DRV8848 [TI]

具有电流调节功能的 18V、2A、H 桥电机驱动器;
DRV8848
型号: DRV8848
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电流调节功能的 18V、2A、H 桥电机驱动器

电机 驱动 驱动器
文件: 总29页 (文件大小:1036K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV8848  
ZHCSCX5A OCTOBER 2014REVISED NOVEMBER 2015  
DRV8848 双路 H 桥电机驱动器  
1 特性  
3 说明  
1
双路 H 桥电机驱动器  
DRV8848 提供适用于家用电器和其他机电一体化应用  
的双 H 桥 电机驱动器。该器件可用于驱动一个或两个  
直流电机、一个双极性步进电机或其它负载。利用一个  
简单的 PWM 接口便可轻松连接到控制器电路。  
单通道/双通道刷式直流  
步进  
脉宽调制 (PWM) 控制接口  
可选电流调节,具有 20μs 固定关断时间  
每个 H 桥均提供高输出电流  
每个 H 桥驱动器的输出块都包含配置为全 H 桥的 N 通  
道和 P 通道功率 MOSFET,用于驱动电机绕组。每个  
H 桥都含有一个调节电路,可通过固定关断时间斩波  
方案调节绕组电流。DRV8848 能够从每个输出驱动高  
2A 电流,在并联模式下驱动高达 4A 电流(正常散  
热,12V TA = 25°C 时)。  
最大驱动器电流为 2A12V 且  
TA = 25°C 时)  
并联模式下最大驱动器电流为 4A12V 且  
TA = 25°C 时)  
工作电源电压范围为 4V 18V  
3µA 低电流睡眠模式  
低功耗睡眠模式可将部分内部电路关断,从而实现极低  
的静态电流和功耗。这种睡眠模式可通过专用的  
nSLEEP 引脚来设定。  
散热增强型表面贴装封装  
DRV8303 中的 特性  
VM 欠压闭锁 (UVLO)  
过流保护 (OCP)  
还提供用于 UVLOOCP、短路保护和过热保护的内  
部保护功能。故障条件通过 nFAULT 引脚指示。  
热关断 (TSD)  
器件信息(1)  
故障条件指示引脚 (nFAULT)  
器件型号  
DRV8848  
封装  
封装尺寸(标称值)  
HTSSOP (16)  
5.00mm x 6.40mm  
2 应用  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
电器  
通用刷式电机和步进电机  
打印机  
简化原理图  
4 to 18 V  
DRV8848  
PWM  
PWM  
DC  
M
1 A  
1 A  
Dual  
H-Bridge  
Motor  
VREF  
nFAULT  
Driver  
DC  
M
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEL7  
 
 
 
DRV8848  
ZHCSCX5A OCTOBER 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
目录  
7.3 Feature Description................................................... 9  
7.4 Device Functional Modes........................................ 14  
Application and Implementation ........................ 15  
8.1 Application Information............................................ 15  
8.2 Typical Application ................................................. 15  
Power Supply Recommendations...................... 17  
9.1 Bulk Capacitance Sizing ......................................... 17  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 9  
8
9
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Example .................................................... 18  
11 器件和文档支持 ..................................................... 19  
11.1 社区资源................................................................ 19  
11.2 ....................................................................... 19  
11.3 静电放电警告......................................................... 19  
11.4 Glossary................................................................ 19  
12 机械、封装和可订购信息....................................... 19  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (October 2014) to Revision A  
Page  
Updated unit for RDS(ON) .......................................................................................................................................................... 5  
Corrected lines for Figure 6 ................................................................................................................................................. 10  
已添加 社区资源 .................................................................................................................................................................. 19  
2
Copyright © 2014–2015, Texas Instruments Incorporated  
 
