DRV8838DSGR [TI]

具有相位/使能控制的 11V、1.8A H 桥电机驱动器 | DSG | 8 | -40 to 85;
DRV8838DSGR
型号: DRV8838DSGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有相位/使能控制的 11V、1.8A H 桥电机驱动器 | DSG | 8 | -40 to 85

电动机控制 电机 驱动 光电二极管 驱动器
文件: 总30页 (文件大小:2024K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
DRV883x H 桥驱动器  
1 特性  
3 说明  
H 桥电机驱动器  
DRV883x 器件系列为摄像机、消费类产品、玩具和其  
他低电压或者电池供电的运动控制类应用提供了一个集  
成的电机驱动器解决方案。此器件能够驱动一个直流电  
机或其他器件如螺线管。输出驱动器模块由配置为  
H 桥的 N 沟道功率 MOSFET 组成用以驱动电机绕  
组。一个内部电荷泵被用来生成所需的栅极驱动电压。  
– 驱动直流电机或其他负载  
MOSFET 导通电阻HS + LS 280mΩ  
1.8A 最大驱动电流  
• 独立的电机和逻辑电源引脚:  
– 电VM0 11 V  
– 逻VCC1.8 7 V  
PWM PH-EN 接口  
DRV883x 器件系列能够提供高达  
1.8A 的输出电流。它运行在 0 11V 之间的电机电源  
电压1.8V 7 V 范围内的器件电源电压上。  
DRV8837: PWMIN1 IN2  
DRV8838PH EN  
• 低功耗休眠模式休眠电流最大值仅120nA  
nSLEEP 引脚  
• 小型封装尺寸  
DRV8837 有一个 PWM (IN/IN) 入接口;  
DRV8838 器件具有一个 PH-EN 输入接口。这两个接  
口都与行业标准器件兼容。  
还提供了用于过流保护、短路保护、欠压锁定和过热保  
护的内部关断功能。  
– 带有散热焊盘8 WSON 封装  
2.0mm × 2.0mm  
• 保护特性  
器件信息(1)  
封装尺寸标称值)  
器件型号  
DRV8837  
DRV8838  
封装  
VCC 欠压闭(UVLO)  
– 过流保(OCP)  
– 热关(TSD)  
WSON (8)  
2.00mm × 2.00mm  
2 应用范围  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 摄像头  
1.8 V to 7 V  
VCC  
0 V to 11 V  
VM  
• 数字单镜头反(DSLR) 镜头  
• 消费类产品  
• 玩具  
• 机器人技术  
• 医疗设备  
PWM  
or  
PH and EN  
DRV8837 and  
DRV8838  
1.8 A  
M
nSLEEP  
Brushed DC Motor  
Driver  
DRV883x 简化图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSBA4  
 
 
 
