DRV8306HRSMR [TI]

最大 40V 含传感器梯形控制三相 BLDC 智能栅极驱动器 | RSM | 32 | -40 to 125;
DRV8306HRSMR
型号: DRV8306HRSMR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

最大 40V 含传感器梯形控制三相 BLDC 智能栅极驱动器 | RSM | 32 | -40 to 125

电动机控制 栅极驱动 传感器 驱动器
文件: 总47页 (文件大小:2924K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
DRV8306 38V 无刷直流电机控制器  
1 特性  
3 说明  
1
6V 38V、三个半桥栅极驱动器,集成了 3 个霍  
尔比较器  
DRV8306 器件是一款集成式栅极驱动器,适用于三相  
无刷直流 (BLDC) 电机 应用。此器件具有三个半桥栅  
极驱动器,每个驱动器都能够驱动高侧和低侧 N 沟道  
功率 MOSFETDRV8306 器件使用集成电荷泵为高  
MOSFET 生成合适的栅极驱动电压,并使用线性稳  
压器为低侧 MOSFET 生成合适的栅极驱动电压。智能  
栅极驱动架构支持高达 150mA 的峰值栅极驱动拉电流  
300mA 的峰值栅极驱动灌电流以及 15mA rms 栅极  
驱动电流能力。  
40V 绝对最大额定值  
针对 12V 24V 直流电源轨进行了全面优化  
驱动高侧和低侧 N 沟道 MOSFET  
支持 100% PWM 占空比  
智能栅极驱动架构  
通过可调压摆率控制实现更出色的 EMI EMC  
性能  
通过 VGS 握手和最小死区时间插入方法避免击  
穿
此器件为梯形 BLDC 电机提供内部 120° 换向。  
DRV8306 器件具有三个霍尔比较器,它们使用来自霍  
尔元件的输入进行内部换向。可通过 PWM 引脚对电  
机相电压的占空比进行调整。通过额外提供的制动  
(nBRAKE) 和方向 (DIR) 引脚可制动 BLDC 电机和设  
置电机方向。使用提供的 3.3V30mA 低压降 (LDO)  
稳压器可为外部控制器和霍尔元件供电。此外提供额外  
FGOUT 信号来衡量换向频率。该信号可用于实现  
BLDC 电机的闭环控制。  
15mA 150mA 峰值拉电流  
30mA 300mA 峰值灌电流  
通过霍尔传感器集成了换向  
120° 梯形电流控制  
支持低成本霍尔元件  
通过转速输出信号 (FGOUT) 实现闭环速度控制  
集成栅极驱动器电源  
高侧电荷泵  
提供了低功耗睡眠模式,以通过关断大部分的内部电路  
实现较低的静态电流消耗。针对欠压锁定、电荷泵故  
障、MOSFET 过流、MOSFET 短路、栅极驱动器故障  
和过热等情况,提供内部保护功能。故障情况通过  
nFAULT 引脚指示。  
低侧线性稳压器  
逐周期电流限制  
支持 1.8V3.3V 5V 逻辑输入  
低功耗睡眠模式  
3.3V30mA 线性稳压器  
紧凑型 VQFN 封装和外形尺寸  
集成式保护 特性  
器件信息(1)  
器件型号  
DRV8306  
封装  
VQFN (32)  
封装尺寸(标称值)  
VM 欠压闭锁 (UVLO)  
电荷泵欠压 (CPUV)  
4.00mm × 4.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
MOSFET 过流保护 (OCP)  
栅极驱动器故障 (GDF)  
热关断 (OTSD)  
简化原理图  
6 to 38 V  
故障状态指示器 (nFAULT)  
PWM  
H/W  
Smart Gate  
Drive  
DRV8306  
2 应用  
M
3 ½ -H Bridge  
Smart Gate Driver  
BLDC 电机模块  
Current  
Sense  
nFAULT  
服务机器人  
Current Limit  
真空吸尘器  
Built-In Protection  
无人机、机器人和遥控玩具  
白色家电  
Hall Sensors  
ATM 和点钞机  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSE38  
 
 
 
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 12  
7.4 Device Functional Modes........................................ 25  
8
9
Application and Implementation ........................ 26  
8.1 Application Information............................................ 26  
8.2 Typical Application ................................................. 29  
Power Supply Recommendations...................... 34  
9.1 Bulk Capacitance Sizing ......................................... 34  
10 Layout................................................................... 35  
10.1 Layout Guidelines ................................................. 35  
10.2 Layout Example .................................................... 36  
11 器件和文档支持 ..................................................... 37  
11.1 器件支持................................................................ 37  
11.2 文档支持................................................................ 37  
11.3 接收文档更新通知 ................................................. 37  
11.4 社区资源................................................................ 37  
11.5 ....................................................................... 37  
11.6 静电放电警告......................................................... 37  
11.7 术语表 ................................................................... 38  
12 机械、封装和可订购信息....................................... 38  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (April 2018) to Revision A  
Page  
已更改 数据表状态从预告信息更改成了生产数据 ................................................................................................................... 1  
2
Copyright © 2018, Texas Instruments Incorporated  
 