DRV8848  
www.ti.com.cn  
ZHCSCX5A OCTOBER 2014REVISED NOVEMBER 2015  
5 Pin Configuration and Functions  
PWP Package  
16-Pin HTSSOP  
Top View  
1
2
3
4
5
6
7
8
nSLEEP  
AOUT1  
AISEN  
AOUT2  
BOUT2  
BISEN  
16  
15  
14  
13  
12  
11  
10  
9
AIN1  
AIN2  
VINT  
GND  
VM  
VREF  
BIN2  
BIN1  
GND  
(PPAD)  
BOUT1  
nFAULT  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
AIN1  
NO.  
16  
15  
3
I
I
Bridge A input 1  
Bridge A input 2  
Winding A sense  
Controls AOUT1; tri-level input  
AIN2  
Controls AOUT2; tri-level input  
AISEN  
AOUT1  
AOUT2  
BIN1  
O
Connect to current sense resistor for bridge A, or GND if current regulation is not required  
2
O
Winding A output  
4
9
I
I
Bridge B input 1  
Bridge B input 2  
Winding B sense  
Controls BOUT1; internal pulldown  
BIN2  
10  
6
Controls BOUT2; internal pulldown  
BISEN  
BOUT1  
BOUT2  
O
Connect to current sense resistor for bridge A, or GND if current regulation is not required  
7
O
Winding B output  
5
13  
PPAD  
8
GND  
PWR Device ground  
Both the GND pin and device PowerPAD must be connected to ground  
nFAULT  
nSLEEP  
VINT  
OD  
I
Fault indication pin Pulled logic low with fault condition; open-drain output requires external pullup  
1
Sleep mode input  
Internal regulator  
Logic high to enable device; logic low to enter low-power sleep mode; internal pulldown  
14  
Internal supply voltage; bypass to GND with 2.2-μF, 6.3-V capacitor  
Connect to motor power supply; bypass to GND with a 0.1- and 10-μF (minimum) ceramic  
capacitor rated for VM  
VM  
12  
11  
PWR Power supply  
Full-scale current  
Voltage on this pin sets the full scale chopping current; short to VINT if not supplying an  
external reference voltage  
VREF  
I
reference input  
External Components  
COMPONENT  
CVM  
PIN 1  
VM  
PIN 2  
RECOMMENDED  
10-µF (minimum) ceramic capacitor rated for VM  
0.1-µF ceramic capacitor rated for VM  
6.3-V, 2.2-µF ceramic capacitor  
GND  
CVM  
VM  
GND  
CVINT  
VINT  
VCC(1)  
AISEN  
BISEN  
GND  
RnFAULT  
RAISEN  
RBISEN  
nFAULT  
GND  
>1 k  
Sense resistor, see Typical Application for sizing  
Sense resistor, see Typical Application for sizing  
GND  
(1) VCC is not a pin on the DRV8848, but a VCC supply voltage pullup is required for open-drain output nFAULT; nFAULT may be pulled  
up to VINT  
Copyright © 2014–2015, Texas Instruments Incorporated  
3
DRV8848  
ZHCSCX5A OCTOBER 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range referenced with respect to GND (unless otherwise noted)  
(1)  
MIN  
–0.3  
MAX  
UNIT  
V
Power supply voltage (VM)  
20  
Power supply voltage ramp rate (VM)  
0
2
3.6  
V/µs  
V
Internal regulator voltage (VINT)  
–0.3  
–0.3  
–0.3  
–0.3  
–0.6  
Analog input pin voltage (VREF)  
3.6  
V
Control pin voltage (AIN1, AIN2, BIN1, BIN2, nSLEEP, nFAULT)  
Continuous phase node pin voltage (AOUT1, AOUT2, BOUT1, BOUT2)  
Continuous shunt amplifier input pin voltage (AISEN, BISEN)(2)  
Peak drive current (AOUT1, AOUT2, BOUT1, BOUT2, AISEN, BISEN)  
Operating junction temperature  
7
V
VVM + 0.6  
0.6  
V
V
Internally limited  
A
TJ  
–40  
–65  
150  
150  
°C  
°C  
Tstg  
Storage temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Transients of ±1 V for less than 25 ns are acceptable.  
