KSV1  
0x92 TX_KSV2  
0x93 TX_KSV3  
0x94 TX_KSV4  
0x98 TX_AN0  
0x99 TX_AN1  
0x9A TX_AN2  
0x9B TX_AN3  
0x9C TX_AN4  
0x9D TX_AN5  
0x9E TX_AN6  
0x9F TX_AN7  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
RX BKSV0 BKSV0: Value of byte 0 of the Receiver KSV  
RX BKSV1 BKSV1: Value of byte 1 of the Receiver KSV  
RX BKSV2 BKSV2: Value of byte 2 of the Receiver KSV  
RX BKSV3 BKSV3: Value of byte 3of the Receiver KSV.  
RX BKSV4 BKSV4: Value of byte 4of the Receiver KSV.  
TX KSV0  
TX KSV1  
TX KSV2  
TX KSV3  
TX KSV4  
TX AN0  
TX AN1  
TX AN2  
TX AN3  
TX AN4  
TX AN5  
TX AN6  
TX AN7  
KSV0: Value of byte 0 of the Transmitter KSV.  
KSV1: Value of byte 1 of the Transmitter KSV.  
KSV2: Value of byte 2 of the Transmitter KSV.  
KSV3: Value of byte 3 of the Transmitter KSV.  
KSV4: Value of byte 4 of the Transmitter KSV.  
TX_AN0: Value of byte 0 of the Transmitter AN Value  
TX_AN1: Value of byte 1 of the Transmitter AN Value  
TX_AN2: Value of byte 2 of the Transmitter AN Value  
TX_AN3: Value of byte 3 of the Transmitter AN Value  
TX_AN4: Value of byte 4 of the Transmitter AN Value  
TX_AN5: Value of byte 5 of the Transmitter AN Value  
TX_AN6: Value of byte 6 of the Transmitter AN Value  
TX_AN7: Value of byte 7 of the Transmitter AN Value  
50  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
Register Maps (continued)  
Table 7. Serial Control Bus Registers(1) (2) (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
192  
0xC0 HDCP Debug 1  
7
6
0x00  
Reserved  
R
HDCP  
HDCP I2C Timeout Disable  
Timeout  
Disable  
Setting this bit to a 1 will disable the bus timeout  
function in the HDCP I2C master. When enabled, the  
bus timeout function allows the I2C master to assume  
the bus is free if no signaling occurs for more than 1  
second.  
Set via the HDCP_DBG register in the HDCP  
Transmitter.  
5:4  
3
Reserved  
R
R
RGB  
Checksum  
Enable  
Enable RBG video line checksum  
Enables sending of ones-complement checksum for  
each 8-bit RBG data channel following end of each  
video data line.  
Set via the HDCP_DBG register in the HDCP  
Transmitter.  
2
Fast LV  
Fast Link Verification  
HDCP periodically verifies that the HDCP Receiver is  
correctly synchronized. Setting this bit will increase  
the rate at which synchronization is verified. When set  
to a 1, Pj is computed every 2 frames and Ri is  
computed every 16 frames. When set to a 0, Pj is  
computed every 16 frames and Ri is computed every  
128 frames.  
Set via the HDCP_DBG register in the HDCP  
Transmitter.  
1
0
R
R
Timer  
Speedup  
Timer Speedup  
Speed up HDCP authentication timers.  
Set via the HDCP_DBG register in the HDCP  
Transmitter.  
HDCP I2C  
Fast  
HDCP I2C Fast mode Enable  
Setting this bit to a 1 will enable the HDCP I2C Master  
in the HDCP Receiver to operation with Fast mode  
timing. If set to a 0, the I2C Master will operation with  
Standard mode timing.  
Set via the HDCP_DBG register in the HDCP  
Transmitter.  
193  
0xC1 HDCP Debug 2  
7:2  
1
0x00  
Reserved  
RW  
No Decrypt Disable HDCP Decryption  
When disabled, the HDCP Receiver will output  
encrypted RGB data. This provides a simple method  
for verifying that the link is encrypted.  
0: HDCP Decryption enabled  
1: HDCP Decryption disabled  
0
7:2  
1
Reserved  
Reserved  
196  
0xC4 HDCP Status  
0x00  
R
R
RGB  
Checksum  
ERR  
RGB Checksum Error Detected  
If RGB Checksum in enabled through the HDCP  
Transmitter HDCP_DBG register, this bit will indicate  
if a checksum error is detected. This register may be  
cleared by writing any value to this register  
0
AUTHED  
HDCP Authenticated  
Indicates the HDCP authentication has completed  
successfully. The controller may now send video data  
requiring content protection. This bit will be cleared if  
authentication is lost or if the controller restarts  
authentication.  
Copyright © 2013–2015, Texas Instruments Incorporated  
51  
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 7. Serial Control Bus Registers(1) (2) (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit  
Function  
Description  
224  
225  
226  
227  
0xE0 RPTR TX0  
0xE1 RPTR TX1  
0xE2 RPTR TX2  
0xE3 RPTR TX3  
7:1  
R
0x00  
0x00  
0x00  
0x00  
PORT0_AD Transmit Port 0 I2C Address  
DR  
Indicates the I2C address for the Repeater Transmit  
Port.  
0
R
PORT0_VA Transmit Port 0 Valid  
LID Indicates that the HDCP Repeater has a transmit port  
at the I2C Address identified by upper 7 bits of this  
register  
0: Address Invalid (default)  
1: Address Valid  
7:1  
0
R
R
PORT1_AD Transmit Port 1 I2C Address  
DR Indicates the I2C address for the Repeater Transmit  
Port.  
PORT1_VA Transmit Port 1 Valid  
LID Indicates that the HDCP Repeater has a transmit port  
at the I2C Address identified by upper 7 bits of this  
register  
0: Address Invalid (default)  
1: Address Valid  
7:1  
0
R
R
PORT2_AD Transmit Port 2 I2C Address  
DR Indicates the I2C address for the Repeater Transmit  
Port.  
PORT2_VA Transmit Port 2 Valid  
LID Indicates that the HDCP Repeater has a transmit port  
at the I2C Address identified by upper 7 bits of this  
register  
0: Address Invalid (default)  
1: Address Valid  
7:1  
0
R
R
PORT3_AD Transmit Port 3 I2C Address  
DR Indicates the I2C address for the Repeater Transmit  
Port.  
PORT3_VA Transmit Port 3 Valid  
LID  
Indicates that the HDCP Repeater has a transmit port  
at the I2C Address identified by upper 7 bits of this  
register  
0: Address Invalid (default)  
1: Address Valid  
240  
241  
242  
243  
244  
245  
0xF0 HDCP RX ID  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
R
R
R
R
R
R
0x5F  
0x55  
0x48  
0x39  
0x32  
0x38  
ID0  
ID1  
ID2  
ID3  
ID4  
ID5  
First byte ID code, ‘_’  
0xF1  
0xF2  
0xF3  
0xF4  
0xF5  
Second byte of ID code, ‘U’  
Third byte of ID code. ‘H'  
Forth byte of ID code: ‘9’  
Fifth byte of ID code: “2”  
Sixth byte of ID code: “8”  
52  
Copyright © 2013–2015, Texas Instruments Incorporated  
 