DRV8306  
www.ti.com.cn  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
5 Pin Configuration and Functions  
RSM Package  
32-Pin VQFN With Exposed Thermal Pad  
Top View  
CPH  
VCP  
1
2
3
4
5
6
7
8
24  
ENABLE  
VDS  
23  
22  
21  
20  
19  
18  
17  
VM  
IDRIVE  
nFAULT  
HNA  
VDRAIN  
GHA  
Thermal  
Pad  
SHA  
HPA  
GLA  
HNB  
ISEN  
HPB  
Not to scale  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
AGND  
CPH  
NO.  
25  
1
PWR  
PWR  
PWR  
I
Device analog ground. Connect to system ground.  
Charge-pump switching node. Connect a X5R or X7R, 22-nF, VM-rated ceramic capacitor between the CPH and CPL pins.  
Charge-pump switching node. Connect a X5R or X7R, 22-nF, VM-rated ceramic capacitor between the CPH and CPL pins.  
Direction pin for setting the direction of the motor rotation to clockwise or counterclockwise. Internal pulldown resistor.  
CPL  
32  
29  
DIR  
3.3-V internal regulator output. Connect a X5R or X7R, 1-µF, 6.3-V ceramic capacitor between the DVDD and AGND pins. This regulator  
can source up to 30 mA externally.  
DVDD  
26  
24  
PWR  
I
Gate driver enable. When this pin is logic low the device enters a low-power sleep mode. A 15 to 40-µs low pulse can be used to reset  
fault conditions.  
ENABLE  
FGOUT  
GHA  
GHB  
GHC  
GLA  
28  
5
OD  
Outputs a commutation zero crossing signal generated from Hall sensors.  
O
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
11  
12  
7
O
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
O
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
O
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
GLB  
9
O
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
GLC  
14  
20  
18  
16  
19  
17  
15  
22  
8
O
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
HNA  
I
Hall element negative input. Noise filter capacitors may be desirable, connected between the positive and negative Hall inputs.  
Hall element negative input. Noise filter capacitors may be desirable, connected between the positive and negative Hall inputs.  
Hall element negative input. Noise filter capacitors may be desirable, connected between the positive and negative Hall inputs.  
Hall element positive input. Noise filter capacitors may be desirable, connected between the positive and negative Hall inputs.  
Hall element positive input. Noise filter capacitors may be desirable, connected between the positive and negative Hall inputs.  
Hall element positive input. Noise filter capacitors may be desirable, connected between the positive and negative Hall inputs.  
Gate drive output current setting. This pin is a 7 level input pin set by an external resistor.  
Current sense for pulse-by-pulse current limit. Connect to low-side current sense resistor.  
Device power ground. Connect to system ground.  
HNB  
I
HNC  
HPA  
I
I
HPB  
I
HPC  
I
IDRIVE  
ISEN  
PGND  
I
I
31  
PWR  
(1) PWR = power, I = input, O = output, OD = open-drain  
Copyright © 2018, Texas Instruments Incorporated  
3
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
PWM  
SHA  
NO.  
27  
6
I
PWM input for motor control. Set the output voltage and switching frequency of the phase voltage of the motor.  
High-side source sense input. Connect to the high-side power MOSFET source.  
I
SHB  
10  
13  
2
I
High-side source sense input. Connect to the high-side power MOSFET source.  
SHC  
I
High-side source sense input. Connect to the high-side power MOSFET source.  
VCP  
PWR  
Charge pump output. Connect a X5R or X7R, 1-µF, 16-V ceramic capacitor between the VCP and VM pins.  
High-side MOSFET drain sense input. Connect to the common point of the MOSFET drains.  
VDS monitor trip point setting. This pin is a 7 level input pin set by an external resistor.  
VDRAIN  
VDS  
4
I
I
23  
Gate driver power supply input. Connect to the bridge power supply. Connect a X5R or X7R, 0.1-µF, VM-rated ceramic and greater then or  
equal to 10-uF local capacitance between the VM and PGND pins.  
VM  
3
PWR  
nBRAKE  
nFAULT  
30  
21  
I
Causes motor to brake. Internal pulldown resistor.  
OD  
Fault indicator output. This pin is pulled logic low during a fault condition and requires an external pullup resistor.  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.5  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0
MAX  
40  
UNIT  
V
Power supply voltage (VM)  
Voltage differential between any ground pin (AGND, DGND, PGND)  
Internal logic regulator voltage (DVDD)  
0.5  
V
3.8  
V
MOSFET voltage sense (VDRAIN)  
40  
V
Charge pump voltage (VCP, CPH)  
VM + 13.5  
VM  
V
Charge pump negative switching pin voltage (CPL)  
Digital pin voltage (PWM, DIR, nBRAKE, nFAULT, ENABLE, VDS, IDRIVE, FGOUT)  
Open drain output current range (nFAULT, FGOUT)  
Continuous high-side gate pin voltage (GHX)  
Pulsed 200 ns high-side gate pin voltage (GHX)  
High-side gate voltage with respect to SHX (GHX)  
Continuous phase node pin voltage (SHX)  
Pulsed 200 ns phase node pin voltage (SHX)  
Continuous low-side gate pin voltage (GLX)  
Pulsed 200 ns low-side gate pin voltage (GLX)  
Gate pin source current (GHX, GLX)  
V
5.75  
V
5
mA  
V
–2  
VCP + 0.5  
VCP + 0.5  
13.5  
-5  
V
–0.3  
–2  
V
VM + 2  
VM + 2  
13.5  
V
-5  
V
–1  
V
-5  
13.5  
V
Internally limited  
Internally limited  
A
Gate pin sink current (GHX, GLX)  
A
Hall sensor input terminal voltage (HPA, HPB, HPC, HNA, HNB, HNC)  
Junction temperature, TJ  
0
DVDD  
150  
V
–40  
–65  
°C  
°C  
Storage temperature, Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
ANSI/ESDA/JEDEC JS-001  
±2000  
(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101  
±500  
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2000  
V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±500 V  
may actually have higher performance.  
4
Copyright © 2018, Texas Instruments Incorporated  
DRV8306  
www.ti.com.cn  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
6
MAX  
UNIT  
V
VVM  
Power supply voltage range  
38  
VI  
Logic level input voltage range  
0
5.5  
V
(1)  
fPWM  
IGATE_HS  
IGATE_LS  
IDVDD  
fHALL  
VOD  
Applied PWM signal (PWM)  
200  
kHz  
mA  
mA  
mA  
kHz  
V
(1)  
(1)  
(1)  
High-side average gate drive current (GHX)  
Low-side average gate drive current (GLX)  
DVDD external load current  
15  
15  
30  
Hall sensor input frequency  
0
0
30  
Open drain pull up voltage (nFAULT, FGOUT)  
Open drain output current (nFAULT, FGOUT)  
Operating ambient temperature  
5.5  
5
IOD  
0
mA  
°C  
TA  
–40  
125  
(1) Power dissipation and thermal limits must be observed  
6.4 Thermal Information  
DRV8306  
THERMAL METRIC(1)  
RSM (VQFN)  
32 PINS  
32.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
29.3  
11.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
11.9  
RθJC(bot)  
2.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
at VVM = 6 to 38 V over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLIES (VM, DVDD)  
IVM  
VM operating supply current  
VVM = 24 V; ENABLE = 1; PWM = 0 V  
ENABLE = 0; VVM = 24 V, TA = 25°C  
ENABLE = 0, VVM = 24 V, TA = 125°C  
ENABLE = 0 V period to reset faults  
ENABLE = 0 V to driver tri-stated  
5
8
40  
mA  
µA  
20  
IVMQ  
VM sleep mode supply current  
100  
40  
tRST  
Reset pulse time  
Sleep time  
15  
µs  
µs  
tSLEEP  
200  
VVM > VUVLO; ENABLE = 3.3 V to output  
transistion  
tWAKE  
Wake-up time  
1
ms  
V
VDVDD  
Internal logic regulator voltage  
IDVDD = 0 to 30 mA  
2.9  
3.3  
3.6  
CHARGE PUMP (VCP, CPH, CPL)  
VM = 12 to 38 V; IVCP = 0 to 15 mA  
VM = 10 V; IVCP = 0 to 10 mA  
VM = 8 V; IVCP = 0 to 5 mA  
7
6.5  
5
10  
7.5  
6
11.5  
9.5  
VCP operating voltage with respect  
to VM  
VVCP  
V
7.5  
VM = 6 V; IVCP = 0 to 1 mA  
3.8  
4.3  
6.5  
LOGIC-LEVEL INPUTS (PWM, DIR, nBRAKE)  
VIL  
Input logic low voltage  
Input logic high voltage  
Input logic hysteresis  
Input logic low current  
0
1.5  
100  
–1  
0.8  
5.5  
V
V
VIH  
VHYS  
IIL  
mV  
µA  
VPIN (Pin Voltage) = 0 V  
1
Copyright © 2018, Texas Instruments Incorporated  
5
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (continued)  
at VVM = 6 to 38 V over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VPIN (Pin Voltage) = 5 V  
MIN  
TYP  
IIH  
Input logic high current  
100  
µA  
Pulldown resistance (PWM, DIR,  
nBRAKE)  
RPD  
Internal pulldown to AGND  
100  
kΩ  
LOGIC-LEVEL INPUTS (ENABLE)  
VIL  
VIH  
VHYS  
IIL  
Input logic low voltage  
Input logic high voltage  
Input logic hysteresis  
Input logic low current  
Input logic high current  
0
1.5  
100  
–10  
–5  
0.6  
5.5  
V
V
mV  
µA  
µA  
VPIN (Pin Voltage) = 0 V  
VPIN (Pin Voltage) = 5 V  
10  
5
IIH  
SEVEN-LEVEL INPUTS (IDRIVE, VDS)  
VI1  
VI2  
VI3  
VI4  
VI5  
VI6  
VI7  
Input mode 1 voltage  
Input mode 2 voltage  
Input mode 3 voltage  
Input mode 4 voltage  
Input mode 5 voltage  
Input mode 6 voltage  
Input mode 7 voltage  
Tied to AGND  
0
0.5  
V
V
V
V
V
V
V
18 kΩ ± 5% to AGND  
75 kΩ ± 5% to AGND  
Hi-Z  
1.1  
1.65  
2.2  
75 kΩ ± 5% to DVDD  
18 kΩ ± 5% to DVDD  
Tied to DVDD  
2.8  
3.3  
OPEN-DRAIN OUTPUTS (nFAULT, FGOUT)  
VOL  
IOZ  
Output logic low voltage  
Output logic high current  
IOD = 2 mA  
VOD = 5 V  
0.1  
1
V
–1  
µA  
GATE DRIVERS (GHX, SHX, GLX)  
VVM = 12 to 38 V; IHS_GATE = 0 to 15 mA  
VVM = 10 V; IHS_GATE = 0 to 10 mA  
VVM = 8 V; IHS_GATE = 0 to 5 mA  
VVM = 6 V; IHS_GATE = 0 to 1 mA  
VVM = 12 to 38 V; ILS_GATE = 0 to 15 mA  
VVM = 10 V; ILS_GATE = 0 to 10 mA  
VVM = 8 V; ILS_GATE = 0 to 5 mA  
VVM = 6 V; ILS_GATE = 0 to 1 mA  
7
6.5  
5
10  
7.5  
6
11.5  
8.5  
7
High-side VGS gate drive (gate-to-  
source)  
VGHS  
V
V
3.8  
7.5  
5.5  
3.5  
3
4.3  
10  
6.5  
12.5  
9.5  
8.5  
6.5  
7.5  
6
Low-side VGS gate drive (gate-to-  
source)  
VGSL  
4.3  
120  
4000  
15  
tDEAD  
tDRIVE  
Output dead time  
ns  
ns  
Peak gate drive time  
IDRIVE tied to AGND  
IDRIVE 18 kΩ (±5%) to AGND  
IDRIVE 75 kΩ (±5%) to AGND  
IDRIVE Hi-Z ( > 500 kΩ to AGND)  
IDRIVE 75 kΩ (±5%) to DVDD  
IDRIVE 18 kΩ (±5%) to DVDD  
IDRIVE tied to DVDD  
45  
60  
Peak source gate current (high-side  
and low-side)  
IDRIVEP  
90  
mA  
105  
135  
150  
30  
IDRIVE tied to AGND  
IDRIVE 18 kΩ (±5%) to AGND  
IDRIVE 75 kΩ (±5%) to AGND  
IDRIVE Hi-Z ( > 500 kΩ to AGND)  
IDRIVE 75 kΩ (±5%) to DVDD  
IDRIVE 18 kΩ (±5%) to DVDD  
IDRIVE tied to DVDD  
90  
120  
180  
210  
270  
300  
Peak sink gate current (high-side  
and low-side)  
IDRIVEN  
mA  
6
Copyright © 2018, Texas Instruments Incorporated  
DRV8306  
www.ti.com.cn  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
Electrical Characteristics (continued)  
at VVM = 6 to 38 V over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Source current after tDRIVE  
MIN  
TYP  
15  
MAX UNIT  
IHOLD  
FET holding current  
mA  
Sink current after tDRIVE  
30  
ISTRONG  
ROFF  
tPD  
FET hold-off strong pulldown  
FET gate hold-off resistor  
Propagation delay  
GHX and GLX  
300  
150  
180  
mA  
GHX to SHX and GLX to PGND  
PWM transition to GHX/GLX transition  
kΩ  
250  
ns  
HALL SENSOR INPUTS (HPX, HNX)  
VHYS  
ΔVHYS  
VID  
Hall comparator hysteresis voltage  
20  
-5  
30  
40  
5
mV  
mV  
mV  
V
Hall comparator hysteresis  
difference  
Between A, B and C  
HPX = HNX = 0 V  
Hall comparator input differential  
50  
1.5  
–1  
Hall comparator input common  
mode voltage CM range  
VCM  
3.5  
1
II  
Input leakage current  
Hall deglitch time  
µA  
µs  
tHDEG  
5
CYCLE-BY-CYCLE CURRENT LIMIT (ISEN)  
Voltage limit across RSENSE for the  
current limiter  
VLIMIT  
0.225  
0.25  
5
0.275  
V
Time that VLIMIT is ignored from the  
start of the PWM cycle  
tBLANK  
µs  
PROTECTION CIRCUITS  
VM falling, UVLO report  
VM rising, UVLO recovery  
Rising to falling threshold  
VM falling, UVLO report  
With respect to VM  
5.4  
5.6  
5.8  
6
VUVLO  
VM undervoltage lockout  
V
VUVLO_HYS  
tUVLO_DEG  
VCPUV  
VM undervoltage hysteresis  
VM undervoltage deglitch time  
Charge pump undervoltage  
200  
10  
mV  
µs  
V
2.4  
Positive clamping voltage  
Negative clamping voltage  
VDS tied to AGND  
10.5  
15  
VGS_CLAMP  
Gate drive clamping voltage  
V
–0.6  
0.15  
0.24  
0.4  
VDS 18 kΩ (±5%) to AGND  
VDS 75 kΩ (±5%) to AGND  
VDS Hi-Z ( > 500 kΩ to AGND)  
VDS 75 kΩ (±5%) to DVDD  
VDS 18 kΩ (±5%) to DVDD  
VDS tied to DVDD  
VDS_OCP  
VDS overcurrent trip voltage  
0.6  
V
0.9  
1.8  
Disabled  
1.8  
VSEN_OCP  
tOCP_DEG  
VSENSE overcurrent trip voltage  
1.7  
1.9  
V
VDS and VSENSE overcurrent  
deglitch time  
4.5  
µs  
tRETRY  
TOTSD  
THYS  
Overcurrent retry time  
Thermal shutdown temperature  
Thermal hysteresis  
4
170  
20  
ms  
°C  
°C  
Die temperature Tj  
Die temperature Tj  
150  
版权 © 2018, Texas Instruments Incorporated  
7
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
6.6 Typical Characteristics  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
VVM = 6 V  
TA = -40èC  
TA = 25èC  
TA = 125èC  
VVM = 12 V  
VVM = 24 V  
VVM = 38 V  
0
5
10  
15  
20  
25  
30  
35  
40  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage (V)  
Temperature (èC)  
D001  
D002  
1. Supply Current Over Supply Voltage  
2. Supply Current Over Temperature  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TA = -40èC  
TA = 25èC  
TA = 125èC  
VVM = 6 V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VVM = 12 V  
VVM = 24 V  
VVM = 38 V  
0
5
10  
15  
20  
25  
30  
35  
40  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage (V)  
Temperature (èC)  
D003  
D004  
3. Sleep Current Over Supply Voltage  
4. Sleep Current Over Temperature  
3.5  
3.4  
3.3  
3.2  
3.1  
3
3.5  
3.4  
3.3  
3.2  
3.1  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.9  
2.8  
2.7  
2.6  
2.5  
TA = -40èC  
TA = -40èC  
TA = 25èC  
TA = 25èC  
TA = 125èC  
TA = 125èC  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Supply Voltage (V)  
Supply Voltage (V)  
D005  
D006  
IDVDD = 0 mA  
5. DVDD Voltage Over Supply Voltage  
IDVDD = 30 mA  
6. DVDD Voltage Over Supply Voltage  
8
版权 © 2018, Texas Instruments Incorporated  
DRV8306  
www.ti.com.cn  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
Typical Characteristics (接下页)  
12  
12  
10  
8
10  
8
6
6
4
4
VVM = 6 V  
VVM = 8 V  
VVM = 10 V  
VVM = 12 V  
VVM = 6 V  
VVM = 8 V  
VVM = 10 V  
VVM = 12 V  
2
2
0
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Load Current (mA)  
Temperature (èC)  
D007  
D008  
7. VCP Voltage Over Load  
8. VCP Voltage Over Temperature  
版权 © 2018, Texas Instruments Incorporated  
9
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DRV8306 device is an integrated 6-V to 38-V gate driver for three-phase motor-drive applications. The  
device reduces system component count, cost, and complexity by integrating three independent half-bridge gate  
drivers, charge pump, and linear low-dropout (LDO) regulator for the high-side and low-side gate-driver supply  
voltages. A hardware interface (H/W) option allows for configuring the most commonly used settings through  
fixed external resistors.  
The gate drivers support external N-channel high-side and low-side power MOSFETs and can drive up to 150-  
mA source and 300-mA sink peak currents with a 15-mA average output current. The high-side gate drive supply  
voltage is generated using a doubler charge-pump architecture that regulates the VCP output to VVM + 10 V. The  
low-side gate drive supply voltage is generated using a linear regulator from the VM power supply that regulates  
to 10 V. A smart gate-drive architecture provides the ability to adjust the output gate-drive current strength  
allowing for the gate driver to control the power MOSFET VDS switching speed. This allows for the removal of  
external gate drive resistors and diodes reducing BOM component count, cost, and PCB area. The architecture  
also uses an internal state machine to protect against gate-drive short-circuit events, control the half-bridge dead  
time, and protect against dV/dt parasitic turnon of the external power MOSFET.  
The DRV8306 device also integrates three Hall comparators for rotor position sensing using the Hall elements.  
This input is used for electronically commutating the BLDC motor in trapezoidal mode. This device also has a  
3.3-V LDO regulator which can be powered up to loads up to 30 mA.  
In addition to the high level of device integration, the DRV8306 device provides a wide range of integrated  
protection features. These features include power-supply undervoltage lockout (UVLO), charge-pump  
undervoltage lockout (CPUV), VDS and VSENSE overcurrent monitoring (OCP), gate-driver short-circuit detection  
(GDF), and overtemperature shutdown (OTSD). Fault events are indicated by the nFAULT pin.  
The DRV8306 device is available in a 0.4-mm pin pitch, VQFN surface-mount package. The VQFN package size  
is 4-mm × 4-mm.  
10  
版权 © 2018, Texas Instruments Incorporated  
DRV8306  
www.ti.com.cn  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
7.2 Functional Block Diagram  
VM  
+
1 F  
bulk  
VM  
VM  
VDRAIN  
VM  
VCP  
HS  
Power  
GHA  
SHA  
1 F  
VCP  
VCP  
CPH  
Charge  
VGLS  
LS  
Pump  
22 nF  
CPL  
GLA  
30 mA  
DVDD  
AGND  
3.3-V LDO  
VGLS LDO  
Gate Driver  
1 F  
VM  
DVDD  
VCP  
HS  
GHB  
SHB  
ENABLE  
PWM  
VGLS  
LS  
GLB  
Digital  
Core  
Hall  
A
Hall  
B
Hall  
C
DIR  
Control  
Inputs  
Gate Driver  
nBRAKE  
VDS  
VM  
VCP  
HS  
GHC  
SHC  
IDRIVE  
FGOUT  
VGLS  
LS  
GLC  
Outputs  
Gate Driver  
nFAULT  
PGND  
ISEN  
VLIMIT  
+
œ
RSENSE  
PWM Limiter  
-
+
VOCP  
Sense OCP  
HPA  
HNA  
+
Hall_A  
Optional  
œ
HPB  
HNB  
+
Hall_B  
Hall_C  
Optional  
Optional  
œ
HPC  
HNC  
+
œ
Differential  
Comparators  
PPAD  
版权 © 2018, Texas Instruments Incorporated  
11  
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
7.3 Feature Description  
1 lists the recommended values of the external components for the gate driver.  
1. DRV8306 Gate-Driver External Components  
COMPONENTS  
CVM1  
PIN 1  
VM  
PIN 2  
PGND  
RECOMMENDED  
X5R or X7R, 0.1-µF, VM-rated capacitor  
10-µF, VM-rated capacitor  
CVM2  
VM  
PGND  
CVCP  
VCP  
VM  
X5R or X7R, 16-V, 1-µF capacitor  
X5R or X7R, VM-rated capacitor, 22-nF capacitor  
X5R or X7R, 1-µF, 6.3-V capacitor  
Pullup resistor  
CSW  
CPH  
CPL  
CDVDD  
RnFAULT  
RPWM  
DVDD  
VCC(1)  
PWM  
nBRAKE  
DIR  
AGND  
nFAULT  
AGND or DVDD  
AGND or DVDD  
AGND or DVDD  
AGND or DVDD  
AGND or DVDD  
DRV8306 hardware interface  
DRV8306 hardware interface  
DRV8306 hardware interface  
DRV8306 hardware interface  
DRV8306 hardware interface  
RBRK  
RDIR  
RIDRIVE  
RVDS  
IDRIVE  
VDS  
(1) The VCC pin is not a pin on the DRV8306 device, but a VCC supply-voltage pullup is required for the open-drain output nFAULT and  
SDO. These pins can also be pulled up to DVDD.  
7.3.1 Three Phase Smart Gate Drivers  
The DRV8306 device integrates three, half-bridge gate drivers, each capable of driving high-side and low-side N-  
channel power MOSFETs. A doubler charge pump provides the proper gate bias voltage to the high-side  
MOSFET across a wide operating voltage range in addition to providing 100% duty-cycle support. An internal  
linear regulator provides the gate-bias voltage for the low-side MOSFETs.  
The DRV8306 device implements a smart gate-drive architecture which lets the user dynamically adjust the gate  
drive current (through the IDRIVE pin) without requiring external gate current limiting resistors. Additionally, this  
architecture provides a variety of protection features for the external MOSFETs including automatic dead-time  
insertion, parasitic dV/dt gate turnon prevention, and gate-fault detection.  
7.3.1.1 PWM Control Mode (1x PWM Mode)  
The DRV8306 device provides a 1x PWM control mode for driving the BLDC motor into trapezoidal current-  
control mode. The DRV8306 device uses 6-step block commutation tables that are stored internally. This feature  
lets a three-phase BLDC motor be controlled using a single PWM sourced from a simple controller. The PWM is  
applied on the PWM pin and determines the output frequency and duty cycle of the half-bridges.  
The half-bridge output states are managed by the HPA, HNA, HPB, HNB, HPC and HNC pins which are used as  
state logic inputs. The state inputs are the position feedback of the BLDC motor. The device always operates  
with synchronous rectification.  
The DIR pin controls the direction of BLDC motor in either clockwise or counter-clockwise direction. Tie the DIR  
pin low if this feature is not required.  
The nBRAKE input halts the motor by turning off all high-side MOSFETs and turning on all low-side MOSFETs  
when it is pulled low. This brake is independent of the states of the other input pins. Tie the nBRAKE pin high if  
this feature is not required.  
12  
版权 © 2018, Texas Instruments Incorporated  
 