6.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
MAX  
18  
UNIT  
VVM  
VVREF  
ƒPWM  
IVINT  
Irms  
Power supply voltage range(1)  
Reference rms voltage range(2)  
Applied STEP signal  
4
1
0
V
V
3.3  
250  
1
kHz  
mA  
A
VINT external load current  
Motor rms current per H-bridge(3)  
Operating ambient temperature  
0
1
TA  
–40  
85  
°C  
(1) Note that RDS(ON) increases and maximum output current is reduced at VM supply voltages below 5 V.  
(2) Operational at VREF between 0 and 1 V, but accuracy is degraded.  
(3) Power dissipation and thermal limits must be observed.  
6.4 Thermal Information  
DRV8848  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
16 PINS  
40.3  
32.7  
28.7  
0.6  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
11.4  
4.7  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2014–2015, Texas Instruments Incorporated  
DRV8848  
www.ti.com.cn  
ZHCSCX5A OCTOBER 2014REVISED NOVEMBER 2015  
6.5 Electrical Characteristics  
TA = 25°C, over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (VM, VINT)  
VVM  
VM operating voltage  
4
2.5  
0.5  
18  
V
VVM = 12 V, excluding winding current,  
nSLEEP = 1  
IVM  
VM operating supply current  
3.8  
1.2  
5.5  
mA  
IVMQ  
tSLEEP  
tWAKE  
tON  
VM sleep mode supply current  
Sleep time  
VVM = 12 V, nSLEEP = 0  
3
1
μA  
ms  
ms  
ms  
V
nSLEEP = 0 to sleep mode  
Wake time  
nSLEEP = 1 to output transition  
VVM > VUVLO rising to output transition  
VVM > 4 V, IOUT = 0 A to 1 mA  
1
Power-on time  
VINT voltage  
1
VINT  
3.13  
3.3  
3.47  
LOGIC-LEVEL INPUTS (BIN1, BIN2, NSLEEP)  
VIL  
VIH  
VHYS  
IIL  
Input logic low voltage  
Input logic high voltage  
Input logic hysteresis  
Input logic low current  
Input logic high current  
0
1.6  
100  
–1  
0.7  
5.5  
V
V
mV  
μA  
μA  
VIN = 0 V  
1
IIH  
VIN = 5 V  
1
30  
BIN1, BIN2  
200  
500  
400  
200  
800  
400  
RPD  
Pulldown resistance  
Input deglitch time  
Propagation delay  
kΩ  
nSLEEP  
AIN1 or AIN2  
ns  
ns  
ns  
ns  
tDEG  
BIN1 or BIN2  
AIN1 or AIN2 edge to output change  
BIN1 or BIN2 edge to output change  
tPROP  
TRI-LEVEL INPUTS (AIN1, AIN2)  
VIL  
Tri-level input logic low voltage  
0
0.7  
5.5  
V
V
VIZ  
VIH  
VHYS  
IIL  
Tri-level input Hi-Z voltage  
Tri-level input logic high voltage  
Tri-level input hysteresis  
1.1  
1.6  
100  
–30  
1
V
mV  
μA  
μA  
kΩ  
kΩ  
Tri-level input logic low current  
Tri-level input logic high current  
Tri-level pulldown resistance  
Tri-level pullup resistance  
VIN = 0 V  
VIN = 5 V  
To GND  
To VINT  
–1  
30  
IIH  
RPD  
RPU  
170  
340  
CONTROL OUTPUTS (NFAULT)  
VOL  
IOH  
Output logic low voltage  
Output logic high leakage  
IO = 5 mA  
VO = 3.3 V  
0.5  
1
V
–1  
–1  
μA  
MOTOR DRIVER OUTPUTS (AOUT1, AOUT2, BOUT1, BOUT2)  
VVM = 12 V, I = 0.5 A, TJ = 25°C  
VVM = 12 V, I = 0.5 A, TJ = 85°C(1)  
VVM = 12 V, I = 0.5 A, TJ = 25°C  
VVM = 12 V, I = 0.5 A, TJ = 85°C(1)  
VVM = 5 V, TJ = 25°C  
550  
660  
350  
420  
RDS(ON)  
High-side FET on-resistance  
Low-side FET on-resistance  
mΩ  
mΩ  
RDS(ON)  
IOFF  
Off-state leakage current  
Output rise time  
1
1
μA  
ns  
ns  
ns  
tRISE  
tFALL  
tDEAD  
60  
60  
Output fall time  
Output dead time  
Internal dead time  
200  
PWM CURRENT CONTROL (VREF, AISEN, BISEN)  
