DRV8340HPHPRQ1 [TI]

汽车类 12V 至 24V 三相智能栅极驱动器 | PHP | 48 | -40 to 125;
DRV8340HPHPRQ1
型号: DRV8340HPHPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 12V 至 24V 三相智能栅极驱动器 | PHP | 48 | -40 to 125

栅极驱动 驱动器
文件: 总78页 (文件大小:1682K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV8340-Q1  
ZHCSJU7 MAY 2019  
DRV8340-Q1 12V/24V 汽车栅极驱动器单元 (GDU),带有独立半桥控制装  
1 特性  
3 说明  
1
具有符合面向汽车 标准  
温度等级 1-40°C TA 125°C  
3 个独立半桥栅极驱动器  
DRV8340-Q1 器件是一款适用于三相应用的 集成式栅  
极驱动器。此器件具有三个半桥栅极驱动器,每个驱动  
器都能够驱动高侧和低侧 N 沟道功率 MOSFET。专用  
源极与漏极引脚支持对电磁阀应用进行独立 MOSFET  
控制。DRV8340-Q1 使用集成式电荷泵为高侧  
MOSFET 生成足够的栅极驱动电压,并使用线性稳压  
器为低侧 MOSFET 生成足够的栅极驱动电压。此智能  
栅极驱动架构支持高达 1A 的峰值栅极驱动拉电流和  
2A 的峰值栅极驱动灌电流。DRV8340-Q1 可由单一电  
源供电,支持适用于栅极驱动器的 5.5 60V 宽输入  
电源电压范围。  
专用源极 (SHx) 与漏极 (DLx) 引脚支持独立  
MOSFET 控制  
可驱动 3 个高侧和 3 个低侧 N 通道 MOSFET  
(NMOS)  
智能栅极驱动架构  
可调转换率控制  
1.5mA 1A 峰值源电流  
3mA 2A 峰值灌电流  
支持 100% 占空比的栅极驱动器电荷泵  
提供 SPI (S) 和硬件 (H) 接口  
6x3x1x 和独立的 PWM 模式  
支持 3.3V 5V 逻辑输入  
6x3x1x 和独立输入 PWM 模式可简化与控制器电  
路的连接。栅极驱动器和器件的配置设置具有高度可配  
置性,可通过 SPI 或硬件 (H/W) 接口实现。  
提供了低功耗睡眠模式,实现较低的静态电流消耗。针  
对欠压锁定、电荷泵故障、MOSFET 过流、MOSFET  
短路、相位节点电源和接地短路、栅极驱动器故障和过  
热情况提供内部保护功能。故障状况及故障详情可通过  
SPI 器件型号的器件寄存器显示在 nFAULT 引脚上。  
电荷泵输出可驱动反向电源保护 MOSFET  
3.3V30mA 线性稳压器  
集成式保护 特性  
VM 欠压锁定 (UVLO)  
电荷泵欠压 (CPUV)  
电池短路 (SHT_BAT)  
器件信息(1)  
接地短路 (SHT_GND)  
MOSFET 过流保护 (OCP)  
栅极驱动器故障 (GDF)  
热警告和热关断 (OTW/OTSD)  
故障状态指示器 (nFAULT)  
器件型号  
封装  
封装尺寸(标称值)  
DRV8340-Q1  
HTQFP (48)  
7.00mm × 7.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
2 应用  
5.5 to 60 V  
12V 24V 汽车电机控制 应用  
PWM  
DRV8340-Q1  
BLDC BDC 电机模块  
风扇和风机  
Gate Drive  
SPI or H/W  
nFAULT  
Three-Phase  
Smart Gate Driver  
M
燃油泵和水泵  
Protection  
3.3-V LDO  
3.3 V  
电磁阀驱动器  
30 mA  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDZ9  
 
 
 
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
目录  
8.6 Register Maps......................................................... 45  
Application and Implementation ........................ 59  
9.1 Application Information............................................ 59  
9.2 Typical Application ................................................. 59  
1
2
3
4
5
6
7
特性.......................................................................... 1  
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 8  
7.4 Thermal Information.................................................. 8  
7.5 Electrical Characteristics........................................... 9  
7.6 SPI Timing Requirements ....................................... 14  
7.7 Typical Characteristics............................................ 15  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
8.2 Functional Block Diagram ....................................... 17  
8.3 Feature Description................................................. 18  
8.4 Device Functional Modes........................................ 43  
8.5 Programming........................................................... 43  
10 Power Supply Recommendations ..................... 64  
10.1 Power Supply Consideration in Generator Mode . 64  
10.2 Bulk Capacitance Sizing ....................................... 64  
11 Layout................................................................... 66  
11.1 Layout Guidelines ................................................. 66  
11.2 Layout Example .................................................... 67  
12 器件和文档支持 ..................................................... 68  
12.1 器件支持................................................................ 68  
12.2 文档支持................................................................ 68  
12.3 接收文档更新通知 ................................................. 68  
12.4 社区资源................................................................ 68  
12.5 ....................................................................... 68  
12.6 静电放电警告......................................................... 69  
12.7 Glossary................................................................ 69  
13 机械、封装和可订购信息....................................... 69  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2019 5 月  
*
初始发行版  
PP  
2
Copyright © 2019, Texas Instruments Incorporated  
 