DRV8306  
www.ti.com.cn  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
2. Synchronous 1x PWM Mode  
HALL INPUTS  
DIR = 0  
HALL_A HALL_B HALL_C HALL_A HALL_B HALL_C  
GATE-DRIVE OUTPUTS  
DIR = 1  
PHASE A  
PHASE B  
PHASE C  
STATE  
DESCRIPTION  
GHA  
GLA  
GHB  
GLB  
GHC  
GLC  
Stop  
0
1
1
1
1
0
0
0
0
1
1
0
0
0
1
1
0
1
0
0
1
1
1
0
0
1
0
0
0
1
1
1
0
1
0
1
1
1
0
0
0
1
1
1
0
0
0
1
L
PWM  
L
L
!PWM  
L
L
L
L
L
Stop  
Align  
L
H
L
H
Align  
1
2
3
4
5
6
PWM  
!PWM  
L
L
H
H
B C  
A C  
A B  
C B  
C A  
B A  
PWM  
PWM  
L
!PWM  
!PWM  
L
L
L
H
L
L
L
L
H
PWM  
PWM  
L
!PWM  
!PWM  
L
L
H
L
L
L
H
PWM  
!PWM  
9 shows the configuration in 1x PWM mode.  
DRV8306  
H
PWM  
MCU_PWM  
H
M
DIR  
MCU_GPIO  
MCU_GPIO  
H
nBRAKE  
HPA  
HNA  
HPB  
HNB  
HPC  
HNC  
9. 1x PWM Mode  
7.3.1.2 Hardware Interface Mode  
The DRV8306 device supports a hardware interface mode for simple end-application design. In this hardware  
interface device, the VDS overcurrent limit and the gate drive current levels can be configured through the  
resistor-configurable inputs, IDRIVE and VDS. This feature lets the application designer configure the most  
commonly used device settings by tying the pin logic high or logic low, or with a simple pullup or pulldown  
resistor.  
The IDRIVE pin configures the gate drive current strength. The VDS pin configures the voltage threshold of the  
VDS overcurrent monitors.  
For more information on the hardware interface, see the Pin Diagrams section.  
版权 © 2018, Texas Instruments Incorporated  
13  
 