Externally applied VREF input  
current  
IREF  
VVREF = 1 to 3.3 V  
For 100% current step with VVREF = 3.3 V  
μA  
VTRIP  
xISEN trip voltage  
500  
mV  
(1) Not tested in production; limits are based on characterization data  
Copyright © 2014–2015, Texas Instruments Incorporated  
5
DRV8848  
ZHCSCX5A OCTOBER 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
TA = 25°C, over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.8  
6.6  
20  
MAX  
UNIT  
μs  
tBLANK  
AISENSE  
tOFF  
Current sense blanking time  
Current sense amplifier gain  
Current control constant off time  
Reference only  
V/V  
μs  
PROTECTION CIRCUITS  
VVM falling; UVLO report  
VVM rising; UVLO recovery  
2.9  
3
VUVLO  
VM undervoltage lockout  
V
IOCP  
tDEG  
tOCP  
Overcurrent protection trip level  
Overcurrent deglitch time  
2
A
2.8  
1.6  
160  
50  
μs  
ms  
°C  
°C  
Overcurrent protection period  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
(1)  
TTSD  
THYS  
Die temperature TJ  
Die temperature TJ  
150  
180  
(1)  
6.6 Timing Requirements  
TA = 25°C, over recommended operating conditions unless otherwise noted  
NO.  
MIN  
MAX  
UNIT  
1
2
3
4
5
6
t1  
t2  
t3  
t4  
tF  
tR  
Delay time, xIN1 to xOUT1  
Delay time, xIN2 to xOUT1  
Delay time, xIN1 to xOUT2  
Delay time, xIN2 to xOUT2  
Output rise time  
100  
100  
100  
100  
50  
600  
600  
600  
600  
150  
150  
ns  
ns  
ns  
ns  
ns  
ns  
Output fall time  
50  
xIN1  
xIN2  
80%  
80%  
2
1
4
xOUTx  
xOUT1  
xOUT2  
z
z
z
z
20%  
20%  
3
5
6
Figure 1. Timing Diagram  
6
Copyright © 2014–2015, Texas Instruments Incorporated  
DRV8848  
www.ti.com.cn  
ZHCSCX5A OCTOBER 2014REVISED NOVEMBER 2015  
6.7 Typical Characteristics  
4.5  
4
3.5  
3
œ40°C  
25°C  
85°C  
125°C  
œ40°C  
25°C  
85°C  
4
125°C  
2.5  
2
3.5  
3
1.5  
1
0.5  
0
2.5  
2
-0.5  
0
5
10  
15  
20  
0
5
10  
15  
20  
VVM (V)  
VVM (V)  
D001  
D002  
Figure 2. IVM vs VVM  
Figure 3. IVMQ vs VVM  
1.8  
1.6  
1.4  
1.2  
1
1.8  
1.6  
1.4  
1.2  
1
œ40°C  
25°C  
85°C  
125°C  
4 V  
12 V  
18 V  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0
5
10  
15  
20  
-50  
0
50  
100  
150  
VVM (V)  
TA (°C)  
D003  
D004  
Figure 4. RDSON vs VVM  
Figure 5. RDSON vs Temperature  
Copyright © 2014–2015, Texas Instruments Incorporated  
7
DRV8848  
ZHCSCX5A OCTOBER 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DRV8848 is an integrated motor driver solution for two DC motors or a bipolar stepper motor. The device  
integrates two H-bridges that use NMOS low-side drivers and PMOS high-side drivers and current sense  
regulation circuitry. The DRV8848 can be powered with a supply range between 4 to 18 V and is capable of  
providing an output current to 1-A rms.  
A simple PWM interface allows easy interfacing to the controller circuit.  
The current regulation uses a fixed off-time (tOFF) PWM scheme. The current regulation trip point is controlled by  
the value of the sense resistor and the voltage applied to VREF.  
A low-power sleep mode is included, which allows the system to save power when not driving the motor.  
8
Copyright © 2014–2015, Texas Instruments Incorporated  
DRV8848  
www.ti.com.cn  
ZHCSCX5A OCTOBER 2014REVISED NOVEMBER 2015  
7.2 Functional Block Diagram  
VM  
VM  