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
5 Device Comparison Table  
DEVICE  
VARIANT(1)  
DRV8340H  
DRV8340S  
INTERFACE(1)  
Hardware  
SPI  
DRV8340-Q1  
(1) For more information on the device name and device options, see the 器件命名规则 section.  
6 Pin Configuration and Functions  
DRV8340H PHP PowerPAD™ Package  
48-Pin HTQFP With Exposed Thermal Pad  
Top View  
CPL  
CPH  
VCP  
VM  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
ENABLE  
RSVD  
VDS  
2
3
4
IDRIVE  
MODE  
nFAULT  
NC  
VDRAIN  
GHA  
SHA  
DLA  
5
6
Thermal  
Pad  
7
8
NC  
GLA  
SLA  
9
NC  
10  
11  
12  
NC  
NC  
NC  
NC  
NC  
Not to scale  
Table 1. Pin Functions—DRV8340H  
PIN  
NAME  
TYPE  
DESCRIPTION  
NO.  
1
CPL  
CPH  
PWR  
PWR  
PWR  
PWR  
I
Charge pump switching node. Connect a flying capacitor between the CPH and CPL pins  
Charge pump switching node. Connect a flying capacitor between the CPH and CPL pins  
Charge pump output. Connect a bypass capacitor between the VCP and VM pins  
2
3
4
5
6
VCP  
VM  
Gate driver power supply input. Connect to the bridge power supply. Connect bypass capacitors VM and PGND pins  
High-side MOSFET drain sense input. Connect to the common point of the MOSFET drains  
High-side gate driver output. Connect to the gate of the high-side power MOSFET  
VDRAIN  
GHA  
O
Copyright © 2019, Texas Instruments Incorporated  
3
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
Table 1. Pin Functions—DRV8340H (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
High-side source sense input. Connect to the high-side power MOSFET source. If high-side power MOSFET is not used,  
connect to GND  
7
SHA  
I
8
DLA  
GLA  
SLA  
NC  
I
O
Low-side MOSFET drain sense input. Connect to the low-side MOSFET drain  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET  
Low-side source sense input. Connect to the low-side power MOSFET source  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
Low-side source sense input. Connect to the low-side power MOSFET source  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET  
Low-side MOSFET drain sense input. Connect to the low-side MOSFET drain  
9
10  
11  
12  
13  
14  
15  
16  
17  
I
NC  
NC  
NC  
NC  
I
NC  
NC  
NC  
SLB  
GLB  
DLB  
O
I
High-side source sense input. Connect to the high-side power MOSFET source. If high-side power MOSFET is not used,  
connect to GND  
18  
SHB  
I
19  
20  
GHB  
GHC  
O
O
High-side gate driver output. Connect to the gate of the high-side power MOSFET  
High-side gate driver output. Connect to the gate of the high-side power MOSFET  
High-side source sense input. Connect to the high-side power MOSFET source. If high-side power MOSFET is not used,  
connect to GND  
21  
SHC  
I
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
DLC  
GLC  
SLC  
I
O
Low-side MOSFET drain sense input. Connect to the low-side MOSFET drain  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET  
Low-side source sense input. Connect to the low-side power MOSFET source  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
Fault indicator output. This pin is pulled logic low during a fault condition and requires an external pullup resistor  
PWM input mode setting. This pin is a 7-level input pin set by an external resistor  
Gate drive output current setting. This pin is a 7-level input pin set by an external resistor  
VDS monitor trip point setting. This pin is a 7-level input pin set by an external resistor  
Reserved. Leave open.  
I
NC  
NC  
NC  
NC  
NC  
NC  
NC  
OD  
I
NC  
NC  
NC  
NC  
NC  
nFAULT  
MODE  
IDRIVE  
VDS  
RSVD  
I
I
I
Gate driver enable. When this pin is logic low the device goes to a low-power sleep mode. An 20-μs (typ) low pulse can be  
used to reset fault conditions  
36  
ENABLE  
I
37  
38  
NC  
NC  
No internal connection. This pin can be left floating or connected to system ground.  
Device analog ground. Connect to system ground  
AGND  
PWR  
3.3-V internal regulator output. Connect a bypass capacitor between the DVDD and AGND pins. This regulator can externally  
source up to 30 mA.  
39  
40  
DVDD  
nDIAG  
PWR  
I
Control pin for open load diagnostic and offline short-to-battery and short-to-ground diagnostic. To enable the diagnostics at  
device power-up, do not connect this pin (or tie it to ground). To disable the diagnostics, connect this pin to the DVDD pin.  
41  
42  
43  
44  
45  
46  
47  
48  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
PGND  
NC  
I
High-side gate driver control input. This pin controls the output of the high-side gate driver  
Low-side gate driver control input. This pin controls the output of the low-side gate driver  
High-side gate driver control input. This pin controls the output of the high-side gate driver  
Low-side gate driver control input. This pin controls the output of the low-side gate driver  
High-side gate driver control input. This pin controls the output of the high-side gate driver  
Low-side gate driver control input. This pin controls the output of the low-side gate driver  
Device power ground. Connect to system ground  
I
I
I
I
I
PWR  
NC  
No connect. Do not connect anything to this pin  
Thermal  
Pad  
PWR  
Must be connected to ground  
4
Copyright © 2019, Texas Instruments Incorporated  
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
DRV8340S PHP PowerPAD™ Package  
48-Pin HTQFP With Exposed Thermal Pad  
Top View  
CPL  
CPH  
VCP  
VM  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
ENABLE  
nSCS  
SCLK  
SDI  
2
3
4
VDRAIN  
GHA  
SHA  
DLA  
5
SDO  
nFAULT  
NC  
6
Thermal  
Pad  
7
8
NC  
GLA  
SLA  
9
NC  
10  
11  
12  
NC  
NC  
NC  
NC  
NC  
Not to scale  
Table 2. Pin Functions—DRV8340S  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
CPL  
PWR  
PWR  
PWR  
Charge pump switching node. Connect a flying capacitor between the CPH and CPL pins  
Charge pump switching node. Connect a flying capacitor between the CPH and CPL pins  
Charge pump output. Connect a bypass capacitor between the VCP and VM pins  
2
CPH  
VCP  
3
Gate driver power supply input. Connect to the bridge power supply. Connect bypass capacitors between the VM and PGND  
pins  
4
VM  
PWR  
5
6
VDRAIN  
GHA  
I
High-side MOSFET drain sense input. Connect to the common point of the MOSFET drains  
High-side gate driver output. Connect to the gate of the high-side power MOSFET  
O
High-side source sense input. Connect to the high-side power MOSFET source. If high-side power MOSFET is not used,  
connect to GND  
7
SHA  
I
8
DLA  
GLA  
SLA  
NC  
I
Low-side MOSFET drain sense input. Connect to the low-side MOSFET drain  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET  
Low-side source sense input. Connect to the low-side power MOSFET source  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
Low-side source sense input. Connect to the low-side power MOSFET source  
9
O
10  
11  
12  
13  
14  
15  
I
NC  
NC  
NC  
NC  
I
NC  
NC  
NC  
SLB  
Copyright © 2019, Texas Instruments Incorporated  
5
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
Table 2. Pin Functions—DRV8340S (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
16  
NAME  
GLB  
O
I
Low-side gate driver output. Connect to the gate of the low-side power MOSFET  
Low-side MOSFET drain sense input. Connect to the low-side MOSFET drain  
17  
DLB  
High-side source sense input. Connect to the high-side power MOSFET source. If high-side power MOSFET is not used,  
connect to GND  
18  
SHB  
I
19  
20  
GHB  
GHC  
O
O
High-side gate driver output. Connect to the gate of the high-side power MOSFET  
High-side gate driver output. Connect to the gate of the high-side power MOSFET  
High-side source sense input. Connect to the high-side power MOSFET source. If high-side power MOSFET is not used,  
connect to GND  
21  
SHC  
I
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
DLC  
GLC  
SLC  
NC  
I
Low-side MOSFET drain sense input. Connect to the low-side MOSFET drain  
O
Low-side gate driver output. Connect to the gate of the low-side power MOSFET  
Low-side source sense input. Connect to the low-side power MOSFET source  
I
NC  
NC  
NC  
NC  
NC  
NC  
OD  
PP  
I
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
Fault indicator output. This pin is pulled logic low during a fault condition and requires an external pullup resistor  
Serial data output. Data is shifted out on the rising edge of the SCLK pin. VSDO determines logic level on the output  
Serial data input. Data is captured on the falling edge of the SCLK pin  
NC  
NC  
NC  
NC  
NC  
nFAULT  
SDO  
SDI  
SCLK  
nSCS  
I
Serial clock input. Serial data is shifted out and captured on the corresponding rising and falling edge on this pin  
Serial chip select. A logic low on this pin enables serial interface communication  
I
Gate driver enable. When this pin is logic low the device goes to a low-power sleep mode. An 20-μs (typ) low pulse can be  
used to reset fault conditions  
36  
ENABLE  
I
37  
38  
NC  
NC  
No internal connection. This pin can be left floating or connected to system ground.  
Device analog ground. Connect to system ground  
AGND  
PWR  
3.3-V internal regulator output. Connect a bypass capacitor between the DVDD and AGND pins. This regulator can externally  
source up to 30 mA.  
39  
40  
DVDD  
VSDO  
PWR  
PWR  
Supply pin for SDO output. Connect to 5-V or 3.3-V depending on the desired logic level. Connect a bypass capacitors  
between VSDO and AGND  
41  
42  
43  
44  
45  
46  
47  
48  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
PGND  
NC  
I
High-side gate driver control input. This pin controls the output of the high-side gate driver  
Low-side gate driver control input. This pin controls the output of the low-side gate driver  
High-side gate driver control input. This pin controls the output of the high-side gate driver  
Low-side gate driver control input. This pin controls the output of the low-side gate driver  
High-side gate driver control input. This pin controls the output of the high-side gate driver  
Low-side gate driver control input. This pin controls the output of the low-side gate driver  
Device power ground. Connect to system ground  
I
I
I
I
I
PWR  
NC  
No connect. Do not connect anything to this pin  
Thermal  
Pad  
PWR  
Must be connected to ground  
6
Copyright © 2019, Texas Instruments Incorporated  
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
GATE DRIVER  
Power supply pin voltage (VM)  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–10  
65  
V
V
V
V
V
V
V
Voltage differential between ground pins (AGND, BGND, DGND, PGND)  
MOSFET drain sense pin voltage (VDRAIN)  
Charge pump pin voltage (CPH, VCP)  
0.3  
65  
VVM + 13.5  
VVM  
Charge-pump negative-switching pin voltage (CPL)  
Internal logic regulator pin voltage (DVDD)  
Voltage difference between VM and VDRAIN  
3.8  
10  
Digital pin voltage (ENABLE, IDRIVE, INHx, INLx, MODE, nFAULT, nSCS, SCLK, SDI, SDO, VDS,  
nDIAG)  
–0.3  
5.75  
V
Continuous high-side gate drive pin voltage (GHx)  
Transient 200-ns high-side gate drive pin voltage (GHx)  
High-side gate drive pin voltage with respect to SHx (GHx)  
Continuous high-side source sense pin voltage (SHx, DLx)  
Transient 200-ns high-side source sense pin voltage (SHx, DLx)  
Continuous high-side source sense pin voltage (SHx, DLx)  
Transient 200-ns high-side source sense pin voltage (SHx, DLx)  
Continuous low-side gate drive pin voltage (GLx)  
Gate drive pin source current (GHx, GLx)  
5(2)  
–7  
VVCP + 0.5  
VVCP + 0.5  
13.5  
V
V
–0.3  
–5(2)  
–7  
V
VVM + 5  
VVM + 7  
VDRAIN + 5  
VDRAIN + 7  
15  
V
V
–5(2)  
V
–7  
V
–0.5  
V
Internally limited  
A
Gate drive pin sink current (GHx, GLx)  
Internally limited  
A
Continuous low-side source sense pin voltage (SLx)  
Transient 200-ns low-side source sense pin voltage (SLx)  
Push-pull output buffer reference voltage (VSDO)  
Push-pull output current (SDO)  
–1  
–3  
1
3
V
V
–0.3  
0
5.75  
10  
V
mA  
V
Open drain pullup voltage (nFAULT)  
–0.3  
0
5.75  
10  
Open drain output current (nFAULT)  
mA  
°C  
°C  
Operating junction temperature, TJ  
–40  
–65  
150  
150  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Continuous high-side gate pin (GHx) and phase node pin voltage (SHx) should be limited to –2 V minimum for an absolute maximum of  
65 V on VM. At 60 V and below, the full specification of –5 V continuous on GHx and SHx is allowable.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
V
Human-body model (HBM), per AEC Q100-002(1)  
Electrostatic  
discharge  
V(ESD)  
All pins  
Charged-device model (CDM), per AEC Q100-  
011  
Corner pins (1, 10, 11, 20, 21, 30, 31, and 40)  
±750  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2019, Texas Instruments Incorporated  
7
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
UNIT  
7.3 Recommended Operating Conditions  
MIN  
MAX  
GATE DRIVER  
(1)  
Power supply voltage (VM) Continuous  
5.5  
5.5  
50  
60  
V
V
VVM  
(2)  
Power supply voltage (VM) Transient over voltage  
Input voltage (ENABLE, IDRIVE, INHx, INLx, MODE, nSCS, SCLK, SDI, VDS, VSDO,  
nDIAG)  
VI  
0
5.5  
V
fPWM  
Applied PWM signal (INHx, INLx)  
High-side average gate-drive current (GHx)  
Low-side average gate-drive current (GLx)  
External load current (DVDD)  
0
0
200(3)  
25(3)  
25(3)  
30(3)  
5.5  
kHz  
mA  
mA  
mA  
V
IGATE_HS  
IGATE_LS  
IDVDD  
VSDO  
VOD  
0
0
Push-pull voltage (SDO)  
3
Open drain pullup voltage (nFAULT)  
Operating ambient temperature  
0
5.5  
V
TA  
–40  
125  
°C  
(1) Operation at VM = 5.5V only when coming from higher VM. The minimum VM voltage for startup is greater than VUVLO (rising) voltage.  
(2) VM recommended operating condition for electrical characteristic table. Product life time depends on VM voltage. The device is intended  
for 12–V and 24–V battery automotive system with life-time nominal voltage of 5.5 V - 50 V. The device can be operated during  
additional overvoltage events as specified in ISO16750-2:2012  
(3) Power dissipation and thermal limits must be observed  
7.4 Thermal Information  
DRV8340-Q1  
THERMAL METRIC(1)  
PHP (HTQFP)  
UNIT  
48 PINS  
26.5  
16.3  
6.7  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
6.8  
RθJC(bot)  
1.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8
Copyright © 2019, Texas Instruments Incorporated  
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
7.5 Electrical Characteristics  
Over recommended operating conditions 5.5 VVM 60 V (unless otherwise noted). Typical limits apply for VVM = 24 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (DVDD, VCP, VM)  
VVM = 24 V, ENABLE = 3.3 V, INHx/INLx = 0 V, SHx = 0  
V
IVM  
VM operating supply current  
12  
12  
16  
mA  
µA  
ENABLE = 0 V, VVM = 24 V, TA = 25°C  
ENABLE = 0 V, VVM = 24 V, TA = 125°C  
ENABLE = 0 V period to reset faults  
ENABLE = 3.3 V to outputs ready, VVM > VUVLO  
ENABLE = 0 V to device sleep mode  
VVM > 6 V, IDVDD = 0 to 30 mA  
20  
50  
43  
1
IVMQ  
VM sleep mode supply current  
tRST  
Reset pulse time  
Turnon time  
4.4  
µs  
ms  
ms  
V
(1)  
tWAKE  
tSLEEP  
Turnoff time  
1
3
3
3.3  
3.3  
11  
9
3.6  
3.6  
12.5  
10  
8
VDVDD  
DVDD regulator voltage  
VVM = 5.5 to 6 V, IDVDD = 0 to 20 mA  
VVM = 13 V, IVCP = 0 to 25 mA  
V
8.4  
6.3  
5.4  
4
VVM = 10 V, IVCP = 0 to 20 mA  
VCP operating voltage  
with respect to VM  
VVCP  
V
VVM = 8 V, IVCP = 0 to 15 mA  
7
VVM = 5.5 V, IVCP = 0 to 5 mA  
5
6
LOGIC-LEVEL INPUTS (CAL, ENABLE, INHx, INLx, SCLK, SDI)  
VIL  
Input logic low voltage  
Input logic high voltage  
Input logic hysteresis  
0
0.7  
5.5  
V
V
VIH  
1.6  
VHYS  
182  
mV  
VVIN = 0 V; INHx, INLx, SDI(IDRIVE), SCLK(VDS),  
ENABLE  
IIL  
Input logic low current  
–5  
5
µA  
IIH  
Input logic high current  
Input logic high current  
Pulldown resistance  
Pulldown resistance  
VVIN = 5 V; INHx, INLx, SDI(IDRIVE), SCLK(VDS)  
VVIN = 5 V; ENABLE  
50  
80  
90  
110  
200  
110  
µA  
µA  
kΩ  
kΩ  
IIH  
RPD  
RPD  
To AGND; INHx, INLx, SDI(IDRIVE), SCLK(VDS)  
To AGND; ENABLE  
50  
30  
100  
60  
INHx/INLx input buffer and digital core propagation  
delay. Dead time is excluded.  
tPD  
Propagation delay  
105  
ns  
LOGIC LEVEL INPUT (nSCS)  
VIL,nSCS  
VIH,nSCS  
RPU,nSCS  
Input logic low voltage  
0
1.6  
25  
0.7  
5.5  
90  
V
V
Input logic high voltage  
Pullup resistance  
To DVDD  
50  
kΩ  
SEVEN-LEVEL H/W INPUTS (MODE, IDRIVE, VDS)  
VI1  
VI2  
VI3  
VI4  
VI5  
VI6  
Input mode 1 voltage  
Input mode 2 voltage  
Input mode 3 voltage  
Input mode 4 voltage  
Input mode 5 voltage  
Input mode 6 voltage  
Tied to AGND  
0
0.5  
V
V
V
V
V
V
18 kΩ ± 5% tied to AGND  
75 kΩ ± 5% tied to AGND  
Hi-Z ( > 1.5 M)  
1.1  
1.65  
2.2  
75 kΩ ± 5% tied to DVDD  
18 kΩ ± 5% tied to DVDD  
2.8  
MODE : 0.47 kΩ ± 5% tied to DVDD  
VDS, IDRIVE : Tied to DVDD  
VI7  
Input mode 7 voltage  
3.3  
V
RPU  
RPD  
Pullup resistance  
Internal pullup to DVDD  
35  
35  
73  
73  
125  
125  
kΩ  
kΩ  
Pulldown resistance  
Internal pulldown to AGND  
PUSH-PULL OUTPUT (SDO)  
To VSDO = 5 V  
To VSDO = 3.3 V  
To GND  
40  
60  
30  
90  
120  
50  
RPU,SDO Internal pullup  
RPD,SDO  
Internal pulldown  
OPEN DRAIN OUTPUT (nFAULT)  
VOL  
IOZ  
Output logic low voltage  
Output high impedance leakage  
IO = 5 mA  
VO = 5 V  
0.15  
9
V
–1  
µA  
GATE DRIVERS (GHx, GLx)  
(1) Does not include OLP/Shorts diagnostic delay time in the H/W device  
Copyright © 2019, Texas Instruments Incorporated  
9
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended operating conditions 5.5 VVM 60 V (unless otherwise noted). Typical limits apply for VVM = 24 V  
PARAMETER  
TEST CONDITIONS  
VVM = 13 V, IVCP = 0 to 25 mA, GHx no output load  
VVM = 10 , IVCP = 0 to 20 mA, GHx no output load  
VVM = 8 V, IVCP = 0 to 15 mA, GHx no output load  
VVM = 5.5 V, IVCP = 0 to 5 mA, GHx no output load  
VVM = 12 V, IVCP = 0 to 25 mA, GLx no output load  
VVM = 10 V, IVCP = 0 to 20 mA, GLx no output load  
VVM = 8 V, IVCP = 0 to 15 mA, GLx no output load  
VVM = 5.5 V, IVCP = 0 to 5 mA, GLx no output load  
DEAD_TIME = 00b  
MIN  
8.4  
6.3  
5.4  
4
TYP  
MAX  
12.5  
10  
UNIT  
11  
9
High-side gate drive voltage  
with respect to SHx  
VGSH  
V
7
8
5
6
9
11  
12  
9.9  
7.9  
5.4  
10.0  
8.0  
10.1  
8.1  
5.6  
Low-side gate drive voltage  
with respect to PGND  
VGSL  
V
5.5  
500  
1000  
2000  
4000  
1000  
500  
1000  
2000  
3000  
3000  
20  
DEAD_TIME = 01b  
SPI Device  
Gate drive  
dead time  
tDEAD  
DEAD_TIME = 10b  
ns  
DEAD_TIME = 11b  
H/W Device  
SPI Device  
H/W Device  
TDRIVE = 00b  
TDRIVE = 01b  
TDRIVE = 10b  
TDRIVE = 11b  
Peak current  
gate drive time  
tDRIVE  
ns  
µs  
tDRIVE_MAX  
Peak current gate drive max time  
IDRIVEP_Hx = 0000b, 0001b, 0010b, 0011b  
10  
Copyright © 2019, Texas Instruments Incorporated  
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
Electrical Characteristics (continued)  
Over recommended operating conditions 5.5 VVM 60 V (unless otherwise noted). Typical limits apply for VVM = 24 V  
PARAMETER  
TEST CONDITIONS  
IDRIVEP_Hx = 0000b (GHx), VVM = 24 V  
IDRIVEP_Lx = 0000b (GLx), VVM = 24 V  
IDRIVEP_Hx = 0001b (GHx), VVM = 24 V  
IDRIVEP_Lx = 0001b (GLx), VVM = 24 V  
IDRIVEP_Hx = 0010b (GHx), VVM = 24 V  
IDRIVEP_Lx = 0010b (GLx), VVM = 24 V  
MIN  
0.45  
0.81  
1.05  
1.17  
1.5  
TYP  
1.5  
2.7  
3.5  
3.9  
5
MAX  
3.0  
5.4  
7
UNIT  
7.8  
10  
1.95  
6.5  
13  
IDRIVEP_Hx or IDRIVEP_Lx = 0011b (GHx/GLx), VVM  
24 V  
=
=
=
=
=
=
=
=
=
=
=
=
=
3
4.5  
10  
15  
20  
30  
IDRIVEP_Hx or IDRIVEP_Lx = 0100b (GHx/GLx), VVM  
24 V  
IDRIVEP_Hx or IDRIVEP_Lx = 0101b (GHx/GLx), VVM  
24 V  
15  
50  
100  
IDRIVEP_Hx or IDRIVEP_Lx = 0110b (GHx/GLx), VVM  
24 V  
18  
60  
120  
IDRIVEP_Hx or IDRIVEP_Lx = 0111b (GHx/GLx), VVM  
24 V  
19.5  
76  
65  
130  
SPI Device  
IDRIVEP_Hx or IDRIVEP_Lx = 1000b (GHx/GLx), VVM  
24 V  
200  
210  
260  
265  
735  
800  
935  
1000  
400  
IDRIVEP_Hx or IDRIVEP_Lx = 1001b (GHx/GLx), VVM  
24 V  
79.8  
98.8  
100.7  
279.3  
304  
420  
IDRIVEP_Hx or IDRIVEP_Lx = 1010b (GHx/GLx), VVM  
24 V  
520  
Peak source  
gate current  
IDRIVEP  
mA  
IDRIVEP_Hx or IDRIVEP_Lx = 1011b (GHx/GLx), VVM  
24 V  
530  
IDRIVEP_Hx or IDRIVEP_Lx = 1100b (GHx/GLx), VVM  
24 V  
1470  
1600  
1870  
2000  
IDRIVEP_Hx or IDRIVEP_Lx = 1101b (GHx/GLx), VVM  
24 V  
IDRIVEP_Hx or IDRIVEP_Lx = 1110b (GHx/GLx), VVM  
24 V  
355.3  
380  
IDRIVEP_Hx or IDRIVEP_Lx = 1111b (GHx/GLx), VVM  
24 V  
IDRIVE = Tied to AGND (GHx), VVM = 24 V  
0.45  
0.81  
1.5  
1.5  
2.7  
5
3.0  
5.4  
10  
IDRIVE = Tied to AGND (GLx), VVM = 24 V  
IDRIVE = 18 kΩ ± 5% tied to AGND (GHx), VVM = 24 V  
IDRIVE = 18 kΩ ± 5% tied to AGND (GLx), VVM = 24 V  
1.95  
6.5  
13  
IDRIVE = 75 kΩ ± 5% tied to AGND (GHx/GLx), VVM = 24  
V
3
18  
76  
10  
60  
20  
120  
400  
H/W Device  
IDRIVE = Hi-Z (GHx/GLx), VVM = 24 V  
IDRIVE = 75 kΩ ± 5% tied to DVDD (GHx/GLx), VVM = 24  
V
200  
IDRIVE = 18 kΩ ± 5% tied to DVDD (GHx/GLx), VVM = 24  
V
98.8  
380  
260  
520  
IDRIVE = Tied to DVDD (GHx/GLx), VVM = 24 V  
1000  
2000  
Copyright © 2019, Texas Instruments Incorporated  
11  
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended operating conditions 5.5 VVM 60 V (unless otherwise noted). Typical limits apply for VVM = 24 V  
PARAMETER  
TEST CONDITIONS  
IDRIVEN_Hx or IDRIVEN_Lx = 0000b, VVM = 24 V  
IDRIVEN_Hx or IDRIVEN_Lx = 0001b, VVM = 24 V  
IDRIVEN_Hx or IDRIVEN_Lx = 0010b, VVM = 24 V  
IDRIVEN_Hx or IDRIVEN_Lx = 0011b, VVM = 24 V  
IDRIVEN_Hx or IDRIVEN_Lx= 0100b, VVM = 24 V  
IDRIVEN_Hx or IDRIVEN_Lx = 0101b, VVM = 24 V  
IDRIVEN_Hx or IDRIVEN_Lx = 0110b, VVM = 24 V  
IDRIVEN_Hx or IDRIVEN_Lx = 0111b, VVM = 24 V  
IDRIVEN_Hx or IDRIVEN_Lx = 1000b, VVM = 24 V  
IDRIVEN_Hx or IDRIVEN_Lx = 1001b, VVM = 24 V  
IDRIVEN_Hx or IDRIVEN_Lx = 1010b, VVM = 24 V  
IDRIVEN_Hx or IDRIVEN_Lx = 1011b, VVM = 24 V  
IDRIVEN_Hx or IDRIVEN_Lx = 1100b, VVM = 24 V  
IDRIVEN_Hx or IDRIVEN_Lx = 1101b, VVM = 24 V  
IDRIVEN_Hx or IDRIVEN_Lx = 1110b, VVM = 24 V  
IDRIVEN_Hx or IDRIVEN_Lx = 1111b, VVM = 24 V  
IDRIVE = Tied to AGND, VVM = 24 V  
MIN  
0.9  
2.09  
3
TYP  
MAX  
5.4  
12.6  
18  
UNIT  
3
7
10  
6
20  
36  
9
30  
54  
30  
36  
39  
120  
126  
156  
159  
441  
480  
561  
600  
0.9  
3
100  
120  
130  
400  
420  
520  
530  
1470  
1600  
1870  
2000  
3
180  
216  
234  
720  
756  
936  
954  
2646  
2880  
3366  
3600  
5.4  
18  
SPI Device  
Peak sink  
gate current  
IDRIVEN  
mA  
IDRIVE = 18 kΩ ± 5% tied to AGND, VVM = 24 V  
IDRIVE = 75 kΩ ± 5% tied to AGND, VVM = 24 V  
IDRIVE = Hi-Z, VVM = 24 V  
10  
6
20  
36  
H/W Device  
36  
120  
156  
600  
0.45  
1.05  
1.5  
3
120  
400  
520  
2000  
1.5  
3.5  
5
216  
720  
936  
3600  
3.8  
7
IDRIVE = 75 kΩ ± 5% tied to DVDD, VVM = 24 V  
IDRIVE = 18 kΩ ± 5% tied to DVDD, VVM = 24 V  
IDRIVE = Tied to DVDD, VVM = 24 V  
IDRIVEP_Hx = 0000b, VVM = 24 V  
IDRIVEP_Hx = 0001b, VVM = 24 V  
SPI Device  
H/W Device  
SPI Device  
H/W Device  
IDRIVEP_Hx = 0010b, VVM = 24 V  
10  
IDRIVEP_Hx = 0011b, VVM = 24 V  
10  
20  
Gate holding source  
current after tDRIVE  
IHOLDP  
All other IDRIVE settings, VVM = 24 V  
4.5  
0.45  
1.5  
3
15  
30  
mA  
IDRIVE tied to AGND, VVM = 24 V  
1.5  
5
3.8  
10  
IDRIVE = 18 kΩ ± 5% tied to AGND, VVM = 24 V  
IDRIVE = 75 kΩ ± 5% tied to AGND, VVM = 24 V  
All other IDRIVE settings, VVM = 24 V  
10  
20  
4.5  
0.9  
2
15  
30  
IDRIVEP_Hx = 0000b, VVM = 24 V  
3
5.4  
12.6  
18  
IDRIVEP_Hx = 0001b, VVM = 24 V  
7
IDRIVEP_Hx = 0010b, VVM = 24 V  
3
10  
IDRIVEP_Hx = 0011b, VVM = 24 V  
6
20  
36  
Gate holding sink  
current after tDRIVE  
IHOLDN  
All other IDRIVE settings, VVM = 24 V  
9
30  
54  
mA  
IDRIVE tied to AGND, VVM = 24 V  
0.9  
3
3
5.4  
18  
IDRIVE = 18 kΩ ± 5% tied to AGND, VVM = 24 V  
IDRIVE = 75 kΩ ± 5% tied to AGND, VVM = 24 V  
All other IDRIVE settings, VVM = 24 V  
10  
6
20  
36  
9
30  
54  
IDRIVEP_Hx = 0000b, 0001b, 0010b, 0011b, VVM = 24 V  
All other IDRIVE settings, VVM = 24 V  
9
30  
54  
mA  
A
Gate strong pulldown current  
(GHx to SHx and GLx to PGND)  
ISTRONG  
0.6  
2
3.6  
280  
280  
ROFF  
ROFF  
Gate hold off resistor  
Gate hold off resistor  
GHx to SHx  
150  
150  
kΩ  
kΩ  
GLx to PGND  
PROTECTION CIRCUITS  
VM falling, UVLO report  
VM rising, UVLO recovery  
5.2  
5.4  
5.4  
5.9  
2.9  
VUVLO  
VM undervoltage lockout  
V
VUVLO,DVDD  
VUVLO_HYS  
DVDD undervoltage lockout  
VM undervoltage hysteresis  
V
Rising to falling threshold  
200  
mV  
12  
Copyright © 2019, Texas Instruments Incorporated  
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
Electrical Characteristics (continued)  
Over recommended operating conditions 5.5 VVM 60 V (unless otherwise noted). Typical limits apply for VVM = 24 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tUVLO_DEG  
VCPUV  
VM undervoltage deglitch time  
VM falling, UVLO report  
11.5  
µs  
VVM  
1.4  
+
VVM  
+
VVM +  
3.1  
Charge pump undervoltage lockout  
High-side gate clamp  
VCP falling, CPUV report  
V
V
2.5  
Positive clamping voltage  
Negative clamping voltage  
DLx – VDRAIN  
15  
16.5  
–0.7  
300  
300  
2.5  
19  
VGS_CLAMP  
150  
150  
430  
500  
Open load active mode detection  
threshold  
VOLA  
IOL  
mV  
mA  
SLx – SHx, –1 < SLx < 0  
Open load current  
OLP_SHRT_DLY = 00b  
OLP_SHRT_DLY = 01b  
OLP_SHRT_DLY = 10b  
OLP_SHRT_DLY = 11b  
After tWAKE and tSHORTS elapse  
OLP_SHRT_DLY = 00b  
OLP_SHRT_DLY = 01b  
OLP_SHRT_DLY = 10b  
OLP_SHRT_DLY = 11b  
After tWAKE elapses  
0.25  
1.25  
5
SPI Device  
Open load passive  
diagnostic delay  
tOLP  
ms  
ms  
11.5  
5
H/W Device  
0.1  
0.5  
Offline short-to-  
battery and short-to-  
GND diagnostic delay  
SPI Device  
H/W Device  
tSHORTS  
2
4.4  
2
VDS_LVL = 0000b  
0.01  
0.08  
0.15  
0.2  
0.06  
0.13  
0.2  
0.11  
0.18  
0.25  
0.32  
0.38  
0.52  
0.61  
0.69  
0.77  
0.86  
1.07  
1.29  
1.46  
1.66  
1.88  
2.07  
0.11  
0.18  
0.32  
0.69  
1.29  
2.07  
VDS_LVL = 0001b  
VDS_LVL = 0010b  
VDS_LVL = 0011b  
0.26  
0.31  
0.45  
0.53  
0.6  
VDS_LVL = 0100b  
0.24  
0.38  
0.45  
0.51  
0.59  
0.64  
0.81  
0.97  
1.14  
1.34  
1.52  
1.69  
0.01  
0.08  
0.2  
VDS_LVL = 0101b  
VDS_LVL = 0110b  
VDS_LVL = 0111b  
SPI Device  
VDS_LVL = 1000b  
0.68  
0.75  
0.94  
1.13  
1.3  
VDS_LVL = 1001b  
VDS_LVL = 1010b  
VDS overcurrent  
trip voltage  
VVDS_OCP  
VDS_LVL = 1011b  
V
VDS_LVL = 1100b  
VDS_LVL = 1101b  
1.5  
VDS_LVL = 1110b  
1.7  
VDS_LVL = 1111b  
1.88  
0.06  
0.13  
0.26  
0.6  
VDS = Tied to AGND  
VDS = 18 kΩ ± 5% tied to AGND  
VDS = 75 kΩ ± 5% tied to AGND  
VDS = Hi-Z  
H/W Device  
0.51  
0.97  
1.69  
VDS = 75 kΩ ± 5% tied to DVDD  
VDS = 18 kΩ ± 5% tied to DVDD  
VDS = Tied to DVDD  
OCP_DEG=000b  
1.13  
1.88  
Disabled  
2.5  
OCP_DEG = 001b  
4.75  
6.75  
8.75  
10.25  
11.5  
16.5  
20.5  
4.75  
OCP_DEG = 010b  
OCP_DEG = 011b  
VDS and VSENSE  
overcurrent deglitch  
time  
SPI Device  
H/W Device  
tOCP_DEG  
OCP_DEG = 100b  
µs  
OCP_DEG = 101b  
OCP_DEG = 110b  
OCP_DEG = 111b  
Copyright © 2019, Texas Instruments Incorporated  
13  
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended operating conditions 5.5 VVM 60 V (unless otherwise noted). Typical limits apply for VVM = 24 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TRETRY = 00b  
2
TRERTY = 01b  
4
Overcurrent fault retry  
time  
tRETRY  
SPI Device  
ms  
TRETRY = 10b  
6
TRETRY = 11b  
8
THYS  
Thermal hysteresis  
Die temperature, TJ  
Die temperature, TJ  
Die temperature, TJ  
20  
170  
150  
°C  
°C  
°C  
TOTSD  
TOTW  
Thermal shutdown temperature  
Thermal warning temperature  
150  
130  
188  
169  
7.6 SPI Timing Requirements  
Over recommended operating conditions unless otherwise noted. Typical limits apply for VVM = 24 V  
MIN  
NOM  
MAX  
UNIT  
ms  
ns  
tREADY  
tCLK  
SPI ready after enable  
VM > UVLO, ENABLE = 3.3 V  
1
SCLK minimum period  
100  
50  
50  
20  
30  
tCLKH  
SCLK minimum high time  
SCLK minimum low time  
SDI input data setup time  
SDI input data hold time  
SDO output data delay time  
nSCS input setup time  
ns  
tCLKL  
ns  
tSU_SDI  
tH_SDI  
ns  
ns  
tD_SDO  
tSU_nSCS  
tH_nSCS  
tHI_nSCS  
tDIS_nSCS  
SCLK high to SDO valid, CL = 20 pF  
nSCS high to SDO high impedance  
30  
ns  
50  
50  
ns  
nSCS input hold time  
ns  
nSCS minimum high time before active low  
nSCS disable time  
500  
ns  
10  
ns  
tHI_nSCS tSU_nSCS  
tH_nSCS  
nSCS  
SCLK  
tCLK  
tCLKH  
tCLKL  
X
MSB  
LSB  
X
SDI  
tSU_SDI  
tH_SDI  
Z
MSB  
LSB  
Z
SDO  
tD_SDO  
tDIS_nSCS  
1. SPI Slave Mode Timing Diagram  
14  
版权 © 2019, Texas Instruments Incorporated  
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
7.7 Typical Characteristics  
13.5  
13.25  
13  
30  
25  
20  
15  
10  
5
12.75  
12.5  
12.25  
12  
Ta -40  
Ta 125  
11.75  
11.5  
11.25  
11  
TA = -40°C  
TA = 25°C  
TA = 125°C  
10.75  
10.5  
0
5
10 15 20 25 30 35 40 45 50 55 60  
VM (V)  
5
15  
25  
35  
VM (V)  
45  
55 60  
D001  
D002  
No PWM Switching  
ENABLE = 0 V  
2. VM Operating Supply Current  
3. VM Sleep Mode Supply Current  
10  
15  
Ta = -40  
Ta = 25  
Ta = 125  
8
6
4
2
12  
9
6
3
IVCP = 0mA  
IVCP = 12.5mA  
IVCP = 25mA  
0
13  
0
0
21  
29  
37  
VM (V)  
45  
53  
60  
3
6
9
12  
15  
IVCP (mA)  
D003  
D004  
TA = 25°C  
VM = 8 V  
4. VCP w.r.t VM over VM voltage > 13 V  
5. VCP w.r.t VM over output load IVCP  
版权 © 2019, Texas Instruments Incorporated  
15  
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The DRV8340-Q1 device is an integrated gate driver for three-phase motor driver automotive applications. These  
devices decrease system complexity by integrating three independent half-bridge gate drivers, charge pump, and  
linear regulator for the supply voltages of the high-side and low-side gate drivers.. A standard serial peripheral  
interface (SPI) provides a simple method for configuring the various device settings and reading fault diagnostic  
information through an external controller. Alternatively, a hardware interface (H/W) option allows for configuring  
the most common settings through fixed external resistors.  
The gate drivers support external N-channel high-side and low-side power MOSFETs and can drive up to 1-A  
source, 2-A sink peak currents. A doubler charge pump generates the supply voltage of the high-side gate drive.  
This charge pump architecture regulates the VCP output voltage for driving high-side power MOSFET. The  
supply voltage of the low-side gate driver is generated using a linear regulator from the VM power supply that  
regulates for driving low-side power MOSFET. A Smart Gate Drive architecture provides the ability to  
dynamically adjust the strength of the gate drive output current which lets the gate driver control the VDS  
switching speed of the power MOSFET. This feature lets the user remove the external gate drive resistors and  
diodes, reducing the component count in the bill of materials (BOM), cost, and area of the printed circuit board  
(PCB). The architecture also uses an internal state machine to protect against short-circuit events in the gate  
driver, control the half-bridge dead time, and protect against dV/dt parasitic turnon of the external power  
MOSFET.  
In addition to the high level of device integration, the DRV8340-Q1 device provides a wide range of integrated  
protection features. These features include power supply undervoltage lockout (UVLO), charge pump  
undervoltage lockout (CPUV), VDS overcurrent monitoring (OCP), gate driver short-circuit detection (GDF), and  
overtemperature shutdown (OTW and OTSD). Fault events are indicated by the nFAULT pin with detailed  
information available in the SPI registers on the SPI device version.  
16  
版权 © 2019, Texas Instruments Incorporated  
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
8.2 Functional Block Diagram  
VM  
VM  
VDRAIN  
GHA  
VM  
VCP  
HS  
VCP  
1 F  
>10 F 4.7 F  
SHA  
DLA  
VCP  
Charge  
Pump  
CPH  
CPL  
47 nF  
VGLS  
LS  
GLA  
SLA  
VGLS  
VGLS  
Linear  
Regulator  
Gate Driver  
VM  
30 mA  
DVDD  
AGND  
PGND  
VCP  
HS  
DVDD  
Linear  
Regulator  
GHB  
1 F  
SHB  
DLB  
Power  
VGLS  
LS  
Digital  
Core  
ENABLE  
INHA  
GLB  
SLB  
Gate Driver  
INLA  
VM  
VCP  
HS  
Smart Gate  
Drive  
GHC  
INHB  
Protection  
SHC  
DLC  
INLB  
Control  
Inputs  
VGLS  
LS  
INHC  
INLC  
GLC  
VCC  
nFAULT  
Gate Driver  
Fault Output  
R
MODE  
nFAULT  
SLC  
IDRIVE  
VDS  
6. Block Diagram for DRV8340H  
版权 © 2019, Texas Instruments Incorporated  
17  
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
Functional Block Diagram (接下页)  
VM  
VM  
VDRAIN  
GHA  
VM  
VCP  
HS  
VCP  
>10 F 4.7 F 1 F  
SHA  
DLA  
VCP  
CPH  
Charge  
Pump  
VGLS  
LS  
47 nF  
CPL  
GLA  
SLA  
VGLS  
VGLS  
Linear  
Gate Driver  
Regulator  
VM  
30 mA  
DVDD  
AGND  
PGND  
VCP  
HS  
DVDD  
Linear  
Regulator  
1 F  
GHB  
Power  
SHB  
DLB  
VCC  
VGLS  
LS  
Digital  
Core  
VSDO  
GLB  
SLB  
0.1 F  
ENABLE  
Gate Driver  
INHA  
VM  
Smart Gate  
Drive  
VCP  
HS  
INLA  
INHB  
INLB  
GHC  
Protection  
Control  
Inputs  
SHC  
DLC  
VGLS  
LS  
GLC  
INHC  
INLC  
VCC  
PU  
Gate Driver  
Fault Output  
R
VSDO  
SDI  
SPI  
nFAULT  
SDO  
SLC  
SCLK  
DVDD  
nSCS  
7. Block Diagram for DRV8340S  
8.3 Feature Description  
8.3.1 Three Phase Smart Gate Drivers  
The DRV8340-Q1 device integrates three, half-bridge gate drivers, each capable of driving high-side and low-  
side N-channel power MOSFETs. A doubler charge pump provides the correct gate bias voltage to the high-side  
MOSFET across a wide operating voltage range in addition to providing 100% support of the duty cycle. An  
internal linear regulator provides the gate bias voltage for the low-side MOSFETs. The half-bridge gate drivers  
can be used in combination to drive a three-phase motor or separately to drive other types of loads.  
18  
版权 © 2019, Texas Instruments Incorporated  
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
Feature Description (接下页)  
The DRV8340-Q1 device implements a Smart Gate Drive architecture which allows the user to dynamically  
adjust the gate drive current without requiring external resistors to limit the gate current. Additionally, this  
architecture provides a variety of protection features for the external MOSFETs including automatic dead time  
insertion, prevent of parasitic dV/dt gate turnon, and gate fault detection.  
8.3.1.1 PWM Control Modes  
The DRV8340-Q1 device provides eight different PWM control modes in the SPI device and seven different  
modes in the H/W device to support various commutation and control methods. Texas Instruments does not  
recommend changing the MODE pin or PWM_MODE register during operation of the power MOSFETs. Set all  
INHx and INLx pins to logic low before making a MODE pin or PWM_MODE register change. 3 shows the  
different mode settings for the SPI device. The MODE bit setting of 100b is not available in the H/W device.  
3. 6x PWM Mode Truth Table  
H/W DEVICE  
Tied to AGND  
18 kΩ to AGND  
75 kΩ to AGND  
Hi-Z  
SPI DEVICE  
000b  
MODE SETTINGS  
6x PWM  
001b  
3x PWM  
010b  
1x PWM  
011b  
Independent half-bridge (for all three half-bridges)  
Phases A and B are independent half-bridges, Phase C is independent FET  
Phases B and C are independent half-bridges, Phase A is independent FET  
Phases A is independent half-bridge, Phase B and C are independent FET  
Independent MOSFET (for all three half-bridges)  
Not Available  
75 kΩ to DVDD  
18 kΩ to DVDD  
0.47 kΩ to DVDD  
100b  
101b  
110b  
111b  
8.3.1.1.1 6x PWM Mode (PWM_MODE = 000b or MODE Pin Tied to AGND)  
In 6x PWM mode, each half-bridge supports three output states: low, high, or high-impedance (Hi-Z). The  
corresponding INHx and INLx signals control the output state as listed in 4.  
4. 6x PWM Mode Truth Table  
INLx  
INHx  
GLx  
L
GHx  
SHx + DLx  
0
0
1
1
0
1
0
1
L
H
L
Hi-Z  
H
L
H
L
L
L
Hi-Z  
版权 © 2019, Texas Instruments Incorporated  
19  
 