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
DVDD  
DVDD  
DVDD  
IDRIVE  
Hardware  
Interface  
VDS  
RVDS  
10. Sample Configuration of Hardware Interface  
7.3.1.3 Gate Driver Voltage Supplies  
The high-side gate-drive voltage supply is created using a doubler charge pump that operates from the VM  
voltage supply input. The charge pump lets the gate driver correctly bias the high-side MOSFET gate with  
respect to its source across a wide input supply voltage range. The charge pump is regulated to maintain a fixed  
output voltage of VVM + 10 V and supports an average output current of 15 mA. When the VVM voltage is less  
than 12 V, the charge pump operates in full doubler mode and generates VVCP = 2 × VVM – 1.5 V when unloaded.  
The charge pump is continuously monitored for undervoltage to prevent under-driven MOSFET conditions. The  
charge pump requires a X5R or X7R, 1-µF, 16-V ceramic capacitor between the VM and VCP pins to act as the  
storage capacitor. Additionally, a X5R or X7R, 22-nF, VM-rated ceramic capacitor is required between the CPH  
and CPL pins to act as the flying capacitor.  
VM  
VM  
1 F  
VCP  
CPH  
VM  
Charge  
Pump  
22 nF  
Control  
CPL  
11. Charge Pump Architecture  
The low-side gate drive voltage is created using a linear low-dropout (LDO) regulator that operates from the VM  
voltage supply input. The LDO regulator allows the gate driver to properly bias the low-side MOSFET gate with  
respect to ground. The LDO regulator output is fixed at 10 V and supports an output current of 15 mA. The LDO  
regulator is monitored for undervoltage to prevent under-driven MOSFET conditions.  
14  
版权 © 2018, Texas Instruments Incorporated  
DRV8306  
www.ti.com.cn  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
7.3.1.4 Smart Gate Drive Architecture  
The DRV8306 gate drivers use an adjustable, complimentary, push-pull topology for both the high-side and low-  
side drivers. This topology allows for both a strong pullup and pulldown of the external MOSFET gates.  
Additionally, the gate drivers use a smart gate-drive architecture to provide additional control of the external  
power MOSFETs, take additional steps to protect the MOSFETs, and allow for optimal tradeoffs between  
efficiency and robustness. This architecture is implemented through two components called IDRIVE and TDRIVE  
which are detailed in the IDRIVE: MOSFET Slew-Rate Control section and TDRIVE: MOSFET Gate Drive  
Control section. 12 shows the high-level functional block diagram of the gate driver.  
The IDRIVE gate-drive current and TDRIVE gate-drive time should be initially selected based on the parameters  
of the external power MOSFET used in the system and the desired rise and fall times (see the Application and  
Implementation section).  
The high-side gate driver also implements a Zener clamp diode to help protect the external MOSFET gate from  
overvoltage conditions in the case of external short-circuit events on the MOSFET.  
VCP  
VM  
GHx  
SHx  
Level  
Shifters  
150 k  
+
V
GSœ  
Logic  
VGLS  
GLx  
Level  
Shifters  
150 kꢀ  
PGND  
+
V
GSœ  
12. Gate Driver Block Diagram  
7.3.1.4.1 IDRIVE: MOSFET Slew-Rate Control  
The IDRIVE component implements adjustable gate-drive current to control the MOSFET VDS slew rates. The  
MOSFET VDS slew rates are a critical factor for optimizing radiated emissions, energy and duration of diode  
recovery spikes, dV/dt gate turnon leading to shoot-through, and switching voltage transients related to parasitics  
in the external half-bridge. The IDRIVE component operates on the principal that the MOSFET VDS slew rates  
are predominately determined by the rate of gate charge (or gate current) delivered during the MOSFET QGD or  
Miller charging region. By allowing the gate driver to adjust the gate current, it can effectively control the slew  
rate of the external power MOSFETs.  
版权 © 2018, Texas Instruments Incorporated  
15  
 
 
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
The IDRIVE component allows the DRV8306 device to dynamically switch between gate drive currents through  
an IDRIVE pin. This hardware interface devices provides seven IDRIVE settings from 15-mA to 150-mA (source)  
and 30-mA to 300-mA (sink). The gate drive current setting is delivered to the gate during the turnon and turnoff  
of the external power MOSFET for the tDRIVE duration. After the MOSFET turnon or turnoff, the gate driver  
switches to a smaller hold current (IHOLD) to improve the gate driver efficiency. Additional details on the IDRIVE  
settings are described in the Pin Diagrams section.  
7.3.1.4.2 TDRIVE: MOSFET Gate Drive Control  
The TDRIVE component is an integrated gate-drive state machine that provides automatic dead time insertion  
through switching handshaking, parasitic dV/dt gate turnon prevention, and MOSFET gate-fault detection.  
The first component of the TDRIVE state machine is automatic dead-time insertion. Dead time is period of time  
between the switching of the external high-side and low-side MOSFETs to ensure that they do not cross conduct  
and cause shoot-through. The DRV8306 device uses VGS voltage monitors to measure the MOSFET gate-to-  
source voltage and determine the proper time to switch instead of relying on a fixed time value. This feature  
allows the gate-driver dead time to adjust for variation in the system such as temperature drift and variation in the  
MOSFET parameters. An additional digital dead time (tDEAD) is inserted on top of the gate-driver dead time and is  
fixed for the DRV8306 device.  
The second component focuses on prevention of parasitic dV/dt gate turnon. To implement this feature, the  
TDRIVE state machine enables a strong pulldown current (ISTRONG) on the opposite MOSFET gate whenever a  
MOSFET is switching. The strong pulldown last for the TDRIVE duration. This feature helps remove parasitic  
charge that couples into the MOSFET gate when the half-bridge switch-node voltage slews rapidly.  
The third component implements a gate-fault detection scheme to detect pin-to-pin solder defects, a MOSFET  
gate failure, or a MOSFET gate stuck-high or stuck-low voltage condition. This implementation is done with a pair  
of VGS gate-to-source voltage monitors for each half-bridge gate driver. When the gate driver receives a  
command to change the state of the half-bridge it begins to monitor the gate voltage of the external MOSFET. If  
the VGS voltage has not reached the proper threshold at the end of the tDRIVE period, the gate driver reports a  
fault. To ensure that a false fault is not detected, the user must ensure that the tDRIVE time is longer than the time  
required to charge or discharge the MOSFET gate (this setting can be configured indirectly using the IDRIVE  
pin). The tDRIVE time does not increase the PWM time and will terminate if another PWM command is received  
while active. Additional details on the TDRIVE settings are described in the Pin Diagrams section for hardware  
interface devices.  
13 shows an example of the TDRIVE state machine in operation.  
PWM  
tPD  
tPD  
tDEAD  
tDEAD  
VGHX  
IDRIVE  
IHOLD  
IHOLD  
ISTRONG  
ISTRONG  
IGHX  
IHOLD  
IDRIVE  
tDEAD  
tDEAD  
VGLX  
IDRIVE  
IHOLD  
ISTRONG  
ISTRONG  
IGLX  
IHOLD  
IHOLD  
IDRIVE  
tDRIVE  
tDRIVE  
13. TDRIVE State Machine  
16  
版权 © 2018, Texas Instruments Incorporated  
 