VINT  
VM  
Internal Ref and  
Regs  
2.2 µF  
0.1 µF  
10 µF  
VREF  
VM  
VINT  
AOUT1  
AIN1  
Gate  
VINT  
Drive  
and  
OCP  
Step  
Motor  
DCM  
VM  
AIN2  
BIN1  
BIN2  
AOUT2  
AISEN  
ISEN  
optional  
VREF  
Logic  
VM  
VINT  
nSLEEP  
nFAULT  
BOUT1  
Gate  
Drive  
and  
DCM  
VM  
OCP  
Over-  
Temp  
BOUT2  
BISEN  
ISEN  
optional  
VREF  
GND  
PPAD  
Copyright © 2016, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 PWM Motor Drivers  
DRV8848 contains two identical H-bridge motor drivers with current-control PWM circuitry. Figure 6 shows a  
block diagram of the circuitry.  
Copyright © 2014–2015, Texas Instruments Incorporated  
9
DRV8848  
ZHCSCX5A OCTOBER 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
Feature Description (continued)  
VM  
OCP  
VM  
xOUT1  
xIN1  
xIN2  
Pre-  
drive  
Step  
Motor  
xOUT2  
PWM  
OCP  
xISEN  
A=6.6  
-
+
Optional  
Internal  
reference  
VREF  
Figure 6. PWM Motor Driver Circuitry  
7.3.2 Bridge Control  
Table 1 shows the logic for the inputs xIN1 and xIN2.  
Table 1. Bridge Control  
xIN1  
xIN2  
xOUT1  
xOUT2  
Function (DC Motor)  
Coast (fast decay)  
0
0
1
1
0
1
0
1
Z
L
Z
H
L
Reverse  
H
L
Forward  
L
Brake (slow decay)  
SPACE  
NOTE  
Pins AIN1 and AIN2 are tri-level, so when they are left Hi-Z, they are not internally pulled  
to logic low. When AIN1 or AIN2 are set to Hi-Z and not in parallel mode, the output driver  
maintains the previous state.  
10  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
DRV8848  
www.ti.com.cn  
ZHCSCX5A OCTOBER 2014REVISED NOVEMBER 2015  
7.3.3 Parallel Operation  
The two drivers can be used in parallel to deliver twice the current to a single motor. To enter parallel mode,  
AIN1 and AIN2 must be left Hi-Z during power-up or when exiting sleep mode (nSLEEP toggling from 0 to 1).  
BIN1 and BIN2 are used to control the drivers. Tie AISEN and BISEN to a single sense resistor if current control  
is desired. To exit parallel mode, AIN1 and AIN2 must be driven high or low and the device must be powered-up  
or exit sleep mode. Figure 7 shows a block diagram of the device using parallel mode.  
VM  
AOUT1  
AIN1  
Gate  
Drive  
and  
OCP  
VM  
AIN2  
BIN1  
AOUT2  
AISEN  
ISEN  
BIN2  
Controller  
Logic  
VM  
nSLEEP  
BOUT1  
Gate  
Drive  
and  
DCM  
VM  
OCP  
BOUT2  
BISEN  
ISEN  
optional  
VREF  
Figure 7. Parallel Mode Operation  
7.3.4 Current Regulation  
The current through the motor windings is regulated by a fixed-off-time PWM current regulation circuit. With DC  
brushed motors, current regulation can be used to limit the stall current (which is also the startup current) of the  
motor.  
Current regulation works as follows:  
When an H-bridge is enabled, current rises through the winding at a rate dependent on the supply voltage and  
inductance of the winding. If the current reaches the current chopping threshold, the bridge disables the current  
for a time tOFF before starting the next PWM cycle. Note that immediately after the current is enabled, the voltage  
on the xISEN pin is ignored for a period of time (tBLANK) before enabling the current sense circuitry. This blanking  
time also sets the minimum on-time of the PWM cycle.  
Copyright © 2014–2015, Texas Instruments Incorporated  
11  
 
