DRV3205-Q1 [TI]

具有电流分流放大器和增强保护功能的汽车类 12V 和 24V 电池三相栅极驱动器;
DRV3205-Q1
型号: DRV3205-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电流分流放大器和增强保护功能的汽车类 12V 和 24V 电池三相栅极驱动器

电池 放大器 栅极驱动 驱动器
文件: 总33页 (文件大小:1100K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV3205-Q1  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
DRV3205-Q1 集成三个分流放大器和增强型保护、诊断和监视功能的三相  
汽车栅极驱动器  
1 特性  
2 应用  
1
符合汽车类应用的 AEC-Q100 标准:  
汽车电机控制 应用  
器件温度 1 级:-40°C +125°C 的环境运行温  
度范围  
电动助力转向系统(EPS,电动液压助力转向  
(EHPS))  
适用于电机控制的三相桥驱动器  
适用于 12V 24V 应用  
全电刹车和刹车辅助  
变速箱  
集成三个高精度电流感测放大器  
集成升压转换器,栅极驱动到 4.75V  
工业电机控制 应用  
驱动 6 个独立的 N 沟道功率金属氧化物半导体场效  
应晶体管 (MOSFET)  
3 说明  
针对大电流 FET 提供强力的 1A 栅极驱动  
可编程死区时间  
DRV3205-Q1 桥式驱动器专用于汽车三相无刷直流电  
机控制 应用。该器件为标准电平 N 沟道 MOSFET 晶  
体管提供六个专用驱动器。集成 FET 的升压转换器可  
提供过驱电压,即使在低至 4.75V 的电池电压下也能  
够实现对功率级的完全控制。这种驱动器强度适用于大  
电流 应用, 并且可通过编程来限制峰值输出电流。  
脉宽调制 (PWM) 频率最高达 20kHz  
支持 100% 占空比运行  
短路保护功能  
VDS 监视(可调检测电平)  
分流限制(可调检测电平)  
该器件整合了稳健的 FET 保护和系统监视功能,例如  
Q&A 看门狗以及用于 I/O 电源和 ADC 基准电压的电  
压监视器。集成的内部诊断功能可通过 SPI 接口进行  
访问和编程。  
过压和欠压保护  
过热警告和关断  
通过 SPI 进行复杂的故障检测和处理  
系统监控  
器件信息(1)  
Q&A 看门狗  
I/O 电源监视  
ADREF 监视  
器件型号  
封装  
封装尺寸(标称值)  
DRV3205-Q1  
HTQFP (48)  
7.00mm x 7.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
可编程内部故障诊断  
休眠模式功能  
耐热增强型 48 引脚薄型四方扁平 (HTQFP)  
PowerPAD™IC 封装(7mm × 7mm 尺寸)  
典型应用图  
3.3 V, 5 V  
12 V, 24 V  
DRV3205-Q1  
Driver  
PWM  
(3× or 6× pins)  
/
M
FETs  
Controller  
SPI  
Protection  
Diagnostics  
S/D  
//  
Paths  
CS  
Sense  
Amplifiers  
ADC  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCV1  
 
 
 
 
 
DRV3205-Q1  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
www.ti.com.cn  
目录  
7.4 Register Maps......................................................... 20  
Application and Implementation ........................ 22  
8.1 Application Information............................................ 22  
8.2 Typical Application ................................................. 22  
8.3 System Example ..................................................... 22  
Power Supply Recommendations...................... 24  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 7  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information.................................................. 8  
6.5 Electrical Characteristics........................................... 8  
6.6 Serial Peripheral Interface Timing Requirements ... 14  
6.7 Typical Characteristics............................................ 15  
Detailed Description ............................................ 16  
7.1 Overview ................................................................. 16  
7.2 Functional Block Diagram ....................................... 16  
7.3 Programming........................................................... 17  
8
9
10 Layout................................................................... 24  
10.1 Layout Guidelines ................................................. 24  
10.2 Layout Example .................................................... 24  
11 器件和文档支持 ..................................................... 25  
11.1 文档支持................................................................ 25  
11.2 接收文档更新通知 ................................................. 25  
11.3 社区资源................................................................ 25  
11.4 ....................................................................... 25  
11.5 静电放电警告......................................................... 25  
11.6 Glossary................................................................ 25  
12 机械、封装和可订购信息....................................... 25  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision D (November 2016) to Revision E  
Page  
Added the propagation delay graphs to the Typical Characteristics section........................................................................ 15  
Changed the note on the Single 8-Bit SPI Frame/Transfer figure........................................................................................ 17  
Updated the Typical Application Diagram figure .................................................................................................................. 22  
Changes from Revision C (October 2016) to Revision D  
Page  
Changed the maximum value for the RVSET resistor error detection parameter (4.4.31) from 1.5 to 1.4 kΩ in the  
Electrical Characteristics table ............................................................................................................................................. 10  
Changed the units and symbol for the RVSET output voltage parameter (4.4.32–4.4.34), and fixed duplicate position  
number for TJ = 25°C and 125°C in the Electrical Characteristics table.............................................................................. 10  
Added characterization note to parameters 5.7 and 5.29 through 5.30e in the Electrical Characteristics table.................. 11  
Deleted the VS voltage range test condition from the boost output voltage parameter (6.1) in the Electrical  
Characteristics table ............................................................................................................................................................ 12  
Added new test condition to the switching frequency parameter (6.3) and add new values for switching frequency at  
VS < 6 (6.31) in the Electrical Characteristics table.............................................................................................................. 12  
Changed the maximum value for the input pulldown resistor at EN pin parameter (7.4) from 300 to 360 kΩ in the  
Electrical Characteristics table ............................................................................................................................................. 12  
Changed the position number for the output high and low voltage 2 parameters in the Electrical Characteristics table ... 12  
Added characterization note to parameters 13.2 through 13.11 in the Serial Peripheral Interface Timing  