DRV8306  
www.ti.com.cn  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
7.3.1.4.3 Gate Drive Clamp  
A clamping structure limits the gate drive output voltage to the VGS,CLAMP voltage to help protect the external  
high-side MOSFETs from gate overvoltage damage. The positive voltage clamp is realized using a series of  
diodes. The negative voltage clamp uses the body diodes of the internal pulldown gate driver as shown in 14.  
VGHS  
VM  
IREVERSE  
GHx  
VGS > VCLAMP  
ICLAMP  
SHx  
Predriver  
VGLS  
VGS negative  
GLx  
RSENSE  
PGND  
14. Gate Drive Clamp  
7.3.1.4.4 Propagation Delay  
The propagation delay time (tpd) is measured as the time between an PWM logic edge detected to the GHX /  
GLX transition as shown in 13. This time comprises three parts consisting of the digital input deglitcher delay,  
the digital propagation delay, and the delay through the analog gate drivers.  
The input deglitcher prevents high-frequency noise on the input pins from affecting the output state of the gate  
drivers. To support multiple control modes and dead time insertion, a small digital delay is added as the input  
command propagates through the device. Lastly, the analog gate drivers have a small delay that contributes to  
the overall propagation delay of the device.  
In order for the output to change state during normal operation, one MOSFET must first be turned off. The  
MOSFET gate is ramped down according to the IDRIVE setting, and the observed propagation delay ends when  
the MOSFET gate falls below the threshold voltage.  
7.3.1.4.5 MOSFET VDS Monitors  
The gate drivers implement adjustable VDS voltage monitors to detect overcurrent or short-circuit conditions on  
the external power MOSFETs. When the monitored voltage is greater than the VDS trip point (VVDS_OCP) for  
longer than the deglitch time (tOCP), an overcurrent condition is detected and the driver enters into the VDS  
automatic-retry mode.  
The high-side VDS monitors measure the voltage between the VDRAIN and SHx pins and the low side VDS  
monitors measure the voltage between the SHx and ISEN pins. The VVDS_OCP threshold is programmable from  
0.15 V to 1.8 V. Additional information on the VDS monitor levels are described in the Pin Diagrams section.  
版权 © 2018, Texas Instruments Incorporated  
17  
 
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
DRV8306  
High-Side VDS OCP Monitor  
+
VM  
VDRAIN  
œ
GHx  
SHx  
GLx  
+
VDS,OCP  
œ
Low-Side VDS OCP Monitor  
+
œ
ISEN  
+
VDS,OCP  
RSENSE  
œ
PGND  
15. DRV8306 VDS Monitors  
7.3.1.4.6 VDRAIN Sense Pin  
The DRV8306 device provides a separate sense pin for the common point of the high-side MOSFET drain. This  
pin is called VDRAIN. This pin allows the sense line for the overcurrent monitors (VDRAIN) and the power supply  
(VM) to remain separate and prevent noise on the VDRAIN sense line. This separation also allows for a small  
filter to be implemented on the gate driver supply (VM) or to insert a boost converter to support lower voltage  
operation if desired. Care must still be taken when the filter or separate supply is designed because VM is still  
the reference point for the VCP charge pump that supplies the high-side gate drive voltage (VGSH). The VM  
supply must not drift too far from the VDRAIN supply to avoid violating the VGS voltage specification of the  
external power MOSFETs.  
7.3.2 DVDD Linear Voltage Regulator  
A 3.3-V, 30-mA linear regulator is integrated into the DRV8306 device and is available for use by external  
circuitry. This regulator can provide the supply voltage for a low-power microcontroller or other low-current  
supporting circuitry. The output of the DVDD regulator should be bypassed near the DVDD pin with a X5R or  
X7R, 1-µF, 6.3-V ceramic capacitor routed directly back to the adjacent AGND ground pin.  
The DVDD nominal, no-load output voltage is 3.3 V. When the DVDD load current exceeds 30 mA, the regulator  
functions like a constant-current source. The output voltage drops significantly with a current load greater than 30  
mA.  
VM  
+
REF  
3.3 V, 30 mA  
maximum  
DVDD  
AGND  
œ
1 F  
16. DVDD Linear Regulator Block Diagram  
Use 公式 1 to calculate the power dissipated in the device because of the DVDD linear regulator.  
P = VVM - VDVDD ì I  
(
)
DVDD  
(1)  
For example, at VVM = 24 V, drawing 20 mA out of DVDD results in a power dissipation as shown in 公式 2.  
18  
版权 © 2018, Texas Instruments Incorporated  
 
DRV8306  
www.ti.com.cn  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
P = 24 V - 3.3 V ì 20 mA = 414 mW  
(
)
(2)  
7.3.3 Pulse-by-Pulse Current Limit  
The current-limit circuit activates if the voltage detected across the low-side sense resistor (ISEN pin) exceeds  
the VLIMIT voltage. This feature restricts motor current to less than the VLIMIT voltage divided by the RSENSE  
resistance.  
The current-limit circuit is ignored immediately after the PWM signal goes active for a short  
blanking time to prevent false trips of the current-limit circuit.  
If the current limit activates, the high-side FET is disabled until the beginning of the next PWM cycle. Because  
the synchronous rectification is always enabled, when the current limit activates, the low-side FET is activated  
while the high-side FET is disabled.  
VM  
X
X
X
PWM  
PWM  
Ph_C  
Ph_A  
Ph_B  
RSENSE  
17. Bridge Operation in Normal Mode (Current Limit Not Active)  
VM  
X
X
X
X
Ph_C  
Ph_A  
Ph_B  
Low-Side  
Recirculation  
Mode  
RSENSE  
18. Bridge Operation in Current Limit Mode (Current Limit Active)  
版权 © 2018, Texas Instruments Incorporated  
19  
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
PWM  
ILIMIT  
Bridge Operating in  
Brake Mode  
IBRIDGE  
19. Pulse-by-Pulse Current-Limit Operation  
7.3.4 Hall Comparators  
Three comparators are provided to process the raw signals from the Hall effect transducers to commutate the  
motor. The Hall comparators sense zero crossings of the differential inputs and pass the information to digital  
logic. The Hall comparators have hysteresis, and their detect threshold is centered at 0. The hysteresis is defined  
as shown in 20.  
In addition to the hysteresis, the Hall inputs are deglitched with a circuit that ignores any extra Hall transitions for  
a period of tHDEG after sensing a valid transition. Ignoring these transitions for the tHDEG time prevents PWM noise  
from being coupled into the Hall inputs, which can result in erroneous commutation.  
If excessive noise is still coupled into the Hall comparator inputs, adding capacitors between the positive and  
negative inputs of the Hall comparators may be required. The ESD protection circuitry on the Hall inputs  
implements a diode to the DVDD pin. Because of this diode, the voltage on the Hall inputs should not exceed the  
DVDD voltage.  
Because the DVDD pin is disabled in standby mode (ENABLE inactive), the Hall inputs should not be driven by  
external voltages in standby mode. If the Hall sensors are powered externally, the supply to the Hall sensors  
should be disabled if the DRV8306 device is put into standby mode. In addition, the Hall sensor power supply  
should be powered up after enabling the motor otherwise an invalid Hall state may cause a delay in motor  
operation.  
Hall Differential  
Voltage (VID/2)  
VHYS/2  
Hall Comparator  
Common Mode  
Voltage (VCM  
)
Hall Comparator  
Output (Internal)  
tHDEG (Hall  
Deglitch Time)  
20. Hall Comparators  
20  
版权 © 2018, Texas Instruments Incorporated  
 
DRV8306  
www.ti.com.cn  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
7.3.5 FGOUT Signal  
The DRV8306 device also has an open-drain FGOUT signal that can be used for the closed-loop speed control  
of BLDC motor. This signal includes the information of all three Hall-elements inputs as shown in 21.  
Hall Input  
(HPA, HNA)  
Hall Input  
(HPB, HNB)  
Hall Input  
(HPC, HNC)  
Hall Output  
(Internal Hall_A)  
Hall Output  
(Internal Hall_B)  
Hall Output  
(Internal Hall_C)  
FGOUT  
Time  
21. FGOUT Signal  
版权 © 2018, Texas Instruments Incorporated  
21  
 