DRV8848  
ZHCSCX5A OCTOBER 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
The PWM chopping current is set by a comparator which compares the voltage across a current sense resistor,  
connected to the xISEN pin, with a reference voltage. The reference voltage is derived from the voltage applied  
to the VREF pin and it is VVREF / 6.6. The VREF pin can be tied, on board, to the 3.3 V – VINT pin, or it can be  
externally forced to a desired VREF voltage.  
The full scale chopping current in a winding is calculated as follows:  
VVREF  
IFS  
=
6.6 ì RISENSE  
where  
IFS is the regulated current.  
VVREF is the voltage on the VREF pin.  
RISENSE is the resistance of the sense resistor.  
(1)  
Example: If VVREF is 3.3 V and a 500-mΩ sense resistor is used, the full-scale chopping current is 3.3 V / (6.6 ×  
500 mΩ) = 1 A.  
Note that if the current control is not needed, the xISEN pins may be connected directly to ground. In this case,  
VREF should be connected to VINT.  
7.3.5 Current Recirculation and Decay Modes  
During PWM current chopping, the H-bridge is enabled to drive current through the motor winding until the PWM  
current chopping threshold is reached (see case 1 in Figure 8).  
After the chopping current threshold is reached, the drive current is interrupted, but due to the inductive nature of  
the motor, current must continue to flow for some period of time. This is called recirculation current. To handle  
this recirculation current, the DRV8848 H-bridge operates in mixed decay mode.  
Mixed decay is a combination of fast and slow decay modes. In fast decay mode, the opposite drivers are turned  
on to allow the current to decay (see case 2 in Figure 8). If the winding current approaches zero, while in fast  
decay, the bridge is disabled to prevent any reverse current flow. In slow decay mode, winding current is  
recirculated by enabling both of the low-side FETs in the bridge (see case 3 in Figure 8). Mixed decay starts with  
fast decay, then goes to slow decay. In DRV8848, the mixed decay ratio is 25% fast decay and 75% slow decay  
(as shown in Figure 9).  
12  
Copyright © 2014–2015, Texas Instruments Incorporated  
DRV8848  
www.ti.com.cn  
ZHCSCX5A OCTOBER 2014REVISED NOVEMBER 2015  
xëa  
1
2
3
5rive /urrent  
Cast decay  
1
2
xhÜÇ2  
xhÜÇ1  
{low decay  
3
Figure 8. Decay Modes  
PWM  
ON  
PWM OFF (tOFF  
)
Mixed Decay  
25%  
Itrip  
25% of tOFF  
PWM CYCLE  
Figure 9. Mixed Decay  
7.3.6 Protection Circuits  
The DRV8848 is fully protected against undervoltage, overcurrent, and overtemperature events.  
7.3.6.1 OCP  
An analog current limit circuit on each FET limits the current through the FET by limiting the gate drive. If this  
analog current limit persists for longer than the OCP deglitch time tOCP, all FETs in the H-bridge are disabled and  
the nFAULT pin is driven low. The device remains disabled until the retry time tRETRY occurs. The OCP is  
independent for each H-bridge.  
Overcurrent conditions are detected independently on both high-side and low-side devices; that is, a short to  
ground, supply, or across the motor winding all result in an OCP event. Note that OCP does not use the current  
sense circuitry used for PWM current control, so OCP functions even without presence of the xISEN resistors.  
Copyright © 2014–2015, Texas Instruments Incorporated  
13  
DRV8848  
ZHCSCX5A OCTOBER 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
7.3.6.2 TSD  
If the die temperature exceeds safe limits TTSD, all FETs in the H-bridge are disabled and the nFAULT pin is  
driven low. After the die temperature has fallen to a safe level, operation automatically resumes. The nFAULT pin  
is released after operation has resumed.  
7.3.6.3 UVLO  
If at any time the voltage on the VM pin falls below the UVLO falling threshold voltage, VUVLO, all circuitry in the  
device is disabled, and all internal logic is reset. Operation resumes when VVM rises above the UVLO rising  
threshold. The nFAULT pin is driven low during an undervoltage condition and is released after operation has  
resumed.  
Table 2. Fault Handling  
INTERNAL  
CIRCUITS  
FAULT  
ERROR REPORT  
nFAULT unlatched  
nFAULT unlatched  
nFAULT unlatched  
H-BRIDGE  
Disabled  
Disabled  
Disabled  
RECOVERY  
VM undervoltage (UVLO)  
Overcurrent (OCP)  
Shut down  
System and fault clears on recovery  
System and fault clears on recovery and  
motor is driven after time, tRETRY  
Operating  
Operating  
Thermal shutdown (TSD)  
System and fault clears on recovery  
7.4 Device Functional Modes  
The DRV8848 is active unless the nSLEEP pin is brought logic low. In sleep mode, the VINT regulator is  
disabled and the H-bridge FETs are disabled Hi-Z. Note that tSLEEP must elapse after a falling edge on the  
nSLEEP pin before the device is in sleep mode. The DRV8848 is brought out of sleep mode automatically if  
nSLEEP is brought logic high. Note that tWAKE must elapse before the output change state after wake-up.  
When VVM falls below the VM UVLO threshold (VUVLO), the output driver, internal logic, and VINT regulator are  
reset.  
Table 3. Functional Modes  
MODE  
CONDITION  
H-BRIDGE  
VINT  
4 V < VVM < 18 V  
nSLEEP pin = 1  
Operating  
Operating  
Operating  
4 V < VVM < 18 V  
nSLEEP pin = 0  
Sleep  
Fault  
Disabled  
Disabled  
Disabled  
Any fault condition met  
Depends on fault  
14  
Copyright © 2014–2015, Texas Instruments Incorporated  
DRV8848  
www.ti.com.cn  
ZHCSCX5A OCTOBER 2014REVISED NOVEMBER 2015  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV8848 is used in stepper or brushed DC motor control.  
8.2 Typical Application  
The user can configure the DRV8848 with the following design procedure.  
1
16  
15  
14  
13  
12  
11  
nSLEEP  
AOUT1  
AISEN  
AOUT2  
BOUT2  
BISEN  
AIN1  
2
3
4
5
6
AIN2  
VINT  
GND  
VM  
500 mΩ  
500 mΩ  
5/a  
2.2 µF  
10 µF  
DRV8848  
0.1 µF  
VM  
GND  
(PPAD)  
5/a  
VREF  
7
8
10  
9
BOUT1  
BIN2  
BIN1  
nFAULT  
10 kΩ  
VCC  
logic supply  
Figure 10. Typical Application Schematic  
8.2.1 Design Requirements  
Table 4 gives design input parameters for system design.  
Table 4. Design Parameters  
DESIGN PARAMETER  
Nominal supply voltage  
REFERENCE  
EXAMPLE VALUE  
12 V  
VVM  
Supply voltage range  
4 to 18 V  
Motor winding resistance  
Motor winding inductance  
Target chopping current  
Chopping current reference voltage  
RL  
LL  
3 /phase  
330 µH/phase  
500 mA  
ICHOP  
VVREF  
3.3 V  
Copyright © 2014–2015, Texas Instruments Incorporated  
15  
 