 
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
6-PWM  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
MCU PWM  
MCU PWM  
MCU PWM  
MCU PWM  
MCU PWM  
MCU PWM  
8. 6-PWM Mode  
8.3.1.1.2 3x PWM Mode (PWM_MODE = 001b or MODE Pin = 18 kΩ to AGND)  
In 3x PWM mode, the INHx pin controls each half-bridge and supports two output states: low or high. The INLx  
pin is used to put the half bridge in the Hi-Z state. If the Hi-Z state is not required, tie all INLx pins to logic high.  
The corresponding INHx and INLx signals control the output state as listed in 5.  
5. 3x PWM Mode Truth Table  
INLx  
INHx  
GLx  
L
GHx  
L
SHx + DLx  
0
1
1
X
0
1
Hi-Z  
L
H
L
L
H
H
3-PWM  
INHA  
MCU PWM  
MCU PWM  
MCU PWM  
INLA  
INHB  
INLB  
INHC  
INLC  
9. 3-PWM Mode  
20  
版权 © 2019, Texas Instruments Incorporated  
 
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
8.3.1.1.3 1x PWM Mode (PWM_MODE = 010b or MODE Pin = 75 kΩ to AGND)  
In 1x PWM mode, the DRV8340-Q1 device uses 6-step block commutation tables that are stored internally. This  
feature allows for a three-phase BLDC motor to be controlled using one PWM sourced from a simple controller.  
The PWM is applied on the INHA pin and determines the output frequency and duty cycle of the half-bridges.  
The half-bridge output states are managed by the INLA, INHB, and INLB pins which are used as state logic  
inputs. The state inputs can be controlled by an external controller or connected directly to the digital outputs of  
the Hall effect sensor from the motor (INLA = HALL_A, INHB = HALL_B, INLB = HALL_C). The 1x PWM mode  
usually operates with synchronous rectification (low-side MOSFET recirculation); however, the mode can be  
configured to use asynchronous rectification (MOSFET body diode freewheeling) on SPI devices. This  
configuration is set using the 1PWM_COM bit in the SPI registers.  
The INHC input controls the direction through the 6-step commutation table which is used to change the direction  
of the motor when Hall effect sensors are directly controlling the state of the INLA, INHB, and INLB inputs. Tie  
the INHC pin low if this feature is not required.  
The INLC input brakes the motor by turning off all high-side MOSFETs and turning on all low-side MOSFETs  
when the INLC pin is pulled low. This brake is independent of the state of the other input pins. Tie the INLC pin  
high if this feature is not required. In the SPI device, the brake and coast mode can also be selected by the  
1PWM_BRAKE register (see 22).  
6. Synchronous 1x PWM Mode  
LOGIC AND HALL INPUTS  
INHC = 0  
GATE DRIVE OUTPUTS(1)  
INHC = 1  
PHASE A  
PHASE B PHASE C  
STATE  
DESCRIPTION  
INLA  
INHB  
INLB  
INLA  
INHB  
INLB  
GHA  
GLA  
GHB  
GLB  
GHC  
GLC  
Stop  
0
1
1
1
1
0
0
0
0
1
1
0
0
0
1
1
0
1
0
0
1
1
1
0
0
1
0
0
0
1
1
1
0
1
0
1
1
1
0
0
0
1
1
1
0
0
0
1
L
PWM  
L
L
!PWM  
L
L
L
L
L
Stop  
Align  
L
H
L
H
Align  
1
2
3
4
5
6
PWM  
!PWM  
L
L
H
H
B C  
A C  
A B  
C B  
C A  
B A  
PWM  
PWM  
L
!PWM  
!PWM  
L
L
L
H
L
L
L
L
H
PWM  
PWM  
L
!PWM  
!PWM  
L
L
H
L
L
L
H
PWM  
!PWM  
(1) !PWM is the inverse of the PWM signal.  
7. Asynchronous 1x PWM Mode 1PWM_COM = 1 (SPI Only)  
LOGIC AND HALL INPUTS  
GATE DRIVE OUTPUTS  
PHASE B PHASE C  
INHC = 0  
INHC = 1  
PHASE A  
STATE  
DESCRIPTION  
INLA  
INHB  
INLB  
INLA  
INHB  
INLB  
GHA  
GLA  
L
GHB  
GLB  
L
GHC  
GLC  
L
Stop  
0
1
1
1
1
0
0
0
0
1
1
0
0
0
1
1
0
1
0
0
1
1
1
0
0
1
0
0
0
1
1
1
0
1
0
1
1
1
0
0
0
1
1
1
0
0
0
1
L
PWM  
L
L
L
Stop  
Align  
L
L
H
L
L
H
H
H
L
Align  
1
2
3
4
5
6
L
PWM  
L
L
B C  
A C  
A B  
C B  
C A  
B A  
PWM  
PWM  
L
L
L
L
L
L
L
H
H
L
L
L
PWM  
PWM  
L
L
L
H
H
L
L
L
PWM  
L
L
10 and 11 show the different possible configurations in 1x PWM mode.  
版权 © 2019, Texas Instruments Incorporated  
21  
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
MCU_PWM  
PWM  
MCU_PWM  
MCU_GPIO  
MCU_GPIO  
PWM  
H
STATE0  
STATE1  
STATE2  
DIR  
STATE0  
STATE1  
STATE2  
DIR  
H
BLDC Motor  
BLDC Motor  
H
MCU_GPIO  
MCU_GPIO  
MCU_GPIO  
MCU_GPIO  
nBRAKE  
MCU_GPIO  
nBRAKE  
10. 1x PWM—Simple Controller  
11. 1x PWM—Hall Effect Sensor  
8.3.1.1.4 Independent Half-Bridge PWM Mode (PWM_MODE = 011b or MODE Pin is > 1.5 MΩ to AGND or Hi-Z)  
In independent half-bridge PWM mode, the INHx pin controls each half-bridge independently and supports two  
output states: low or high. The corresponding INHx and INLx signals control the output state as listed in 8.  
The INLx pin is used to change the half-bridge to high impedance. If the high-impedance (Hi-Z) state is not  
required, tie all INLx pins logic high.  
8. Independent Half-Bridge Mode Truth Table  
INLx  
INHx  
GLx  
L
GHx  
L
0
1
1
X
0
1
H
L
L
H
8.3.1.1.5 Phases A and B are Independent Half-Bridges, Phase C is Independent FET (MODE = 100b)  
In this mode, phases A and B are independent half-bridge control, with independent fault handling and dead time  
enforcement by the device. Phase C is independent FET mode where the dead time inserted by the device is  
bypassed and both MOSFETs can be turned-on at the same time. This mode is not available in the H/W version.  
8.3.1.1.6 Phases B and C are Independent Half-Bridges, Phase A is Independent FET (MODE = 101b or MODE Pin is  
75 kΩ to DVDD)  
In this mode, phases B and C are independent half-bridge control, with independent fault handling and dead time  
enforcement by the device. Phase A is independent FET mode where the dead time inserted by the device is  
bypassed and both MOSFETs can be turned-on at the same time.  
8.3.1.1.7 Phases A is Independent Half-Bridge, Phases B and C are Independent FET (MODE = 110b or MODE Pin is  
18 kΩ to DVDD)  
In this mode, phase A is independent half-bridge control, with dead time enforcement by the device. Phases B  
and C are independent FET mode where the dead time is bypassed and both MOSFETs in a given phase can  
be turned-on at the same time. Fault handling is also done independently for each FET in phases B and C.  
8.3.1.1.8 Independent MOSFET Drive Mode (PWM_MODE = 111b or MODE Pin = 0.47 kΩ to DVDD)  
In independent MOSFET drive mode, the INHx and INLx pins control the outputs, GHx and GLx, respectively.  
This control mode lets the DRV8340-Q1 device drive separate high-side and low-side loads with each half-  
bridge. These types of loads include unidirectional brushed DC motors, solenoids, and low-side and high-side  
switches. In this mode, turning on both the high-side and low-side MOSFETs at the same time in a given half-  
bridge gate driver is possible to use the device as a high-side or low-side driver. The dead time (tDEAD) is  
bypassed in the mode and must be inserted by the external MCU.  
9. Independent PWM Mode Truth Table  
INLx  
INHx  
GLx  
L
GHx  
L
0
0
1
1
0
1
0
1
L
H
H
L
H
H
22  
版权 © 2019, Texas Instruments Incorporated  
 