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
7.3.6 Pin Diagrams  
22 shows the input structure for the logic-level pins, PWM, DIR and nBRAKE. The input can be driven with a  
voltage or external resistor.  
DVDD  
STATE  
VIH  
RESISTANCE  
Tied to DVDD  
Tied to AGND  
INPUT  
Logic High  
Logic Low  
VIL  
RPD  
22. Logic-Level Input Pin Structure (PWM, DIR, and nBRAKE)  
23 shows the input structure for the logic-level pin, ENABLE pin. The input can be driven with a voltage or  
external resistor. The VEXT represents the external voltage.  
5 V  
RPU2  
Latch  
VEXT  
STATE  
VIH  
RESISTANCE  
Tied to VEXT  
Tied to AGND  
INPUT  
RPU1  
Logic High  
Logic Low  
VIL  
23. Logic-Level Input Pin Structure (ENABLE)  
24 shows the structure of the open-drain output pin, nFAULT. The open-drain output requires an external  
pullup resistor to function properly.  
VEXT  
R
PU  
STATE  
No Fault  
Fault  
STATUS  
Inactive  
Active  
OUTPUT  
Active  
Inactive  
24. Open-Drain Output Pin Structure  
22  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
DRV8306  
www.ti.com.cn  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
25 shows the structure of the seven level input pins, IDRIVE and VDS. The input can be set with an external  
resistor.  
IDRIVE  
VDS  
150/300 mA  
Disabled  
+
œ
VOLTAGE  
VI7  
RESISTANCE  
Tied to DVDD  
135/270 mA  
105/210 mA  
90/180 mA  
60/120 mA  
45/90 mA  
1.8 V  
0.9 V  
0.6 V  
0.4 V  
0.24 V  
0.15 V  
DVDD  
+
DVDD  
œ
18 k± 5%  
to DVDD  
VI6  
VI5  
VI4  
VI3  
VI2  
VI1  
+
75 k± 5%  
to DVDD  
73 kꢀ  
œ
Hi-Z (>500 kΩ  
to AGND)  
73 kꢀ  
+
75 k± 5%  
to AGND  
œ
18 kΩ ±5%  
to AGND  
+
Tied to AGND  
œ
+
œ
15/30 mA  
25. Seven Level Input Pin Structure  
版权 © 2018, Texas Instruments Incorporated  
23  
 
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
7.3.7 Gate-Driver Protective Circuits  
The DRV8306 device is fully protected against VM undervoltage, charge pump undervoltage, MOSFET VDS  
overcurrent, gate driver shorts, and overtemperature events.  
3. Fault Action and Response  
FAULT  
CONDITION  
REPORT  
GATE DRIVER  
LOGIC  
RECOVERY  
Automatic:  
VVM > VUVLO  
VM undervoltage  
(UVLO)  
VVM < VUVLO  
nFAULT  
Hi-Z  
Disabled  
Charge pump  
undervoltage  
(CPUV)  
Automatic:  
VVCP > VCPUV  
VVCP < VCPUV  
nFAULT  
Hi-Z  
Active  
Retry:  
tRETRY  
VDS overcurrent  
(VDS_OCP)  
VDS > VVDS_OCP  
nFAULT  
nFAULT  
nFAULT  
nFAULT  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Active  
Active  
Active  
Active  
VSENSE overcurrent  
(SEN_OCP)  
Retry:  
tRETRY  
VSP > VSEN_OCP  
Latched:  
ENABLE Pulse  
Gate driver fault  
(GDF)  
Gate voltage stuck > tDRIVE  
TJ > TOTSD  
Automatic:  
TJ < TOTSD – THYS  
Thermal shutdown  
(OTSD)  
7.3.7.1 VM Supply Undervoltage Lockout (UVLO)  
If at any time the input supply voltage on the VM pin falls below the VUVLO threshold, all of the external MOSFETs  
are disabled, the charge pump is disabled, and the nFAULT pin is driven low. Normal operation resumes (gate  
driver operation and the nFAULT pin is released) when the VM undervoltage condition is removed.  
7.3.7.2 VCP Charge-Pump Undervoltage Lockout (CPUV)  
If at any time the voltage on the VCP pin (charge pump) falls below the VCPUV threshold voltage of the charge  
pump, all of the external MOSFETs are disabled and the nFAULT pin is driven low. Normal operation resumes  
(gate-driver operation and the nFAULT pin is released) when the VCP undervoltage condition is removed.  
7.3.7.3 MOSFET VDS Overcurrent Protection (VDS_OCP)  
A MOSFET overcurrent event is sensed by monitoring the VDS voltage drop across the external MOSFET RDS(on)  
.
If the voltage across an enabled MOSFET exceeds the VVDS_OCP threshold for longer than the tOCP_DEG deglitch  
time, a VDS_OCP event is recognized. The VVDS_OCP threshold is set with the VDS pin, the tOCP_DEG is fixed at  
4.5 µs, and the driver operates with fixed for 4-ms automatic retry in an OCP event, but can be disabled by tying  
the VDS pin to DVDD.  
7.3.7.4 VSENSE Overcurrent Protection (SEN_OCP)  
Three-phase bridge overcurrent is also monitored by sensing the voltage drop across the external current-sense  
resistor with the ISEN pin. If at any time the voltage on the ISEN input of the current-sense amplifier exceeds the  
VSEN_OCP threshold for longer than the tOCP_DEG deglitch time, a SEN_OCP event is recognized. The VSEN,OCP  
threshold is fixed at 1.8 V, tOCP_DEG is fixed at 4 µs, and, during the OCP event, the driver operates with fixed  
tRETRY for 4-ms automatic retry.  
7.3.7.5 Gate Driver Fault (GDF)  
The GHx and GLx pins are monitored such that if the voltage on the external MOSFET gate does not increase or  
decrease after the tDRIVE time, a gate driver fault is detected. This fault may be encountered if the GHx or GLx  
pins are shorted to the PGND, SHx, or VM pins. Additionally, a gate driver fault may be encountered if the  
selected IDRIVE setting is not sufficient to turn on the external MOSFET within the tDRIVE period. After a gate drive  
fault is detected, all external MOSFETs are disabled and the nFAULT pin is driven low. Normal operation  
resumes (gate driver operation and the nFAULT pin is released) when the gate driver fault condition is removed.  
Gate driver faults can indicate that the selected IDRIVE or tDRIVE settings are too low to slew the external MOSFET  
in the desired time. Increasing either the IDRIVE or tDRIVE setting can resolve gate driver faults in these cases.  
Alternatively, if a gate-to-source short occurs on the external MOSFET, a gate driver fault is reported because of  
the MOSFET gate not turning on.  
24  
版权 © 2018, Texas Instruments Incorporated  
DRV8306  
www.ti.com.cn  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
7.3.7.6 Thermal Shutdown (OTSD)  
If the die temperature exceeds the trip point of the thermal shutdown limit (TOTSD), all the external MOSFETs are  
disabled, the charge pump is shut down, and the nFAULT pin is driven low. Normal operation resumes (gate  
driver operation and the nFAULT pin is released) when the overtemperature condition is removed. This  
protection feature cannot be disabled.  
7.4 Device Functional Modes  
7.4.1 Gate Driver Functional Modes  
7.4.1.1 Sleep Mode  
The ENABLE pin manages the state of the DRV8306 device. When the ENABLE pin is low, the device goes to a  
low-power sleep mode. In sleep mode, all gate drivers are disabled, all external MOSFETs are disabled, the  
charge pump is disabled, and the DVDD regulator is disabled. The tSLEEP time must elapse after a falling edge on  
the ENABLE pin before the device goes to the sleep mode. The device goes from the sleep mode automatically  
if the ENABLE pin is pulled high. The tWAKE time must elapse before the device is ready for inputs.  
In sleep mode and when VVM < VUVLO, all external MOSFETs are disabled. The high-side gate pins, GHx, are  
pulled to the SHx pin by an internal resistor and the low-side gate pins, GLx, are pulled to the PGND pin by an  
internal resistor.  
During power up and power down of the device through the ENABLE pin, the nFAULT pin  
is held low as the internal regulators are enabled or disabled. After the regulators have  
enabled or disabled, the nFAULT pin is automatically released. The duration that the  
nFAULT pin is low does not exceed the tSLEEP or tWAKE time.  
7.4.1.2 Operating Mode  
When the ENABLE pin is high or left floating and VVM > VUVLO, the device goes to the operating mode. The tWAKE  
time must elapse before the device is ready for inputs. In this mode the charge pump, low-side gate regulator,  
and DVDD regulator are active. The hardware inputs (IDRIVE and VDS) are latched during the wake-up time  
(tWAKE). Any further change to these pins is ignored unless a power-up cycle or an ENABLE pin transition after  
sleep mode occurs.  
7.4.1.3 Fault Reset (ENABLE Reset Pulse)  
In the case of device-latched faults, the DRV8306 device goes to driver Hi-Z state to help protect the external  
power MOSFETs and system.  
When the fault condition is removed the device can go back to the operating state by issuing a result pulse to the  
ENABLE pin on either interface variant. The ENABLE reset pulse (tRST) consists of a high-to-low-to-high  
transition on the ENABLE pin. The low period of the sequence should fall with the tRST time window or else the  
device will begin the complete shutdown sequence. The reset pulse has no effect on any of the regulators,  
device settings, or other functional blocks  
版权 © 2018, Texas Instruments Incorporated  
25  
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV8306 device is primarily used in three-phase brushless DC motor-control applications. The design  
procedures in the Typical Application section highlight how to use and configure the DRV8306 device.  
8.1.1 Hall Sensor Configuration and Connection  
The combinations of Hall sensor connections in this section are common connections.  
8.1.1.1 Typical Configuration  
The Hall sensor inputs on the DRV8306 device can interface with a variety of Hall sensors. Typically, a Hall  
element is used, which outputs a differential signal on the order of 100 mV. To use this type of sensor, the DVDD  
regulator can be used to power the Hall sensor. 26 shows the connections.  
DVDD  
INP  
OUTN  
OUTP  
HPx  
HNx  
Hall Sensor  
INN  
Hall  
Comparator  
Optional  
26. Typical Hall Sensor Configuration  
Because the amplitude of the Hall-sensor output signal is very low, capacitors are often placed across the Hall  
inputs to help reject noise coupled from the motor. Capacitors with a value of 1 nF to 100 nF are typically used.  
8.1.1.2 Open Drain Configuration  
Some motors use digital Hall sensors with open-drain outputs. These sensors can also be used with the  
DRV8306 device, with the addition of a few resistors as shown in 27.  
DVDD  
1 to  
1 to  
4.7 kΩ  
4.7 kΩ  
VCC  
HPx  
HNx  
Hall Sensor  
GND  
+
OUT  
Hall  
Comparator  
œ
To Other  
HNx Inputs  
27. Open-Drain Hall Sensor Configuration  
26  
版权 © 2018, Texas Instruments Incorporated  
 