DRV8848  
ZHCSCX5A OCTOBER 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Current Regulation  
The chopping current (ICHOP) is the maximum current driven through either winding. This quantity depends on the  
sense resistor value (RXISEN).  
VVREF  
ICHOP  
=
6.6 ì RXISEN  
(2)  
ICHOP is set by a comparator which compares the voltage across RXISEN to a reference voltage. Note that ICHOP  
must follow Equation 3 to avoid saturating the motor.  
VVM (V)  
ICHOP (A) <  
RL (W) + 2 ì RDS(ON) (W) + RXISEN (W)  
where  
VVM is the motor supply voltage.  
RL is the motor winding resistance.  
(3)  
8.2.3 Application Curves  
AIN1  
Fast decay  
Current trip point  
AIN2  
Slow decay  
I Motor  
Figure 11. Current Regulation  
Figure 12. Stepper Mode Operation  
16  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
DRV8848  
www.ti.com.cn  
ZHCSCX5A OCTOBER 2014REVISED NOVEMBER 2015  
9 Power Supply Recommendations  
The DRV8848 is designed to operate from an input voltage supply (VVM) range between 4 and 18 V. Place a 0.1-  
µF ceramic capacitor rated for VM as close to the DRV8848 as possible. In addition, the user must include a bulk  
capacitor of at least 10 µF on VM.  
9.1 Bulk Capacitance Sizing  
Bulk capacitance sizing is an important factor in motor drive system design. It depends on a variety of factors  
including:  
Type of power supply  
Acceptable supply voltage ripple  
Parasitic inductance in the power supply wiring  
Type of motor (brushed DC, brushless DC, stepper)  
Motor startup current  
Motor braking method  
The inductance between the power supply and motor drive system limits the rate that current can change from  
the power supply. If the local bulk capacitance is too small, the system responds to excessive current demands  
or dumps from the motor with a change in voltage. Size the bulk capacitance to meet acceptable voltage ripple  
levels.  
The data sheet provides a recommended minimum value, but system-level testing is required to determine the  
appropriate-sized bulk capacitor.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
+
Motor Driver  
œ
GND  
Local  
Bulk Capacitor  
IC Bypass  
Capacitor  
Figure 13. Setup of Motor Drive System With External Power Supply  
Copyright © 2014–2015, Texas Instruments Incorporated  
17  
DRV8848  
ZHCSCX5A OCTOBER 2014REVISED NOVEMBER 2015  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Bypass the VM terminal to GND using a low-ESR ceramic bypass capacitor with a recommended value of 10 μF  
rated for VM. Place this capacitor as close to the VM pin as possible with a thick trace or ground plane  
connection to the device GND pin.  
Bypass VINT to ground with a ceramic capacitor rated 6.3 V. Place this bypassing capacitor as close to the pin  
as possible.  
10.2 Layout Example  
nSLEEP  
AOUT1  
AISEN  
AIN1  
AIN2  
VINT  
GND  
VM  
2.2 µF  
AOUT2  
BOUT2  
BISEN  
RAISEN  
VREF  
BIN2  
BIN1  
BOUT1  
nFAULT  
10 µF  
RBISEN  
Figure 14. Layout Recommendation  
18  
版权 © 2014–2015, Texas Instruments Incorporated  
DRV8848  
www.ti.com.cn  
ZHCSCX5A OCTOBER 2014REVISED NOVEMBER 2015  
11 器件和文档支持  
11.1 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.2 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
版权 © 2014–2015, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8848PWP  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
PWP  
PWP  
16  
16  
90  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
DRV8848  
DRV8848  
DRV8848PWPR  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV8848PWPR  
HTSSOP PWP  
16  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
DRV8848PWPR  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
PWP HTSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
DRV8848PWP  
16  
90  
530  
10.2  
3600  
3.5  
Pack Materials-Page 3  
PACKAGE OUTLINE  
PWP0016C  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
6.6  
6.2  
C
TYP  
A
PIN 1 INDEX  
AREA  
0.1 C  
SEATING  
PLANE  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
B
0.19  
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 0.95 MAX  
NOTE 5  
4X (0.3)  
8
9
2X 0.23 MAX  
NOTE 5  
2.31  
1.75  
17  
0.25  
GAGE PLANE  
1.2 MAX  
0.15  
0.05  
0.75  
0.50  
0 -8  
16  
1
A
20  
DETAIL A  
TYPICAL  
THERMAL  
PAD  
2.46  
1.75  
4224559/B 01/2019  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0016C  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(2.46)  
16X (1.5)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
1
16X (0.45)  
16  
(1.2) TYP  
(2.31)  
(R0.05) TYP  
SYMM  
17  
(5)  
NOTE 9  
(0.6)  
14X (0.65)  
(
0.2) TYP  
VIA  
9
8
SOLDER MASK  
DEFINED PAD  
(1) TYP  
SEE DETAILS  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4224559/B 01/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0016C  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.46)  
BASED ON  
0.125 THICK  
STENCIL  
16X (1.5)  
METAL COVERED  
BY SOLDER MASK  
1
16  
16X (0.45)  
(R0.05) TYP  
SYMM  
(2.31)  
17  
BASED ON  
0.125 THICK  
STENCIL  
14X (0.65)  
9
8
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.75 X 2.58  
2.46 X 2.31 (SHOWN)  
2.25 X 2.11  
0.125  
0.15  
0.175  
2.08 X 1.95  
4224559/B 01/2019  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DRV8848PWP