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
12 shows how the DRV8340-Q1 device can be used to connect a high-side load and a low-side load at the  
same time with one half-bridge and drive the loads independently. In this mode, the VDS monitors are active for  
both the MOSFETs to protect from an overcurrent condition.  
Disable  
+
VDS  
œ
VM  
VDRAIN  
VCP  
GHx  
Load  
HS  
INHx  
SHx  
VGLS  
INLx  
GLx  
LS  
Load  
Gate Driver  
Disable  
SLx/SPx  
+
VDS  
œ
12. Independent PWM High-Side and Low-Side Drivers  
If the half-bridge is used to implement only a high-side or low-side driver, using the VDS monitors to help protect  
from an overcurrent condition is possible as shown in 13 or 14. The unused gate driver can stay  
disconnected.  
+
+
VDS  
VDS  
œ
œ
VM  
VM  
VDRAIN  
VDRAIN  
VCP  
HS  
VCP  
HS  
GHx  
SHx  
GHx  
SHx  
Load  
INHx  
INLx  
INHx  
INLx  
VGLS  
LS  
VGLS  
LS  
GLx  
GLx  
Load  
Gate Driver  
SLx/SPx  
Gate Driver  
SLx/SPx  
+
+
VDS  
VDS  
œ
œ
13. One High-Side Driver  
14. One Low-Side Driver  
版权 © 2019, Texas Instruments Incorporated  
23  
 
 
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
15 shows how the DRV8340-Q1 device can be used to connect a solenoid load where both the high-side and  
low-side MOSFETs can be turned on at the same time to drive the load without causing shoot-through. TI  
recommends having the external diodes for current recirculation. If a half-bridge is not used, the gate pins (GHx  
and GLx) can stay unconnected and the sense pins (SHx and DLx) can be tied directly or with a resistor to GND.  
VDRAIN  
VDRAIN  
VDRAIN  
HS_VSD  
HS_VSD  
HS_VSD  
+
+
+
GHx  
SHx  
GHx  
SHx  
GHx  
SHx  
œ
œ
œ
PH_B  
PH_C  
PH_A  
DLx  
GLx  
DLx  
GLx  
DLx  
GLx  
LS_VSD  
LS_VSD  
LS_VSD  
+
+
+
œ
œ
œ
SLx  
SLx  
SLx  
15. Solenoid Drive Configuration  
8.3.1.2 Device Interface Modes  
The DRV8340-Q1 device supports two different interface modes (SPI and hardware) to let the end application  
design for either flexibility or simplicity. The two interface modes share the same four pins, allowing the different  
versions to be pin-to-pin compatible. This compatibility lets application designers evaluate with one interface  
version and potentially switch to another with minimal modifications to their circuit design and layout.  
8.3.1.2.1 Serial Peripheral Interface (SPI)  
The SPI devices support a serial communication bus that lets an external controller send and receive data with  
the DRV8340-Q1 device. This support lets the external controller configure device settings and read detailed  
fault information. The interface is a four wire interface using the SCLK, SDI, SDO, and nSCS pins which are  
described as follows:  
The SCLK pin is an input that accepts a clock signal to determine when data is captured and propagated on  
the SDI and SDO pins.  
The SDI pin is the data input.  
The SDO pin is the data output. The SDO pin has a push-pull output structure.  
The nSCS pin is the chip select input. A logic low signal on this pin enables SPI communication with the  
DRV8340-Q1 device.  
For more information on the SPI, see the SPI Communication section.  
8.3.1.2.2 Hardware Interface  
Hardware interface devices convert the four SPI pins into four resistor-configurable inputs which are IDRIVE,  
MODE, and VDS. This conversion lets the application designer configure the most common device settings by  
tying the pin logic high or logic low, or with a simple pullup or pulldown resistor. This removes the requirement for  
an SPI bus from the external controller. General fault information can still be obtained through the nFAULT pin.  
The IDRIVE pin configures the gate drive current strength.  
The MODE pin configures the PWM control mode.  
The VDS pin configures the voltage threshold of the VDS overcurrent monitors.  
For more information on the hardware interface, see the Pin Diagrams section.  
24  
版权 © 2019, Texas Instruments Incorporated  
 
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
SCLK  
SDI  
SPI  
Hardware  
Interface  
DVDD  
DVDD  
IDRIVE  
VSDO  
DVDD  
SDO  
MODE  
VDS  
DVDD  
DVDD  
nSCS  
RVDS  
16. SPI  
17. Hardware Interface  
8.3.1.3 Gate Driver Voltage Supplies  
The voltage supply for the high-side gate driver is created using a doubler charge pump that operates from the  
VM voltage supply input. The charge pump lets the gate driver correctly bias the high-side MOSFET gate with  
respect to the source across a wide input supply voltage range. The charge pump is regulated to keep a fixed  
output voltage VVCP and supports an average output current IGATE_HS. The charge pump is continuously  
monitored for undervoltage events to prevent under-driven MOSFET conditions. The charge pump requires a  
ceramic capacitor between the VM and VCP pins to act as the storage capacitor. Additionally, a flying capacitor  
is required between the CPH and CPL pins.  
VM  
VM  
CVCP  
VCP  
CPH  
VM  
Charge  
Pump  
Control  
CFLY  
CPL  
18. Charge Pump Architecture  
The voltage supply of the low-side gate driver is created using a linear regulator that operates from the VM  
voltage supply input. The linear regulator lets the gate driver correctly bias the low-side MOSFET gate with  
respect to ground. The linear regulator output is VGSL and supports an output current IGATE_LS  
.
版权 © 2019, Texas Instruments Incorporated  
25  
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
8.3.1.4 Smart Gate Drive Architecture  
The DRV8340-Q1 gate drivers use an adjustable, complimentary, push-pull topology for both the high-side and  
low-side drivers. This topology allows for both a strong pullup and pulldown of the external MOSFET gates.  
Gate Drive (Internal)  
MOSFET (External)  
VGATE  
VGATE  
VGATE  
VGATE  
VDRAIN  
OFF  
ON  
OFF  
OFF  
ISOURCE  
OFF  
OFF  
OFF  
OFF  
19. Charge Pump Architecture  
Additionally, the gate drivers use a Smart Gate Drive architecture to provide additional control of the external  
power MOSFETs, additional steps to protect the MOSFETs, and optimal tradeoffs between efficiency and  
robustness. This architecture is implemented through two components called IDRIVE and TDRIVE which are  
described in the IDRIVE: MOSFET Slew-Rate Control section and TDRIVE: MOSFET Gate Drive Control  
section. 20 shows the high-level functional block diagram of the gate driver.  
The IDRIVE gate drive current and TDRIVE gate drive time should be initially selected based on the parameters  
of the external power MOSFET used in the system and the desired rise and fall times (see the Application and  
Implementation section).  
The high-side gate driver also implements a Zener clamp diode to help protect the external MOSFET gate from  
overvoltage conditions in the case of external short-circuit events on the MOSFET.  
26  
版权 © 2019, Texas Instruments Incorporated  
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
VCP  
VGLS  
Linear  
Regulator  
VGLS  
INHx  
INLx  
VM  
AGND  
Control  
Inputs  
GHx  
SHx  
Level  
Shifters  
150 k  
+
GS œ  
V
VGLS  
Digital  
Core  
GLx  
SLx  
Level  
Shifters  
150 kꢀ  
+
GS œ  
V
PGND  
AGND  
AGND  
20. Gate Driver Block Diagram  
8.3.1.4.1 IDRIVE: MOSFET Slew-Rate Control  
The IDRIVE component implements adjustable gate drive current to control the MOSFET VDS slew rates. The  
MOSFET VDS slew rates are a critical factor for optimizing radiated emissions, energy, and duration of diode  
recovery spikes, dV/dt gate turnon resulting in shoot-through, and switching voltage transients related to  
parasitics in the external half-bridge. The IDRIVE component operates on the principal that the MOSFET VDS  
slew rates are predominately determined by the rate of gate charge (or gate current) delivered during the  
MOSFET QGD or Miller charging region. By letting the gate driver adjust the gate current, the gate driver can  
effectively control the slew rate of the external power MOSFETs.  
The IDRIVE component lets the DRV8340-Q1 device dynamically switch between gate drive currents either  
through a register setting on SPI devices or the IDRIVE pin on hardware interface devices. The SPI devices  
provide 16 IDRIVE settings ranging from 1.5-mA to 1-A source and 3-mA to 2-A sink. Hardware interface devices  
provide 7 IDRIVE settings within the same ranges. The setting of the gate drive current is delivered to the gate  
during the turnon and turnoff of the external power MOSFET for the tDRIVE duration. After the MOSFET turnon or  
turnoff, the gate driver switches to a smaller hold current (IHOLD) to improve the gate driver efficiency. In the event  
of an overcurrent condition, the IDRIVE component is automatically decreased to help prevent device damage.  
For additional details on the IDRIVE settings, see the Register Maps section for the SPI devices and the Pin  
Diagrams section for the hardware interface devices.  
8.3.1.4.2 TDRIVE: MOSFET Gate Drive Control  
The TDRIVE component is an integrated gate drive state machine that provides automatic dead time insertion  
through handshaking between the high-side and low-side gate drivers, parasitic dV/dt gate turnon prevention,  
and MOSFET gate fault detection.  
版权 © 2019, Texas Instruments Incorporated  
27  
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
The first component of the TDRIVE state machine is automatic dead time insertion. Dead time is period of time  
between the switching of the external high-side and low-side MOSFETs to make sure that they do not cross  
conduct and cause shoot-through. The DRV8340-Q1 device uses VGS voltage monitors to measure the MOSFET  
gate-to-source voltage and determine the correct time to switch instead of relying on a fixed time value. This  
feature lets the dead time of the gate driver adjust for variation in the system such as temperature drift and  
variation in the MOSFET parameters. An additional digital dead time (tDEAD) can be inserted and is adjustable  
through the registers on SPI devices.  
The second component of the TDRIVE state machine is parasitic dV/dt gate turnon prevention. To implement this  
component, the TDRIVE state machine enables a strong pulldown current (ISTRONG) on the opposite MOSFET  
gate whenever a MOSFET is switching. The strong pulldown occurs for the TDRIVE duration. This feature helps  
remove parasitic charge that couples into the MOSFET gate when the voltage half-bridge switch node slews  
rapidly.  
The third component implements a gate-fault detection scheme to detect pin-to-pin solder defects, a MOSFET  
gate failure, or a MOSFET gate stuck-high or stuck-low voltage condition. This implementation is done with a pair  
of VGS gate-to-source voltage monitors for each half-bridge gate driver. When the gate driver receives a  
command to change the state of the half-bridge it starts to monitor the gate voltage of the external MOSFET. If,  
at the end of the tDRIVE period, the VGS voltage has not increased the correct threshold, the gate driver reports a  
fault. To make sure that a false gate drive fault (GDF) is not detected, a tDRIVE time should be selected that is  
longer than the time required to charge or discharge the MOSFET gate. The tDRIVE time does not increase the  
PWM time and will terminate if another PWM command is received while active. In the SPI device, for IDRIVE bit  
settings of 0000b, 0001b, 0010b, and 0011b, a longer tDRIVE time of 20-µs is automatically selected by the  
TDRIVE_MAX bit. If the 20-µs tDRVIE time is not required, write a 0 to the TDRIVE_MAX bit to disable it and set  
the tDRIVE time by the TDRIVE bits. For all other IDRIVE settings, writing to the TDRIVE_MAX bit is disabled. This  
option is not available in the H/W device.  
For additional details on the TDRIVE settings, see the Register Maps section for SPI devices and the Pin  
Diagrams section for hardware interface devices. 21 shows an example of the TDRIVE state machine in  
operation.  
V
INHx  
V
INLx  
V
GHx  
tDEAD  
IHOLD  
tDEAD  
I
I
t
I
I
HOLD  
HOLD  
DRIVE  
STRONG  
I
GHx  
I
t
I
HOLD  
DRIVE  
DRIVE  
DRIVE  
V
GLx  
GLx  
tDEAD  
tDEAD  
IHOLD  
I
I
t
I
I
HOLD  
HOLD  
DRIVE  
DRIVE  
STRONG  
I
I
I
HOLD  
DRIVE  
t
DRIVE  
21. TDRIVE State Machine  
28  
版权 © 2019, Texas Instruments Incorporated  
 
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
8.3.1.4.3 Propagation Delay  
The propagation delay time (tpd) is measured as the time between an input logic edge to a detected output  
change. This time has three parts consisting of the digital input deglitcher delay, the digital propagation delay,  
and the delay through the analog gate drivers.  
The input deglitcher prevents high-frequency noise on the input pins from affecting the output state of the gate  
drivers. To support multiple control modes and dead time insertion, a small digital delay is added as the input  
command propagates through the device. Lastly, the analog gate drivers have a small delay that contributes to  
the overall propagation delay of the device.  
8.3.1.4.4 MOSFET VDS Monitors  
The gate drivers implement adjustable VDS voltage monitors to detect overcurrent or short-circuit conditions on  
the external power MOSFETs. When the monitored voltage is greater than the VDS trip point (VVDS_OCP) for  
longer than the deglitch time (tOCP), an overcurrent condition is detected and action is taken according to the  
device VDS fault mode.  
The high-side VDS monitors measure the voltage between the VDRAIN and SHx pins.The low-side VDS monitor  
measures between the DLx and SLx pins.  
The VVDS_OCP threshold is programmable from 0.06 V to 1.88 V. For additional information on the VDS monitor  
levels, see the Register Maps section for SPI devices and in the Pin Diagrams section hardware interface device.  
VM  
VDRAIN  
+
V
+
DS œ  
V
V
DSœ  
V
V
VDS_OCP  
GHx  
SHx  
GLx  
+
DSœ  
+
DSœ  
V
VDS_OCP  
SLx  
PGND  
22. DRV8340-Q1 VDS Monitors  
8.3.1.4.5 VDRAIN Sense Pin  
The DRV8340-Q1 device provides a separate sense pin for the common point of the high-side MOSFET drain.  
This pin is called VDRAIN. This pin lets the sense line for the overcurrent monitors (VDRAIN) and the power  
supply (VM) stay separate and prevent noise on the VDRAIN sense line. This separation also lets  
implementation of a small filter on the gate driver supply (VM) or insertion of a boost converter to support lower  
voltage operation if desired. Care must still be used when designing the filter or separate supply because VM is  
still the reference point for the VCP charge pump that supplies the high-side gate drive voltage (VGSH). The VM  
supply must not drift too far from the VDRAIN supply to avoid violating the VGS voltage specification of the  
external power MOSFETs.  
8.3.1.4.6 nFAULT Pin  
The nFAULT pin has an open-drain output and should be pulled up to a 5 V or 3.3 V supply. When a fault is  
detected, the nFAULT line is logic low. For a 3.3-V pullup the nFAULT pin can be tied to the DVDD pin with a  
resistor (refer to the Application and Implementation section). For a 5-V pullup an external 5-V supply must be  
used.  
版权 © 2019, Texas Instruments Incorporated  
29  
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
Output  
nFAULT  
23. nFAULT Pin  
During the power-up sequence, or when going from sleep mode, the digital core of the device is enabled to a VM  
voltage of approximately 3.3 V and the device is fully operational after VM exceeds 5.5 V. After the digital core is  
alive if the VM does not exceed 5.5 V within 100-µs the device will flag a UVLO fault. In the H/W device, the  
nFAULT pin is driven low. In the SPI device, the FAULT and ULVO bits will be latched high  
8.3.2 DVDD Linear Voltage Regulator  
A 3.3-V, 30-mA linear regulator is integrated into the DRV8340-Q1 device and is available for use by external  
circuitry. This regulator can provide the supply voltage for a low-power MCU or other circuitry supporting low  
current. The output of the DVDD regulator should be bypassed near the DVDD pin with a X5R or X7R, 1-µF, 6.3-  
V ceramic capacitor routed directly back to the adjacent AGND ground pin.  
The DVDD nominal, no-load output voltage is 3.3 V. When the DVDD load current exceeds 30 mA, the regulator  
functions like a constant-current source. The output voltage drops significantly with a current load greater than 30  
mA.  
VM  
REF  
+
œ
DVDD  
AGND  
3.3 V, 30 mA  
0.1 F  
24. DVDD Linear Regulator Block Diagram  
Use 公式 1 to calculate the power dissipated in the device by the DVDD linear regulator.  
P = VVM - VDVDD ì I  
(
)
DVDD  
(1)  
(2)  
For example, at a VVM of 24 V, drawing 20 mA out of DVDD results in a power dissipation as shown in 公式 2.  
P = 24 V - 3.3 V ì 20 mA = 414 mW  
(
)
30  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
8.3.3 Pin Diagrams  
25 shows the input structure for the logic level pins, INHx, INLx, ENABLE, nSCS, SCLK, and SDI. The input  
can be driven with a voltage or external resistor.  
DVDD  
STATE  
VIH  
RESISTANCE  
Tied to DVDD  
Tied to AGND  
INPUT  
Logic High  
Logic Low  
VIL  
100 k  
25. Logic-Level Input Pin Structure  
26 shows the structure of the seven level input pins, MODE, IDRIVE and VDS, on hardware interface devices.  
The input can be set with an external resistor.  
IDRIVE  
1/2 A  
VDS  
MODE  
Disabled  
Independent MOSFET  
+
œ
STATE  
VI7  
RESISTANCE  
Ph A as Ind. Half bridge  
Ph B & Ph C as Ind. FET  
260 / 520 mA  
200 / 400 mA  
60 / 120 mA  
10 / 20 mA  
5 / 10 mA  
1.88 V  
1.13 V  
0.60 V  
0.26 V  
0.13 V  
0.06 V  
0.47 kΩ ± 5%  
to DVDD (1)  
+
DVDD  
DVDD  
œ
18 k5%  
to DVDD  
VI6  
VI5  
VI4  
VI3  
VI2  
VI1  
Ph B & Ph C as Ind. Half  
bridge, Ph A as Ind. FET  
+
75 k5%  
to DVDD  
73 kꢀ  
œ
Independent  
Half-Bridge  
Hi-Z (>1.5 MΩ  
to AGND)  
73 kꢀ  
+
75 k5%  
to AGND  
œ
1x PWM  
3x PWM  
6x PWM  
18 kΩ ±5%  
to AGND  
+
Tied to AGND  
œ
+
œ
1.5 / 3 mA  
(1)  
26. Seven Level Input Pin Structure  
27 shows the structure of the open-drain output pin, nFAULT. The open-drain output requires an external  
pullup resistor to function correctly.  
(1) VI7 requires a 0.47 kresistor to DVDD for MODE input pin. VDS and IDRIVE pins can be directly tied to DVDD.  
版权 © 2019, Texas Instruments Incorporated  
31  
 