 
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
www.ti.com.cn  
Table of Contents  
7.1 Overview...................................................................10  
7.2 Functional Block Diagram.........................................10  
7.3 Feature Description...................................................12  
7.4 Device Functional Modes..........................................15  
8 Power Supply Recommendations................................18  
8.1 Bulk Capacitance......................................................18  
9 Layout.............................................................................19  
9.1 Layout Guidelines..................................................... 19  
9.2 Layout Example........................................................ 19  
9.3 Power Dissipation..................................................... 19  
10 Device and Documentation Support..........................20  
10.1 Documentation Support.......................................... 20  
10.2 Related Links.......................................................... 20  
10.3 Receiving Notification of Documentation Updates..20  
10.4 Community Resources............................................20  
10.5 Trademarks.............................................................20  
1 特性................................................................................... 1  
2 应用范围............................................................................ 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
Pin Functions.................................................................... 4  
5.1 Dapper Pin Functions................................................. 4  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................7  
6.6 Timing Requirements..................................................8  
6.7 Typical Characteristics................................................9  
7 Detailed Description......................................................10  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision E (June 2016) to Revision F (April 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Added in the Independent Half-Bridge Control section.....................................................................................12  
Changes from Revision D (December 2015) to Revision E (June 2016)  
Page  
Changed the threshold type to the input logic voltage parameters in the Electrical Characteristics table..........7  
Changed the units for the input logic hysteresis parameter from mV to V in the Electrical Characteristics table  
............................................................................................................................................................................7  
Added the Receiving Notification of Documentation Updates section .............................................................20  
Changes from Revision C (February 2014) to Revision D (December 2015)  
Page  
• 在部分中对每个器件的输入接口进行了说明............................................................................................... 1  
Added CDM and HBM ESD ratings to the ESD Ratings table ...........................................................................6  
Changes from Revision B (December 2013) to Revision C (February 2014)  
Page  
• 添加DRV8838 器件信息、规格和时序图........................................................................................................1  
• 添加了“器件信息”表........................................................................................................................................1  
• 添加PWM 接口图........................................................................................................................................... 1  
Added more information to the Detailed Description and moved information from the Functional Description ...  
10  
Added functional block diagram for DRV8838 .................................................................................................10  
Added the Application and Implementation section .........................................................................................16  
Added Power Supply Recommendations, Layout, Device and Documentation Support, and Mechanical,  
Packaging, and Orderable Information sections...............................................................................................18  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
 
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
www.ti.com.cn  
Changes from Revision A (August 2012) to Revision B (December 2013)  
Page  
• 更改了“特性”部分........................................................................................................................................... 1  
Changed Recommended Operating Conditions.................................................................................................6  
Changed Electrical Characteristics section........................................................................................................ 7  
Changed Timing Requirements section..............................................................................................................8  
Changed Power Supplies and Input Pins section.............................................................................................15  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
VM  
OUT1  
OUT2  
GND  
1
2
3
4
8
7
6
5
VCC  
nSLEEP  
IN1  
VM  
OUT1  
OUT2  
GND  
1
2
3
4
8
7
6
5
VCC  
nSLEEP  
PH  
Thermal  
Pad  
Thermal  
Pad  
IN2  
EN  
5-1. DSG Package 8-Pin WSON With Thermal  
5-2. DSG Package 8-Pin WSON With Thermal  
Pad DRV8837 Top View  
Pad DRV8838 Top View  
Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
DRV8837 DRV8838  
POWER AND GROUND  
Device ground  
This pin must be connected to ground.  
GND  
VCC  
VM  
4
8
1
4
8
1
Logic power supply  
I
I
Bypass this pin to the GND pin with a 0.1-µF ceramic capacitor rated for VCC.  
Motor power supply  
Bypass this pin to the GND pin with a 0.1-µF ceramic capacitor rated for VM.  
CONTROL  
EN  
5
I
I
ENABLE input  
IN1 input  
IN1  
IN2  
PH  
6
See the 7 section for more information.  
IN2 input  
5
I
I
See the 7 section for more information.  
PHASE input  
See the 7 section for more information.  
6
Sleep mode input  
nSLEEP  
7
7
I
When this pin is in logic low, the device enters low-power sleep mode. The device operates  
normally when this pin is logic high. Internal pulldown  
OUTPUT  
OUT1  
2
3
2
3
O
O
Motor output  
Connect these pins to the motor winding.  
OUT2  
5.1 Dapper Pin Functions  
PIN  
I/O  
DESCRIPTION  
DRV8837 DRV8838  
NAME  
NO.  
NO.  
Device ground  
This pin must be connected to ground.  
GND  
VCC  
4
4
Logic power supply  
8
8
I
Bypass this pin to the GND pin with a 0.1-µF ceramic capacitor rated for VCC.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
 
 
 