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DS90UH928Q-Q1 deserializer, in conjunction with a DS90UH925Q-Q1 or DS90UH927Q-Q1 serializer,  
provides a solution for secure distribution of content-protected digital video and audio within automotive  
infotainment systems. It converts a high-speed serialized interface with an embedded clock, delivered over a  
single signal pair (FPD-Link III), to four LVDS data/control streams, one LVDS clock pair (FPD-Link), and I2S  
audio data. The digital video and audio data is protected using the industry standard HDCP copy protection  
scheme.The serial bus scheme, FPD-Link III, supports high speed forward channel data transmission and low  
speed full duplex back channel communication over a single differential link. Consolidation of audio, video data  
and control over a single differential pair reduces the interconnect size and weight, while also eliminating skew  
issues and simplifying system design.  
9.2 Typical Application  
Figure 39 shows a typical application of the DS90UH928Q-Q1 deserializer for an 85 MHz 24-bit Color Display  
Application. Inputs utilize 0.1-µF coupling capacitors to the line and the deserializer provides internal termination.  
The voltage rating of the coupling capacitors should be 50 V and should use a small body capacitor size, such  
as 0402 or 0602, to help ensure good signal integrity. The FPD-Link LVDS differential outputs require 100-Ω  
termination resistors at the receiving device or display.  
Bypass capacitors must be placed near the power supply pins. At a minimum, three 4.7-μF capacitors, one  
placed at each power supply pin, are required for local device bypassing. If additional bypass capacitors are  
used, place the smaller value components closer to the pin. Ferrite beads are required on the two supplies  
(VDD33 and VDDIO) for effective noise suppression. Pins VDD33_A and VDD33_B should be connected directly to  
ensure ESD performance. The interface to the display is FPD-Link LVDS. The VDDIO pin may be connected to  
3.3 V or 1.8 V. A delay capacitor (>10 µF) and pullup resistor (10 kΩ) should be placed on the PDB signal to  
delay the enabling of the device until power is stable.  
Copyright © 2013–2015, Texas Instruments Incorporated  
53  
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
Typical Application (continued)  
3.3V  
DS90UH928Q-Q1  
3.3V / 1.8V  
VDDIO  
VDD33_A  
C6  
FB1  
FB2  
C4  
CAPLV25  
VDD33_B  
CAPL12  
C7  
C11  
C12  
C5  
C8  
CAPLV12  
CAPP12  
C9  
CAPR12  
C10  
CAPI2S  
C13  
PASS  
LOCK  
C1  
Serial  
FPD-Link III  
Interface  
TxCLKOUT-  
TxCLKOUT+  
RIN+  
RIN-  
RTERM  
C2  
CMF  
TxOUT3-  
TxOUT3+  
TxOUT2-  
TxOUT2+  
RTERM  
C3  
FPD-Link  
Interface  
RTERM  
CMLOUTP  
CMLOUTN  
TxOUT1-  
TxOUT1+  
RTERM  
OEN  
OSS_SEL  
LVCMOS  
TxOUT0-  
TxOUT0+  
BISTEN  
Control  
RTERM  
MAPSEL  
LFMODE  
Interface  
VDD33  
VDD33  
R1  
VDD33 or VDDIO=3.3V±0.3V  
R5  
IDx  
SCL  
SDA  
INTB_IN  
PDB  
R2  
NOTE:  
FB1-FB2 (Optional): Impedance = 1kQ,  
Low DC resistance (<1Q)  
C14  
VDD33  
C1-C3 = 0.1 µF (50 WV; C1, C2: 0402; C3: 0603)  
C4-C13 = 4.7 µF  
C14 = > 10 µF  
R1 and R2 (see IDx Resistor Value Table)  
R3 and R4 (see MODE_SEL Resistor Value Table)  
R5 = 10kQ  
R3  
R4  
GPIO[1:0]  
MCLK  
I2S_CLK  
I2S_WC  
I2S_Dx  
MODE_SEL  
I2S / GPIO  
Interface  
4
RESx  
DAP (GND)  
RPU = 4.7kQ  
RTERM = 100Q  
Figure 39. Typical Connection Diagram  
54  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
Typical Application (continued)  
FPD-Link  
FPD-Link  
VDDIO  
VDD33  
VDD33  
VDDIO  
(1.8V or 3.3V) (3.3V)  
(3.3V) (1.8V or 3.3V)  
RxIN3+/-  
RxIN2+/-  
TxOUT3+/-  
TxOUT2+/-  
FPD-Link III  
1 Pair/AC Coupled  
DOUT+  
DOUT-  
RIN+  
RIN-  
HOST  
Graphics  
Processor  
RGB Display  
720p  
24-bit Color Depth  
RxIN1+/-  
RxIN0+/-  
TxOUT1+/-  
TxOUT0+/-  
100Q STP Cable  
RxCLKIN+/-  
TxCLKOUT+/-  