 
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
DVDD  
R
PU  
STATE  
No Fault  
Fault  
STATUS  
Inactive  
Active  
OUTPUT  
Active  
Inactive  
27. Open-Drain Output Pin Structure  
8.3.4 Gate Driver Protective Circuits  
The DRV8340-Q1 device is protected against VM undervoltage, charge pump undervoltage, MOSFET VDS  
overcurrent, gate driver shorts, and overtemperature events. The DRV8340-Q1 device also provides a detection  
mechanism for open-load, offline short-to-supply, and offline short-to-ground conditions. When a fault occurs, the  
individual fault bit is set high along with the global FAULT bit in the FAULT status register for the SPI device. The  
FAULT bit is OR’ed with all the other individual status bits. In the H/W device, only the nFAULT pin is driven low  
during a fault condition. Some of the protection and detection features can be disabled through SPI in the SPI  
device, or the nDIAG pin in the H/W device  
32  
版权 © 2019, Texas Instruments Incorporated  
DRV8340-Q1  
www.ti.com.cn  
FAULT  
ZHCSJU7 MAY 2019  
10. Fault Action and Response  
CONDITION  
CONFIGURATION  
REPORT  
GATE DRIVER  
LOGIC  
RECOVERY  
Automatic:  
VVM > VUVLO  
VM undervoltage  
(UVLO)  
VVM < VUVLO  
nFAULT  
Hi-Z  
Disabled  
Charge pump  
undervoltage  
(CPUV)  
DIS_CPUV = 0b  
DIS_CPUV = 1b  
nFAULT  
None  
Hi-Z  
Active  
Active  
Automatic:  
VVCP > VCPUV  
VVCP < VCPUV  
Active  
Latched:  
CLR_FLT, ENABLE Pulse  
OCP_MODE = 00b  
OCP_MODE = 01b  
nFAULT  
nFAULT  
Hi-Z  
Hi-Z  
Active  
Active  
Retry:  
tRETRY  
VDS overcurrent  
(VDS_OCP)  
VDS > VVDS_OCP  
OCP_MODE = 10b  
OCP_MODE = 11b  
nFAULT  
None  
Active  
Active  
Active  
Active  
Report only  
No action  
Latched:  
CLR_FLT, ENABLE Pulse  
DIS_GDF = 0b  
nFAULT  
Hi-Z  
Active  
Gate driver fault  
(GDF)  
Gate voltage stuck > tDRIVE  
DIS_GDF = 1b  
OTW_REP = 0b  
None  
None  
Active  
Active  
Active  
Active  
No action  
No action  
Thermal warning  
(OTW)  
TJ > TOTW  
Automatic:  
TJ < TOTW – THYS  
OTW_REP = 1b  
OTSD_MODE = 0b  
OTSD_MODE = 1b  
nFAULT  
nFAULT  
nFAULT  
Active  
Hi-Z  
Active  
Active  
Active  
Latched:  
CLR_FLT, ENABLE Pulse  
Thermal shutdown  
(OTSD)  
TJ > TOTSD  
Automatic:  
TJ < TOTSD – THYS  
Hi-Z  
EN_OLP = 0b  
EN_OLP = 1b  
None  
nFAULT  
None  
Hi-Z  
Hi-Z  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
No action  
Report only  
No action  
Open load passive  
(OLP)  
No load detected  
No load detected  
EN_OLA_X = 0b  
EN_OLA_X = 1b  
EN_SHT_TST = 0b  
EN_SHT_TST = 1b  
EN_SHT_TST = 0b  
EN_SHT_TST = 1b  
Active  
Active  
Hi-Z  
Open load active  
(OLA)  
nFAULT  
None  
Report only  
No action  
Offline short-to-supply  
(SHT_BAT)  
Phase node short-to-supply  
nFAULT  
None  
Hi-Z  
Report only  
No action  
Hi-Z  
Offline short-to-ground  
(SHT_GND)  
Phase node short-to-ground  
nFAULT  
Hi-Z  
Report only  
Device internal  
Memory checksum fault detected  
nFAULT  
Active  
Active  
No action  
memory (1)data fault  
(1) The DRV8340-Q1 has a OTP (one time program) memory which stores TI internal data used for analog functional blocks. The memory has a check-sum feature, and nFAULT is pulled  
low if a fault is detected at power up.  
版权 © 2019, Texas Instruments Incorporated  
33  
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
8.3.4.1 VM Supply Undervoltage Lockout (UVLO)  
If at any time the input supply voltage on the VM pin falls lower than the VUVLO threshold, all of the external  
MOSFETs are disabled, the charge pump is disabled, and the nFAULT pin is driven low. The FAULT and  
VM_UVLO bits are also latched high in the registers on SPI devices. Normal operation starts again (gate driver  
operation and the nFAULT pin is released) when the VM undervoltage condition clears. The VM_UVLO bit stays  
set until cleared through the CLR_FLT bit or an ENABLE pin reset pulse (tRST).  
8.3.4.2 VCP Charge Pump Undervoltage Lockout (CPUV)  
If at any time the voltage on the VCP pin (charge pump) falls lower than the CPUV threshold voltage of the  
charge pump, all of the external MOSFETs are disabled and the nFAULT pin is driven low. The FAULT and  
CPUV bits are also latched high in the registers in the SPI device. Normal operation starts again (gate driver  
operation and the nFAULT pin is released) when the VCP undervoltage condition is removed. The FAULT and  
CPUV bits stay set until cleared through the CLR_FLT bit or an ENABLE pin reset pulse (tRST). Setting the  
DIS_CPUV bit high on the SPI devices disables this protection feature. If the DIS_CPUV bit is set high and a  
charge pump undervoltage condition occurs, the device keeps operating but the CPUV fault bit is set high in the  
SPI register until cleared through the CLR_FLT bit or an ENABLE pin reset pulse (tRST). CPUV protection cannot  
be disabled in the H/W device.  
8.3.4.3 MOSFET VDS Overcurrent Protection (VDS_OCP)  
A MOSFET overcurrent event is sensed by monitoring the VDS voltage drop across the external MOSFET  
RDS(on). If the voltage across an enabled MOSFET exceeds the VVDS_OCP threshold for longer than the tOCP_DEG  
deglitch time, a VDS_OCP event is recognized and action is done according to the OCP_MODE. On hardware  
interface devices, the VVDS_OCP threshold is set with the VDS pin, the tOCP_DEG is fixed at 4 μs, and the  
OCP_MODE is configured for latched shutdown but can be disabled by tying the VDS pin to DVDD. In the SPI  
device, the VVDS_OCP threshold is set through the VDS_LVL SPI register, the tOCP_DEG is set through the  
OCP_DEG bits in the SPI register, and the OCP_MODE bit can operate in four different modes: VDS latched  
shutdown, VDS automatic retry, VDS report only, and VDS disabled.  
8.3.4.3.1 VDS Latched Shutdown (OCP_MODE = 00b)  
After a VDS_OCP event in this mode, all external MOSFETs are disabled and the nFAULT pin is driven low. The  
FAULT, VDS_OCP, and corresponding MOSFET OCP bits are latched high in the SPI registers. Normal  
operation starts again (gate driver operation and the nFAULT pin is released) when the VDS_OCP condition  
clears and a clear faults command is issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST).  
This is the default mode in both the H/W and SPI device options.  
8.3.4.3.2 VDS Automatic Retry (OCP_MODE = 01b)  
After a VDS_OCP event in this mode, all the external MOSFETs are disabled and the nFAULT pin is driven low.  
The FAULT, VDS_OCP, and corresponding MOSFET OCP bits are latched high in the SPI registers. Normal  
operation starts again automatically (gate driver operation and the nFAULT pin is released) after the tRETRY time  
elapses. The FAULT, VDS_OCP, and MOSFET OCP bits stay latched until the tRETRY period expires.  
8.3.4.3.3 VDS Report Only (OCP_MODE = 10b)  
No protective action occurs after a VDS_OCP event in this mode. The overcurrent event is reported by driving  
the nFAULT pin low and latching the FAULT, VDS_OCP, and corresponding MOSFET OCP bits high in the SPI  
registers. The gate drivers continue to operate as usual. The external controller manages the overcurrent  
condition by acting appropriately. The reporting clears (nFAULT pin is released) when the VDS_OCP condition  
clears and a clear faults command is issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST).  
8.3.4.3.4 VDS Disabled (OCP_MODE = 11b)  
No action occurs after a VDS_OCP event in this mode. The VDS overcurrent monitor is disabled for all three  
half-bridges at the same time and the DIS_VDS_x bits are locked. In the H/W device, VDS_OCP is disabled for  
all three half-bridges at the same time through the VDS pin.  
34  
版权 © 2019, Texas Instruments Incorporated  
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
8.3.4.4 Gate Driver Fault (GDF)  
The GHx and GLx pins are monitored such that if the voltage on the external MOSFET gate does not increase or  
decrease after the tDRIVE time, a gate driver fault is detected. This fault may be encountered if the GHx or GLx  
pins are shorted to the PGND, SHx, SLx, or VM pins. Additionally, a gate driver fault may be encountered if the  
selected IDRIVE setting is not sufficient to turn on the external MOSFET within the tDRIVE period. After a gate  
drive fault is detected, all external MOSFETs are disabled and the nFAULT pin driven low. In addition, the  
FAULT, GDF, and corresponding VGS bits are latched high in the SPI registers. Normal operation starts again  
(gate driver operation and the nFAULT pin is released) when the gate driver fault condition is removed and a  
clear faults command is issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST). In the SPI  
device, setting the DIS_GDF bit high disables this protection feature. If DIS_GDF bit is set high and a gate drive  
fault occurs, the device keeps operating but the appropriate VGS fault bit is set high in the SPI register until  
cleared through the CLR_FLT bit or an ENABLE pin reset pulse (tRST). GDF cannot be disabled in the H/W  
device option.  
Gate driver faults can indicate that the selected IDRIVE or tDRIVE settings are too low to slew the external  
MOSFET in the desired time. Increasing either the IDRIVE or tDRIVE setting can resolve gate driver faults in these  
cases. Alternatively, if a gate-to-source short occurs on the external MOSFET, a gate driver fault is reported  
because of the MOSFET gate not turning on. The tDRIVE time also refers to the GDF fault blanking time.  
Fault handling is done as follows based on the MODE setting:  
In 6x, 3x, and 1x PWM modes a GDF fault in one of the external MOSFETs turns off all the MOSFETs.  
In independent half-bridge mode (MODE = 011b or MODE pin is Hi-Z) a GDF fault in one half-bridge only  
disables both the MOSFETs in that half-bridge. The MOSFETs in the other half-bridges operate as  
commanded.  
In independent MOSFET mode (MODE = 111b or MODE pin tied to DVDD) a GDF fault in a MOSFET only  
disables that particular MOSFET. All the other MOSFETs operate as commanded. The same fault handling  
scheme applies for MODE = 100b, 101b, and 110b.  
A GDF fault in phases set as Independent half-bridge disables both MOSFETs in that particular phase.  
A GDF fault in phases set as Independent FET mode disables the MOSFET where the fault occurred.  
8.3.4.5 Thermal Warning (OTW)  
If the die temperature exceeds the trip point of the thermal warning (TOTW), the OTW bit is set in the registers of  
SPI devices. The device performs no additional action and continues to function. When the die temperature falls  
lower than the hysteresis point of the thermal warning, the OTW bit clears automatically. The OTW bit can also  
be configured to report on the nFAULT pin by setting the OTW_REP bit to 1 through the SPI registers. OTW is  
not available in the H/W device.  
8.3.4.6 Thermal Shutdown (OTSD)  
If the die temperature exceeds the trip point of the thermal shutdown limit (TOTSD), all the external MOSFETs are  
disabled, the charge pump is shut down, and the nFAULT pin is driven low. In addition, the FAULT and OTSD  
bits are latched high. This protection feature cannot be disabled. The overtemperature protection can operate in  
two different modes.  
8.3.4.6.1 Latched Shutdown (OTSD_MODE = 0b)  
In latched shutdown mode, after a OTSD event, normal operation starts again (motor driver operation and the  
nFAULT line released) when the OTSD condition is removed and a clear faults command has been issued either  
through the CLR_FLT bit or an nSLEEP reset pulse. This is the default mode for a OTSD event in the SPI  
device.  
When the DRV8340-Q1 device hits thermal shutdown, the OTSD and FAULT bits are latched in the SPI register.  
Clearing the fault through the CLR_FLT bit or an nSLEEP reset pulse will clear the OSTD and FAULT bits. When  
the DRV8340-Q1 device hits thermal shutdown, the device will disable the charge pump without triggering  
CPUV. The charge pump will be enabled again when the OTSD and FAULT bits are cleared through the  
CLR_FLT bit or an nSleep reset Pulse.  
版权 © 2019, Texas Instruments Incorporated  
35  
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
8.3.4.6.2 Automatic Recovery (OTSD_MODE = 1b)  
In automatic recovery mode, after a OTSD event, normal operation starts again (motor driver operation and the  
nFAULT line released) when the junction temperature falls to less than the overtemperature threshold limit minus  
the hysteresis (TOTSD – THYS). The OTSD bit stays latched high indicating that a thermal event occurred until a  
clear faults command is issued either through the CLR_FLT bit or an nSLEEP reset pulse. This is the default  
mode for a OTSD event in the H/W device.  
8.3.4.7 Open Load Detection (OLD)  
If the load is disconnected from the device, an open load is detected and the nFAULT pin is latched low. In the  
DRV8340-Q1 device, The FAULT, OL_SHT, and the corresponding open load (OL_PH_x) bits in the SPI register  
are latched high. When the open-load condition is removed, and the MCU clears the fault through either the  
CLR_FLT bit or an ENABLE-pin reset pulse (tRST), the device is ready to drive the motor based on the input  
commands.  
8.3.4.7.1 Open Load Detection in Passive Mode (OLP)  
In open load detection in passive mode, open load diagnosis is performed without the motor in motion. If the  
motor is disconnected from the device an open load is detected and the nFAULT pin will latch low until a clear  
faults command is issued by the MCU either through the CLR_FLT bit or an ENABLE reset pulse. The fault also  
clears when the device is power cycled or comes out of sleep mode. OLP is designed for applications having  
capacitance less than the values listed in 11 between motor phase pins to ground.  
11. Open Load Passive Diagnostic Run-Time  
Capacitance (nF)  
OLP_SHTS_DLY (ms)  
5
0.25  
1.25  
5
26  
110  
270  
11.5  
When the open load test is running, all external MOSFETs are disabled. For the H/W device option, at power-up  
or after going from sleep mode, the offline short-to-supply (SHT_BAT) and short-to-ground (SHT_GND)  
diagnostics run first followed by the OLP diagnostic if the nDIAG pin is left as no connect or tied to GND. If the  
nDIAG pin is tied to DVDD (or an external 3.3 V) the open load test is not performed. If a short condition is  
detected, the OLP diagnostic is not run (see Offline Shorts Diagnostics). If a short condition and open load  
occurs on a given phase at device power-up, for example, only the short condition is reported on the nFAULT pin  
and through the SPI fault register. In the SPI device option the OLP test is performed when commanded through  
SPI. If both short and OLP diagnostics are enabled simultaneously and a short condition is detection, only the  
short condition is reported on the nFAULT pin and through the SPI fault register.  
The sequence to perform open load diagnostics in passive mode is as follows:  
1. Device powered up (ENABLE = 1).  
2. Mode is selected by SPI.  
3. Hi-Z all three half-bridges by turning-off all the external MOSFETs.  
4. Write a 1 to the EN_OLP bit in the SPI register and OLP is performed.  
If an open load is detected, the nFAULT pin is driven low, and the FAULT bit, the OLD bit, and the  
respective OL_PH_x bit are latched high. When the open load condition is removed, a clear faults  
command must be issued by the MCU either through the CLR_FLT bit or an ENABLE reset pulse which  
resets the OL_PH_x register bit and causes the nFAULT pin to go high.  
If open load is not detected, the EN_OLP bits return to default setting (0b) after tOL expires.  
The EN_OLP register keeps the written command until the diagnostic is complete. The half bridges must stay in  
Hi-Z state for the entire duration of the test. While open load diagnostic is running, if an input change occurs or  
the EN_OLP bit is set low, the open load test is aborted to start normal operation again, and no fault is reported.  
OLP should not be performed if the motor is energized.  
36  
版权 © 2019, Texas Instruments Incorporated  
 
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
The open load detection checks for a high impedance connection on the motor phase pins (SHx or DLx). The  
diagnostic has two major steps as listed in the OLP Steps section. The sequencing of the pullup and pulldown  
current varies depending on the load connections. 28 a simplified H-bridge configuration as an example for  
open load detection.  
VDRAIN  
VDRAIN  
Vref  
+
OL1_PU  
output  
œ
OLx_PU  
SHx / DLx  
VDRAIN  
SHx / DLx  
Vref  
+
OL1_PU  
output  
œ
SLx  
OLx_PD  
28. Circuit for Open Load Detection in Passive Mode  
8.3.4.7.1.1 OLP Steps  
The OLP algorithm list is as follows:  
The pullup current source is enabled. If a load is connected, current passes through the pullup resistor and  
the OLx_PU comparator output stays low. If an open load condition occurs, the current through the pullup  
resistor goes 0 and the OLx_PU comparator trips high.  
The pulldown current source is enabled. In the same way, the OLx_PD comparator output either stays low to  
indicate load-connected, or trips high to indicate an open load condition.  
If both the OLx_PU and OLx_PD comparators report an open load, the OL_PH_x bit in the SPI register  
latches high, and the nFAULT line goes low, to indicate an OL fault.  
When the OL condition is removed, a clear faults command must be issued by the micro-controller either through  
the CLR_FLT bit or an ENABLE reset pulse which resets open load register bits. The charge pump stays active  
during this fault condition. The load connections shown in 29 are not supported OLP.  
版权 © 2019, Texas Instruments Incorporated  
37  
 
