DS160PR412RUAT [TI]

具有集成式 1:2 多路信号分离器的 PCIe® 4.0 16Gbps 4 通道线性转接驱动器

| RUA | 42 | -40 to 85;
DS160PR412RUAT
型号: DS160PR412RUAT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成式 1:2 多路信号分离器的 PCIe® 4.0 16Gbps 4 通道线性转接驱动器

| RUA | 42 | -40 to 85

PC 驱动 驱动器
文件: 总36页 (文件大小:2794K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS160PR412  
ZHCSMH5 DECEMBER 2020  
DS160PR412 具有集成1:2 多路信号分离器PCIe® 4.0 16Gbps 4 通道线性转  
接驱动器  
1 特性  
3 说明  
• 具有集成1:2 多路信号分离器的四通PCIe 4.0  
线性转接驱动器或中继器  
• 此线性转接驱动器与协议无关可兼UPI、  
DisplayPortSASSATA XFI  
3.3V 单电源轨  
120mW/通道的低有功功率  
• 无需散热器  
8GHz 时提供高17dB 的均衡可处理高达  
42dB PCIe 4.0 通道  
• 具-13dB 输入-15dB 输出的超低差分回波损耗  
PRBS 数据具70fs 的低附加随机抖动  
80ps 低延迟  
• 自动接收器检测和无缝支PCIe 链路训练  
• 通过引脚控制SMBus/I2C 进行器件配置。  
• 通过引脚选择多路复用器/多路信号分离器  
• 工业温度范围-40°C 85°C  
3.5mm x 9mm42 引脚、0.5mm WQFN 封  
DS160PR412 是具有集成式多路信号分离器的四通道  
线性转接驱动器。这款低功耗高性能线性转接驱动器专  
为支PCIe 4.0 和其他接口而设计。  
DS160PR412 收器部署了连续时间线性均衡器  
(CTLE)可提供高频增强。均衡器可以打开由于 PCB  
布线或电缆等互连介质引起的码间串扰 (ISI) 而完全关  
闭的输入眼图。线性转接驱动器和无源通道作为一个整  
体接受链路训练以便达到出色的传输和接收均衡设  
从而实现更优的电气链路和尽可能低的延迟。该器  
件具有低通道间串扰、低附加抖动和超低的回波损耗,  
因此在链路中几乎可用作无源元件。这款器件具有内部  
线性稳压器对板上电源噪声具有高抗扰度从而为高  
速数据路径提供纯净电源。  
DS160PR412 在量产期间实施了高速测试从而确保  
可靠的高产量制造。此器件还具有低交流和直流增益变  
可在各种平台部署中提供一致的均衡功能。  
器件信息(1)  
封装尺寸标称值)  
器件型号  
封装  
WQFN (42)  
2 应用  
DS160PR412  
3.5 mm x 9 mm  
台式计算机/主板  
机架式服务器  
微服务器和塔式服务器  
高性能计算  
硬件加速器  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
网络连接存储  
存储区域网(SAN) 和主机总线适配(HBA) 卡  
网络接口(NIC)  
PCIe Card  
x16  
Slot  
x8  
4-Ch  
4-Ch  
Connector-B  
RXB 8-ch  
x8  
RX 8-ch  
DS160PR421  
4 Ch 2:1 Mux  
4-Ch  
4-Ch  
CPU  
TX 8-ch  
TXB 8-ch  
DS160PR412  
4 Ch 1:2 De-mux  
4-Ch  
4-Ch  
h
c
h
c
-
PCIe Card  
-
8
8
XA  
T
RXA  
x8  
Slot  
Connector-A  
x8  
De-multiplexer  
Multiplexer  
PCIe Lane Muxing  
应用用例  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNLS685  
 