INTB_IN  
DS90UH927Q-Q1  
Serializer  
DS90UH928Q-Q1  
Deserializer  
OEN  
LOCK  
PDB  
INTB  
I2S  
OSS_SEL  
PDB  
PASS  
I2S  
6
6
MAPSEL  
LFMODE  
REPEAT  
BKWD  
MAPSEL  
LFMODE  
BISTEN  
MCLK  
SCL  
SDA  
IDx  
SCL  
SDA  
IDx  
MODE_SEL  
Figure 40. Typical Display System Diagram  
9.2.1 Design Requirements  
For the typical design application, use the following as input parameters:  
Table 8. Design Parameters  
DESIGN PARAMETER  
VDDIO  
EXAMPLE VALUE  
1.8 V or 3.3 V  
3.3 V  
VDD33  
AC Coupling Capacitor for RIN±  
PCLK Frequency  
100 nF  
78 MHz  
9.2.2 Detailed Design Procedure  
9.2.2.1 Transmission Media  
The DS90UH927Q-Q1 and DS90UH928Q-Q1 chipset is intended to be used in a point-to-point configuration  
through a shielded twisted pair cable. The serializer and deserializer provide internal termination to minimize  
impedance discontinuities. The interconnect (cable and connector) between the serializer and deserializer should  
have a differential impedance of 100 Ω. The maximum length of cable that can be used is dependant on the  
quality of the cable (gauge, impedance), connector, board (discontinuities, power plane), the electrical  
environment (for example, power stability, ground noise, input clock jitter, PCLK frequency, etc.) and the  
application environment.  
The resulting signal quality at the receiving end of the transmission media may be assessed by monitoring the  
differential eye opening of the serial data stream. The Receiver CML Monitor Driver Output Specifications define  
the acceptable data eye opening width and eye opening height. A differential probe should be used to measure  
across the termination resistor at the CMLOUT± pin Figure 2.  
Copyright © 2013–2015, Texas Instruments Incorporated  
55  
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
9.2.2.2 Display Application  
The DS90UH928Q-Q1, in conjunction with the DS90UH925Q-Q1 or DS90UH927Q-Q1, is intended for interfacing  
with a HDCP compliant host (graphics processor) and a display supporting 24-bit color depth (RGB888) and high  
definition (720p) digital video format. It can receive an 8-bit RGB stream with a pixel clock rate up to 85 MHz  
together with three control bits (VS, HS and DE) and four I2S audio streams. The included HDCP 1.3 compliant  
cipher block allows the authentication of the HDCP Deserializer, which decrypts both video and audio contents.  
The HDCP keys are pre-loaded by TI into Non-Volatile Memory (NVM) for maximum security.  
9.2.3 Application Curves  
Input to Serializer  
Output at Deserializer  
Figure 42. CMLOUT of Deserializer from 48-MHz Input  
Clock  
Figure 41. 78-MHz Clock at Serializer and Deserializer  
10 Power Supply Recommendations  
This section describes power-up requirements and the PDB pin. The power supply ramp (VDD33 and VDDIO  
)
should be faster than 1.5 ms with a monotonic rise. A large capacitor on the PDB pin is needed to ensure PDB  
arrives after all the supply pins have settled to the recommended operating voltage. The PDB pin requires a 10-  
kpullup to VDD33 and a >10-μF capacitor to GND to delay the PDB input signal rise. If PDB is driven externally,  
do not drive the pin HIGH until VDD33 and VDDIO have reached steady state. All inputs must not be driven until  
both VDD33 and VDDIO have reached steady state. Pins VDD33_A and VDD33_B should both be externally  
connected, bypassed, and driven to the same potential (they are not internally connected).  
11 Layout  
11.1 Layout Guidelines  
Circuit board layout and stack-up for the LVDS serializer and deserializer devices should be designed to provide  
low-noise power to the device. Good layout practice will also separate high frequency or high-level inputs and  
outputs to minimize unwanted stray noise, feedback and interference. Power system performance may be greatly  