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
www.ti.com.cn  
NAME  
PIN  
I/O  
DESCRIPTION  
DRV8837 DRV8838  
NO.  
NO.  
Motor power supply  
Bypass this pin to the GND pin with a 0.1-µF ceramic capacitor rated for VM.  
VM  
EN  
IN1  
1
1
I
I
I
5
ENABLE input  
IN1 input  
6
6
See the 7 section for more information.  
IN2 input  
IN2  
PH  
5
I
I
See the 7 section for more information.  
PHASE input  
See the 7 section for more information.  
Sleep mode input  
nSLEEP  
7
7
I
When this pin is in logic low, the device enters low-power sleep mode. The device operates  
normally when this pin is logic high. Internal pulldown  
OUT1  
OUT2  
2
3
2
3
O
O
Motor output  
Connect these pins to the motor winding.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1) (2)  
MIN  
0.3  
0.3  
0.5  
MAX  
12  
7
UNIT  
V
Motor power-supply voltage  
Logic power-supply voltage  
Control pin voltage  
VM  
VCC  
V
IN1, IN2, PH, EN, nSLEEP  
OUT1, OUT2  
7
V
Peak drive current  
Internally limited  
A
Operating virtual junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
40  
60  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground pin.  
6.2 ESD Ratings  
over operating ambient temperature range (unless otherwise noted)  
VALUE  
±3000  
±1500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
MAX  
11  
UNIT  
VM  
Motor power supply voltage  
Logic power supply voltage  
Motor peak current  
0
1.8  
0
V
V
VCC  
IOUT  
fPWM  
VLOGIC  
TA  
7
1.8  
250  
5.5  
85  
A
Externally applied PWM frequency  
Logic level input voltage  
0
kHz  
V
0
Operating ambient temperature  
°C  
40  
(1) Power dissipation and thermal limits must be observed.  
6.4 Thermal Information  
over operating free-air temperature range (unless otherwise noted)  
DRV883x  
THERMAL METRIC(1)  
DSG (WSON)  
8 PINS  
60.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
71.4  
32.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.6  
ψJT  
32.8  
ψJB  
RθJC(bot)  
9.8  
(1) For more information about traditional and new thermal limits, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
 
 
 
 
 
 
 
 
 
 
 
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
www.ti.com.cn  
6.5 Electrical Characteristics  
TA = 25°C, over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (VM, VCC)  
VM  
VM operating voltage  
0
11  
V
VM = 5 V; VCC = 3 V;  
No PWM  
40  
0.8  
30  
100  
μA  
IVM  
VM operating supply current  
VM = 5 V; VCC = 3 V;  
50 kHz PWM  
1.5  
mA  
VM = 5 V; VCC = 3 V;  
nSLEEP = 0  
IVMQ  
VCC  
VM sleep mode supply current  
VCC operating voltage  
95  
7
nA  
V
1.8  
VM = 5 V; VCC = 3 V;  
No PWM  
300  
0.7  
5
500  
μA  
IVCC  
VCC operating supply current  
VCC sleep mode supply current  
VM = 5 V; VCC = 3 V;  
50 kHz PWM  
1.5  
25  
mA  
nA  
VM = 5 V; VCC = 3 V;  
nSLEEP = 0  
IVCCQ  
CONTROL INPUTS (IN1 or PH, IN2 or EN, nSLEEP)  
Input logic-low voltage falling  
threshold  
VIL  
0.25 × VCC 0.38 × VCC  
0.46 × VCC  
V
V
Input logic-high voltage rising  
threshold  
VIH  
0.5 × VCC  
VHYS  
IIL  
Input logic hysteresis  
Input logic low current  
0.08 × VCC  
V
VIN = 0 V  
5
5  
μA  
μA  
μA  
kΩ  
VIN = 3.3 V  
50  
IIH  
Input logic high current  
Pulldown resistance  
VIN = 3.3 V, DRV8838 nSLEEP pin  
60  
100  
55  
RPD  
DRV8838 nSLEEP pin  
kΩ  
MOTOR DRIVER OUTPUTS (OUT1, OUT2)  
VM = 5 V; VCC = 3 V;  
IO = 800 mA; TJ = 25°C  
rDS(on)  
IOFF  
HS + LS FET on-resistance  
Off-state leakage current  
280  
330  
200  
mΩ  
VOUT = 0 V  
nA  
200  
PROTECTION CIRCUITS  
VCC falling  
VCC rising  
1.7  
1.8  
3.5  
V
VUVLO  
VCC undervoltage lockout  
IOCP  
Overcurrent protection trip level  
Overcurrent deglitch time  
Overcurrent retry time  
1.9  
A
tDEG  
1
μs  
ms  
°C  
tRETRY  
TTSD  
1
Thermal shutdown temperature  
Die temperature TJ  
150  
160  
180  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
 