 
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................17  
7.5 Programming............................................................ 17  
8 Application and Implementation..................................19  
8.1 Application Information............................................. 19  
8.2 Typical Applications.................................................. 19  
9 Power Supply Recommendations................................24  
10 Layout...........................................................................25  
10.1 Layout Guidelines................................................... 25  
11 Layout Example........................................................... 26  
12 Device and Documentation Support..........................28  
12.1 接收文档更新通知................................................... 28  
12.2 支持资源..................................................................28  
12.3 Trademarks.............................................................28  
12.4 静电放电警告.......................................................... 28  
12.5 术语表..................................................................... 28  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings ....................................... 6  
6.2 ESD Ratings .............................................................. 6  
6.3 Recommended Operating Conditions ........................6  
6.4 Thermal Information ...................................................7  
6.5 DC Electrical Characteristics ..................................... 7  
6.6 High Speed Electrical Characteristics ........................8  
6.7 SMBUS/I2C Timing Charateristics .............................9  
6.8 Typical Characteristics.............................................. 11  
7 Detailed Description......................................................15  
7.1 Overview...................................................................15  
7.2 Functional Block Diagram.........................................15  
7.3 Feature Description...................................................15  
Information.................................................................... 29  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
December 2020  
*
Advance Info.  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DS160PR412  
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
38  
38  
GAIN/SDA  
VREG1  
RX0P  
TXA0P  
TXA0N  
TXB0P  
1
2
2
37  
37  
3
3
36  
36  
4
4
35 TXB0N  
35  
RX0N  
5
34  
TXA1P  
34  
VCC  
GND  
RX1P  
RX1N  
GND  
5
6
6
33 TXA1N  
33  
7
7
32  
32  
TXB1P  
8
8
31 TXB1N  
31  
EP=GND  
9
9
30 GND  
30  
RX2P 10  
10  
29 TXA2P  
29  
11  
11  
28 TXA2N  
28  
RX2N  
VREG2  
VCC  
12  
12  
27 TXB2P  
27  
13  
13  
26 TXB2N  
26  
RX3P 14  
14  
25  
25  
TXA3P  
TXA3N  
RX3N 15  
15  
24  
24  
16  
16  
23 TXB3P  
23  
GND  
SEL  
17  
17  
22  
TXB3N  
22  
5-1. RUA Package 42-Pin WQFN Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Sets device control configuration modes. 4-level IO pin as defined in 7-3. The  
pin can be exercised at device power up or in normal operation mode.  
L0: Pin Mode device control configuration is done solely by strap pins.  
L1 or L2: SMBus/I2C Slave Mode device control configuration is done by an  
external controller with SMBus/I2C master. This pin along with ADDR pin sets  
devices slave address.  
MODE  
41  
I, 4-level  
L3 (Float): RESERVED TI internal test mode.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DS160PR412  
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
EQ0 /ADDR  
40  
I, 4-level  
In Pin Mode:  
The EQ0 and EQ1 pins sets receiver linear equalization CTLE (AC gain) for all  
channels according to 7-1. These pins are sampled at device power-up only.  
In SMBus/I2C Mode:  
EQ1  
20  
I, 4-level  
The ADDR pin in conjunction with MODE pin sets SMBus / I2C slave address  
according to 7-4. The pin is sampled at device power-up only.  
In Pin Mode:  
DC gain (broadbad gain including high frequency) from the input to the output of  
the device for all channels. Note the device also provides AC (high frequency)  
gain in the form of equalization controlled by EQ pins or SMBus/I2C registers.  
In SMBus/I2C Mode:  
GAIN /SDA  
GND  
1
I, 4-level / IO  
3.3 V SMBus/I2C data. External pullup resistor such as 4.7 krequired for  
operation.  
EP, 6, 9, 16,  
21, 30, 39  
P
Ground reference for the device.  
EP: the Exposed Pad at the bottom of the QFN package. It is used as the GND  
return for the device. The EP should be connected to ground plane(s) through low  
resistance path. A via array provides a low impedance path to GND. The EP also  
improves thermal dissipation.  
RSVD  
PD  
19  
18  
O
TI internal test pin. Keep no connect.  
I, 3.3-V LVCMOS 2-level logic controlling the operating state of the redriver. Active in both Pin Mode  
and SMBus/I2C Mode. The pin is used part of PCIe RX_DET state machine as  
outlined in 7-2.  
High: Power down for all channels  
Low: Power up, normal operation for all channels  
RX_DET /SCL  
42  
I, 4-level / IO  
In Pin Mode:  
Sets receiver detect state machine options according to 7-2. The pin is sampled  
at device power-up only.  
In SMBus/I2C Mode:  
3.3 V SMBus/I2C clock. External pullup resistor such as 4.7 krequired for  
operation.  
RX0N  
RX0P  
RX1N  
RX1P  
RX2N  
RX2P  
RX3N  
RX3P  
SEL  
4
3
I
I
I
I
I
I
I
I
Inverting differential RX inputs. Channel 0.  
Noninverting differential RX inputs. Channel 0.  
Inverting differential RX inputs. Channel 1.  
Noninverting differential RX inputs. Channel 0.  
Inverting differential RX inputs. Channel 2.  
Noninverting differential RX inputs. Channel 2.  
Inverting differential RX inputs. Channel 3.  
Noninverting differential RX inputs. Channel 3.  
8
7
11  
10  
15  
14  
17  
I, 3.3 V LVCMOS Selects the mux path. Active in both Pin Mode and SMBus/I2C Mode. Note the  
SEL pin must be exercised in system implementations for mux selection between  
Port A vs Port B. The pin is used part of PCIe RX_DET state machine as outlined  
in 7-2.  
L: Port A selected.  
H: Port B selected.  
TXA0N  
TXA0P  
TXA1N  
TXA1P  
TXA2N  
TXA2P  
TXA3N  
TXA3P  
37  
38  
33  
34  
28  
29  
24  
25  
O
O
O
O
O
O
O
O
Inverting differential TX output Port A, Channel 0.  
Non-inverting differential TX output Port A, Channel 0.  
Inverting differential TX output Port A, Channel 1.  
Non-inverting differential TX output Port A, Channel 1.  
Inverting differential TX output Port A, Channel 2.  
Non-inverting differential TX output Port A, Channel 2.  
Inverting differential TX output Port A, Channel 3.  
Non-inverting differential TX output Port A, Channel 3.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DS160PR412  
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
TXB0N  
TXB0P  
TXB1N  
TXB1P  
TXB2N  
TXB2P  
TXB3N  
TXB3P  
VCC  
NO.  
35  
O
O
O
O
O
O
O
O
P
Inverting differential TX output Port B, Channel 0.  
36  
Non-inverting differential TX output Port B, Channel 0.  
Inverting differential TX output Port B, Channel 1.  
Non-inverting differential TX output Port B, Channel 1.  
Inverting differential TX output Port B, Channel 2.  
Non-inverting differential TX output Port B, Channel 2.  
Inverting differential TX output Port B, Channel 3.  
Non-inverting differential TX output Port B, Channel 3.  
31  
32  
26  
27  
22  
23  
5, 13  
Power supply, VCC = 3.3 V ± 10%. The VCC pins on this device should be  
connected through a low-resistance path to the board VCC plane.  
VREG1  
VREG2  
2
P
P
Internal regulator output. Must add decoupling capacitor of 0.22 µF near the pin.  
Do not route the pin beyond the decoupling capacitor. Do not connect to VREG2.  
Do not use as a power supply for any other component on the board.  
12  
Internal regulator output. Must add decoupling caps of 0.22 µF near the pin. Do  
not route the pin beyond the decoupling capacitor. Do not connect to VREG1. Do  
not use as a power supply for any other component on the board.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DS160PR412  
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
4.0  
UNIT  
V
VCCABSMAX  
VIOCMOS,ABSMAX  
VIO4LVL,ABSMAX  
VIOHS-RX,ABSMAX  
VIOHS-TX,ABSMAX  
TJ,ABSMAX  
Supply Voltage (VCC)  
3.3 V LVCMOS and Open Drain I/O voltage  
4-level Input I/O voltage  
4.0  
V
2.75  
3.2  
V
High-speed I/O voltage (RXnP, RXnN)  
High-speed I/O voltage (TXnP, TXnN)  
Junction temperature  
V
2.75  
150  
150  
V
°C  
°C  
Tstg  
Storage temperature range  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2 kV  
may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
DC plus AC power should not  
exceed these limits  
VCC  
NVCC  
Supply voltage, VCC to GND  
Supply noise tolerance1  
3.0  
3.3  
3.6  
V
DC to <50 Hz, sinusoidal  
50 Hz to 500 kHz, sinusoidal  
500 kHz to 2.5 MHz, sinusoidal  
>2.5 MHz, sinusoidal  
250  
100  
33  
mVpp  
mVpp  
mVpp  
mVpp  
ms  
10  
TRampVCC  
VCC supply ramp time  
From 0 V to 3.0 V  
0.150  
40  
40  
100  
125  
85  
TJ  
Operating junction temperature  
Operating ambient temperature  
Minimum pulse width required for  
°C  
TA  
°C  
PWLVCMOS the device to detect a valid signal PD, SEL  
on LVCMOS inputs  
200  
uS  
SMBus/I2C SDA and SCL Open Supply voltage for open drain  
VCCSMBUS  
3.6  
400  
V
Drain Termination Voltage  
pull-up resistor  
SMBus/I2C clock (SCL) frequency  
in SMBus slave mode  
FSMBus  
10  
kHz  
Source differential launch  
amplitude  
VIDLAUNCH  
800  
1200  
mVpp  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DS160PR412  
 