improved by using thin dielectrics (2 to 4 mil) for power / ground sandwiches. This arrangement utilizes the plane  
capacitance for the PCB power system and has low-inductance, which has proven effectiveness especially at  
high frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass  
capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the  
range of 0.01 μF to 10 μF. Tantalum capacitors may be in the 2.2 μF to 10 μF range. The voltage rating of the  
capacitors should be at least 5X the power supply voltage being used.  
MLCC surface mount capacitors are recommended due to their smaller parasitic properties. When using multiple  
capacitors per supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommended at  
the point of power entry. This is typically in the 50 μF to 100 μF range and will smooth low frequency switching  
noise. It is recommended to connect power and ground pins directly to the power and ground planes with bypass  
capacitors connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an  
external bypass capacitor will increase the inductance of the path. A small body size X7R chip capacitor, such as  
56  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
Layout Guidelines (continued)  
0603 or 0805, is recommended for external bypass. A small body sized capacitor has less inductance. The user  
must pay attention to the resonance frequency of these external bypass capacitors, usually in the range of 20  
MHz to 30 MHz. To provide effective bypassing, multiple capacitors are often used to achieve low impedance  
between the supply rails over the frequency of interest. At high frequency, it is also a common practice to use  
two vias from power and ground pins to the planes, reducing the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs. In some cases, an external filter many be used to provide clean power to sensitive circuits such as  
PLLs. This device requires only one common ground plane to connect all device related ground pins.  
Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the LVDS  
lines to prevent coupling from the LVCMOS lines to the LVDS lines. Closely coupled differential lines of 100 Ω  
are typically recommended for LVDS interconnect. The closely coupled lines help to ensure that coupled noise  
will appear as common mode and thus is rejected by the receivers. The tightly coupled lines will also radiate  
less.  
At least 9 thermal vias are necessary from the device center DAP to the ground plane. They connect the device  
ground to the PCB ground plane, as well as conduct heat from the exposed pad of the package to the PCB  
ground plane. More information on the LLP style package, including PCB design and manufacturing  
requirements, is provided in TI Application Note SNOA401.  
Stencil parameters such as aperture area ratio and the fabrication process have a significant impact on paste  
deposition. Inspection of the stencil prior to placement of the WQFN package is highly recommended to improve  
board assembly yields. If the via and aperture openings are not carefully monitored, the solder may flow  
unevenly through the DAP. Stencil parameters for aperture opening and via locations are shown below:  
Table 9. No Pullback WQFN Stencil Aperture Summary  
DEVICE  
PIN  
COUNT  
MKT Dwg  
PCB I/O  
Pad Size  
(mm)  
PCB  
PITCH  
(mm)  
PCB DAP  
SIZE (mm)  
STENCIL I/O  
APERTURE  
(mm)  
STENCIL DAP  
Aperture (mm)  
NUMBER of  
DAP  
APERTURE  
OPENINGS  
DS90UH928Q-  
Q1  
48  
RHS0048A 0.25 x 0.4  
0.5  
5.1 x 5.1  
0.25 x 0.6  
5.1 x 5.1  
1
Figure 43 shows the PCB layout example derived from the layout design of the DS90UH928QEVM Evaluation  
Board. The graphic and layout description are used to determine both proper routing and proper solder  
techniques when designing the Serializer board.  
Copyright © 2013–2015, Texas Instruments Incorporated  
57  
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
11.1.1 CML Interconnect Guidelines  