 
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
VDRAIN  
VDRAIN  
HS_VSD  
VDRAIN  
+
GHx  
SHx  
œ
VM  
DLx  
GLx  
IPD  
IPU  
LS_VSD  
+
œ
SLx  
29. Load Configurations Not Supported  
8.3.4.7.2 Open Load Detection in Active Mode (OLA)  
An open load in active mode is disabled by default in the SPI device and can be enabled independently per half-  
bridge by writing a 1 to the EN_OLA_x bit. In the H/W device, OLA runs if the nDIAG pin is left as unconnected  
or tied to GND. OLA is detected when the motor gets disconnected from the driver when it is commutating. 30  
shows a simplified H-bridge configuration for OLA implementation during high-side current recirculation. When  
the voltage drop across the body diode of the MOSFET does not exhibit overshoot greater than the VOLA over  
VM between the time the low-side FET is switched off and the high side FET is switched on during an output  
PWM cycle. An open load is not detected if the energy stored in the inductor is high enough to cause an  
overshoot greater than the VOLA over VM caused by the fly-back current flowing through the body diode of the  
high-side FET.  
VM  
VM  
VM  
SH2  
DL2  
SH2  
DL2  
SH2  
DL2  
SH1  
DL1  
SH1  
DL1  
SH1  
DL1  
œ
+
Detects OLD if the  
diode VF drop < VOLA  
No OLD detected if the  
diode VF drop > VOLA  
30. Circuit for Open Load Detection in Active Mode  
Depending on the operating conditions and on external circuitry, such as the output  
capacitors, an open load could be reported even though the load is present. This case  
might occur during a direction change or for small load currents respectively small PWM  
duty cycles. Therefore, TI recommends evaluating the open load diagnosis only in known  
suitable operating conditions and to ignore it otherwise.  
38  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
The device has a failure counter to avoid inadvertent triggering of the open load active diagnosis. Three  
consecutive occurrences of the internal open load signal must occur, essentially three consecutive PWM pulses  
without freewheeling detected, before an open load is reported through the nFAULT pin and in the respective  
SPI register.  
In the SPI device, depending on the load configuration and the PWM sequence, OLA on one phase can latch all  
three OL_PH_x bits high. In that case, the OLP diagnostic can be initiated to determine which phase has the  
open load condition. The load connections shown in 29 are not supported by OLA.  
For OLA to function correctly, place capacitors between the motor phase node and GND. This capacitor is  
required for BLDC, bi-directional BDC and unidirectional BDC motors at the phase node. If a solenoid load is  
connected, as shown in 15, the capacitor is not required. Size the capacitors according 公式 3. Make sure that  
the capacitor (Cphase) is placed on the PCB.  
VTH ì Crss  
VOLA(min)  
Cphase  
í
- Coss  
where  
VTH is the threshold voltage of the MOSFET.  
VOLA(min) is 150 mV.  
(3)  
The values of Crss and Coss of the MOSFETs should be used for 0-V VDS. Derating of Cphase must be considered  
when selecting the capacitance.  
8.3.4.8 Offline Shorts Diagnostics  
The device detects short-to-battery and short-to-ground conditions when the motor is not commutating. These  
offline diagnostics can be activated in the SPI device by setting the EN_SHT_TST bit high. Both the short-to-  
battery and short-to-ground diagnostics run when the EN_SHT_TST bit is set high. In the H/W device, these  
diagnostics run at power-up or when going from the sleep mode if the nDIAG pin is left unconnected or tied to  
GND. To disable the diagnostics in the H/W device, connect the nDIAG pin to the DVDD supply (or an external  
3.3 V or 5 V rail). The short-to-supply diagnostic runs first (see Offline Short-to-Supply Diagnostic (SHT_BAT))  
followed by the short-to-ground diagnostic (see Offline Short-to-Ground Diagnostic (SHT_GND)). In the SPI  
device, the duration for this diagnostics is selected through the OLP_SHTS_DLY register. In the H/W device, the  
duration is fixed to 2 ms.  
8.3.4.8.1 Offline Short-to-Supply Diagnostic (SHT_BAT)  
When the EN_SHT_TST bit is set high, all the pulldown current sources on the DLx pins are enabled. The  
voltage across each pulldown source is individually measured and compared to an internal threshold (VTH). If the  
voltage across any of the current sources exceeds VTH, the DRV8340-Q1 device flags that as a fault condition.  
The nFAULT pin is driven low, and in the SPI device the FAULT, OL_SHT, and the corresponding SHT_BAT_x  
bit is set. 31 shows the internal circuit for the short to battery detection.  
版权 © 2019, Texas Instruments Incorporated  
39  
 
 
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
VDRAIN  
GHA  
GHB  
SHA  
GHC  
Short to Ground  
(SHT_GND)  
Diagnostic Circuit  
SHB  
SHC  
DLC  
DLB  
GLC  
DLA  
GLB  
GLC  
VTH  
VTH  
VTH  
31. Offline Short-to-Supply Detection Circuit  
In the SPI device, depending on the load configuration, SHT_BAT on one phase can latch all three SHT_BAT_x  
bits high. To determine which phase has a short-to-supply fault condition, the external MOSFETs can be enabled  
and the appropriate VDS_Lx fault bit is latched indicating the faulty phase node. SHT_BAT is not supported for  
load configurations shown in 29.  
8.3.4.8.2 Offline Short-to-Ground Diagnostic (SHT_GND)  
When the EN_SHT_TST bit is set high, all the pullup current sources on the SHx pins are enabled. The voltage  
across each pullup source is individually measured and compared to an internal threshold (VTH). If the voltage  
across any of the current sources exceeds VTH, the DRV8340-Q1 device flags that as a fault condition. The  
nFAULT pin is driven low, and in the SPI device the FAULT, OL_SHT, and the corresponding SHT_GND_x bit is  
set. 32 shows the internal circuit for the short-to-ground detection.  
40  
版权 © 2019, Texas Instruments Incorporated  
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
VDRAIN  
VDRAIN  
GHA  
GHB  
SHA  
VTH  
VTH  
VTH  
GHC  
SHB  
SHC  
DLC  
DLB  
GLC  
DLA  
GLB  
Short to Supply  
(SHT_BAT)  
Diagnostic Circuit  
GLC  
32. Offline Short-to-Ground Detection Circuit  
In the SPI device, depending on the load configuration, SHT_GND on one phase can latch all three SHT_GND_x  
bits high. To determine which phase has a short-to-ground fault condition, the external MOSFETs can be  
enabled and the appropriate VDS_Hx fault bit is latched indicating the faulty phase node. SHT_GND is not  
supported for load configurations shown in 29.  
8.3.4.9 Reverse Supply Protection  
The circuit in 33 can be implemented to help protect the system from reverse supply conditions. This circuit  
requires the following additional components:  
N-channel MOSFET  
NPN BJT  
Diode  
10-kand 43-kresistors  
The VCP voltage with respect to VM supplies the gate-source voltage of N-channel MOSFET, and the voltage  
VVCP depends on VM voltage. The characteristics of N-Channel MOSFET (e.g. gate threshold voltage) and the  
VM voltage range of the system need to be reviewed by the system integrator.  
版权 © 2019, Texas Instruments Incorporated  
41  
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
VBAT  
43 k  
10 kꢀ  
47 nF  
1 µF  
0.1 µF  
+
Bulk  
10 µF (min)  
CPL  
CPH  
VCP  
VM  
VDRAIN  
GHA  
SHA  
DLA  
GLA  
SLA  
VM  
GHB  
SHB  
DLB  
GLB  
SLB  
VM  
GHC  
SHC  
DLC  
GLC  
SPC  
SNC  
R
SEN  
33. Reverse Supply Protection  
42  
版权 © 2019, Texas Instruments Incorporated  
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
8.4 Device Functional Modes  
8.4.1 Gate Driver Functional Modes  
8.4.1.1 Sleep Mode  
The ENABLE pin manages the state of the DRV8340-Q1 device. When the ENABLE pin is low, the device goes  
to a low-power sleep mode. In sleep mode, all gate drivers are disabled, all external MOSFETs are disabled, the  
charge pump is disabled, the DVDD regulator is disabled, and the SPI bus is disabled. The tSLEEP time must  
elapse after a falling edge on the ENABLE pin before the device goes to sleep mode. The device comes out of  
sleep mode automatically if the ENABLE pin is pulled high. The tWAKE time must elapse before the device is  
ready for inputs.  
In sleep mode and when VVM < VUVLO, all external MOSFETs are disabled. The high-side gate pins, GHx, are  
pulled to the SHx pin by an internal resistor and the low-side gate pins, GLx, are pulled to the PGND pin by an  
internal resistor.  
8.4.1.2 Operating Mode  
When the ENABLE pin is high and the VVM voltage is greater than the VUVLO voltage, the device goes to  
operating mode. The tWAKE time must elapse before the device is ready for inputs. In this mode the charge pump,  
low-side gate regulator, DVDD regulator, and SPI bus are active.  
8.4.1.3 Fault Reset (CLR_FLT or ENABLE Reset Pulse)  
In the case of device latched faults, the DRV8340-Q1 device goes to a partial shutdown state to help protect the  
external power MOSFETs and system.  
When the fault condition clears, the device can go to the operating state again by either setting the CLR_FLT SPI  
bit on SPI devices or issuing a result pulse to the ENABLE pin on either interface variant. The ENABLE reset  
pulse (tRST) consists of a high-to-low-to-high transition on the ENABLE pin. The low period of the sequence  
should fall with the tRST time window or else the device will start the complete shutdown sequence. The reset  
pulse has no effect on any of the regulators, device settings, or other functional blocks  
8.5 Programming  
This section applies only to the DRV8340-Q1 SPI devices.  
8.5.1 SPI Communication  
8.5.1.1 SPI  
On DRV8340-Q1 SPI devices, an SPI bus is used to set device configurations, operating parameters, and read  
out diagnostic information. The SPI operates in slave mode and connects to a master controller. The SPI input  
data (SDI) word consists of a 16-bit word, with an 8-bit command and 8 bits of data. The SPI output data (SDO)  
word consists of 8-bit register data. The first 8 bits are don’t care bits.  
A valid frame must meet the following conditions:  
The SCLK pin should be low when the nSCS pin transitions from high to low and from low to high.  
The nSCS pin should be pulled high for at least 400 ns between words.  
When the nSCS pin is pulled high, any signals at the SCLK and SDI pins are ignored and the SDO pin is  
placed in the Hi-Z state.  
Data is captured on the falling edge of the SCLK pin and data is propagated on the rising edge of the SCLK  
pin.  
The most significant bit (MSB) is shifted in and out first.  
A full 16 SCLK cycles must occur for transaction to be valid.  
If the data word sent to the SDI pin is less than or more than 16 bits, a frame error occurs and the data word  
is ignored.  
For a write command, the existing data in the register being written to is shifted out on the SDO pin following  
the 8-bit command data.  
版权 © 2019, Texas Instruments Incorporated  
43  
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
Programming (接下页)  
8.5.1.1.1 SPI Format  
The SDI input data word is 16 bits long and consists of the following format:  
1 read or write bit, W (bit B15)  
7 address bits, A (bits B14 through B8)  
8 data bits, D (bits B7 through B0)  
The SDO output data word is 16 bits long and the first 5 bits are don't care bits. The data word is the content of  
the register being accessed.  
For a write command (W0 = 0), the response word on the SDO pin is the data currently in the register being  
written to.  
For a read command (W0 = 1), the response word is the data currently in the register being read.  
12. SDI Input Data Word Format  
R/W  
B15  
W0  
ADDRESS  
B11  
DATA  
B4  
D4  
B14  
0
B13  
0
B12  
A4  
B10  
A2  
B9  
A1  
B8  
A0  
B7  
D7  
B6  
D6  
B5  
D5  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
A3  
13. SDO Output Data Word Format  
R/W  
B15  
W0  
DON'T CARE  
DATA  
B14  
X
B13  
X
B12  
X
B11  
X
B10  
X
B9  
X
B8  
X
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
nSCS  
SCLK  
SDI  
X
Z
MSB  
MSB  
LSB  
LSB  
X
Z
SDO  
Capture  
Point  
Propagate  
Point  
34. SPI Slave Timing Diagram  
44  
版权 © 2019, Texas Instruments Incorporated  
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
8.6 Register Maps  
This section applies only to the DRV8340-Q1 SPI devices.  
Do not modify reserved registers or addresses not listed in the register map (). Writing to  
these registers may have unintended effects. For all reserved bits, the default value is 0.  
To help prevent erroneous SPI writes from the master controller, set the LOCK bits to lock  
the SPI registers.  
14. DRV8340-Q1 Register Map  
Register  
Name  
Access Addres  
7
6
5
4
3
2
1
0
Type  
s
FAULT Status  
FAULT  
RSVD  
GDF  
CPUV  
UVLO  
OCP  
OTW  
OTSD  
VDS_LA  
OL_SHT  
VDS_HA  
R
0x00  
DIAG Status  
A
SHT_GND SHT_BAT_  
_A  
OL_PH_A  
VGS_LA  
VGS_HA  
R
R
0x01  
0x02  
0x03  
0x04  
0x05  
A
DIAG Status  
B
SHT_GND SHT_BAT_  
_B  
RSVD  
RSVD  
OL_PH_B  
OL_PH_C  
VGS_LB  
VGS_LC  
VGS_HB  
VGS_HC  
VDS_LB  
VDS_LC  
VDS_HB  
VDS_HC  
B
DIAG Status  
C
SHT_GND SHT_BAT_  
R
_C  
C
1PWM_CO 1PWM_DI  
IC1 Control  
IC2 Control  
CLR_FLT  
PWM_MODE  
1PWM_BRAKE  
RW  
RW  
M
R
OTSD_MO  
DE  
EN_SHT_  
TST  
EN_OLA_ EN_OLA_ EN_OLA_  
OLP_SHTS_DLY  
EN_OLP  
C
B
A
IC3 Control  
IC4 Control  
IC5 Control  
IC6 Control  
IC7 Control  
IC8 Control  
IDRIVEP_LA  
IDRIVEP_LB  
IDRIVEP_LC  
VDS_LVL_LA  
VDS_LVL_LB  
VDS_LVL_LC  
IDRIVEP_HA  
RW  
RW  
RW  
RW  
RW  
RW  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
IDRIVEP_HB  
IDRIVEP_HC  
VDS_LVL_HA  
VDS_LVL_HB  
VDS_LVL_HC  
TDRIVE_M  
AX  
IC9 Control  
IC10 Control  
IC11 Control  
COAST  
RSVD  
TRETRY  
LOCK  
DEAD_TIME  
TDRIVE  
OCP_DEG  
RW  
RW  
RW  
0x0C  
0x0D  
0x0E  
DIS_CPUV DIS_GDF  
DIS_VDS_ DIS_VDS_ DIS_VDS_  
OTW_REP  
CBC  
OCP_MODE  
C
B
A
IC12 Control  
IC13 Control  
IC14 Control  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RW  
RW  
RW  
0x0F  
0x10  
0x11  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
Complex bit access types are encoded to fit into small table cells. 15 shows the codes that are used for  
access types in this section.  
15. Status Registers Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Reset or Default Value  
-n  
Value after reset or the default value  
8.6.1 Status Registers  
16 lists the memory-mapped registers for the status registers. All register offset addresses not listed in 16  
should be considered as reserved locations and the register contents should not be modified.  
The status registers are used to reporting warning and fault conditions. Status registers are read-only registers.  
版权 © 2019, Texas Instruments Incorporated  
45  
 
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
16. Status Registers Summary Table  
Address  
0x00  
Register Name  
FAULT Status  
DIAG Status A  
DIAG Status B  
DIAG Status C  
Section  
Go  
Go  
Go  
Go  
0x01  
0x02  
0x03  
8.6.1.1 FAULT Status Register (Address = 0x00) [reset = 0x00]  
FAULT Status is shown in 35 and described in 17.  
35. FAULT Status Register  
7
6
5
4
3
2
1
0
FAULT  
R-0b  
GDF  
R-0b  
CPUV  
R-0b  
UVLO  
R-0b  
OCP  
R-0b  
OTW  
R-0b  
OTSD  
R-0b  
OL_SHT  
R-0b  
17. FAULT Status Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
FAULT  
R
0b  
Logic OR of FAULT status registers  
Indicates gate drive fault condition  
6
5
4
3
2
1
0
GDF  
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
CPUV  
UVLO  
OCP  
Indicates charge pump undervoltage fault condition  
Indicates undervoltage lockout fault condition  
Indicated overcurrent fault condition either by VDS  
Indicates overtemperature warning  
OTW  
OTSD  
OL_SHT  
Indicates overtemperature shutdown  
Indicates open load detection, or offline short-to-supply or GND  
detection  
8.6.1.2 DIAG Status A Register (Address = 0x01) [reset = 0x00]  
DIAG Status A is shown in 36 and described in 18.  
36. DIAG Status A Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
SHT_GND_A  
R-0b  
SHT_BAT_A  
R-0b  
OL_PH_A  
R-0b  
VGS_LA  
R-0b  
VGS_HA  
R-0b  
VDS_LA  
R-0b  
VDS_HA  
R-0b  
18. DIAG Status A Register Field Descriptions  
Bit  
Field  
Type  
R
Default  
0b  
Description  
7
6
RSVD  
Reserved.  
SHT_GND_A  
SHT_BAT_A  
OL_PH_A  
VGS_LA  
R
0b  
Indicates offline short-to-ground fault in Phase A  
Indicates offline short to battery fault in Phase A  
Indicates open load fault in Phase A  
5
4
3
2
1
0
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
Indicates gate drive fault on the A low-side MOSFET  
VGS_HA  
Indicates gate drive fault on the A high-side MOSFET  
Indicates VDS overcurrent fault on the A low-side MOSFET  
Indicates VDS overcurrent fault on the A high-side MOSFET  
VDS_LA  
VDS_HA  
46  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
 
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
8.6.1.3 DIAG Status B Register (Address = 0x02) [reset = 0x00]  
DIAG Status B is shown in 37 and described in 19.  
37. DIAG Status B Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
SHT_GND_B  
R-0b  
SHT_BAT_B  
R-0b  
OL_PH_B  
R-0b  
VGS_LB  
R-0b  
VGS_HB  
R-0b  
VDS_LB  
R-0b  
VDS_HB  
R-0b  
19. DIAG Status B Register Field Descriptions  
Bit  
Field  
Type  
R
Default  
0b  
Description  
7
6
RSVD  
Reserved  
SHT_GND_B  
SHT_BAT_B  
OL_PH_B  
VGS_LB  
R
0b  
Indicates offline short-to-ground fault in Phase B  
Indicates offline short to battery fault in Phase B  
Indicates open load fault in Phase B  
5
4
3
2
1
0
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
Indicates gate drive fault on the B low-side MOSFET  
Indicates gate drive fault on the B high-side MOSFET  
Indicates VDS overcurrent fault on the B low-side MOSFET  
Indicates VDS overcurrent fault on the B high-side MOSFET  
VGS_HB  
VDS_LB  
VDS_HB  
8.6.1.4 DIAG Status C Register (address = 0x03) [reset = 0x00]  
DIAG Status C iss shown in 38 and described in 20.  
38. DIAG Status C Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
SHT_GND_C  
R-0b  
SHT_BAT_C  
R-0b  
OL_PH_C  
R-0b  
VGS_LC  
R-0b  
VGS_HC  
R-0b  
VDS_LC  
R-0b  
VDS_HC  
R-0b  
20. DIAG Status C Register Field Descriptions  
Bit  
Field  
Type  
R
Default  
0b  
Description  
7
6
RSVD  
Reserved  
SHT_GND_C  
SHT_BAT_C  
OL_PH_C  
VGS_LC  
R
0b  
Indicates offline short-to-ground fault in Phase C  
Indicates offline short to battery fault in Phase C  
Indicates open load fault in Phase C  
5
4
3
2
1
0
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
Indicates gate drive fault on the C low-side MOSFET  
VGS_HC  
Indicates gate drive fault on the C high-side MOSFET  
Indicates VDS overcurrent fault on the C low-side MOSFET  
Indicates VDS overcurrent fault on the C high-side MOSFET  
VDS_LC  
VDS_HC  
版权 © 2019, Texas Instruments Incorporated  
47  
 
 
 