 
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
www.ti.com.cn  
6.6 Timing Requirements  
TA = 25°C, VM = 5 V, VCC = 3 V, RL = 20 Ω  
NO.  
MIN  
MAX  
UNIT  
ns  
1
t1  
Delay time, PHASE high to OUT1 low  
Delay time, PHASE high to OUT2 high  
Delay time, PHASE low to OUT1 high  
Delay time, PHASE low to OUT2 low  
Delay time, ENBL high to OUTx high  
Delay time, ENBL low to OUTx low  
Output enable time  
160  
200  
200  
160  
200  
160  
300  
300  
160  
160  
188  
188  
30  
2
t2  
ns  
3
t3  
ns  
See 6-1.  
4
t4  
ns  
5
t5  
ns  
6
t6  
ns  
7
t7  
ns  
8
t8  
Output disable time  
ns  
9
t9  
Delay time, INx high to OUTx high  
Delay time, INx low to OUTx low  
Output rise time  
ns  
See 6-2.  
10  
11  
12  
t10  
t11  
t12  
twake  
ns  
30  
30  
ns  
Output fall time  
ns  
Wake time, nSLEEP rising edge to part active  
μs  
EN  
PH  
t5  
t3  
OUT1  
t1  
t6  
t2  
t6  
t4  
t5  
OUT2  
DRV8838  
6-1. Input and Output Timing for DRV8838  
IN1  
IN2  
t7  
t10  
t8  
OUT1  
OUT2  
Z
Z
t9  
Z
Z
DRV8837  
80%  
80%  
OUTx  
20%  
t11  
20%  
t12  
6-2. Input and Output Timing for DRV8837  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
 
 
 
 
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
www.ti.com.cn  
6.7 Typical Characteristics  
0.02  
0.018  
0.016  
0.014  
0.012  
0.01  
6
5
4
3
2
1
0
VCC = 2 V  
VCC = 3 V  
VCC = 7 V  
VM = 2 V  
VM = 5 V  
VM = 11 V  
0.008  
0.006  
0.004  
0.002  
0
-40  
-20  
0
20  
40  
Ambient Temperature (ºC)  
60  
80 90  
-40  
-20  
0
20  
40  
Ambient Temperature (ºC)  
60  
80 90  
D003  
D002  
6-4. IVCCQ vs TA  
6-3. IVMQ vs TA  
2.5  
0.85  
0.8  
2
1.5  
1
VM = 2 V  
VM = 5 V  
VM = 11 V  
VCC = 2 V  
VCC = 3 V  
VCC = 7 V  
0.75  
0.7  
0.5  
0.65  
0
-40  
-20  
0
20  
40  
Ambient Temperature (ºC)  
60  
80 90  
-40  
-20  
0
20  
40  
Ambient Temperature (ºC)  
60  
80 90  
D005  
D004  
6-6. IVCC vs TA (50-kHz PWM)  
6-5. IVM vs TA (50-kHz PWM)  
700  
600  
500  
400  
300  
200  
VM = 2 V, VCC = 2 V  
VM = 5 V, VCC = 3 V  
VM = 11 V, VCC = 5V  
-40  
-20  
0
20  
40  
60  
80  
90  
Ambient Temperature (èC)  
D005  
6-7. HS + LS rDS(on) vs TA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
 