See SNLA008 and SNLA035 for full details.  
Use 100-Ω coupled differential pairs  
Use the S/2S/3S rule in spacings  
– S = space between the pair  
– 2S = space between pairs  
– 3S = space to LVCMOS signal  
Minimize the number of Vias  
Use differential connectors when operating above 500 Mbps line speed  
Maintain balance of the traces  
Minimize skew within the pair  
Terminate as close to the TX outputs and RX inputs as possible  
Additional general guidance can be found in the LVDS Owner’s Manual (SNLA187).  
11.2 Layout Example  
Length-Matched  
OpenLDI Traces  
High-Speed Traces  
AC Capacitors  
Figure 43. DS90UH928Q-Q1 Deserializer Example Layout  
58  
Copyright © 2013–2015, Texas Instruments Incorporated  
DS90UH928Q-Q1  
www.ti.com.cn  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
Layout Example (continued)  
Figure 44. 48-Pin WQFN Stencil Example of Via and Opening Placement  
版权 © 2013–2015, Texas Instruments Incorporated  
59  
DS90UH928Q-Q1  
ZHCSDB4B MARCH 2013REVISED JANUARY 2015  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
相关文档如下:  
AN-1108《通道链路 PCB 和互连设计指南》SNLA008  
AN-905《传输线路 RAPIDESIGNER 操作和应用指南》SNLA035  
AN-1187《无引线框架封装 (LLP)SNOA401  
LVDS 所有者手册》SNLA187  
AN-2173《通过具有双向控制通道的 FPD-Link III 进行 I2C 通信》SNLA131  
12.2 商标  
All trademarks are the property of their respective owners.  
12.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
60  
版权 © 2013–2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UH928QSQ/NOPB  
DS90UH928QSQE/NOPB  
DS90UH928QSQX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
RHS  
RHS  
RHS  
48  
48  
48  
1000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
-40 to 105  
UH928QSQ  
SN  
SN  
UH928QSQ  
UH928QSQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90UH928QSQ/NOPB WQFN  
DS90UH928QSQE/NOPB WQFN  
DS90UH928QSQX/NOPB WQFN  
RHS  
RHS  
RHS  
48  
48  
48  
1000  
250  
330.0  
178.0  
330.0  
16.4  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
1.3  
1.3  
1.3  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
2500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90UH928QSQ/NOPB  
DS90UH928QSQE/NOPB  
DS90UH928QSQX/NOPB  
WQFN  
WQFN  
WQFN  
RHS  
RHS  
RHS  
48  
48  
48  
1000  
250  
356.0  
208.0  
356.0  
356.0  
191.0  
356.0  
35.0  
35.0  
35.0  
2500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RHS0048A  
WQFN - 0.8 mm max height  
S
C
A
L
E
1
.
8
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.15  
6.85  
B
A
PIN 1 INDEX AREA  
0.5  
0.3  
7.15  
6.85  
0.30  
0.18  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
0.8  
0.7  
C
DIM A  
SEATING PLANE  
OPT 1  
(0.1)  
OPT 2  
(0.2)  
0.05  
0.00  
0.08 C  
2X 5.5  
(0.2)  
5.1 0.1  
(A) TYP  
13  
24  
44X 0.5  
12  
25  
EXPOSED  
THERMAL PAD  
2X  
49  
SYMM  
5.5  
SEE TERMINAL  
DETAIL  
1
36  
0.30  
0.18  
48X  
48  
37  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.1  
C A B  
0.5  
0.3  
48X  
0.05  
4214990/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHS0048A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
5.1)  
SYMM  
48  
37  
48X (0.6)  
1
36  
48X (0.25)  
44X (0.5)  
(1.05) TYP  
(1.25) TYP  
(6.8)  
49  
SYMM  
(R0.05)  
TYP  
(
0.2) TYP  
VIA  
25  
12  
13  
24  
(1.25)  
TYP  
(1.05)  
TYP  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL EDGE  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214990/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHS0048A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.625) TYP  
(1.25)  
TYP  
37  
48  
48X (0.6)  
1
36  
49  
48X (0.25)  
44X (0.5)  
(1.25)  
TYP  
(0.625) TYP  
(6.8)  
SYMM  
(R0.05) TYP  
METAL  
TYP  
12  
25  
24  
13  
16X  
1.05)  
SYMM  
(
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
68% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:15X  
4214990/B 04/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DS90UH928QSQ/NOPB