Requirements table............................................................................................................................................................... 14  
Changes from Revision B (October 2016) to Revision C  
Page  
Clarified the temperature for the BOOST pin quiescent current parameters (3.6B and 3.6C) and added new  
temperature condition (3.62B and 3.61C) in the Recommended Operating Conditions table ............................................... 7  
Deleted the maximum value for the input hysteresis parameters (7.3 and 7.3A) in the Electrical Characteristics table..... 12  
Changed the values for the input pullup resistance parameter (7.5) in the Electrical Characteristics table........................ 12  
2
版权 © 2015–2017, Texas Instruments Incorporated  
 
DRV3205-Q1  
www.ti.com.cn  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
Changes from Revision A (October 2016) to Revision B  
Page  
已更改 已将特性部分的 AEC-Q1100 改为 AEC-Q100............................................................................................................ 1  
Changed the maximum value for the VCC5 and VCC3 short-to-ground current from 70 to 80 mA in the Absolute  
Maximum Ratings table .......................................................................................................................................................... 6  
Changed the minimum value for the high-side/low-side driver shutdown current parameter from 7 to 2 mA in the  
Electrical Characteristics table ............................................................................................................................................. 11  
Changes from Original (September 2016) to Revision A  
Page  
已更改 器件状态,从产品预览改为量产数据 .......................................................................................................................... 1  
Copyright © 2015–2017, Texas Instruments Incorporated  
3
DRV3205-Q1  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
www.ti.com.cn  
5 Pin Configuration and Functions  
PHP PowerPAD™ Package  
48-Pin HTQFP  
Top View  
GLS3  
SLS3  
GHS3  
SHS3  
VSH  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
O3  
2
O2  
3
O1  
4
ADREF  
VCC5  
RO  
5
SHS2  
GHS2  
SLS2  
GLS2  
TEST  
GLS1  
SLS1  
6
Thermal  
Pad  
7
GNDA  
VCC3  
SDI  
8
9
10  
11  
12  
SDO  
SCLK  
VDDIO  
Not to scale  
Pin Functions  
PIN  
NAME  
TYPE(1)  
DESCRIPTION  
NO.  
1
GLS3  
SLS3  
GHS3  
SHS3  
VSH  
PWR  
PWR  
PWR  
PWR  
HVI_A  
PWR  
PWR  
PWR  
PWR  
HVI_A  
Gate low-side 3, connected to gate of external power MOSFET.  
2
Source low-side 3, connected to external power MOSFET for gate discharge and VDS monitoring.  
Gate high-side 3, connected to gate of external power MOSFET.  
3
4
Source high-side 3, connected to external power MOSFET for gate discharge and VDS monitoring.  
Sense high-side, sensing VS connection of the external power MOSFETs for VDS monitoring.  
Source high-side 2, connected to external power MOSFET gate discharge and VDS monitoring.  
Gate high-side 2, connected to gate of external power MOSFET.  
5
6
SHS2  
GHS2  
SLS2  
GLS2  
TEST  
7
8
Source low-side 2, connected to external power MOSFET for gate discharge and VDS monitoring.  
Gate low-side 2, connected to gate of external power MOSFET.  
9
10  
Test mode input, during normal application connected to ground.  
(1) Description of pin type: GND = Ground; HVI_A = High-voltage input analog; HVI_D = High-voltage input digital; LVI_A = Low-voltage  
input analog; LVO_A = Low-voltage output analog; LVO_D = Low-voltage output digital; NC = No connect; PWR = Power output; Supply  
= Supply input  
4
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV3205-Q1  
www.ti.com.cn  
PIN  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
Pin Functions (continued)  
TYPE(1)  
DESCRIPTION  
NO.  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
NAME  
GLS1  
SLS1  
GHS1  
SHS1  
VS  
PWR  
PWR  
Gate low-side 1, connected to gate of external power MOSFET.  
Source low-side 1, connected to external power MOSFET for gate discharge and VDS monitoring.  
Gate high-side 1, connected to gate of external power MOS transistor.  
Source high-side 1, connected to external power MOS transistor for gate discharge and VDS.  
Power-supply voltage (externally protected against reverse battery connection).  
Analog ground.  
PWR  
PWR  
Supply  
GND  
GNDA  
ERR  
LVO_D  
HVI_D  
HVI_A  
Supply  
PWR  
Error (low active), Error pin to indicate detected error.  
DRVOFF  
RVSET  
BOOST  
SW  
Driver OFF (high active), secondary bridge driver disable.  
VDDIO / ADREF OV/UV configuration resister.  
Boost output voltage, used as supply for the gate drivers.  
Boost converter switching node connected to external coil and external diode.  
SPI chip select.  
NCS  
HVI_D  
Boost GND to set current limit. Boost switching current goes through this pin through external resistor to  
ground.  
23  
GNDLS_B  
GND  
24  
25  
26  
27  
28  
EN  
VDDIO  
SCLK  
SDO  
SDI  
HVI_D  
Supply  
HVI_D  
LVO_D  
HVI_D  
Enable (high active) of the device.  
I/O supply voltage, defines the interface voltage of digital I/O, for example, SPI.  
SPI clock.  
SPI data output.  
SPI data input.  
VCC3 regulator, for internal use only. TI recommends an external decoupling capacitor of 0.1 µF.  
External load < 100 µA.  
29  
VCC3  
LVO_A  
30  
31  
GNDA  
RO  
GND  
Analog ground.  
Analog output.  
LVO_A  
VCC5 regulator, for internal use only. Recommended external decoupling capacitor 1 µF. External load  
< 100 µA.  
32  
VCC5  
LVO_A  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
ADREF  
O1  
LVI_A  
LVO_A  
LVO_A  
LVO_A  
LVI_A  
LVI_A  
LVI_A  
LVI_A  
LVI_A  
LVI_A  
HVI_D  
HVI_D  
HVI_D  
HVI_D  
HVI_D  
HVI_D  
ADC reference of MCU, used as maximum voltage clamp for O1 to O3.  
Output current sense amplifier 1.  
O2  
Output current sense amplifier 2.  
O3  
Output current sense amplifier 3.  
IN3  
Current sense negative input 3.  
IP3  
Current sense positive input 3.  
IN2  
Current sense input N 2.  