 
DRV8306  
www.ti.com.cn  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
Application Information (接下页)  
The negative (HNx) inputs are biased to DVDD / 2 by a pair of resistors between the DVDD pin and ground. For  
open-collector Hall sensors, an additional pullup resistor to the VREG pin is required on the positive (HPx) input.  
Again, the DVDD output can usually be used to supply power to the Hall sensors.  
8.1.1.3 Series Configuration  
Hall elements are also connected in series or parallel depending upon the Hall sensor current/voltage  
requirement. 28 shows the series connection of Hall sensors powered via the DRV8306 internal LDO (DVDD).  
This configuration is used if the current requirement per Hall sensor is high (>10 mA)  
DVDD  
RSE  
(Optional)  
INP  
HPA  
HNA  
Hall  
Sensor  
+
OUTN  
OUTN  
OUTN  
OUTP  
OUTP  
OUTP  
Hall  
Comparator  
INN  
œ
INP  
HPB  
HNB  
Hall  
Sensor  
+
Hall  
Comparator  
INN  
œ
INP  
HPC  
HNC  
Hall  
Sensor  
+
Hall  
Comparator  
INN  
GND  
œ
28. Hall Sensor Connected in Series Configuration  
版权 © 2018, Texas Instruments Incorporated  
27  
 
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
Application Information (接下页)  
8.1.1.4 Parallel Configuration  
29 shows the parallel connection of Hall sensors which is powered by the DVDD. This configuration can be  
used if the current requirement per Hall sensor is low (<10 mA).  
DVDD  
RSE  
INP  
HPA  
HNA  
Hall  
Sensor  
+
OUTN  
OUTN  
OUTN  
OUTP  
Hall  
Comparator  
INN  
GND  
œ
INP  
HPB  
HNB  
Hall  
Sensor  
+
OUTP  
Hall  
Comparator  
INN  
GND  
œ
INP  
HPC  
HNC  
Hall  
Sensor  
+
OUTP  
GND  
Hall  
Comparator  
INN  
œ
29. Hall Sensors Connected in Parallel Configuration  
28  
版权 © 2018, Texas Instruments Incorporated  
 
DRV8306  
www.ti.com.cn  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
8.2 Typical Application  
8.2.1 Primary Application  
Power and Charge Pump  
VM  
3.3 V, 30 mA  
DVDD  
AGND  
VM  
GND  
1 µF  
Three Phase Inverter  
VM  
GND  
Gate Driver  
BLDC Motor with  
Hall Elements  
VDD  
Power  
GND  
GP-O  
GHA  
SHA  
GLA  
DIR  
GP-O  
GP-I  
GP-I  
BRK  
FGOUT  
nFAULT  
ENABLE  
GHB  
SHB  
GLB  
DVDD  
GP-O  
GPIO  
PWM  
Module  
PWM_Out  
PWM  
GHC  
SHC  
GLC  
VDS  
IDRIVE  
Hardwired  
with VDD  
and GND  
Microcontroller  
Smart Gate Drive  
100 mA, 200 mA  
(Fully Protected)  
Hall  
A
Hall  
B
Hall  
C
Current Sense  
for OCP,  
Current  
Sense  
RSENSE  
ISEN  
Current Limit  
HPA, HNA  
HPB, HNB  
HPC, HNC  
Hall  
Comparators  
DRV8306  
30. Primary Application Schematic  
8.2.1.1 Design Requirements  
4 lists the example input parameters for the system design.  
4. Design Parameters  
EXAMPLE DESIGN PARAMETER  
Nominal supply voltage  
Supply voltage range  
REFERENCE  
EXAMPLE VALUE  
24 V  
VVM  
8 V to 38 V  
MOSFET part number  
CSD18514Q5A  
29 nC (typical) at VVGS = 10 V  
5 nC (typical)  
100 to 300 ns  
50 to 150 ns  
45 kHz  
MOSFET total gate charge  
MOSFET gate to drain charge  
Target output rise time  
Target output fall time  
Qg  
Qgd  
tr  
tf  
PWM frequency  
ƒPWM  
Imax  
ISENSE  
IRMS  
PSENSE  
TA  
Maximum motor current  
Winding sense current range  
Motor RMS current  
50 A  
–20 A to +20 A  
14.14 A  
Sense resistor power rating  
System ambient temperature  
2 W  
–20°C to +105°C  
版权 © 2018, Texas Instruments Incorporated  
29  
 
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 External MOSFET Support  
The DRV8306 MOSFET support is based on the charge-pump capacity and output PWM switching frequency.  
For a quick calculation of MOSFET driving capacity, use 公式 3 for three-phase BLDC motor applications.  
Trapezoidal 120° Commutation:IVCP > Qg × ƒPWM  
where  
ƒPWM is the maximum desired PWM switching frequency.  
IVCP is the charge pump capacity, which depends on the VM pin voltage.  
The multiplier based on the commutation control method, may vary based on implementation.  
(3)  
8.2.1.2.1.1 Example  
If a system at VVM = 8 V (IVCP = 15 mA) uses a maximum PWM switching frequency of 45 kHz, then the charge-  
pump can support MOSFETs using trapezoidal commutation with a Qg < 333 nC. When the VM voltage (VVM) is  
8 V, the maximum DRV8306 gate drive voltage (VGSH) is 7.3 V. Therefore, at 7.3-V gate drive, the target FET  
(part number CSD18514Q5A) only has a gate charge of approximately 22 nC. Therefore, with this FET, the  
system can have an adequate margin.  
8.2.1.2.2 IDRIVE Configuration  
The gate drive current strength, IDRIVE, is selected based on the gate-to-drain charge of the external MOSFETs  
and the target rise and fall times at the outputs. If IDRIVE is selected to be too low for a given MOSFET, then the  
MOSFET may not turn on completely within the tDRIVE time and a gate drive fault may be asserted. Additionally,  
slow rise and fall times will lead to higher switching power losses. TI recommends adjusting these values in the  
system with the required external MOSFETs and motor to determine the best possible setting for any application.  
The IDRIVEP and IDRIVEN current for both the low-side and high-side MOSFETs are selected simultaneously on the  
IDRIVE pin.  
For MOSFETs with a known gate-to-drain charge Qgd, desired rise time (tr), and a desired fall time (tf), use 公式  
4 and 公式 5 to calculate the value of IDRIVEP and IDRIVEN (respectively).  
Qgd  
IDRIVEP  
=
tr  
(4)  
(5)  
Qgd  
tf  
IDRIVEN  
=
8.2.1.2.2.1 Example  
Use 公式 6 and 公式 7 to calculate the value of IDRIVEP1 and IDRIVEP2 (respectively) for a gate to drain charge of 5  
nC and a rise time from 100 to 300 ns.  
5 nC  
IDRIVEP1  
=
= 50 mA  
100 ns  
5 nC  
(6)  
(7)  
IDRIVEP2  
=
= 16.67 mA  
300 ns  
Select a value for IDRIVEP that is between 16.67 mA and 50 mA. For this example, the value of IDRIVEP was  
selected as 45-mA source.  
Use 公式 8 and 公式 9 to calculate the value of IDRIVEN1 and IDRIVEN2 (respectively) for a gate to drain charge of 5  
nC and a fall time from 50 to 150 ns.  
5 nC  
IDRIVEN1  
=
= 100 mA  
50 ns  
(8)  
5 nC  
IDRIVEN2  
=
= 33.33 mA  
150 ns  
(9)  
30  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
 
 
 
 
DRV8306  
www.ti.com.cn  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
Select a value for IDRIVEN that is between 33.33 mA and 100 mA. For this example, the value of IDRIVEN was  
selected as 90-mA sink.  
8.2.1.2.3 VDS Overcurrent Monitor Configuration  
The VDS monitors are configured based on the worst-case motor current and the RDS(on) of the external  
MOSFETs as shown in 公式 10.  
VDS _ OCP > Imax ì RDS(on)max  
(10)  
8.2.1.2.3.1 Example  
The goal of this example is to set the VDS monitor to trip at a current greater than 50 A. According to the  
CSD18514Q5A 40 V N-Channel NexFET™ Power MOSFET data sheet, the RDS(on) value is 1.8 times higher at  
175°C, and the maximum RDS(on) value at a VGS of 10 V is 4.9 mΩ. From these values, the approximate worst-  
case value of RDS(on) is 1.8 × 4.9 mΩ = 8.82 mΩ.  
Using 公式 10 with a value of 8.82 mΩ for RDS(on) and a worst-case motor current of 50 A, 公式 11 shows the  
calculated the value of the VDS monitors.  
VDS_OCP > 50 A ì 8.82 mW  
VDS_OCP > 0.441 V  
(11)  
For this example, the value of VDS_OCP was selected as 0.51 V.  
The deglitch time for the VDS overcurrent monitor is fixed at 4 µs.  
版权 © 2018, Texas Instruments Incorporated  
31  
 