具有 HDCP 的 5MHz 至 85MHz 24 位彩色 FPD-Link III 转 FPD-Link 解串器 | RHS | 48 | -40 to 105
TI

DS90UH928QSQE/NOPB

具有 HDCP 的 5MHz 至 85MHz 24 位彩色 FPD-Link III 转 FPD-Link 解串器 | RHS | 48 | -40 to 105
TI

DS90UH928QSQX/NOPB

具有 HDCP 的 5MHz 至 85MHz 24 位彩色 FPD-Link III 转 FPD-Link 解串器 | RHS | 48 | -40 to 105
TI

DS90UH929-Q1

具有 HDCP 的 720p FPD-Link III 串行器
TI

DS90UH929TRGCRQ1

具有 HDCP 的 720p FPD-Link III 串行器 | RGC | 64 | -40 to 105
TI

DS90UH929TRGCTQ1

具有 HDCP 的 720p FPD-Link III 串行器 | RGC | 64 | -40 to 105
TI

DS90UH940-Q1

支持 HDCP 的 1080p 双路 FPD-Link III 转 CSI-2 解串器
TI

DS90UH940N-Q1

支持 HDCP 的 1080p FPD-Link III 转 CSI-2 解串器
TI

DS90UH940NTNKDRQ1

支持 HDCP 的 1080p FPD-Link III 转 CSI-2 解串器 | NKD | 64 | -40 to 105
TI

DS90UH940NTNKDTQ1

支持 HDCP 的 1080p FPD-Link III 转 CSI-2 解串器 | NKD | 64 | -40 to 105
TI

DS90UH940TNKDRQ1

支持 HDCP 的 1080p 双路 FPD-Link III 转 CSI-2 解串器 | NKD | 64 | -40 to 105
TI

DS90UH940TNKDTQ1

支持 HDCP 的 1080p 双路 FPD-Link III 转 CSI-2 解串器 | NKD | 64 | -40 to 105
TI