 
 
 
 
 
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
6.4 Thermal Information  
DS160PR41  
2,  
DS160PR42  
THERMAL METRIC(1)  
UNIT  
1
RUA, 42  
Pins  
RθJA-  
Junction-to-ambient thermal resistance  
26.1  
/W  
High K  
RθJC(top) Junction-to-case (top) thermal resistance  
14.1  
8.7  
1.6  
8.6  
2.6  
/W  
/W  
/W  
/W  
/W  
RθJB  
ψJT  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.  
6.5 DC Electrical Characteristics  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power  
GAIN1/0 = L3  
120  
110  
mW  
mW  
POWERCH  
Active power per channel  
GAIN1/0 = L0  
Device current consumption when four  
channels are active  
IACTIVE  
ISTBY  
GAIN1/0 = L3, PD = L  
145  
190  
45  
mA  
Device current consumption in standby  
power mode  
All channels disabled (PD = H)  
30  
mA  
V
VREG  
Control IO  
VIH  
Internal regulator output  
2.5  
High level input voltage  
Low level input voltage  
High level output voltage  
Low level output voltage  
SDA, SCL, PD, SEL pins  
2.1  
2.1  
V
V
VIL  
SDA, SCL, PD, SEL pins  
1.08  
VOH  
V
Rpull-up = 4.7 k(SDA, SCL pins)  
IOL = 4 mA (SDA, SCL pins)  
VOL  
0.4  
80  
10  
V
IIH,SEL  
IIH  
Input high leakage current for SEL pin VInput = VCC  
µA  
µA  
µA  
Input high leakage current  
Input low leakage current  
VInput = VCC, (SCL, SDA, PD pins)  
VInput = 0 V, (SCL, SDA, PD, SEL pins)  
IIL  
-10  
Input high leakage current for fail safe VInput = 3.6 V, VCC = 0 V, (SCL, SDA,  
IIH,FS  
150  
10  
µA  
pF  
input pins  
PD, SEL pins)  
CIN-CTRL  
Input capacitance  
SDA, SCL, PD, SEL pins  
1.5  
4 Level IOs (MODE, GAIN, EQ0, EQ1, RX_DET pins)  
IIH_4L Input high leakage current, 4 level IOs VIN = 2.5 V  
µA  
µA  
Input low leakage current for all 4 level  
IOs except MODE.  
IIL_4L  
VIN = GND  
VIN = GND  
-10  
Input low leakage current for MODE  
pin  
IIL_4L,MODE  
-200  
µA  
Receiver  
VRX-DC-CM  
ZRX-DC  
RX DC Common Mode (CM) Voltage Device is in active or standby state  
Rx DC Single-Ended Impedance  
2.5  
50  
V
ZRX-HIGH-IMP- DC input CM input impedance during  
Inputs are at CM voltage  
20  
kΩ  
Reset or power-down  
DC-POS  
Transmitter  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DS160PR412  
 