IP2  
Current sense input P 2.  
IN1  
Current sense input N 1.  
IP1  
Current sense input P 1.  
IHS3  
IHS2  
IHS1  
ILS3  
ILS2  
ILS1  
High-side input 3, digital input to drive the HS3.  
Input HS 2, digital input to drive the HS2.  
Input HS 1, digital input to drive the HS1.  
Low-side input 3, digital input to drive the LS3.  
Input LS 2, digital input to drive the LS2.  
Input LS 1, digital input to drive the LS1.  
Copyright © 2015–2017, Texas Instruments Incorporated  
5
DRV3205-Q1  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
POS  
MIN  
MAX  
UNIT  
2.1  
VS, VSH  
DC voltage  
DC voltage  
–0.3  
60  
V
Negative voltages with minimum serial  
resistor 5 Ω, TA = 25°C  
2.1a VS  
2.1b VSH  
2.1c VS  
2.1d VSH  
–5  
–5  
V
V
V
V
Negative voltages with minimum serial  
resistor 10 Ω, TA = 25°C  
DC voltage  
DC voltage  
DC voltage  
Negative voltages with minimum serial  
resistor 5 Ω, TA = 105°C  
–2.5  
–2.5  
Negative voltages with minimum serial  
resistor 10 Ω, TA = 105°C  
2.2A GHSx  
2.2B SHSx  
Gate high-side voltage  
Source high-side voltage  
–9  
–9  
70  
70  
V
V
Gate-source high-side voltage  
difference  
Externally driven, internal limited, see  
position 5.4 in Electrical Characteristics  
2.3  
GHSx-SHSx  
–0.3  
15  
V
2.4  
2.5  
GLSx  
SLSx  
Gate low-side voltage  
–9  
–9  
20  
7
V
V
Source low-side voltage  
Gate-source low-side voltage  
difference  
Externally driven, internal limited, see  
position 5.5 in Electrical Characteristics  
2.6  
GLSx-SLSx  
–0.3  
15  
V
2.7  
2.8  
BOOST, SW  
INx, IPx  
Boost converter  
–0.3  
–9  
70  
7
V
V
Current sense input voltage  
Current sense input current  
2.8A INx, IPx  
Clamping current  
–5  
5
mA  
ADREF  
+0.3  
2.8C Ox  
Current sense output voltage  
–0.3  
V
2.8D Ox  
Forced input current  
Analog input voltage  
Analog input voltage  
–10  
–0.3  
–0.3  
10  
60  
60  
mA  
V
2.9  
2.9a ADREF  
ILSx,IHSx, EN,  
VDDIO  
V
2.10 DRVOFF, SCLK, NCS,  
SDI  
Digital input voltage  
Analog input voltage  
–0.3  
60  
V
2.11 RVSET  
–0.3  
–0.3  
–250  
–0.3  
60  
0.3  
250  
6
V
V
2.13 GNDA, GNDLS_B  
2.20  
Difference between GNDA and GNDLS_B  
Maximum slew rate of SHSx pins, SRSHS  
Analog and digital output voltages  
V/µs  
V
2.21 ERR, SDO, RO  
2.21  
ERR, SDO, RO  
A
Forced input/output current  
–10  
10  
mA  
2.22 TEST  
2.24 VCC5  
Unused pins. Connect to GND.  
Internal supply voltage  
–0.3  
–0.3  
0.3  
6
V
V
2.24  
A
(3)  
Short-to-ground current, IVCC5  
Internal current limit  
80  
mA  
2.25 VCC3  
2.26  
Internal supply voltage  
–0.3  
3.6  
80  
V
Short-to-ground current, IVCC3  
Limited by VCC5  
mA  
VS = 12 V, ƒPWM = 20 kHz, 6 FETs  
ON/OFF per PWM cycle  
2.27  
2.28  
200(4)  
100(4)  
nC  
nC  
Driver FET total gate charge (per  
FET), Qgmax  
VS = 24 V, ƒPWM = 20 kHz, 6 FETs  
ON/OFF per PWM cycle  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to network ground terminal, unless specified otherwise.  
(3) IVCC5 is not specifying VCC5 output current capability for external load. The allowed external load on VCC5 is specified at position 3.18  
in Recommended Operating Conditions.  
(4) The maximum value also depends on PCB thermal design, modulation scheme, and motor operation time.  
6
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV3205-Q1  
www.ti.com.cn  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
Absolute Maximum Ratings (continued)  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
POS  
MIN  
–40  
–55  
MAX  
150  
UNIT  
°C  
2.14  
2.15  
Operating virtual junction temperature, TJ  
Storage temperature, Tstg  
165  
°C  
6.2 ESD Ratings  
POS  
VALUE UNIT  
±2000  
All pins  
2.17  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Pins 4, 6, and 14  
All pins  
±4000  
Electrostatic  
discharge  
V(ESD)  
V
2.18  
2.19  
±500  
Corner pins (1, 12, 13, 24, 25, 36, 37,  
and 48)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
POS  
MIN  
NOM  
MAX UNIT  
Full device functionality. Operation at VS = 4.75 V  
only when coming from higher VS. Minimum VS  
for startup = 4.85 V  
Supply voltage, normal voltage  
operation  
3.1  
VS  
4.75  
40  
40  
V
Logic functional (during battery cranking after  
coming from full device functionality)  
3.2  
VSLO  
Supply voltage, logic operation  
4
V
V
3.3  
3.4  
3.5  
VDDIO  
D
Supply voltage for digital I/Os  
Duty cycle of bridge drivers  
PWM switching frequency  
2.97  
0%  
0
5.5  
100%  
22(1)  
ƒPWM  
kHz  
mA  
VS quiescent current normal  
operation (boost converter  
enabled, drivers not switching)  
Boost converter enabled, see and for SHSx/SLSx  
connections. EN_GDBIAS = 1  
3.6A  
IVSn  
22  
VS quiescent current normal  
operation (boost converter  
enabled, drivers not switching)  
Boost converter enabled, see and for SHSx/SLSx  
connections. EN_GDBIAS = 0  
3.61A  
IVSn  
22.3  
mA  
mA  
3.6B  
BOOST pin quiescent current  
normal operation (drivers not  
switching)  
4.75 V < VS < 20 V, TA = 25°C to 125°C  
4.75 V < VS < 20 V, TA = –40°C  
9
IBOOSTn  
3.62B  
10  
VS quiescent additional current  
normal operation because of  
RVSET thermal voltage output  
enabled (boost converter  
mA  
3.61B  
IVSn  
THERMAL_RVSET_EN = 1  
0.6  
enabled, drivers not switching)  
3.6C  
BOOST pin quiescent current  
normal operation (drivers not  
switching)  
20 < VS < 40 V, TA = 25°C to 125°C  
20 < VS < 40 V, TA = –40°C  
9.5  
IBOOSTn  
mA  
mA  
3.61C  
10.5  
BOOST pin additional load  
current because of switching gate gate drivers switching at the same time.  