 
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
8.6.2 Control Registers  
21 lists the memory-mapped registers for the control registers. All register offset addresses not listed in 21  
should be considered as reserved locations and the register contents should not be modified.  
The IC control registers are used to configure the device. Control registers are read and write capable.  
21. Control Registers Summary Table  
Address  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
Register Name  
IC1 Control  
IC2 Control  
IC3 Control  
IC4 Control  
IC5 Control  
IC6 Control  
IC7 Control  
IC8 Control  
IC9 Control  
IC10 Control  
IC11 Control  
IC12 Control  
IC13 Control  
IC14 Control  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
8.6.2.1 IC1 Control Register (Address = 0x04) [reset = 0x00]  
IC1 Control is shown in 39 and described in 22.  
39. IC1 Control Register  
7
6
5
4
3
2
1
0
CLR_FLT  
R/W-0b  
PWM_MODE  
R/W-000b  
1PWM_COM  
R/W-0b  
1PWM_DIR  
R/W-0b  
1PWM_BRAKE  
R/W-00b  
22. IC1 Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
CLR_FLT  
R/W  
0b  
Write a 1 to this bit to clear all latched fault bits. This bit  
automatically resets after being written  
6-4  
PWN_MODE  
R/W  
000b  
000b = 6x PWM mode  
001b = 3x PWM mode  
010b = 1x PWM mode  
011b = Independent half-bridge (for all phases)  
100b = Phases A and B are independent half-bridges, Phase C  
is independent FET  
101b = Phases B and C are independent half-bridges, Phase A  
is independent FET  
110b = Phase A is independent half-bridge, Phases B and C are  
independent FET  
111b =Independent FET (for all phases)  
3
2
1PWM_COM  
1PWM_DIR  
R/W  
R/W  
0b  
0b  
0b = 1x PWM mode uses synchronous rectification  
1b = 1x PWM mode uses asynchronous rectification (diode  
freewheeling)  
In 1x PWM mode this bit is OR’ed with the INHC (DIR) input  
48  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
22. IC1 Control Field Descriptions (接下页)  
Bit  
Field  
1PWM_BRAKE  
Type  
Default  
Description  
1-0  
R/W  
00b  
00b = Outputs follow commanded inputs  
01b = Turn on all three low-side MOSFETs  
10b = Turn on all three high-side MOSFETs  
11b = Turn off all six MOSFETs (coast)  
8.6.2.2 IC2 Control Register (address = 0x05) [reset = 0x40]  
IC2 Control is shown in 40 and described in 23.  
40. IC2 Control Register  
7
6
5
4
3
2
1
0
OTSD_MODE  
R/W-0b  
OLP_SHTS_DLY  
R/W-10b  
EN_SHT_TST  
R/W-0b  
EN_OLP  
R/W-0b  
EN_OLA_C  
R/W-0b  
EN_OLA_B  
R/W-0b  
EN_OLA_A  
R/W-0b  
23. IC2 Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
0b = Overtemperature condition will cause a latched fault  
1b Overtemperature condition will cause an automatic  
7
OTSD_MODE  
R/W  
0b  
=
recovery when the fault condition is removed  
6-5  
OLP_SHTS_DLY  
R/W  
10b  
00b = OLP delay is 0.25 ms and Shorts test delay is 0.1 ms  
01b = OLP delay is 1.25 ms and Shorts test delay is 0.5 ms  
10b = OLP delay is 5 ms and Shorts test delay is 2 ms  
11b = OLP delay is 11.5 ms and Shorts test delay is 4.4 ms  
4
3
EN_SHT_TST  
EN_OLP  
R/W  
R/W  
0b  
0b  
Write a 1 to enable offline short to battery and ground diagnoses  
Write a 1 to enable open load diagnostic in standby mode.  
When open load test is complete EN_OLP returns to the default  
setting  
2
1
0
EN_OLA_C  
EN_OLA_B  
EN_OLA_A  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Write a 1 to enable open load active diagnostic on Phase C  
Write a 1 to enable open load active diagnostic on Phase B  
Write a 1 to enable open load active diagnostic on Phase A  
版权 © 2019, Texas Instruments Incorporated  
49  
 
 
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
8.6.2.3 IC3 Control Register (Address = 0x06) [reset = 0xFF]  
IC3 Control is shown in 41 and described in 24.  
41. IC3 Control Register  
7
6
5
4
3
2
1
0
IDRIVEP_LA  
R/W-1111b  
IDRIVEP_HA  
R/W-1111b  
24. IC3 Control Field Descriptions  
Bit  
Field  
IDRIVEP_LA  
Type  
Default  
Description  
7-4  
R/W  
1111b  
0000b = 1.5 mA  
0001b = 3.5 mA  
0010b = 5 mA  
0011b = 10 mA  
0100b = 15 mA  
0101b = 50 mA  
0110b = 60 mA  
0111b = 65 mA  
1000b = 200 mA  
1001b = 210 mA  
1010b = 260 mA  
1011b = 265 mA  
1100b = 735 mA  
1101b = 800 mA  
1110b = 935 mA  
1111b = 1000 mA  
3-0  
IDRIVEP_HA  
R/W  
1111b  
0000b = 1.5 mA  
0001b = 3.5 mA  
0010b = 5 mA  
0011b = 10 mA  
0100b = 15 mA  
0101b = 50 mA  
0110b = 60 mA  
0111b = 65 mA  
1000b = 200 mA  
1001b = 210 mA  
1010b = 260 mA  
1011b = 265 mA  
1100b = 735 mA  
1101b = 800 mA  
1110b = 935 mA  
1111b = 1000 mA  
50  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
8.6.2.4 IC4 Control Register (Address = 0x07) [reset = 0xFF]  
IC4 Control is shown in 42 and described in 25.  
42. IC4 Control Register  
7
6
5
4
3
2
1
0
IDRIVEP_LB  
R/W-1111b  
IDRIVEP_HB  
R/W-1111b  
25. IC4 Control Field Descriptions  
Bit  
Field  
IDRIVEP_LB  
Type  
Default  
Description  
7-4  
R/W  
1111b  
0000b = 1.5 mA  
0001b = 3.5 mA  
0010b = 5 mA  
0011b = 10 mA  
0100b = 15 mA  
0101b = 50 mA  
0110b = 60 mA  
0111b = 65 mA  
1000b = 200 mA  
1001b = 210 mA  
1010b = 260 mA  
1011b = 265 mA  
1100b = 735 mA  
1101b = 800 mA  
1110b = 935 mA  
1111b = 1000 mA  
3-0  
IDRIVEP_HB  
R/W  
1111b  
0000b = 1.5 mA  
0001b = 3.5 mA  
0010b = 5 mA  
0011b = 10 mA  
0100b = 15 mA  
0101b = 50 mA  
0110b = 60 mA  
0111b = 65 mA  
1000b = 200 mA  
1001b = 210 mA  
1010b = 260 mA  
1011b = 265 mA  
1100b = 735 mA  
1101b = 800 mA  
1110b = 935 mA  
1111b = 1000 mA  
版权 © 2019, Texas Instruments Incorporated  
51  
 
 
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
8.6.2.5 IC5 Control Register (Address = 0x08) [reset = 0xFF]  
IC5 Control is shown in 43 and described in 26.  
43. IC5 Control Register  
7
6
5
4
3
2
1
0
IDRIVEP_LC  
R/W-1111b  
IDRIVEP_HC  
R/W-1111b  
26. IC5 Control Field Descriptions  
Bit  
Field  
IDRIVEP_LC  
Type  
Default  
Description  
7-4  
R/W  
1111b  
0000b = 1.5 mA  
0001b = 3.5 mA  
0010b = 5 mA  
0011b = 10 mA  
0100b = 15 mA  
0101b = 50 mA  
0110b = 60 mA  
0111b = 65 mA  
1000b = 200 mA  
1001b = 210 mA  
1010b = 260 mA  
1011b = 265 mA  
1100b = 735 mA  
1101b = 800 mA  
1110b = 935 mA  
1111b = 1000 mA  
3-0  
IDRIVEP_HC  
R/W  
1111b  
0000b = 1.5 mA  
0001b = 3.5 mA  
0010b = 5 mA  
0011b = 10 mA  
0100b = 15 mA  
0101b = 50 mA  
0110b = 60 mA  
0111b = 65 mA  
1000b = 200 mA  
1001b = 210 mA  
1010b = 260 mA  
1011b = 265 mA  
1100b = 735 mA  
1101b = 800 mA  
1110b = 935 mA  
1111b = 1000 mA  
52  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
8.6.2.6 IC6 Control Register (Address = 0x09) [reset = 0x99]  
IC6 Control is shown in 44 and described in 27.  
44. IC6 Control Register  
7
6
5
4
3
2
1
0
VDS_LVL_LA  
R/W-1001b  
VDS_LVL_HA  
R/W-1001b  
27. IC6 Control Field Descriptions  
Bit  
Field  
VDS_LVL_LA  
Type  
Default  
Description  
7-4  
R/W  
1001b  
0000b = 0.06 V  
0001b = 0.13 V  
0010b = 0.2 V  
0011b = 0.26 V  
0100b = 0.31 V  
0101b = 0.45 V  
0110b = 0.53 V  
0111b = 0.6 V  
1000b = 0.68 V  
1001b = 0.75 V  
1010b = 0.94 V  
1011b = 1.13 V  
1100b = 1.3 V  
1101b = 1.5 V  
1110b = 1.7 V  
1111b = 1.88 V  
3-0  
VDS_LVL_HA  
R/W  
1001b  
0000b = 0.06 V  
0001b = 0.13 V  
0010b = 0.2 V  
0011b = 0.26 V  
0100b = 0.31 V  
0101b = 0.45 V  
0110b = 0.53 V  
0111b = 0.6 V  
1000b = 0.68 V  
1001b = 0.75 V  
1010b = 0.94 V  
1011b = 1.13 V  
1100b = 1.3 V  
1101b = 1.5 V  
1110b = 1.7 V  
1111b = 1.88 V  
版权 © 2019, Texas Instruments Incorporated  
53  
 
 
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
8.6.2.7 IC7 Control Register (Address = 0x0A) [reset = 0x99]  
IC7 Control is shown in 45 and described in 28.  
45. IC7 Control Register  
7
6
5
4
3
2
1
0
VDS_LVL_LB  
R/W-1001b  
VDS_LVL_HB  
R/W-1001b  
28. IC7 Control Field Descriptions  
Bit  
Field  
VDS_LVL_LB  
Type  
Default  
Description  
7-4  
R/W  
1001b  
0000b = 0.06 V  
0001b = 0.13 V  
0010b = 0.2 V  
0011b = 0.26 V  
0100b = 0.31 V  
0101b = 0.45 V  
0110b = 0.53 V  
0111b = 0.6 V  
1000b = 0.68 V  
1001b = 0.75 V  
1010b = 0.94 V  
1011b = 1.13 V  
1100b = 1.3 V  
1101b = 1.5 V  
1110b = 1.7 V  
1111b = 1.88 V  
3-0  
VDS_LVL_HB  
R/W  
1001b  
0000b = 0.06 V  
0001b = 0.13 V  
0010b = 0.2 V  
0011b = 0.26 V  
0100b = 0.31 V  
0101b = 0.45 V  
0110b = 0.53 V  
0111b = 0.6 V  
1000b = 0.68 V  
1001b = 0.75 V  
1010b = 0.94 V  
1011b = 1.13 V  
1100b = 1.3 V  
1101b = 1.5 V  
1110b = 1.7 V  
1111b = 1.88 V  
54  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
8.6.2.8 IC8 Control Register (Address = 0x0B) [reset = 0x99]  
IC8 control is shown in 46 and described in 29.  
46. IC8 Control Register  
7
6
5
4
3
2
1
0
VDS_LVL_LC  
R/W-1001b  
VDS_LVL_HC  
R/W-1001b  
29. IC8 Control Field Descriptions  
Bit  
Field  
VDS_LVL_LC  
Type  
Default  
Description  
7-4  
R/W  
1001b  
0000b = 0.06 V  
0001b = 0.13 V  
0010b = 0.2 V  
0011b = 0.26 V  
0100b = 0.31 V  
0101b = 0.45 V  
0110b = 0.53 V  
0111b = 0.6 V  
1000b = 0.68 V  
1001b = 0.75 V  
1010b = 0.94 V  
1011b = 1.13 V  
1100b = 1.3 V  
1101b = 1.5 V  
1110b = 1.7 V  
1111b = 1.88 V  
3-0  
VDS_LVL_HC  
R/W  
1001b  
0000b = 0.06 V  
0001b = 0.13 V  
0010b = 0.2 V  
0011b = 0.26 V  
0100b = 0.31 V  
0101b = 0.45 V  
0110b = 0.53 V  
0111b = 0.6 V  
1000b = 0.68 V  
1001b = 0.75 V  
1010b = 0.94 V  
1011b = 1.13 V  
1100b = 1.3 V  
1101b = 1.5 V  
1110b = 1.7 V  
1111b = 1.88 V  
版权 © 2019, Texas Instruments Incorporated  
55  
 
 
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
8.6.2.9 IC9 Control Register (Address = 0x0C) [reset = 0x2F]  
IC9 Control is shown in 47 and described in 30.  
47. IC9 Control Register  
7
6
5
4
3
2
1
0
COAST  
R/W-0b  
TRETRY  
R/W-01b  
DEAD_TIME  
R/W-01b  
TDRIVE_MAX  
R/W-1b  
TDRIVE  
R/W-11b  
30. IC9 Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
COAST  
R/W  
0b  
Write a 1 to this bit to put all the MOSFETs in the Hi-Z state  
6-5  
TRETRY  
R/W  
01b  
00b = 2 ms  
01b = 4 ms  
10b = 6 ms  
11b = 8 ms  
4-3  
DEAD_TIME  
R/W  
01b  
00b = 500 ns  
01b = 1000 ns  
10b = 2000 ns  
11b = 4000 ns  
2
TDRIVE_MAX  
TDRIVE  
R/W  
R/W  
1b  
Write a 0 to this bit to disable the maximum tDRIVE time of 20 µs.  
This bit is automatically enabled when IDRIVE = 0000b, 0001b,  
0010b, or 0011b is selected  
1-0  
11b  
00b = 500 ns peak gate-current drive time  
01b = 1000 ns peak gate-current drive time  
10b = 2000 ns peak gate-current drive time  
11b = 3000 ns peak gate-current drive time  
8.6.2.10 IC10 Control Register (Address = 0x0D) [reset = 0x61]  
IC10 Control is shown in 48 and described in 31.  
48. IC10 Control Register  
7
6
5
4
3
2
1
0
LOCK  
DIS_CPUV  
R/W-0b  
DIS_GDF  
R/W-0b  
OCP_DEG  
R/W-001b  
R/W-011b  
31. IC10 Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-5  
LOCK  
R/W  
011b  
Write 110b to lock the settings by ignoring further register writes  
except to these bits and address 0x04h bit 7 (CLR_FLT). Writing  
any sequence other than 110b has no effect when unlocked.  
Write 011b to this register to unlock all registers. Writing any  
sequence other than 011b has no effect when locked.  
4
3
DIS_CPUV  
DIS_GDF  
R/W  
R/W  
0b  
0b  
0b = Charge-pump undervoltage lockout fault is enabled  
1b = Charge-pump undervoltage lockout fault is disabled  
0b = Gate drive fault is enabled  
1b = Gate drive fault is disabled  
56  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
31. IC10 Control Field Descriptions (接下页)  
Bit  
Field  
OCP_DEG  
Type  
Default  
Description  
2-0  
R/W  
001b  
000b = 2.5 µs  
001b = 4.75 µs  
010b = 6.75 µs  
011b = 8.75 µs  
100b = 10.25 µs  
101b = 11.5 µs  
110b = 16.5 µs  
111b = 20.5 µs  
8.6.2.11 IC11 Control Register (Address = 0x0E) [reset = 0x00]  
IC11 Control is shown in 49 and described in 32.  
49. IC11 Control Register  
7
6
5
4
3
2
1
0
RSVD  
R/W-0b  
OTW_REP  
R/W-0b  
CBC  
DIS_VDS_C  
R/W-0b  
DIS_VDS_B  
R/W-0b  
DIS_VDS_A  
R/W-0b  
OCP_MODE  
R/W-00b  
R/W-0b  
32. IC11 Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
RSVD  
R/W  
0b  
Reserved  
6
OTW_REP  
R/W  
0b  
0b = Overtemperature warning is not reported on nFAULT  
1b = Overtemperature warning is reported on nFAULT  
5
4
CBC  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
00b  
In retry OCP_MODE, for both VDS_OCP, the fault is  
automatically cleared when a PWM input is given  
DIS_VDS_C  
DIS_VDS_B  
DIS_VDS_A  
OCP_MODE  
Write a 1 to this bit to disable VDS_OCP for MOSFETs in Phase  
C
3
Write a 1 to this bit to disable VDS_OCP for MOSFETs in Phase  
B
2
Write a 1 to this bit to disable VDS_OCP for MOSFETs in Phase  
A
1-0  
00b = Overcurrent causes a latched fault  
01b = Overcurrent causes an automatic retrying fault  
10b = Overcurrent is report only but no action is taken  
11b = Overcurrent is not reported and no action is taken  
8.6.2.12 IC12 Control Register (Address = 0x0F) [reset = 0x2A]  
IC12 Control is shown in and described in .  
50. IC12 Control Register  
7
6
5
4
3
2
1
0
RSVD  
R/W-0b  
RSVD  
R/W-0b  
RSVD  
RSVD  
RSVD  
R/W-10b  
R/W-10b  
R/W-10b  
33. IC12 Control Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
Default  
0b  
Description  
RSVD  
RSVD  
RSVD  
Reserved. Keep the default value 0b.  
6
0b  
Reserved.  
Reserved.  
5-4  
10b  
版权 © 2019, Texas Instruments Incorporated  
57  
 
 
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
33. IC12 Control Field Descriptions (接下页)  
Bit  
3-2  
1-0  
Field  
Type  
R/W  
R/W  
Default  
10b  
Description  
Reserved.  
Reserved.  
RSVD  
RSVD  
10b  
8.6.2.13 IC13 Control Register (Address = 0x10) [reset = 0x7F]  
IC13 Control is shown in and described in .  
51. IC13 Control Register  
7
6
5
4
3
2
1
0
RSVD  
R/W-0b  
RSVD  
R/W-1b  
RSVD  
RSVD  
RSVD  
R/W-11b  
R/W-11b  
R/W-11b  
34. IC13 Control Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
Default  
0b  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
6
1b  
5-4  
3-2  
1-0  
11b  
11b  
11b  
8.6.2.14 IC14 Control Register (Address = 0x10) [reset = 0x00]  
IC14 Control is shown in and described in .  
52. IC14 Control Register  
7
6
5
4
3
2
1
0
RSVD  
RSVD  
R/W-0b  
RSVD  
R/W-0b  
RSVD  
R/W-0b  
RSVD  
R/W-0b  
RSVD  
R/W-0b  
RSVD  
R/W-0b  
R/W-00b  
35. IC14 Control Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Default  
00b  
0b  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
4
0b  
3
0b  
2
0b  
1
0b  
0
0b  
58  
版权 © 2019, Texas Instruments Incorporated  
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DRV8340-Q1 device is primarily used in applications for three-phase brushless DC motor control. The  
design procedures in the Typical Application section highlight how to use and configure the DRV8340-Q1 device.  
9.2 Typical Application  
9.2.1 Primary Application  
The DRV8340-Q1 SPI device is used in this application example.  
版权 © 2019, Texas Instruments Incorporated  
59  
 