 
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
UNIT  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
100  
MAX  
Impedance of Tx during active  
signaling, VID,diff = 1Vpp  
ZTX-DIFF-DC  
VTX-DC-CM  
ITX-SHORT  
DC Differential Tx Impedance  
Tx DC common mode Voltage  
Tx Short Circuit Current  
V
0.75  
Total current the Tx can supply when  
shorted to GND  
90  
mA  
6.6 High Speed Electrical Characteristics  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Receiver  
50 MHz to 1.25 GHz  
-25  
-22  
-21  
-14  
dB  
dB  
dB  
dB  
1.25 GHz to 2.5 GHz  
2.5 GHz to 4.0 GHz  
4.0 GHz to 8.0 GHz  
RLRX-DIFF  
Input differential return loss  
Pair-to-pair isolation (SDD21) between  
two adjacent active receiver pairs from  
10 MHz to 8 GHz.  
XTRX  
Receive-side pair-to-pair isolation  
-47  
dB  
Transmitter  
Measured with lowest EQ, GAIN = L3;  
PRBS-7, 16 Gbps, over at least  
106 bits using a bandpass-Pass Filter  
from 30 Khz - 500 Mhz  
Tx AC Peak-to-Peak Common Mode  
Voltage  
VTX-AC-CM-PP  
50  
mVpp  
VTX-CM-DC = |VOUTn+ + VOUTn|/2,  
Absolute Delta of DC Common Mode Measured by taking the absolute  
VTX-CM-DC-  
0
100  
10  
mV  
mV  
ACTIVE-IDLE-  
DELTA  
Voltage during L0 and Electrical Idle  
difference of VTX-CM-DC during PCIe  
state L0 and Electrical Idle  
Absolute Delta of DC Common Mode Measured by taking the absolute  
Voltage between VOUTn+ and VOUTndifference of VOUTn+ and VOUTn–  
VTX-CM-DC-  
LINE-DELTA  
during L0  
during PCIe state L0  
Measured by taking the absolute  
difference of VOUTn+ and VOUTn–  
during Electrical Idle, Measured with a  
band-pass filter consisting of two first-  
order filters. The High-Pass and Low-  
Pass -3-dB bandwidths are 10 kHz  
and 1.25 GHz, respectively - zero at  
input  
VTX-IDLE-DIFF- AC Electrical Idle Differential Output  
0
10  
mV  
Voltage  
AC-p  
Measured by taking the absolute  
difference of VOUTn+ and VOUTn–  
during Electrical Idle, Measured with a  
first-order Low-Pass Filter with 3-dB  
bandwidth of 10 kHz  
VTX-IDLE-DIFF- DC Electrical Idle Differential Output  
0
0
5
mV  
mV  
Voltage  
DC  
Measured while Tx is sensing whether  
a low-impedance Receiver is present.  
No load is connected to the driver  
output  
VTX-RCV-  
Amount of Voltage change allowed  
during Receiver Detection  
600  
DETECT  
50 MHz to 1.25 GHz  
1.25 GHz to 2.5 GHz  
2.5 GHz to 4.0 GHz  
4.0 GHz to 8.0 GHz  
-20  
-18  
-18  
-16  
dB  
dB  
dB  
dB  
RLTX-DIFF  
Output differential return loss  
Minimum pair-to-pair isolation  
(SDD21) between two adjacent active  
transmitter pairs from 10 MHz to 8  
GHz.  
XTTX  
Transmit-side pair-to-pair isolation  
-48  
dB  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DS160PR412  
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Device Datapath  
Input-to-output latency (propagation  
delay) through a data channel  
For either Low-to-High or High-to-Low  
transition  
TPLHD/PHLD  
LTX-SKEW  
80  
110  
20  
ps  
ps  
Between any two lanes within a single  
transmitter.  
Lane-to-Lane Output Skew  
-20  
Difference between through redriver  
and baseline setup. 16Gbps PRBS15.  
Minimal input/output  
channels. Minimum EQ. 800 mVpp-diff  
input swing.  
TRJ-DATA  
Additive Random Jitter with data  
70  
90  
4
fs  
fs  
Difference between through redriver  
and baseline setup. 8 Ghz CK.  
Minimal input/output  
channels. Minimum EQ. 400 mVpp-diff  
input swing.  
Intrinsic additive Random Jitter with  
clock  
TRJ-INTRINSIC  
Difference between through redriver  
and baseline setup. 16 Gbps PRBS15.  
Minimal input/output  
channels. Minimum EQ. 800 mVpp-diff  
input swing.  
JITTERTOTAL-  
Additive Total Jitter with data  
ps  
ps  
DATA  
Difference between through redriver  
and baseline setup. 8 Ghz CK.  
Intrinsic additive Total Jitter with clock Minimal input/output  
channels. Minimum EQ. 800 mVpp-diff  
JITTERTOTAL-  
1
INTRINSIC  
input swing.  
Minimum EQ, GAIN = L0  
Minimum EQ, GAIN = L1  
Minimum EQ, GAIN = L2  
Minimum EQ, GAIN = L3 (Float)  
-4.2  
-1.8  
0.25  
2.0  
dB  
dB  
dB  
dB  
DCGAIN  
DC flat gain input to output  
EQ boost at max setting (EQ INDEX = AC gain at 8 GHz relative to gain at  
EQ-MAX8G  
17  
dB  
dB  
15)  
100 MHz.  
GAIN = L2, minimum EQ setting. Max-  
Min.  
DCGAINVAR DC gain variation  
EQGAINVAR EQ boost variation  
-2.3  
-3.3  
1.7  
3.7  
At 8 Ghz. GAIN1/0 = L2, maximum EQ  
setting. Max-Min.  
dB  
GAIN = L3 (defauult). 128T pattern at  
2.5 Gbps.  
LINDC  
LINAC  
Output DC Linearity  
Output AC Linearity  
1000  
750  
mVpp  
mVpp  
GAIN = L3 (default). 1T pattern at 16  
Gbps.  
6.7 SMBUS/I2C Timing Charateristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Slave Mode  
Pulse width of spikes which must be  
suppressed by the input filter  
tSP  
50  
ns  
µs  
Hold time (repeated) START condition.  
After this period, the first clock pulse is  
generated  
tHD-STA  
0.6  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
1.3  
0.6  
µs  
µs  
THIGH  
Set-up time for a repeated START  
condition  
tSU-STA  
tHD-DAT  
0.6  
0
µs  
µs  
Data hold time  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DS160PR412  
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TSU-DAT  
tr  
Data setup time  
0.1  
µs  
Rise time of both SDA and SCL  
signals  
120  
2
ns  
Pull-up resistor = 4.7 kΩ, Cb = 10pF  
Pull-up resistor = 4.7 kΩ, Cb = 10pF  
tf  
Fall time of both SDA and SCL signals  
Set-up time for STOP condition  
ns  
µs  
tSU-STO  
0.6  
1.3  
Bus free time between a STOP and  
START condition  
tBUF  
µs  
tVD-DAT  
tVD-ACK  
Cb  
Data valid time  
0.9  
0.9  
µs  
µs  
pF  
Data valid acknowledge time  
capacitive load for each bus line  
400  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DS160PR412  
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
6.8 Typical Characteristics  
Equalization Boost vs Frequency  
20  
EQ=0  
EQ=1  
EQ=7  
EQ=13  
EQ=2  
EQ=8  
EQ=14  
EQ=3  
EQ=9  
EQ=15  
EQ=4  
EQ=5  
18  
EQ=6  
EQ=10  
EQ=11  
16  
14  
12  
10  
8
EQ=12  
6
4
2
0
-2  
-4  
0.1  
1
10  
Frequency (GHz)  
6-1. Typical EQ Boost vs Frequency  
Equalization over Voltage and Temperature (EQ=15)  
22  
20  
18  
16  
14  
12  
10  
8
VCC=3.3V, Temp=25C  
VCC=3.3V, Temp=-40C  
VCC=3.3V, Temp=85C  
VCC=3.0V, Temp=25C  
VCC=3.0V, Temp=-40C  
VCC=3.0V, Temp=85C  
VCC=3.6V, Temp=25C  
VCC=3.6V, Temp=-40C  
VCC=3.6V, Temp=85C  
6
4
2
0
0.1  
1
10  
Frequency (GHz)  
6-2. Typical EQ Boost over Voltage and Temperature with EQ=15  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DS160PR412  
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
6.8 Typical Characteristics  
Input (RX) Differential Return Loss  
0
-4  
-8  
-12  
-16  
-20  
-24  
-28  
-32  
SDD11  
PCIe 4.0 Mask  
-36  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Frequency (GHz)  
6-3. Typical RX Differential Return Loss  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DS160PR412  
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
6.8 Typical Characteristics  
Output (TX) Differential Return Loss  
0
-4  
-8  
-12  
-16  
-20  
-24  
-28  
-32  
SDD22  
PCIe 4.0 Mask  
-36  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Frequency (GHz)  
6-4. Typical TX Differential Return Loss  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DS160PR412  
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
6.8 Typical Characteristics  
6-5. Typical Jitter Characteristics - Top: 16Gbps PRBS15 Input to the Device, Bottom: Output of the Device.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DS160PR412  
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DS160PR412 is a four channel linear redriver with ingrated demultiplexer (demux). The low-power high-  
performance linear repeater or redriver is designed to support PCIe 1.0/2.0/3.0/4.0. The device is a protocol  
agnostic linear redriver that can operate for interfaces up to 16 Gbps.  
The DS160PR412 can be configured two different ways:  
Pin Mode device control configuration is done solely by strap pins. Pin mode is expected to be good enough  
for many system implementation needs.  
SMBus/I2C Slave Mode - provides most flexibility. Requires a SMBus/I2C master device to configure  
DS160PR412 though writing to its slave address.  
7.2 Functional Block Diagram  
One of Four 1:2 Demultiplexer Modules  
RX Detect  
Term  
Term  
RXnP  
RXnN  
TXAnP  
TXAnN  
Linear  
Driver  
CTLE  
TXBnP  
TXBnN  
Linear  
Driver  
DS160PR412  
Redriver Demux 1:2  
Term  
RX Detect  
RX  
Detect  
Control  
Select  
mux  
control  
Driver  
Control  
CTLE  
Control  
VCC  
Voltage Regulator  
VREG1,2  
Power-  
On Reset  
Always-On  
10MHz  
Shared Digital Core  
GAIN/SDA  
RX_DET/SCL  
Shared Digital  
GND  
7.3 Feature Description  
7.3.1 Linear Equalization  
The DS160PR412 receivers feature a continuous-time linear equalizer (CTLE) that applies high-frequency boost  
to help equalize the frequency-dependent insertion loss effects of the passive channel. 7-1 shows available  
equalization boost through EQ control pins (EQ1 and EQ0), when in Pin Control mode (MODE = L0).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DS160PR412  
 