Excluding FET gate charge current. 20-kHz all  
3.6D  
IBOOST,sw  
4
drivers  
EN_GDBIAS = 1  
BOOST pin additional load  
Excluding FET gate charge current. 20-kHz all  
3.61D  
3.75  
IBOOST,sw  
current because of switching gate gate drivers switching at the same time.  
5.4  
20  
mA  
µA  
drivers  
EN_GDBIAS = 0  
VS quiescent current shutdown  
(sleep mode) 1  
VS = 14 V, no operation, TJ < 25°C, EN = Low,  
total leakage current on all supply connected pins  
IVSq_1  
IVSq_2  
TJ  
VS quiescent current shutdown  
(sleep mode) 2  
VS = 14 V, no operation, TJ < 85°C, EN = Low,  
total leakage current on all supply connected pins  
3.75a  
3.8  
30  
150  
125  
µA  
°C  
°C  
Junction temperature  
–40  
–40  
Operating ambient free-air  
temperature  
3.9  
TA  
With proper thermal connection  
VIPx – VInx, RO = 2.5 V GAIN = 12  
3.11  
3.13  
3.13a  
VINx,VIPx  
ADREF  
Current sense input voltage  
–0.15  
2.97  
0.15  
5.5  
V
V
V
Clamping voltage for current sense amplifier outputs O1/2/3  
Reserved  
(1) Maximum PWM allowed also depends on maximum operating temperature, FET gate charge current, VS supply voltage, modulation  
scheme, and PCB thermal design.  
Copyright © 2015–2017, Texas Instruments Incorporated  
7
 
DRV3205-Q1  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
www.ti.com.cn  
Recommended Operating Conditions (continued)  
POS  
MIN  
NOM  
MAX UNIT  
3.13b  
3.14  
Reserved  
V
VS > 4 V, external load current <100 µA,  
decoupling capacitor typical 0.1 µF  
VCC3  
Internal supply voltage  
3(1)  
3.3  
V
3.15  
3.16  
IVCC3  
VCC3 output current  
Intended for MCU ADC input  
0
100  
0.2  
µA  
µF  
CVCC3  
VCC3 decoupling capacitance  
0.075  
0.1  
1
VS > 6 V, external load current < 100 µA,  
decoupling capacitor typical 1 µF  
3.17  
VCC5  
Internal supply voltage  
5.15  
5.45  
V
3.18  
3.19  
IVCC5  
VCC5 output current  
Intended for MCU ADC input  
0
100  
1.5  
µA  
µF  
CVCC5  
VCC5 decoupling capacitance  
0.5  
6.4 Thermal Information  
DRV3205-Q1  
THERMAL METRIC(1)  
PHP (HTQFP)  
UNIT  
48 PINS  
25.7  
10.3  
6
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
5.9  
RθJC(bot)  
0.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
6.5 Electrical Characteristics  
over operating temperature TJ = –40°C to 150°C and recommended operating conditions, VS = 4.75 V to 40 V(1), ƒPWM < 20  
kHz (unless otherwise noted)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
4.1  
CURRENT SENSE AMPLIFIER  
TJ = 25°C, ADREF = 5 V,  
RO_CFG [4:0] = 5’b11000: ADREF × 25 / 50  
4.2.1  
4.2.1a  
4.2.2  
±1  
±1  
±1  
±1  
mV  
mV  
mV  
Voff1a  
Initial input offset of amplifiers  
TJ = 25°C, ADREF = 3.3 V,  
RO_CFG [4:0] = 5’b11000: ADREF × 25 / 50  
ADREF = 5 V,  
RO_CFG [4:0] = 5’b11000: ADREF × 25 / 50  
Voff1b  
Temperature and aging offset(2)  
Input common voltage range  
ADREF = 3.3 V,  
RO_CFG [4:0] = 5’b11000: ADREF × 25 / 50  
4.2.2a  
4.2.3  
4.2.4  
mV  
V
(3)  
Vcom1  
VOa  
–3  
3
Nominal output voltage level,  
positive ox swing  
Normal voltage operation, VS 5.75 V;  
0.5-mA load current  
ADREF – 0.5 +  
Voxm  
V
Nominal output voltage level,  
negative ox swing  
Normal voltage operation, VS 5.75 V;  
0.5-mA load current  
4.2.4a VOa  
4.2.4b VOa  
0.5  
V
V
V
Nominal output voltage level 2,  
positive ox swing  
Normal voltage operation, VS 5.75 V;  
10-µA load current  
ADREF – 0.06  
+ Voxm  
Nominal output voltage level 2,  
negative ox swing  
Normal voltage operation, VS 5.75 V;  
10-µA load current  
4.2.4c  
4.2.5  
VOa  
0.09  
0.5  
VS – 1.25;  
ADREF – 0.5 +  
Voxm  
Output voltage level during low  
voltage operation, positive ox  
swing  
Low voltage operation, 4.75 V VS < 5.75 V;  
0.5-mA load current  
VOb  
V
V
Output voltage level during low  
voltage operation, negative ox  
swing  
Low voltage operation, 4.75 V VS < 5.75 V;  
0.5-mA load current  
4.2.5a VOb  
(1) Product life time depends on VS voltage, PCB thermal design, modulation scheme, and motor operation time. The product is designed  
for 12-V and 24-V battery system.  