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DRV883x family of devices is an H-bridge driver that can drive one dc motor or other devices like solenoids.  
The outputs are controlled using either a PWM interface (IN1 and IN2) on the DRV8837 device or a PH-EN  
interface on the DRV8838 device.  
A low-power sleep mode is included, which can be enabled using the nSLEEP pin.  
These devices greatly reduce the component count of motor driver systems by integrating the necessary driver  
FETs and FET control circuitry into a single device. In addition, the DRV883x family of devices adds protection  
features beyond traditional discrete implementations: undervoltage lockout, overcurrent protection, and thermal  
shutdown.  
7.2 Functional Block Diagram  
0 V to 11 V  
VM  
VM  
VM  
OUT1  
Gate  
Drive  
OCP  
Charge  
Pump  
1.8 V to 7 V  
VCC  
DCM  
VM  
VCC  
Logic  
OUT2  
Gate  
Drive  
OCP  
IN1  
IN2  
Over-  
Temp  
nSLEEP  
Osc  
GND  
7-1. DRV8837 Functional Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
 
 
 
 
 
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
www.ti.com.cn  
0 V to 11 V  
VM  
VM  
VM  
OUT1  
Gate  
Drive  
OCP  
Charge  
Pump  
1.8 V to 7 V  
VCC  
DCM  
VM  
VCC  
Logic  
OUT2  
Gate  
Drive  
OCP  
PH  
EN  
Over-  
Temp  
nSLEEP  
Osc  
GND  
7-2. DRV8838 Functional Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Bridge Control  
The DRV8837 device is controlled using a PWM input interface, also called an IN-IN interface. Each output is  
controlled by a corresponding input pin.  
7-1 shows the logic for the DRV8837 device.  
7-1. DRV8837 Device Logic  
nSLEEP  
IN1  
IN2  
OUT1  
OUT2  
FUNCTION (DC MOTOR)  
0
1
1
1
1
X
X
Z
Z
L
Z
Z
H
L
Coast  
Coast  
0
0
0
1
Reverse  
Forward  
Brake  
1
0
H
L
1
1
L
The DRV8838 device is controlled using a PHASE/ENABLE interface. This interface uses one pin to control the  
H-bridge current direction, and one pin to enable or disable the H-bridge.  
7-2 shows the logic for the DRV8838.  
7-2. DRV8838 Device Logic  
nSLEEP  
PH  
EN  
OUT1  
OUT2  
FUNCTION (DC MOTOR)  
0
1
1
1
X
X
Z
L
Z
L
Coast  
Brake  
X
0
1
1
L
H
L
Reverse  
Forward  
0
1
H
7.3.2 Independent Half-Bridge Control  
Independent half-bridge control is possible with the DRV8837 without adopting more discrete components, as  
shown in 7.3.2. Two inductive loads (M1 and M2), which could be motors or solenoids, are tied between VM  
and OUTx, while the corresponding inputs (C1 and C2) are swapped before being fed to INx.  
7-3. Independent Half-Bridge Control Circuit  
The control logic for independent half-bridge drive is shown in 7-3. Columns INx and OUTx show the original  
logic of the DRV8837. Note that although a swap is included in this implementation, it is still valid that Cx = 1  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
 
 
 