 
 
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
7-1. Equalization Control Settings  
EQUALIZATION SETTING  
TYPICAL EQ BOOST (dB)  
EQ1_0 (Ch 0-3) / EQ1_1 (Ch EQ0_0 (Ch0-3) / EQ0_1 (Ch  
EQ INDEX  
@ 4 GHz @ 8 GHz  
4-7)  
L0  
L0  
L0  
L0  
L1  
L1  
L1  
L1  
L2  
L2  
L2  
L2  
L3  
L3  
L3  
L3  
4-7)  
L0  
L1  
L2  
L3  
L0  
L1  
L2  
L3  
L0  
L1  
L2  
L3  
L0  
L1  
L2  
L3  
0
1
0.0  
1.5  
2.0  
2.5  
2.7  
3.0  
4.0  
5.0  
6.0  
7.0  
7.5  
8.0  
8.5  
9.5  
10.0  
11.0  
-0.1  
4.5  
2
5.5  
3
6.5  
4
7.0  
5
8.0  
6
9.0  
7
10.0  
11.0  
12.0  
12.5  
13.0  
14.0  
15.0  
16.0  
17.0  
8
9
10  
11  
12  
13  
14  
15  
The equalization of the device can also be set by writing to SMBus/I2C registers in slave mode. Refer to the  
DS160PR412/421 Programming Guide for details.  
7.3.2 Flat Gain  
The GAIN pin can be used to set the overall datapath flat gain (broadbabd gain including high frequency) of the  
DS160PR412 when the device is in Pin Mode. The default recommendation for most systems will be GAIN = L3  
(float).  
The flat gain and equalization of the DS160PR412 must be set such that the output signal swing at DC and high  
frequency does not exceed the DC and AC linearity ranges of the devices, respectively.  
Note the device also provides AC (high frequency) gain in the form of equalization controlled by EQ pins or  
SMBus/I2C registers.  
7.3.3 Receiver Detect State Machine  
The DS160PR412 deploys an RX detect state machine that governs the RX detection cycle as defined in the  
PCI express specifications. At device power up or through manually triggered event using PD or SEL pin or  
writing to the relevant I2C/SMBus register, the redriver determines whether or not a valid PCI express  
termination is present at the far end of the link. The RX_DET pin of DS160PR412 provides additional flexibility  
for system designers to appropriately set the device in desired mode according to 7-2. For the PCIe  
application the RX_DET pin can be left floating for default settings.  
Note power up ramp or PD/SEL event triggers RX detect for all four channels. In applications where  
DS160PR412 channels are used for multiple PCIe links, the RX detect function can be performed for individual  
channels through writing in appropriate I2C/SMBus registers.  
7-2. Receiver Detect State Machine Settings  
PD  
RX_DET  
RX Common-mode Impedance  
COMMENTS  
PCI Express RX detection state machine is disabled.  
Recommended for non PCIe interface use case where the  
DS160PR412 is used as buffer with equalization.  
L
L0  
Always 50 Ω  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DS160PR412  
 
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
7-2. Receiver Detect State Machine Settings (continued)  
PD  
RX_DET  
RX Common-mode Impedance  
COMMENTS  
TX polls every 150 µs until valid termination is detected. RX CM  
impedance held at Hi-Z until detection Reset by asserting PD high  
for 200 µs then low.  
Pre Detect: Hi-Z  
Post Detect: 50 Ω.  
L
L3 (Float)  
Reset Channels 0-3 signal path and set their RX impedance to Hi-  
Z
H
L
X
X
Hi-Z  
Pre Detect: Hi-Z  
Post Detect: 50 Ω.  
Reset Channels 4-7 signal path and set their RX impedance to Hi-  
Z.  
H
X
Hi-Z  
7.4 Device Functional Modes  
7.4.1 Active PCIe Mode  
The device is in normal operation with PCIe state machine enabled by RX_DET = L3 (float). This mode is  
recommended for PCIe use cases. In this mode PD pin is driven low in a system (for example by PCIe connector  
"PRSNT" signal). In this mode, the device redrives and equalizes PCIe RX or TX signals to provide better signal  
integrity.  
7.4.2 Active Buffer Mode  
The device is in normal operation with PCIe state machine disabled by RX_DET = L0. This mode is  
recommended for non-PCIe use cases. In this mode the device is working as a buffer to provide linear  
equalization to improve signal integrity.  
7.4.3 Standby Mode  
The device is in standby mode invoked by PD = H. In this mode, the device is in standby mode conserving  
power.  
7.5 Programming  
7.5.1 Control and Configuration Interface  
7.5.1.1 Pin Mode  
The DS160PR412 can be fully configured through pin-strap pins. In this mode the device uses 2-level and 4-  
level pins for device control and signal integrity optimum settings.  
7.5.1.1.1 Four-Level Control Inputs  
The DS160PR412 has five (EQ0, EQ1, GAIN, MODE, and RX_DET) 4-level inputs pins that are used to control  
the configuration of the device. These 4-level inputs use a resistor divider to help set the 4 valid levels and  
provide a wider range of control settings. External resistors must be of 10% tolerance or better. The EQ0, EQ1,  
GAIN, and RX_DET pins are sampled at power-up only. The MODE pin can be exercised at device power up or  
in normal operation mode.  
7-3. 4-Level Control Pin Settings  
LEVEL  
L0  
SETTING  
1 kto GND  
13 kto GND  
59 kto GND  
F (Float)  
L1  
L2  
L3  
7.5.1.2 SMBUS/I2C Register Control Interface  
If MODE = L2 (SMBus / I2C slave control mode), the DS160PR412 is configured for best signal integrity through  
a standard I2C or SMBus interface that may operate up to 400 kHz. The slave address of the DS160PR412 is  
determined by the pin strap settings on the ADDR and MODE pins. The eight possible slave addresses (7-bit) for  
each channel banks of the device are shown in 7-4. In SMBus/I2C modes the SCL, SDA pins must be pulled  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DS160PR412  
 