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
Typical Application (接下页)  
VCC  
CVSDO  
3.3 V, 30 mA  
CDVDD  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
ENABLE  
CPL  
CPH  
CFLY  
nSCS  
SCLK  
SDI  
3
VCP  
VM  
VM  
CVCP  
4
VCC  
+
5
CVM1  
CVM2  
CVM3  
VDRAIN  
GHA  
SHA  
DLA  
VDRAIN  
GHA  
SHA  
DLA  
GLA  
SLA  
NC  
SDO  
nFAULT  
NC  
RnFAULT  
6
GND  
(PAD)  
7
8
NC  
9
NC  
GLA  
10  
11  
12  
NC  
SLA  
NC  
NC  
NC  
VM  
+
VM  
VM  
VM  
VM  
+
VDRAIN  
GHB  
GHC  
GHA  
SHB  
DLB  
SHA  
DLA  
SHC  
DLC  
C
B
A
GLB  
SLB  
GLA  
SLA  
GLC  
SLC  
53. Primary Application Schematic  
60  
版权 © 2019, Texas Instruments Incorporated  
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
Typical Application (接下页)  
9.2.1.1 Design Requirements  
lists the example input parameters for the system design.  
36. Design Parameters  
EXAMPLE DESIGN PARAMETER  
Nominal supply voltage  
Supply voltage range  
REFERENCE  
EXAMPLE VALUE  
24 V  
8 V to 45 V  
VVM  
MOSFET part number  
CSD18536KCS  
83 nC (typical) at VVGS = 10 V  
14 nC (typical)  
1000 ns  
MOSFET total gate charge  
MOSFET gate to drain charge  
Target output rise time  
Qg  
Qgd  
tr  
PWM Frequency  
ƒPWM  
Imax  
ISENSE  
IRMS  
TA  
10 kHz  
Maximum motor current  
Winding sense current range  
Motor RMS current  
100 A  
–40 A to +40 A  
28.3 A  
System ambient temperature  
–40°C to 125°C  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 External MOSFET Support  
The DRV8340-Q1 MOSFET support is based on the capacity of the charge pump and PWM switching frequency  
of the output. For a quick calculation of MOSFET driving capacity, use 公式 4 and 公式 5 for three phase BLDC  
motor applications.  
Trapezoidal 120° Commutation: IVCP > Qg × ƒPWM  
where  
ƒPWM is the maximum desired PWM switching frequency.  
IVCP is the charge pump capacity, which depends on the VM pin voltage.  
The multiplier based on the commutation control method, may vary based on implementation.  
(4)  
(5)  
Sinusoidal 180° Commutation: IVCP > 3 × Qg × ƒPWM  
9.2.1.2.1.1 Example  
If a system with a VVM voltage of 8 V (IVCP = 15 mA) uses a maximum PWM switching frequency of 10 kHz, then  
the charge pump can support MOSFETs using trapezoidal commutation with a Qg less than 750 nC, and  
MOSFETs using sinusoidal commutation with a Qg less than 250 nC.  
9.2.1.2.2 IDRIVE Configuration  
The strength of the gate drive current, IDRIVE, is selected based on the gate-to-drain charge of the external  
MOSFETs and the target rise and fall times at the outputs. If IDRIVE is selected to be too low for a given  
MOSFET, then the MOSFET may not turn on completely within the tDRIVE time and a gate drive fault may be  
asserted. Additionally, slow rise and fall times result in higher switching power losses. TI recommends adjusting  
these values in the system with the required external MOSFETs and motor to determine the best possible setting  
for any application.  
The IDRIVEP and IDRIVEN current for both the low-side and high-side MOSFETs are independently adjustable on  
SPI devices through the SPI registers. On hardware interface devices, both source and sink settings are selected  
at the same time on the IDRIVE pin.  
For MOSFETs with a known gate-to-drain charge Qgd, desired rise time (tr), and a desired fall time (tf), use 公式  
6 and 公式 7 to calculate the value of IDRIVEP and IDRIVEN (respectively).  
IDRIVEP > Qgd ì tr  
(6)  
IDRIVEN = 2 ì IDRIVEP  
(7)  
版权 © 2019, Texas Instruments Incorporated  
61  
 
 
 
 
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
9.2.1.2.2.1 Example  
Use 公式 8 to calculate the value of IDRIVEP for a gate-to-drain charge of 14 nC and a rise time from 100 to 300  
ns.  
12 nC  
IDRIVEP  
=
14 mA  
1000 ns  
(8)  
Select an IDRIVEP value that is close to 14 mA which will set the IDRIVEN value close to 28 mA. For this example,  
the value of IDRIVEP was selected as 15 mA.  
9.2.1.2.3 VDS Overcurrent Monitor Configuration  
The VDS monitors are configured based on the worst-case motor current and the RDS(on) of the external  
MOSFETs as shown in 公式 9.  
VDS_OCP > Imax ì RDS(on)max  
(9)  
9.2.1.2.3.1 Example  
The goal of this example is to set the VDS monitor to trip at a current greater than 100 A. According to the  
CSD18536KCS 60 V N-Channel NexFET™ Power MOSFET data sheet, the RDS(on) value is 1.8 times higher at  
175°C, and the maximum RDS(on) value at a VGS of 10 V is 1.6 mΩ. From these values, the approximate worst-  
case value of RDS(on) is 1.8 × 1.6 mΩ = 2.88 mΩ.  
Using 公式 9 with a value of 2.88 mΩ for RDS(on) and a worst-case motor current of 100 A, 公式 10 shows the  
calculated the value of the VDS monitors.  
VDS _ OCP > 100 A ì 2.88 mW  
VDS _ OCP > 0.288 V  
(10)  
For this example, the value of VDS_OCP was selected as 0.31 V.  
The SPI devices allow for adjustment of the deglitch time for the VDS overcurrent monitor. The deglitch time can  
be set to 2 µs, 4 µs, 6 µs, 8 µs, 10 µs, 12 µs, 16 µs, or 20 µs.  
9.2.1.2.4 Design consideration of low-side gate drive (IDRIVE, GLx, SLx)  
The VGLS linear regulator of low-side gate driver is biased with respect to AGND. Since the external FET is  
referenced to bridge ground, any difference between the two grounds may cause the effective gate-source  
voltage on the low-side MOSFET to increase during high current switching events.  
Steps can be taken during the design stage to reduce the severity of this effect  
Avoid excessively fast switching transients in the bridge ( <100ns slew rates on the phase node)  
Ensure low inductance between SLx pin to MOSFET ground  
Ensure low inductance in the path from GLx pin to MOSFET Gate . As a guidance, the below relationships 公  
11 may be used to estimate the highest VGSL expected. The 1V term in the equation is required for  
additional margin.  
ID2RIVEP  
VGSL _ SWITCHING = VGSL +1V +  
ìLgate  
Qg  
where  
VGSL_SWITCHING is the effective gate-source voltage on the low-side MOSFET  
VGSL is the low-side gate drive voltage with no output load of GLx  
IDRIVEP is the peak source gate current  
Qg is the total gate charge of MOSFET  
Lgate is the parasitic inductance in the path from GLx pin to MOSFET gate  
(11)  
62  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
9.2.1.2.5 External Components  
lists the recommended external components.  
37. External Components  
COMPONENT  
CFLY  
PIN 1  
CPH  
VCP  
VM  
PIN 2  
CPL  
RECOMMENDED  
47-nF ceramic capacitor X5R or X7R rated for VM(1)  
(1)  
CVCP  
VM  
1-µF ceramic capacitor X5R or X7R rated for VCP – VM  
0.1-µF ceramic capacitor X5R or X7R rated for VM(1)  
4.7-µF ceramic capacitor X5R or X7R rated for VM(1)  
> 10-µF electrolytic capacitor rated for VM(1)  
CVM1  
PGND  
PGND  
PGND  
AGND  
CVM2  
VM  
CVM3  
VM  
CDVDD  
DVDD  
1-µF ceramic capacitor X5R or X7R rated for DVDD(1)  
0.1-µF ceramic capacitor X5R or X7R rated for VSDO(1). DRV8340S  
only  
CVSDO  
VSDO  
AGND  
VCC(2)  
RnFAULT  
nFAULT  
2.5 – 10 kΩ pulled up the MCU I/O (VCC) power supply  
(1) The effective capacitance of ceramic capacitors varies with DC operating voltage and temperature. As a rule of thumb, expect the  
effective capacitance to decrease by as much as 50% at the extremes of the operating voltage. The system designer must review the  
capacitor characteristics and select the component accordingly.  
(2) The VCC pin is not a pin on the DRV8340-Q1 device, but a VCC supply voltage pullup is required for the open-drain output, nFAULT.  
These pins can also be pulled up to DVDD.  
9.2.1.3 Application Curves  
(1)  
54. Device Power Up Sequence Waveform  
55. BLDC Motor Commutation  
(1) SOC is available for DRV8343-Q1.  
版权 © 2019, Texas Instruments Incorporated  
63  
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
The DRV8340-Q1 device is designed to operate from an input voltage supply (VM) range from 6 V to 60 V.  
10.1 Power Supply Consideration in Generator Mode  
When the motor shaft of BLDC or PMSM motor is turned by an external force, the motor windings will generate a  
voltage on the motor inputs. This condition is known as generator mode or motor back-drive. In the generator  
mode, a positive voltage can be observed on SHx pins of the device. If there is a switch between VDRAIN and  
VM (SWVDRAIN in 56 ) and the following conditions exist in the system, the absolute max voltage of VCP with  
respect to VM needs to be reviewed;  
Generator mode  
SWVDRAIN is off  
VM and VCP are low voltage (e.g. VM = 0V)  
If SHx voltage (VSHx) exceeds VCP voltage, the VCP voltage starts following VSHx because of the device internal  
diodes D1 and D2 (or D3). If VCP - VM voltage exceeds the absolute max voltage of DRV8340-Q1, the ESD  
diode D4 starts conducting and results in a big current from SHx to VM through the diodes D2, D1 and D4. To  
avoid this condition, it is recommended to add an external diode DVDRAIN_VM between VDRAIN and VM.  
SWVDRAIN  
12-V or 24-V  
Battery  
Optional  
VM  
VCP  
DRV8340-Q1  
DVDRAN_VM  
ESD  
VDRAIN  
D4  
D1  
D2  
GHx  
Level  
shifter  
INHx  
external  
force  
D3  
SHx  
VSHx  
M
VGLS  
GLx  
SLx  
Level  
shifter  
INLx  
GND  
56. Power Supply Consideration in Generator mode  
10.2 Bulk Capacitance Sizing  
Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally  
beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size. The  
amount of local capacitance depends on a variety of factors including:  
The highest current required by the motor system  
The power supply's type, capacitance, and ability to source current  
64  
版权 © 2019, Texas Instruments Incorporated  
 
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
Bulk Capacitance Sizing (接下页)  
The amount of parasitic inductance between the power supply and motor system  
The acceptable supply voltage ripple  
Type of motor (brushed DC, brushless DC, stepper)  
The motor startup and braking methods  
The inductance between the power supply and motor drive system will limit the rate current can change from the  
power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or  
dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage  
stays stable and high current can be quickly supplied.  
The data sheet provides a recommended minimum value, but system level testing is required to determine the  
appropriate sized bulk capacitor.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
+
Motor Driver  
œ
GND  
Local  
Bulk Capacitor  
IC Bypass  
Capacitor  
57. Motor Drive Supply Parasitics Example  
版权 © 2019, Texas Instruments Incorporated  
65  
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Bypass the VM pin to the PGND pin using a low-ESR ceramic bypass capacitor CVM1. Place this capacitor as  
close to the VM pin as possible with a thick trace or ground plane connected to the PGND pin. Additionally,  
bypass the VM pin using a bulk capacitor rated for VM. This component can be electrolytic. This capacitance  
must be at least 10 µF.  
Additional bulk capacitance is required to bypass the high current path on the external MOSFETs. This bulk  
capacitance should be placed such that it minimizes the length of any high current paths through the external  
MOSFETs. The connecting metal traces should be as wide as possible, with numerous vias connecting PCB  
layers. These practices minimize inductance and let the bulk capacitor deliver high current.  
Place a low-ESR ceramic capacitor CFLY between the CPL and CPH pins. Additionally, place a low-ESR ceramic  
capacitor CVCP between the VCP and VM pins.  
Bypass the DVDD pin to the AGND pin with CDVDD. Place this capacitor as close to the pin as possible and  
minimize the path from the capacitor to the AGND pin.  
The VDRAIN pin can be shorted directly to the VM pin. However, if a significant distance is between the device  
and the external MOSFETs, use a dedicated trace to connect to the common point of the drains of the high-side  
external MOSFETs. Do not connect the SLx pins directly to PGND. Instead, use dedicated traces to connect  
these pins to the sources of the low-side external MOSFETs. These recommendations offer more accurate VDS  
sensing of the external MOSFETs for overcurrent detection.  
Minimize the loop length for the high-side and low-side gate drivers. The high-side loop is from the GHx pin of  
the device to the high-side power MOSFET gate, then follows the high-side MOSFET source back to the SHx  
pin. The low-side loop is from the GLx pin of the device to the low-side power MOSFET gate, then follows the  
low-side MOSFET source back to the PGND pin.  
66  
版权 © 2019, Texas Instruments Incorporated  
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
11.2 Layout Example  
S
S
S
G
D
D
D
D
D
D
D
D
G
S
S
S
24  
NC 37  
23 GLC  
22 DLC  
21 SHC  
20 GHC  
19 GHB  
18 SHB  
17 DLB  
16 GLB  
15 SLB  
14 NC  
AGND 38  
DVDD 39  
VSDO 40  
INHA 41  
INLA 42  
INHB 43  
INLB 44  
INHC 45  
INLC 46  
PGND 47  
NC 48  
D
D
D
D
G
S
S
S
Thermal Pad  
13  
NC  
S
S
S
G
D
D
D
D
S
S
S
G
D
D
D
D
D
D
D
D
G
S
S
S
58. Layout Example  
版权 © 2019, Texas Instruments Incorporated  
67  
DRV8340-Q1  
ZHCSJU7 MAY 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 器件命名规则  
下图显示了说明完整器件名称的图例:  
DRV83 (4) (0) (S) (Q) (PHP) (R) (Q1)  
Prefix  
DRV83 œ Three Phase Brushless DC  
Qualified to use in  
automotive environment  
Tape and Reel  
R œ Tape and Reel  
T œ Small Tape and Reel  
Series  
4 œ 60 V device  
Package  
PHP œ 7 × 7 × 1 mm QFP  
Operating Temperature  
Q œ N40C to 125C  
Sense amplifiers  
0 œ No sense amplifiers  
3 œ Three current sense amplifiers  
Interface  
S œ SPI  
H œ Hardware  
12.2 文档支持  
12.2.1 相关文档  
德州仪器 (TI)AN-1149 开关电源布局指南》应用报告  
德州仪器 (TI)DRV834x-Q1 增强型故障检测》TI 技术手册{  
德州仪器 (TI)《采用 BLDC 电机的电动自行车硬件设计注意事项》  
德州仪器 (TI)《开关电源布局指南》  
德州仪器 (TI)《采用 MSP430™ 的传感器式三相 BLDC 电机控制》应用报告  
德州仪器 (TI)TI 电机栅极驱动器的 IDRIVE TDRIVE 认知》应用报告  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.5 商标  
PowerPAD, NexFET, MSP430, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
68  
版权 © 2019, Texas Instruments Incorporated  
DRV8340-Q1  
www.ti.com.cn  
ZHCSJU7 MAY 2019  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
69  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8340HPHPRQ1  
DRV8340SPHPRQ1  
ACTIVE  
ACTIVE  
HTQFP  
HTQFP  
PHP  
PHP  
48  
48  
1000 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
DRV8340H  
DRV8340S  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV8340HPHPRQ1  
DRV8340SPHPRQ1  
HTQFP  
HTQFP  
PHP  
PHP  
48  
48  
1000  
1000  
330.0  
330.0  
16.4  
16.4  
9.6  
9.6  
9.6  
9.6  
1.5  
1.5  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV8340HPHPRQ1  
DRV8340SPHPRQ1  
HTQFP  
HTQFP  
PHP  
PHP  
48  
48  
1000  
1000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
PHP 48  
7 x 7, 0.5 mm pitch  
TQFP - 1.2 mm max height  
QUAD FLATPACK  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226443/A  
www.ti.com  
PACKAGE OUTLINE  
TM  
PHP0048C  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
7.2  
6.8  
B
NOTE 3  
37  
48  
PIN 1 ID  
1
36  
7.2  
6.8  
9.2  
TYP  
8.8  
NOTE 3  
12  
25  
13  
24  
A
0.27  
48X  
44X 0.5  
0.17  
0.08  
C A B  
4X 5.5  
1.2 MAX  
C
SEATING PLANE  
SEE DETAIL A  
0.08  
(0.13)  
TYP  
13  
24  
12  
25  
0.25  
(1)  
GAGE PLANE  
4.6  
3.6  
49  
0.75  
0.45  
0.15  
0.05  
0 -7  
A
16  
36  
DETAIL A  
TYPICAL  
1
48  
37  
4X (0.115)NOTE5  
4.6  
3.6  
4226381/A 11/2020  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MS-026.  
5. Feature may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
TM  
PHP0048C  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
6.5)  
NOTE 10  
(4.6)  
SYMM  
48  
37  
SOLDER MASK  
DEFINED PAD  
48X (1.6)  
1
36  
48X (0.3)  
SYMM  
49  
(4.6)  
(1.1 TYP)  
(8.5)  
44X (0.5)  
12  
25  
(R0.05) TYP  
(
0.2) TYP  
VIA  
METAL COVERED  
BY SOLDER MASK  
13  
24  
(1.1 TYP)  
SEE DETAILS  
(8.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4226381/A 11/2020  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package,  
Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
10. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
TM  
PHP0048C  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(4.6)  
BASED ON  
0.125 THICK STENCIL  
SEE TABLE FOR  
SYMM  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
48  
37  
48X (1.6)  
1
36  
48X (0.3)  
(8.5)  
(4.6)  
SYMM  
49  
BASED ON  
0.125 THICK  
STENCIL  
44X (0.5)  
12  
25  
(R0.05) TYP  
METAL COVERED  
BY SOLDER MASK  
24  
13  
(8.5)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
5.14 X 5.14  
4.6 X 4.6 (SHOWN)  
4.2 X 4.2  
0.125  
0.150  
0.175  
3.89 X 3.89  
4226381/A 11/2020  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DRV8340SPHPRQ1

汽车类 12V 至 24V 三相智能栅极驱动器 | PHP | 48 | -40 to 125
TI

DRV8343-Q1

具有电流分流放大器的汽车类 12V 至 24V 电池三相智能栅极驱动器
TI

DRV8343HPHPRQ1

具有电流分流放大器的汽车类 12V 至 24V 电池三相智能栅极驱动器 | PHP | 48 | -40 to 125
TI

DRV8343SPHPRQ1

具有电流分流放大器的汽车类 12V 至 24V 电池三相智能栅极驱动器 | PHP | 48 | -40 to 125
TI

DRV8350

102V(最大值)三相智能栅极驱动器
TI

DRV8350F

DRV835xF 100-V Three-Phase Smart Gate Driver
TI

DRV8350FHRTVR

DRV835xF 100-V Three-Phase Smart Gate Driver
TI

DRV8350FSRTVR

DRV835xF 100-V Three-Phase Smart Gate Driver
TI

DRV8350HRTVR

102V(最大值)三相智能栅极驱动器 | RTV | 32 | -40 to 125
TI

DRV8350HRTVT

102V(最大值)三相智能栅极驱动器 | RTV | 32 | -40 to 125
TI

DRV8350R

具有降压稳压器的 102V(最大值)三相智能栅极驱动器
TI

DRV8350RF

DRV835xF 100-V Three-Phase Smart Gate Driver
TI