具有电流调节功能的 18V、2A、H 桥电机驱动器 | PWP | 16 | -40 to 85
TI

DRV8848PWPR

具有电流调节功能的 18V、2A、H 桥电机驱动器 | PWP | 16 | -40 to 85
TI

DRV8849

35-V, 1.5-A quad H-bridge motor driver with smart tune and integrated current sensing
TI

DRV8849RHHR

35-V, 1.5-A quad H-bridge motor driver with smart tune and integrated current sensing | RHH | 36 | -40 to 125
TI

DRV8850

Low-Voltage H-Bridge IC With LDO Voltage Regulator
TI

DRV8850RGYR

Low-Voltage H-Bridge IC With LDO Voltage Regulator
TI

DRV8850RGYT

Low-Voltage H-Bridge IC With LDO Voltage Regulator
TI

DRV8850_16

Low-Voltage H-Bridge IC with LDO Voltage Regulator
TI

DRV8860

8 Channel Serial Interface Low-Side Driver
TI

DRV8860APW

具有串行控制的 38V、0.3A、8 路低侧电机驱动器 | PW | 16 | -40 to 85
TI

DRV8860APWR

具有串行控制的 38V、0.3A、8 路低侧电机驱动器 | PW | 16 | -40 to 85
TI

DRV8860PW

8 Channel Serial Interface Low-Side Driver
TI