 
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
up to a 3.3 V supply with a pull-up resistor. The value of the resistor depends on total bus capacitance. 4.7 kΩis  
a good first approximation for a bus capacitance of 10 pF.  
Refer to the DS160PR412/421 Programming Guide for details.  
7-4. SMBUS/I2C Slave Address Settings  
MODE  
L1  
ADDR  
L0  
7-bit Slave Address Channels 0-1 7-bit Slave Address Channels 2-3  
0x18  
0x1A  
0x1C  
0x1E  
0x20  
0x22  
0x24  
0x26  
0x19  
0x1B  
0x1D  
0x1F  
0x21  
0x23  
0x25  
0x27  
L1  
L1  
L1  
L2  
L1  
L3  
L2  
L0  
L2  
L1  
L2  
L2  
L2  
L3  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DS160PR412  
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The DS160PR412 is a high-speed linear repeater with integrated demux . The device extends the reach of a  
differential channels impaired by loss from transmission media like PCBs and cables. It can be deployed in a  
variety of different systems. The following sections outline typical applications and their associated design  
considerations.  
8.2 Typical Applications  
The DS160PR412 is a PCI Express linear redriver that can also be configured as interface agnostic redriver by  
disabling its RX detect feature. The device can be used in wide range of interfaces including:  
PCI Express  
Ultra Path Interconnect (UPI)  
SATA  
SAS  
Display Port  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DS160PR412  
 