(2) Ensured by characterization.  
(3) ADREF / VDDIO overvoltage and undervoltage is set by RVSET.  
8
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV3205-Q1  
www.ti.com.cn  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
Electrical Characteristics (continued)  
over operating temperature TJ = –40°C to 150°C and recommended operating conditions, VS = 4.75 V to 40 V(1), ƒPWM < 20  
kHz (unless otherwise noted)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VS – 0.75;  
ADREF – 0.06  
+ Voxm  
Output voltage level during low  
voltage operation 2, positive ox  
swing  
Low voltage operation, 4.75 V VS < 5.75 V;  
10-µA load current  
4.2.5b VOb  
V
Output voltage level during low  
voltage operation 2, negative ox  
swing  
Low voltage operation, 4.75 V VS < 5.75 V;  
10-µA load current  
4.2.5c  
4.2.6  
VOb  
0.09  
V
0.5 V O1/2/3 4.5 V, capacitor load = 25  
pF,  
GBP  
Gain bandwidth product GBP  
5
MHz  
specified by design.  
SPI configurable, Normal voltage operation,  
VS 5.75 V; 0.5-mA load current  
4.2.8  
4.2.9  
G1  
G2  
Gain 1  
Gain 2  
Gain 3  
Gain 4  
7.896  
11.856  
15.808  
31.616  
8
12  
16  
32  
8.096  
12.144  
16.192  
32.384  
V/V  
V/V  
V/V  
V/V  
SPI configurable, Normal voltage operation,  
VS 5.75 V; 0.5-mA load current  
SPI configurable, Normal voltage operation,  
VS 5.75 V; 0.5-mA load current  
4.2.10 G3  
4.2.11 G4  
SPI configurable, Normal voltage operation,  
VS 5.75 V; 0.5-mA load current  
VS to O1/2/3 decoupling capacitor typical 1  
µF on VCC5 / 0.1-µF VCC3 at DC  
Specified by design, capacitor load = 25 pF  
RO = 2.5 V, ADREF = 5 V, gain = 16,  
dVS / dOx dVCC5 / dOx  
Power supply rejection ratio at  
DC  
4.2.12 PSRRo123  
60  
70  
80  
80  
dB  
Specified by design, capacitor load = 25 pF  
RO = 2.5 V, ADREF = 5 V, gain = 1,  
VS = 12 V  
Common mode rejection ratio at  
DC  
4.2.12a CMRRo123  
4.2.12b CMGo123  
dB  
dB  
Specified by design, capacitor load = 25 pF  
RO = 2.5 V, ADREF = 5 V, gain = 16  
Common mode gain at 500 kHz  
–29  
Specified by design, capacitor load = 25 pF  
RO = 2.5 V, ADREF = 5 V, gain = 16  
4.2.12c CMGo123  
4.2.13 Iinamp  
4.2.13 Iinamp2  
Common mode gain peak  
Inx, IPx input bias current  
Inx, IPx input bias current  
–15  
90  
dB  
µA  
µA  
VCM (input common mode voltage) = ±3 V,  
RSHUNT_MODE[1:0] = 11  
50  
60  
VCM (input common mode voltage) = ±3 V,  
RSHUNT_MODE[1:0] = 2’b000110  
90  
Specified by design, capacitor load = 25 pF,  
RO = 2.5 V, ADREF = 5 V, gain = 16,  
0.5 V O1/2/3 4.5 V  
Ox settling time to withing ±2%  
of final value  
4.2.14 TsettleO123  
0.8  
µs  
Inx, IPx Input bias differential  
current  
VCM = ±3 V IIPx-INx, IPx-INx = 0 V,  
RSHUNT_MODE[1:0] = 11  
4.2.15 Iinampd  
4.2.16 Rinam  
–1.2  
9
1.2  
15  
µA  
Inx, IPx Input resistance  
VCM = ±3 V  
12  
80  
kΩ  
VS to O1/2/3 decoupling capacitor typical 1  
µF on VCC5 / 0.1-µF VCC3 at DC specified  
by design, capacitor load = 25 pF  
RO = 1.65 V ADREF = 3.3 V, gain = 16,  
dVS / dOx dVCC5 / dOx  
Power supply rejection ratio at  
DC  
4.2.12d PSRR3o123  
4.2.12e CMRR3o123  
70  
70  
dB  
dB  
Specified by design, capacitor load = 25 pF  
RO = 1.65 V ADREF = 3.3 V, gain = 16  
VS = 12 V  
Common mode rejection ratio at  
DC  
80  
Specified by design, capacitor load = 25 pF  
RO = 1.65 V ADREF = 3.3 V, gain = 16  
4.2.12f CMG3o123  
4.2.12g CMG3o123  
Common mode gain at 500 kHz  
Common mode gain peak  
–29  
–15  
dB  
dB  
Specified by design, capacitor load = 25 pF  
RO = 1.65 V ADREF = 3.3 V, gain = 16  
Copyright © 2015–2017, Texas Instruments Incorporated  
9
DRV3205-Q1  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating temperature TJ = –40°C to 150°C and recommended operating conditions, VS = 4.75 V to 40 V(1), ƒPWM < 20  
kHz (unless otherwise noted)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
4.3  
SHIFT BUFFER  
4.3.2  
VRO  
Shift output voltage range  
ADREF = 5 V  
0.1 × ADREF  
0.5 × ADREF  
V
ADREF = 5 V, RO_CFG [4:0] = 5’b11000:  
ADREF × 25 / 50, Iload = internal load  
4.3.3  
±1.7  
±4  
mV  
Shift voltage offset (with respect  
to RO)  
VRoffset  
RO_CFG [4:0] = 5’b00100:  
ADREF × 5 / 50-5’b10111:  
ADREF × 24 / 50  
4.3.3a  
mV  
mV  
Shift voltage offset (with respect  
to ADREF (3.3 V) × 25 / 50  
(RO_CFG [4:0] = 5'b11000))  
ADREF = 3.3 V, RO_CFG [4:0] = 5’b11000:  
ADREF × 25 / 50, Iload = internal load  
4.3.3b VRoffset  
±1.7  
RO output load capacitance  
range  
4.3.4  
4.3.5  
CRO  
0
150  
5
pF  
ADREF = 5 V, RO_CFG [4:0] = 5’b11000:  
ADREF × 25 / 50  
–5  
mA  
IRO  
Shift output current capability  
RO_CFG [4:0] = 5’b00100:  
ADREF × 5 / 50-5’b10111:  
ADREF × 24 / 50  
4.3.6  
4.3.7  
–1  
3
1
7
mA  
µs  
ADREF UV/ OV detection  
deglitch time  
Tdgadref  
PSRRRO  
tdgadref  
5
80  
Decoupling capacitor typical 1 µF on VCC5 /  
0.1 µF VCC3 at DC.  