 
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
www.ti.com.cn  
spins a motor or energizes a solenoid connected at corresponding Mx, while Cx = 0, stops the motor or  
discharges the solenoid.  
7-3. Independent Half-Bridge Drive Logic  
C1  
0
C2  
0
IN1  
0
IN2 OUT1 OUT2  
M1  
M2  
0
1
0
1
Z
L
Z
H
L
Off: Braking mode 1  
On: Driving mode  
Off: Braking mode 2  
On: Driving mode  
Off: Braking mode 1  
Off: Braking mode 2  
On: Driving mode  
On: Driving mode  
1
0
0
0
1
1
H
L
1
1
1
L
7-4 shows the driving mode and the two current decay paths during current regulation when PWM input  
control is used. The driving mode occurs when the corresponding half-bridge Cx signal is HIGH. When the Cx  
signal is LOW, the corresponging half bridge can go into either braking mode 1 or braking mode 2. In braking  
mode 1, both the high- and low-side MOSFETs of the half-bridge are tri-stated, and the recirculation current  
flows through the body diode of the high-side MOSFET as well as the motor itself. This braking mode happens  
when both C1 and C2 are LOW. If one of the Cx input is LOW and the other HIGH, the half-bridge  
corresponding to the LOW Cx input will go into braking mode 2. In braking mode 2, the low-side FET is OFF  
while its high-side counterpart is ON. The recirculation current flows through the high-side MOSFET and the  
motor.  
7-4. Normal Driving and Current Decay Modes  
When each of the Cx inputs are independently controlled with different PWM frequencies and duty cycle, each  
half-bridge will go into a combination of braking mode 1 and braking mode 2. 7-5 show a driving and decay  
example with independent PWM inputs. If the half-bridge spends more time in braking mode 1, the motor  
average speed will be lower since more power is dissipated through the MOSFET body diode. To reduce the  
power dissipated during braking mode 1, it is recommended to placed Schottky diodes with forward voltage less  
than 0.6V across the motors as shown in 7-6. Note that if On/Off control mode (constant HIGH or LOW at  
inputs) is used, the two braking modes do not interact with each other and hence have no effect on the average  
speed of the two motors.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
 
 
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
www.ti.com.cn  
7-5. Driving and Decay Examples with Independent PWM Inputs  
7-6. Improved Application Circuit for Better Motor Performance  
7.3.3 Sleep Mode  
If the nSLEEP pin is brought to a logic-low state, the DRV883x family of devices enters a low-power sleep mode.  
In this state, all unnecessary internal circuitry is powered down.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
 
 
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
www.ti.com.cn  
7.3.4 Power Supplies and Input Pins  
The input pins can be driven within the recommended operating conditions with or without the VCC, VM, or both  
power supplies present. No leakage current path will exist to the supply. Each input pin has a weak pulldown  
resistor (approximately 100 kΩ) to ground.  
The VCC and VM supplies can be applied and removed in any order. When the VCC supply is removed, the  
device enters a low-power state and draws very little current from the VM supply. The VCC and VM pins can be  
connected together if the supply voltage is between 1.8 and 7 V.  
The VM voltage supply does not have any undervoltage-lockout protection (UVLO) so as long as VCC > 1.8 V;  
the internal device logic remains active, which means that the VM pin voltage can drop to 0 V. However, the load  
cannot be sufficiently driven at low VM voltages.  
7.3.5 Protection Circuits  
The DRV883x family of devices is fully protected against VCC undervoltage, overcurrent, and overtemperature  
events.  
7.3.5.1 VCC Undervoltage Lockout  
If at any time the voltage on the VCC pin falls below the undervoltage lockout threshold voltage, all FETs in the  
H-bridge are disabled. Operation resumes when the VCC pin voltage rises above the UVLO threshold.  
7.3.5.2 Overcurrent Protection (OCP)  
An analog current-limit circuit on each FET limits the current through the FET by removing the gate drive. If this  
analog current limit persists for longer than tDEG, all FETs in the H-bridge are disabled. Operation resumes  
automatically after tRETRY has elapsed. Overcurrent conditions are detected on both the high-side and low-side  
FETs. A short to the VM pin, GND, or from the OUT1 pin to the OUT2 pin results in an overcurrent condition.  
7.3.5.3 Thermal Shutdown (TSD)  
If the die temperature exceeds safe limits, all FETs in the H-bridge are disabled. After the die temperature falls to  
a safe level, operation automatically resumes.  
7.3.5.4  
7-4. Fault Behavior  
FAULT  
CONDITION  
H-BRIDGE  
Disabled  
Disabled  
Disabled  
RECOVERY  
VCC > 1.8 V  
tRETRY elapses  
TJ < 150°C  
VCC undervoltage (UVLO)  
Overcurrent (OCP)  
VCC < 1.7 V  
IOUT > 1.9 A (MIN)  
TJ > 150°C (MIN)  
Thermal Shutdown (TSD)  
7.4 Device Functional Modes  
The DRV883x family of devices is active unless the nSLEEP pin is brought logic low. In sleep mode, the H-  
bridge FETs are disabled Hi-Z. The DRV883x is brought out of sleep mode automatically if nSLEEP is brought  
logic high.  
The H-bridge outputs are disabled during undervoltage lockout, overcurrent, and overtemperature fault  
conditions.  
7-5. Operation Modes  
MODE  
Operating  
CONDITION  
H-BRIDGE  
Operating  
Disabled  
Disabled  
nSLEEP pin = 1  
Sleep mode  
Fault encountered  
nSLEEP pin = 0  
Any fault condition met  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
 