 
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
8.2.1 PCIe x8 Lane Switching  
The DS160PR412 and DS160PR421 and can be used in desktop motherboard applications to switch PCIe lanes  
from a CPU in to one of the two PCIe CEM connectors. 8-1 shows a simplified schematic for the  
configuration. Two DS160PR412 demultiplex eight TX channels from CPU into one of the two PCIe slots. On the  
other hand two DS160PR421 multiplex eight RX channels from one of the two PCIe slots to CPU.  
Mux selection  
Two PR412  
Float  
SEL  
RX_DET  
X8 Slot  
Linear  
Driver  
RXnP  
RXnN  
TXAnP  
TXAnN  
CTLE  
8 TX Chan  
8 Lanes  
System Level  
Power Control  
1 of 4  
Linear  
Driver  
PD  
TXBnP  
TXBnN  
channels  
GPIO mode  
PCIe  
Slot  
A
MODE  
pin strap control  
for DC gain  
1 kΩ  
GAIN  
GND  
DS160PR412  
Pin strap to  
fine tune  
EQ gain  
EQ0  
EQ1  
PCIe Redriver Demux  
settings  
VCC  
VREG1  
0.1F  
VREG2  
VCC  
0.1F  
(2x)  
0.1F  
1F  
Minimum  
recommended  
decoupling  
Two PR421  
Mux selection  
CPU  
(root  
complex)  
SEL  
Float  
RX_DET  
Linear  
Driver  
TXnP  
TXnN  
RXAnP  
RXAnN  
CTLE  
8 RX Chan  
8 Lanes  
1 of 4  
channels  
System Level  
Power Control  
RXBnP  
RXBnN  
CTLE  
PD  
PCIe  
Slot  
B
Optional pin strap  
control for DC gain  
GPIO mode  
GAIN  
MODE  
DS160PR421  
Pin strap to  
fine tune  
EQ gain  
PCIe Redriver Mux  
EQ0  
EQ1  
1 kΩ  
GND  
settings  
VCC  
VREG1  
0.1F  
VREG2  
0.1F  
VCC  
Minimum  
recommended  
decoupling  
1F  
0.1F  
(2x)  
8 Lanes  
X16 Slot  
8-1. Simplified Schematic for PCIe Lane Switching for PC Desktop Application  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DS160PR412  
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
8.2.1.1 Design Requirements  
As with any high-speed design, there are many factors which influence the overall performance. The following  
list indicates critical areas for consideration during design.  
Use 85 Ωimpedance traces when interfacing with PCIe CEM connectors. Length matching on the P and N  
traces should be done on the single-ended segments of the differential pair.  
Use a uniform trace width and trace spacing for differential pairs.  
Place AC-coupling capacitors near to the receiver end of each channel segment to minimize reflections.  
For Gen 3.0 and Gen 4.0, AC-coupling capacitors of 220 nF are recommended, set the maximum body size  
to 0402, and add a cutout void on the GND plane below the landing pad of the capacitor to reduce parasitic  
capacitance to GND.  
Back-drill connector vias and signal vias to minimize stub length.  
Use reference plane vias to ensure a low inductance path for the return current.  
8.2.1.2 Detailed Design Procedure  
In PCIe Gen 4.0 and Gen 3.0 applications, the specification requires Rx-Tx link training to establish and optimize  
signal conditioning settings at 16 Gbps and 8 Gbps, respectively. In link training, the Rx partner requests a series  
of FIR pre-shoot and de-emphasis coefficients (10 Presets) from the Tx partner. The Rx partner includes 7-  
levels (6 dB to 12 dB) of CTLE followed by a single tap DFE. The link training would pre-condition the signal,  
with an equalized link between the root-complex and endpoint.  
Note that there is no link training in PCIe Gen 1.0 (2.5 Gbps) or PCIe Gen 2.0 (5.0 Gbps) applications. The  
DS160PR412 is placed in between the Tx and Rx. It helps extend the PCB trace reach distance by boosting the  
attenuated signals with its equalization, which allows the user to recover the signal by the downstream Rx more  
easily.  
For operation in Gen 4.0 and Gen 3.0 links, the DS160PR412 transmit outputs are designed to pass the Tx  
Preset signaling onto the Rx for the PCIe Gen 4.0 or Gen 3.0 link to train and optimize the equalization settings.  
The suggested setting for the device is GAIN = L3 (default). Adjustments to the EQ setting should be performed  
based on the channel loss to optimize the eye opening in the Rx partner. The Tx equalization presets or CTLE  
and DFE coefficients in the Rx can also be adjusted to further improve the eye opening.  
8.2.1.3 Pin-to-pin Passive versus Redriver Option  
For eight lane PCIe lane muxing application a topology is illustrated where two DS160PR412 and two  
DS160PR421 are used. There are system use cases where the PCIe link loss is low enough that a signal  
conditioner such as linear redrivers may not be needed. In such use cases system engineers may consider  
passive mux to achieve same lane muxing topology. The four channel passive mux/demux TMUXHS4412 is pin-  
to-pin (p2p) compatible with the DS160PR412 and DS160PR421. This p2p component availability provides great  
flexibility for system implementation engineers where the need for redriver is not completely clear. 8-2  
illustrates p2p passive vs redriver option to implement PCIe lane switching.  
PCIe Card  
PCIe Card  
x16  
Slot  
x16  
Slot  
x8  
x8  
Connector-B  
RXB 8-ch  
Connector-B  
RXB 8-ch  
x8  
x8  
RX 8-ch  
RX 8-ch  
TMUXHS4412  
4 Ch 2:1 Mux  
DS160PR421  
4 Ch 2:1 redriver mux  
CPU  
CPU  
TX 8-ch  
TX 8-ch  
TXB 8-ch  
TXB 8-ch  
TMUXHS4412  
4 Ch 1:2 demux  
DS160PR412  
4 Ch 1:2 redriver demux  
Pin-2-pin  
h
c
h
h
c
h
c
-
PCIe Card  
PCIe Card  
c
-
-
-
8
8
8
8
XA  
XA  
T
RXA  
T
RXA  
x8  
x8  
Slot  
Connector-A  
Slot  
Connector-A  
x8  
x8  
Passive option  
Redriver option  
8-2. Pin-to-pin passive vs redriver option for PCIe lane switching  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DS160PR412  
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
8.2.1.4 Application Curves  
The DS160PR412 is a linear redriver that can be used to extend channel reach of a PCIe link. Normally, PCIe-  
compliant TX and RX are equipt with signal-conditioning functions and can handle channel losses of up to 28 dB  
at 8 GHz. In real implementation the channel reach is often lower. With the DS160PR412 in the link, the total  
channel loss between a PCIe root complex and an end-point can be extended up to 42 dB at 8 GHz.  
8-3 shows an electric link that models a single channel of a PCIe link and eye diagrams measured at different  
locations along the link. The source that models a PCIe Transmitter sends a 16 Gbps PRBS-15 signal with P7  
presets. After a transmission channel with 30 dB at 8 GHz insertion loss, the eye diagram is fully closed. The  
DS160PR412 with its CTLE set to the maximum (17 dB boost) together with the source TX equalization  
compensates for the losses of the pre-channel (TL1) and opens the eye at the output of the device.  
The post-channel (TL2) losses mandate the use of PCIe RX equalization functions such as CTLE and DFE that  
are normally available in a PCIe-compliant receiver.  
CPU / PCIe RC  
16 Gbps, PRBS15  
800mV  
Pre-Cursor: 3.5 dB  
Post-Cursor: -6 dB  
PCIe  
End Point  
DUT  
PCIe 4.0 Redriver  
RX EQ = 15 (17 dB)  
TL1  
-30 dB @ 8 GHz  
TL2  
-15 dB @ 8 GHz  
RX CTLE:  
12 dB  
8-3. PCIe 4.0 Link Reach Extension Using the DS160PR412  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DS160PR412  
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
8.2.2 DisplayPort Application  
The DS160PR412 can be used as a four channel DisplayPort (DP) redriver demux for data rates up to 20 Gbps.  
To use the device in a non-PCIe application, the RX_DET pin must be pin-strapped to GND with 1 kΩ resistor  
(L0).  
The inverted DisplayPort HPD signal can be used to put the device into standby mode by using its PD pin. Note  
in a DisplayPort link a sink can use HPD line to create an interrupt for its link partner source. If HPD signal is  
used for power management an RC filter must be installed to filter out HPD interrupt signals.  
The device is a linear redriver which is agnostic to DP link training. The DP link training negotiation between a  
display source and sink stays effective through the device . The redriver becomes part of the electrical channel  
along with passive traces, cables, and so forth, resulting into optimum source and sink parameters for best  
electrical link.  
8-4 shows a simplified schematic for DisplayPort demultiplexing application using DS160PR412. Auxiliary and  
Hot plug detect (HPD) are demuxed outside of DS160PR412. If system use case requires implementing DP  
power states, the device must be controlled by the I2C or the pin-strap pins.  
AUXAp  
AUXAn  
HPDA  
For brevity AUX  
biasing is not shown  
AUXp  
TS3A5223  
AUXn  
HPD  
2-Ch 2:1 mux  
AUXBp  
AUXBn  
HPDB  
AUXAp  
Demux control  
AUXAn  
HPDA  
SEL  
DisplayPort  
Sink A  
RX_DET  
1k  
GND  
Linear  
Driver  
RXnP  
RXnN  
TXAnP  
TXAnN  
CTLE  
DisplayPort  
Source  
3.3V  
59kꢀ  
Linear  
Driver  
1 of 4  
TXBnP  
TXBnN  
AUXp  
PD  
channels  
AUXn  
HPD  
DisplayPort  
Sink B  
AUXBp  
0.1F  
AUXBn  
HPDB  
GPIO mode  
MODE  
DS160PR412  
100kꢀ  
HPD  
DP Main Link Redriver  
1:2 Demux  
Optional pin strap  
control for DC gain  
1 kΩ  
GAIN  
GND  
EQ0  
EQ1  
Pin strap to fine tune  
EQ gain settings  
VREG1  
0.1F  
VREG2  
0.1F  
VCC  
VCC  
0.1F  
(2x)  
1F  
Minimum  
recommended  
decoupling  
8-4. Simplified Schematic for DisplayPort Demultiplexer Application  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DS160PR412  
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
9 Power Supply Recommendations  
Follow these general guidelines when designing the power supply:  
1. The power supply should be designed to provide the operating conditions outlined in the recommended  
operating conditions section in terms of DC voltage, AC noise, and start-up ramp time.  
2. The DS160PR412 does not require any special power supply filtering, such as ferrite beads, provided that  
the recommended operating conditions are met. Only standard supply decoupling is required. Typical supply  
decoupling consists of a 0.1 µF capacitor per VCC pin, one 1.0 µF bulk capacitor per device, and one 10 µF  
bulk capacitor per power bus that delivers power to one or more devices. The local decoupling (0.1 µF)  
capacitors must be connected as close to the VCC pins as possible and with minimal path to the device  
ground pad.  
3. The DS160PR412 voltage regulator output pins require decoupling caps of 0.1 µF near each pins. The  
regulator is only for internal use. Do not use to provide power to any external component.  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DS160PR412  
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The following guidelines should be followed when designing the layout:  
1. Decoupling capacitors should be placed as close to the VCC pins as possible. Placing the decoupling  
capacitors directly underneath the device is recommended if the board design permits.  
2. High-speed differential signals TXnP/TXnN and RXnP/RXnN should be tightly coupled, skew matched, and  
impedance controlled.  
3. Vias should be avoided when possible on the high-speed differential signals. When vias must be used, take  
care to minimize the via stub, either by transitioning through most/all layers or by back drilling.  
4. GND relief can be used (but is not required) beneath the high-speed differential signal pads to improve  
signal integrity by counteracting the pad capacitance.  
5. GND vias should be placed directly beneath the device connecting the GND plane attached to the device to  
the GND planes on other layers. This has the added benefit of improving thermal conductivity from the  
device to the board.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DS160PR412  
 