Specified by design, capacitor load = 25 pF  
RO = 2.5 V ADREF = 5 V, Gain = 16,  
dVS / dRO dVCC5 / dRO  
Power supply rejection ratio at  
DC  
4.3.8  
70  
3
dB  
µs  
ADREF UV/OV detection  
deglitch time  
4.4.9  
4.4  
5
7
ADREF / VDDIO  
Tolerance of ADREF voltage  
clamp  
4.4.1  
Voxm  
Relative to ADREF 5.75 V VS  
Ox-ADREF; for <1 µs; specified by design  
ADREF = 3.3 V, pin to ground  
–0.1  
0.03  
0.25  
1.2  
V
V
Overshoot of O1/2/3 over  
ADREF  
4.4.2  
4.4.3  
Voxos  
IADREF  
Bias current for voltage clamping  
circuit  
300  
µA  
4.4.4  
ADREF: 3.3-V setting by RVSET resistor  
ADREF: 5-V setting by RVSET resistor  
ADREF: 3.3-V setting by RVSET resistor  
ADREF: 5-V setting by RVSET resistor  
VDDIO: 3.3-V setting by RVSET resistor  
VDDIO: 5-V setting by RVSET resistor  
VDDIO: 3.3-V setting by RVSET resistor  
VDDIO: 5-V setting by RVSET resistor  
3.696 3.795  
5.6 5.75  
2.706 2.805  
4.1 4.25  
3.696 3.795  
5.6 5.75  
2.706 2.805  
3.894  
5.9  
V
V
V
V
V
V
V
V
Vovadref  
Vuvadref  
Vovvddio  
Vuvvddio  
Overvoltage threshold  
Undervoltage threshold  
Overvoltage threshold  
Undervoltage threshold  
4.4.4a  
4.4.5  
2.904  
4.4  
4.4.5a  
4.4.7  
3.894  
5.9  
4.4.7a  
4.4.8  
2.904  
4.4  
4.4.8a  
4.1  
4.25  
150  
VDDIO = 3.3 V / ADREF = 3.3-V  
mode  
4.4.10 Rvset33  
4.4.11 Rvset53  
4.4.12 Rvset35  
4.4.13 Rvset55  
STAT6 bit[3:0] = 4’b0001  
STAT6 bit[3:0] = 4’b0100  
STAT6 bit[3:0] = 4’b1000  
STAT6 bit[3:0] = 4’b0010  
135  
165  
56.5  
16.5  
5.65  
kΩ  
kΩ  
kΩ  
kΩ  
VDDIO = 5 V / ADREF = 3.3-V  
mode  
46  
51  
15  
VDDIO = 3.3 V / ADREF = 5-V  
mode  
13.5  
VDDIO = 5 V / ADREF = 5-V  
mode  
4.6  
5.1  
4.4.30 Rvsetopen  
4.4.31 Rvsetshort  
4.4.32 Vrvsettjn40  
4.4.33 Vrvsettj25  
4.4.34 Vrvsettj125  
RVSET resistor error detection  
RVSET resistor error detection  
650  
kΩ  
kΩ  
1.4  
1.82  
–40°C TJ, THERMAL_RVSET_EN = 1  
25°C TJ, THERMAL_RVSET_EN = 1  
125°C TJ, THERMAL_RVSET_EN = 1  
1.67 1.745  
1.445 1.535  
1.085 1.195  
RVSET output voltage  
1.625  
1.305  
V
10  
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV3205-Q1  
www.ti.com.cn  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
Electrical Characteristics (continued)  
over operating temperature TJ = –40°C to 150°C and recommended operating conditions, VS = 4.75 V to 40 V(1), ƒPWM < 20  
kHz (unless otherwise noted)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCC3 / VCC5 REGULATORS  
4.4.14 VCC3  
VCC3 regulator output voltage  
VS > 4 V  
VS > 4 V  
3
3.15  
2.85  
3.3  
3
V
V
VCC3 regulator undervoltage  
threshold  
4.4.15 VCC3UV  
2.7  
VCC3 regulator overvoltage  
threshold  
(3)  
4.4.16 VCC3OV  
VS > 4 V  
3.3  
3.45  
5.3  
3.6  
V
4.4.17 VCC5_1  
4.4.18 VCC5_2  
VCC5 regulator output voltage 1 VS > 6 V  
5.15  
4.6  
5.45  
5.45  
V
V
VCC5 regulator output voltage 2 6 V > VS > 4.75 V  
VCC5 regulator undervoltage  
VS > 4.75 V  
4.4.19 VCC5UV  
4.4.20 VCC5OV  
4.3  
4.6  
V
V
threshold  
VCC5 regulator overvoltage  
VS > 4.75 V  
5.45  
5.6  
5.75  
threshold  
5.  