 
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
www.ti.com.cn  
Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The DRV883x family of devices is device is used to drive one dc motor or other devices like solenoids. The  
following design procedure can be used to configure the DRV883x family of devices.  
8.2 Typical Application  
DRV8837 and  
VM  
DRV8838  
VCC  
0.1 µF  
0.1 µF  
1
2
3
4
8
7
6
5
VM  
VCC  
nSLEEP  
IN1/PH  
IN2/EN  
OUT1  
OUT2  
GND  
M
8-1. Schematic of DRV883x Application  
8.2.1 Design Requirements  
8-1 lists the required parameters for a typical usage case.  
8-1. System Design Requirements  
DESIGN PARAMETER  
Motor supply voltage  
Logic supply voltage  
Target rms current  
REFERENCE  
EXAMPLE VALUE  
VM  
VCC  
IOUT  
9 V  
3.3 V  
0.8 A  
8.2.2 Detailed Design Procedure  
8.2.2.1 Motor Voltage  
The appropriate motor voltage depends on the ratings of the motor selected and the desired RPM. A higher  
voltage spins a brushed dc motor faster with the same PWM duty cycle applied to the power FETs. A higher  
voltage also increases the rate of current change through the inductive motor windings.  
8.2.2.2 Low-Power Operation  
When entering sleep mode, TI recommends setting all inputs as a logic low to minimize system power.  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
 
 
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
www.ti.com.cn  
8.2.3 Application Curves  
8-2. 50% Duty Cycle, Forward Direction  
8-3. 50% Duty Cycle, Reverse Direction  
8-4. 20% Duty Cycle, Forward Direction  
8-5. 20% Duty Cycle, Reverse Direction  
备注  
DIR_V is an indication of the motor direction. It is not a pin of the DRV883x device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
www.ti.com.cn  
8 Power Supply Recommendations  
8.1 Bulk Capacitance  
Having appropriate local bulk capacitance is an important factor in motor-drive system design. It is generally  
beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.  
The amount of local capacitance needed depends on a variety of factors, including:  
The highest current required by the motor system  
The power-supply capacitance and ability to source current  
The amount of parasitic inductance between the power supply and motor system  
The acceptable voltage ripple  
The type of motor used (brushed dc, brushless dc, stepper)  
The motor braking method  
The inductance between the power supply and motor drive system limits the rate at which current can change  
from the power supply. If the local bulk capacitance is too small, the system responds to excessive current  
demands or dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the  
motor voltage remains stable and high current can be quickly supplied.  
The data sheet generally provides a recommended value, but system-level testing is required to determine the  
appropriate size of bulk capacitor.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
Motor  
Driver  
+
GND  
Local  
Bulk Capacitor  
IC Bypass  
Capacitor  
8-1. Example Setup of Motor Drive System With External Power Supply  
The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases  
when the motor transfers energy to the supply  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
 