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
11 Layout Example  
11-1 shows DS160PR412 layout example.  
11-1. DS160PR412 layout example  
11-2 shows a layout illustration where two DS160PR412 and two DS160PR421 are used to switch 8 lanes  
between two PCIe slots.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DS160PR412  
 
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
11-2. Layout example for PCIe lane muxing application  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DS160PR412  
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DS160PR412  
 
 
 
 
 
 
DS160PR412  
ZHCSMH5 DECEMBER 2020  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DS160PR412  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS160PR412RUAR  
DS160PR412RUAT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RUA  
RUA  
42  
42  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
PR412  
PR412  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RUA 42  
9 x 3.5, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226504/A  
www.ti.com  
PACKAGE OUTLINE  
RUA0042A  
WQFN - 0.8 mm max height  
S
C
A
L
E
1
.
8
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
A
B
PIN 1 INDEX AREA  
9.1  
8.9  
0.8  
0.6  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.05 0.1  
2X 1.5  
SYMM  
(0.1) TYP  
EXPOSED  
THERMAL PAD  
21  
18  
17  
22  
SYMM  
43  
2X 8  
7.55 0.1  
0.3  
0.2  
1
38  
42X  
42  
39  
38X 0.5  
0.1  
C A B  
0.5  
0.3  
42X  
PIN 1 ID  
0.05  
4219139/A 03/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RUA0042A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.05)  
SYMM  
SEE SOLDER MASK  
DETAIL  
42X (0.6)  
42X (0.25)  
42  
39  
1
38X (0.5)  
38  
(3.525) TYP  
(R0.05) TYP  
(
0.2) TYP  
VIA  
1.17 TYP  
SYMM  
43  
(7.55) (8.8)  
17  
22  
18  
21  
(0.775)  
TYP  
(3.3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219139/A 03/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RUA0042A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.56) TYP  
42X (0.6)  
42X (0.25)  
42  
39  
1
38X (0.5)  
38  
(R0.05) TYP  
(0.585)  
TYP  
43  
SYMM  
(8.8)  
12X (0.97)  
22  
17  
21  
18  
12X (0.92)  
SYMM  
(3.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 12X  
EXPOSED PAD 43  
69% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219139/A 03/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DS160PR421

具有集成式 2:1 多路复用器的 PCIe® 4.0、16Gbps、4 通道线性转接驱动器
TI

DS160PR421RUAR

具有集成式 2:1 多路复用器的 PCIe® 4.0、16Gbps、4 通道线性转接驱动器 | RUA | 42 | -40 to 85
TI

DS160PR421RUAT

具有集成式 2:1 多路复用器的 PCIe® 4.0、16Gbps、4 通道线性转接驱动器 | RUA | 42 | -40 to 85
TI

DS160PR810

PCIe® 4.0、16Gbps、8 通道线性转接驱动器
TI

DS160PR810NJXR

PCIe® 4.0、16Gbps、8 通道线性转接驱动器 | NJX | 64 | -40 to 85
TI

DS160PR810NJXT

PCIe® 4.0、16Gbps、8 通道线性转接驱动器 | NJX | 64 | -40 to 85
TI

DS160PR822

具有四个 2x2 交叉点多路复用器的 PCIe® 4.0、16Gbps、8 通道线性转接驱动器
TI

DS160PR822NJXR

具有四个 2x2 交叉点多路复用器的 PCIe® 4.0、16Gbps、8 通道线性转接驱动器 | NJX | 64 | -40 to 85
TI

DS160PR822NJXT

具有四个 2x2 交叉点多路复用器的 PCIe® 4.0、16Gbps、8 通道线性转接驱动器 | NJX | 64 | -40 to 85
TI

DS160PT801

PCIe® 4.0、16Gbps、8 路(16 通道)重定时器
TI

DS160PT801ACBR

PCIe® 4.0、16Gbps、8 路(16 通道)重定时器 | ACB | 332 | -40 to 85
TI

DS160PT801ACBT

PCIe® 4.0、16Gbps、8 路(16 通道)重定时器 | ACB | 332 | -40 to 85
TI