GATE DRIVER  
Gate-source voltage low, high-  
5.1  
5.2  
5.3  
VGS,low  
Active pulldown, Iload = –2 mA  
Vgs 200 mV  
0
0.2  
330  
4
V
side/low-side driver  
RGSp  
Passive gate-source resistance  
110  
220  
2
kΩ  
kΩ  
Semi-active gate-source  
resistance  
RGSsa  
In sleep mode, VGS > 2 V  
Gate driven low by gate driver,  
CURR1, 3 = 01, SPI configurable  
Gate driven low by gate driver(3)  
,
5.3b  
5.3c  
5.3d  
5.3f  
IGSL01  
IGSL00  
IGSL10  
IGSH01  
IGSH00  
IGSH11  
IGSHsd  
TYP × 0.65  
TYP × 0.1  
TYP × 0.65  
TYP × 0.65  
TYP × 0.1  
TYP × 0.65  
2
0.65  
0.15  
1.1  
TYP × 1.35  
TYP × 1.9  
TYP × 1.35  
TYP × 1.35  
TYP × 1.9  
TYP × 1.35  
70  
A
A
Low-side driver pullup/pulldown  
current  
CURR1, 3 = 00, SPI configurable  
Gate driven low by gate driver,  
CURR1, 3 = 11, SPI configurable  
A
Gate driven low by gate driver,  
CURR0, 2 = 01, SPI configurable  
0.65  
0.15  
1.1  
A
High-side driver pullup/pulldown Gate driven low by gate driver(3)  
,
5.3g  
5.3h  
5.3i  
A
current  
CURR0, 2 = 00, SPI configurable  
Gate driven low by gate driver,  
CURR0, 2 = 11, SPI configurable  
A
High-side/low-side driver  
shutdown current  
30  
mA  
5.4  
5.5  
VGS,HS,high  
VGS,LS,high  
High-side output voltage  
Low-side output voltage  
Iload = –2 mA; 4.75 V < VS < 40 V  
Iload = –2 mA  
9
9
13.4  
13.4  
V
V
After ILx/IHx rising edge, Cload = 10 nF,  
CURR1, 3 = 10, VGS = 1 V  
5.27  
tDon  
Propagation on delay time(2)  
Accuracy of dead time  
100  
200  
200  
350  
ns  
5.31  
5.32  
5.32a  
Adt  
If not disabled in CFG1  
–15%  
–5  
15%  
5
IHSxlk_1  
IHSxlk_2  
EN = L, SHSx = 1.5 V, TJ < 125°C  
EN = L, SHSx = 1.5 V, 125°C < TJ < 150°C  
µA  
µA  
Source leak current, total  
leakage current of source pins  
–40  
40  
ILx/IHx falling edge to VGS,LS,high(VGS,HS,high) –  
1 V Ciss = 10 nF, CURR1,3 = 10,  
5.29  
5.30  
tDoff  
Propagation off delay time(2)  
100  
350  
50  
ns  
ns  
Propagation off delay time  
difference(2)  
LSx to LSy and HSx to HSy Cload = 10 nF,  
CURR1,3 = 10, VGS,LS,high(VGS,HS,high) – 1 V  
tDoffdiff  
Difference between propagation For each gate driver in each channel:  
5.30a  
tDon_Doff_diff  
on delay time and propagation  
Cload = 10 nF, CURR1, 3 = 10, VGS = 1 V  
(rising), VGS,LS,high(VGS,HS,high) – 1 V (falling)  
150  
ns  
off delay time(2)  
Propagation off (EN) deglitching  
time(2)  
5.30c  
5.30d  
5.30e  
tENoff  
tSD  
After falling edge on EN  
After falling edge on EN  
After rising edge on DRVOFF  
2.5  
6
12  
24  
10  
µs  
µs  
µs  
Time until gate drivers initiate  
shutdown(2)  
12  
Time until gate drivers initiate  
shutdown(2)  
tSDDRV  
Copyright © 2015–2017, Texas Instruments Incorporated  
11  
DRV3205-Q1  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating temperature TJ = –40°C to 150°C and recommended operating conditions, VS = 4.75 V to 40 V(1), ƒPWM < 20  
kHz (unless otherwise noted)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
6.  
BOOST CONVERTER  
Boost output voltage excluding  
switching ripple and response  
delay.  
6.1  
VBOOST  
VBOOSTOV  
IBOOST  
BOOST-VS voltage  
14  
64  
15  
16.5  
70  
V
V
Boost output voltage overvoltage  
with respect GND  
6.1b  
6.2  
67.5  
External load current including external  
MOSFET gate charge current  
BOOST – VS > VBOOSTUV  
Output current capability  
40  
mA  
BOOST – VS > VBOOSTUV; ensured by  
characterization(4)  
6.3  
1.8  
2.5  
3
ƒBOOST  
Switching frequency  
MHz  
BOOST – VS > VBOOSTUV; VS < 6 V; ensured  
by characterization(4)  
6.31  
6.4  
1.1  
7
3
8
VBOOSTUV  
VBOOSTUV2  
Undervoltage shutdown level  
BOOST-VS voltage  
V
V
Undervoltage condition that  
device may enter RESET state  
6.4a  
BOOST-GND voltage  
10  
Filter time for undervoltage  
detection  
6.5  
6.7  
tBCSD  
5
6
µs  
Voltage at GNDLS_B pin at  
VGNDLS_B,off which boost FET switches off  
because of current limit  
110  
150  
200  
mV  
Delay of the GNDLS_B current  
limit comparator  
6.7a  
6.8  
tSW,off  
Specified by design  
100  
1600  
1.5  
ns  
mA  
Ω
ISW,fail  
Internal second-level current limit GNDLS_B = 0 V  
840  
VS 6  
ISW = VGNDLS_B,off / 0.33 Ω  
6.9  
0.25  
Rdson_BSTfet  
Rdson resistance boost FET  
VS < 6  
ISW= VGNDLS_B,off / 0.33 Ω  
6.9a  
7.  