 
 
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
www.ti.com.cn  
9 Layout  
9.1 Layout Guidelines  
The VM and VCC pins should be bypassed to GND using low-ESR ceramic bypass capacitors with a  
recommended value of 0.1 µF rated for VM and VCC . These capacitors should be placed as close to the VM  
and VCC pins as possible with a thick trace or ground plane connection to the device GND pin.  
9.2 Layout Example  
0.1 µF  
0.1 µF  
VCC  
VM  
nSLEEP  
IN1/PH  
IN2/EN  
OUT1  
OUT2  
GND  
9-1. Simplified Layout Example  
9.3 Power Dissipation  
Power dissipation in the DRV883x family of devices is dominated by the power dissipated in the output FET  
resistance, or rDS(on). Use 方程1 to estimate the average power dissipation when running a stepper motor.  
2
PTOT = rDS(on) ´(IOUT(RMS)  
)
(1)  
where  
PTOT is the total power dissipation  
rDS(on) is the resistance of the HS plus LS FETs  
IOUT(RMS) is the rms or dc output current being supplied to the load  
The maximum amount of power that can be dissipated in the device is dependent on ambient temperature and  
heatsinking.  
备注  
The value of rDS(on) increases with temperature, so as the device heats, the power dissipation  
increases.  
The DRV883x family of devices has thermal shutdown protection. If the die temperature exceeds approximately  
150°C, the device is disabled until the temperature drops to a safe level.  
Any tendency of the device to enter thermal shutdown is an indication of either excessive power dissipation,  
insufficient heatsinking, or too high an ambient temperature.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
 
 
 
 
 
DRV8837, DRV8838  
ZHCSA67F JUNE 2012 REVISED APRIL 2021  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Documentation Support  
10.1.1 Related Documentation  
For related documentation see the following:  
Calculating Motor Driver Power Dissipation  
DRV8837EVM Users Guide  
DRV8838EVM Users Guide  
Independent Half-Bridge Drive with DRV8837  
Understanding Motor Driver Current Ratings  
10.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
10-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
DRV8837  
DRV8838  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
10.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
10.4 Community Resources  
10.5 Trademarks  
所有商标均为其各自所有者的财产。  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Aug-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8837DSGR  
DRV8837DSGT  
DRV8838DSGR  
DRV8838DSGT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
837  
837  
838  
838  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Aug-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV8837DSGR  
DRV8837DSGT  
DRV8838DSGR  
DRV8838DSGT  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
3000  
250  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
1.15  
1.15  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV8837DSGR  
DRV8837DSGT  
DRV8838DSGR  
DRV8838DSGT  
WSON  
WSON  
WSON  
WSON  
DSG  
DSG  
DSG  
DSG  
8
8
8
8
3000  
250  
210.0  
182.0  
182.0  
182.0  
185.0  
182.0  
182.0  
182.0  
35.0  
20.0  
20.0  
20.0  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DRV8838DSGT

具有相位/使能控制的 11V、1.8A H 桥电机驱动器 | DSG | 8 | -40 to 85
TI

DRV8839

LOW VOLTAGE DUAL 1/2-H-BRIDGE DRIVER IC
TI

DRV8839DSSR

LOW VOLTAGE DUAL 1/2-H-BRIDGE DRIVER IC
TI

DRV8839_16

Low-Voltage Dual H-Bridge Driver IC
TI

DRV8840

DC MOTOR DRIVER IC
TI

DRV8840PWP

DC MOTOR DRIVER IC
TI

DRV8840PWPR

DC MOTOR DRIVER IC
TI

DRV8840_15

DC Motor Driver IC
TI

DRV8841

DUAL H-BRIDGE DRIVER IC
TI

DRV8841PWP

DUAL H-BRIDGE DRIVER IC
TI

DRV8841PWPR

DUAL H-BRIDGE DRIVER IC
TI

DRV8841_15

Dual H-Bridge Driver IC
TI