 
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
8.2.1.3 Application Curves  
31. IDRIVE Maximum Setting  
32. IDRIVE Minimum Setting  
33. Gate Drive 80% Duty Cycle  
34. Gate Drive 20% Duty Cycle  
35. Motor Operation at 80% PWM Duty  
36. Motor Operation at 20% PWM Duty  
32  
版权 © 2018, Texas Instruments Incorporated  
DRV8306  
www.ti.com.cn  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
37. Hall Operation (Digital Hall Sensors Connected)  
38. VLIMIT Operation  
39. Motor Starting With PWM Duty Change  
40. Motor Starting With Supply Voltage Change  
41. Motor Performance at Speed Change  
42. Motor Performance at Load Change  
版权 © 2018, Texas Instruments Incorporated  
33  
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
9 Power Supply Recommendations  
The DRV8306 device is designed to operate from an input voltage supply (VM) range from 6 V to 38 V. A 0.1-µF  
ceramic capacitor rated for VM must be placed as close to the device as possible. In addition, a bulk capacitor  
must be included on the VM pin but can be shared with the bulk bypass capacitance for the external power  
MOSFETs. Additional bulk capacitance is required to bypass the external half-bridge MOSFETs and should be  
sized according to the application requirements.  
9.1 Bulk Capacitance Sizing  
Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally  
beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size. The  
amount of local capacitance depends on a variety of factors including:  
The highest current required by the motor system  
The power supply's type, capacitance, and ability to source current  
The amount of parasitic inductance between the power supply and motor system  
The acceptable supply voltage ripple  
Type of motor (brushed DC, brushless DC, stepper)  
The motor startup and braking methods  
The inductance between the power supply and motor drive system will limit the rate current can change from the  
power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or  
dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage  
remains stable and high current can be quickly supplied.  
The data sheet provides a recommended minimum value, but system level testing is required to determine the  
appropriate sized bulk capacitor.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
+
Motor Driver  
œ
GND  
Local  
Bulk Capacitor  
IC Bypass  
Capacitor  
43. Motor Drive Supply Parasitics Example  
34  
版权 © 2018, Texas Instruments Incorporated  
DRV8306  
www.ti.com.cn  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
10 Layout  
10.1 Layout Guidelines  
Bypass the VM pin to the PGND pin using a low-ESR ceramic bypass capacitor with a recommended value of  
0.1 µF. Place this capacitor as close to the VM pin as possible with a thick trace or ground plane connected to  
the PGND pin. Additionally, bypass the VM pin using a bulk capacitor rated for VM. This component can be  
electrolytic. This capacitance must be at least 10 µF.  
Additional bulk capacitance is required to bypass the high current path on the external MOSFETs. This bulk  
capacitance should be placed such that it minimizes the length of any high current paths through the external  
MOSFETs. The connecting metal traces should be as wide as possible, with numerous vias connecting PCB  
layers. These practices minimize inductance and let the bulk capacitor deliver high current.  
Place a low-ESR ceramic capacitor between the CPL and CPH pins. This capacitor should be 47 nF, rated for  
VM, and be of type X5R or X7R. Additionally, place a low-ESR ceramic capacitor between the VCP and VM pins.  
This capacitor should be 1 µF, rated for 16 V, and be of type X5R or X7R.  
Bypass the DVDD pin to the AGND pin with a 1-µF low-ESR ceramic capacitor rated for 6.3 V and of type X5R  
or X7R. Place this capacitor as close to the pin as possible and minimize the path from the capacitor to the  
AGND pin.  
The VDRAIN pin can be shorted directly to the VM pin. However, if a significant distance is between the device  
and the external MOSFETs, use a dedicated trace to connect to the common point of the drains of the high-side  
external MOSFETs. Do not connect the SLx pins directly to PGND. Instead, use dedicated traces to connect  
these pins to the sources of the low-side external MOSFETs. These recommendations offer more accurate VDS  
sensing of the external MOSFETs for overcurrent detection.  
Minimize the loop length for the high-side and low-side gate drivers. The high-side loop is from the GHx pin of  
the device to the high-side power MOSFET gate, then follows the high-side MOSFET source back to the SHx  
pin. The low-side loop is from the GLx pin of the device to the low-side power MOSFET gate, then follows the  
low-side MOSFET source back to the PGND pin.  
版权 © 2018, Texas Instruments Incorporated  
35  
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
10.2 Layout Example  
S
S
S
G
D
D
D
D
GND  
D
D
D
D
G
S
S
S
GND  
D
D
D
D
G
S
S
S
16  
15  
14  
13  
12  
11  
10  
9
HNC  
HPC  
GLC  
SHC  
GHC  
GHB  
SHB  
GLB  
25  
26  
AGND  
DVDD  
DVDD  
PWM  
PWM 27  
FGOUT  
DIR  
FGOUT  
DIR  
28  
29  
Thermal Pad  
nBRAKE  
nBRAKE 30  
S
S
S
G
D
D
D
D
PGND  
CPL  
31  
32  
S
S
S
G
D
D
D
D
D
D
D
D
G
S
S
S
GND  
44. Layout Example  
36  
版权 © 2018, Texas Instruments Incorporated  
DRV8306  
www.ti.com.cn  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
11 器件和文档支持  
11.1 器件支持  
11.1.1 器件命名规则  
下图显示了说明完整器件名称的图例:  
(6)  
(RSN) (R)  
DRV83  
Prefix  
Tape and Reel  
DRV83 œ Three Phase Brushless DC  
R œ Tape and Reel  
T œ Small Tape and Reel  
Package  
RSN œ 4 × 4 × 0.75 mm QFN  
Series  
6 œ 40 V device  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)AN-1149 开关电源布局指南》应用报告  
德州仪器 (TI)DRV8306EVM 用户指南》  
德州仪器 (TI)《采用 BLDC 电机的高效真空吸尘器硬件设计注意事项》应用报告  
德州仪器 (TI)《采用 BLDC 电机的电动自行车硬件设计注意事项》应用报告  
德州仪器 (TI)《工业电机驱动解决方案指南》  
德州仪器 (TI)《开关电源布局指南》应用报告  
德州仪器 (TI)《采用 TI 智能栅极驱动技术进行电机驱动保护》TI 技术手册  
德州仪器 (TI)QFN/SON PCB 连接》应用报告  
德州仪器 (TI)《采用 TI 智能栅极驱动技术缩减电机驱动 BOM PCB 面积》TI 技术手册  
德州仪器 (TI)《采用 MSP430™ 的传感器式三相 BLDC 电机控制》应用报告  
德州仪器 (TI)TI 电机栅极驱动器的 IDRIVE TDRIVE 认知》应用报告  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
NexFET, MSP430, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
版权 © 2018, Texas Instruments Incorporated  
37  
DRV8306  
ZHCSHZ0A APRIL 2018REVISED JULY 2018  
www.ti.com.cn  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
38  
版权 © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8306HRSMR  
DRV8306HRSMT  
ACTIVE  
VQFN  
VQFN  
RSM  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
DRV  
8306H  
ACTIVE  
RSM  
NIPDAU  
DRV  
8306H  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV8306HRSMR  
DRV8306HRSMT  
VQFN  
VQFN  
RSM  
RSM  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV8306HRSMR  
DRV8306HRSMT  
VQFN  
VQFN  
RSM  
RSM  
32  
32  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RSM 32  
4 x 4, 0.4 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224982/A  
www.ti.com  
PACKAGE OUTLINE  
RSM0032B  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
B
4.1  
3.9  
A
0.45  
0.25  
0.25  
0.15  
PIN 1 INDEX AREA  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
4.1  
3.9  
(0.1)  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.8 0.05  
2X 2.8  
(0.2) TYP  
4X (0.45)  
28X 0.4  
9
16  
SEE SIDE WALL  
DETAIL  
8
17  
EXPOSED  
THERMAL PAD  
2X  
SYMM  
33  
2.8  
24  
0.25  
32X  
1
SEE TERMINAL  
DETAIL  
0.15  
0.1  
C A B  
25  
32  
PIN 1 ID  
(OPTIONAL)  
0.05  
SYMM  
0.45  
0.25  
32X  
4219108/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.8)  
SYMM  
32  
25  
32X (0.55)  
1
32X (0.2)  
24  
(
0.2) TYP  
VIA  
(1.15)  
SYMM  
33  
(3.85)  
28X (0.4)  
17  
8
(R0.05)  
TYP  
9
16  
(1.15)  
(3.85)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219108/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.715)  
4X ( 1.23)  
(R0.05) TYP  
25  
32  
32X (0.55)  
1
24  
32X (0.2)  
(0.715)  
(3.85)  
33  
SYMM  
28X (0.4)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(3.85)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 33:  
77% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219108/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

DRV8306HRSMT

最大 40V 含传感器梯形控制三相 BLDC 智能栅极驱动器 | RSM | 32 | -40 to 125
TI

DRV8308

无刷直流电机控制器
TI

DRV8308RHAR

DRV8308 Brushless DC Motor Controller
TI

DRV8308RHAT

DRV8308 Brushless DC Motor Controller
TI

DRV8308_15

DRV8308 Brushless DC Motor Controller
TI

DRV8311

DRV8311 Three-Phase PWM Motor Driver
TI

DRV8311H

DRV8311 Three-Phase PWM Motor Driver
TI

DRV8311HRRWR

DRV8311 Three-Phase PWM Motor Driver
TI

DRV8311P

DRV8311 Three-Phase PWM Motor Driver
TI

DRV8311PRRWR

DRV8311 Three-Phase PWM Motor Driver
TI

DRV8311S

DRV8311 Three-Phase PWM Motor Driver
TI

DRV8312

Three Phase PWM Motor Driver
TI