2
Ω
DIGITAL INPUTS  
All digital inputs NCS, DRVOFF, ILSx, IHSx,  
SDI  
7.1  
INL  
Input low threshold  
VDDIO × 0.3  
0.7  
V
7.1a  
7.1b  
ENH  
ENL  
EN input high threshold  
EN input low threshold  
VS > 4 V  
VS > 4 V  
2.7  
V
V
All digital inputs NCS, DRVOFF, ILSx, IHSx,  
SDI  
7.2  
7.3  
INH  
Input high threshold  
Input hysteresis  
Input hysteresis  
VDDIO × 0.7  
0.3  
V
V
All digital inputs EN, NCS, DRVOFF, ILSx,  
IHSx, SDI, VDDIO = 5 V  
Inhys  
0.4  
All digital inputs EN, NCS, DRVOFF, ILSx,  
IHSx, SDI, VDDIO = 3.3 V  
7.3a  
7.4  
Inhys  
0.2  
0.3  
V
Rpd,EN  
tdeg,ENon  
Input pulldown resistor at EN pin EN  
140  
200  
360  
5
kΩ  
ms  
Power-up time after EN pin high  
7.4a  
ERR = L H  
from sleep mode to active mode  
Input pullup resistance  
7.5  
7.6  
Rpullup  
NCS, DRVOFF  
200  
100  
280  
140  
400  
200  
kΩ  
kΩ  
Rpulldown  
Input pulldown resistance  
ILSx, IHSx, SDI , SCLK Input voltage = 0.1 V  
ILSx, IHSx, SDI, SCLK Input voltage =  
VDDIO  
7.6a  
8.  
Rpulldown  
Input pulldown current  
4
50  
µA  
DIGITAL OUTPUTS  
All digital outputs: SDO, I = ±2 mA; VDDIO in  
functional range(5)  
8.1  
OH1  
OL1  
Output high voltage 1  
VDDIO × 0.9  
V
V
All digital outputs: SDO, I = ±2 mA; VDDIO in  
functional range  
8.2  
Output low voltage 1  
VDDIO × 0.1  
8.3  
8.4  
9.  
OH2  
OL2  
Output high voltage 2  
Output low voltage 2  
ERR I = –0.2 mA; VDDIO in functional range  
ERR I = +0.2 mA; VDDIO in functional range  
VDDIO × 0.9  
0.1  
V
V
VDDIO × 0.1  
2
VDS / VGS / RSHUNT MONITORING  
VSCTH VDS short-circuit threshold range If not disabled in CFG1  
9.1  
V
(4) During startup when BOOST-VS < VBOOSTUV , ƒBOOST is typically 1.25 MHz.  
(5) All digital outputs have a push-pull output stage between VDDIO and ground.  
12  
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV3205-Q1  
www.ti.com.cn  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
Electrical Characteristics (continued)  
over operating temperature TJ = –40°C to 150°C and recommended operating conditions, VS = 4.75 V to 40 V(1), ƒPWM < 20  
kHz (unless otherwise noted)  
POS  
PARAMETER  
TEST CONDITIONS  
0.1-V to 0.5-V threshold setting  
0.6-V to 2-V threshold setting  
MIN  
TYP  
MAX  
UNIT  
–50  
50  
mV  
9.2  
Avds  
Accuracy of VDS monitoring  
–10%  
10%  
Only rising edge of VDS comparators are  
filtered  
9.3  
tVDS  
Detection filter time  
5
µs  
9.4  
Vgserr+_1  
Vgserr–  
tVGS  
VGS error detection 1  
VGS error detection  
Detection filter time  
Detection mask time  
STAT7, IHSx (ILSx) = H  
STAT7, IHSx (ILSx) = L  
CFG6[5:4]  
7
8.5  
2
V
V
9.5  
9.6  
1.0  
2.5  
µs  
µs  
9.6a  
tVGSm  
CFG6[2:0]  
RSHUNT shutdown threshold  
range  
9.7  
9.8  
VSHUNT  
SPI configurable  
75  
540  
mV  
mV  
75-mV to 165-mV setting  
180-mV to 540-mV setting  
–18  
18  
AVSHUNT  
tVSHUNT  
Accuracy of RSHUNT shutdown  
–10%  
10%  
9.9  
Detection filter time  
5
µs  
10.  
THERMAL SHUTDOWN  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
12.  
Tmsd0  
Tmsd1  
Tmsd2  
Thmsd  
tTSD1  
tTSD2  
Thermal recovery  
Specified by characterization  
Specified by characterization  
Specified by characterization  
Specified by characterization  
Specified by characterization  
Specified by characterization  
130  
140  
170  
153  
165  
195  
40  
178  
190  
220  
°C  
°C  
°C  
°C  
µs  
µs  
Thermal warning  
Thermal global reset  
Thermal shutdown×2 hysteresis  
Thermal warning filter time  
Thermal shutdown×2 filter time  
40  
45  
50  
12  
2.5  
6
VS MONITORING  
Overvoltage shutdown level  
Programmable CFG5 mode1, 12-V/24-V  
mode  
12.1  
VVS,OVoff0  
VVS,OVoff1  
VVS, OVon1  
VVS,OVoff2  
VVS, OVon2  
VVS,OVoff3  
VVS, OVon3  
VVS,UVoff  
29  
27.5  
26.5  
32  
38  
30.5  
29.5  
35  
V
V
V
V
V
V
V
V
V
range(6)  
12.1a  
12.1b  
12.1c  
12.1d  
12.1e  
12.1f  
12.2  
Overvoltage shutdown level(6)  
29-V threshold setting  
29  
28  
Recovery level form overvoltage  
shutdown(6)  
Overvoltage shutdown level(6)  
29-V threshold setting  
33-V threshold setting  
33.5  
32.5  
38  
Recovery level form overvoltage  
shutdown(6)  
Overvoltage shutdown level(6)  
33-V threshold setting  
31  
34  
38-V threshold setting  
36.5  
35.5  
4.5  
39.5  
38.5  
4.75  
4.85  
Recovery level form overvoltage  
shutdown(6)  
Undervoltage shutdown level(6)  
38-V threshold setting  
37  
VS is falling from higher voltage than 4.75 V  
Minimum VS for device startup  
Recovery level form  
12.2a  
VVS,UVon  
4.6  
undervoltage shutdown(6)  
Filter time for  
12.3  
tVS,SHD  
overvoltage/undervoltage  
shutdown  
5
6
µs  
(6) Shutdown signifies predriver shutdown, not VCC3/VCC5 regulator shutdown.  
Copyright © 2015–2017, Texas Instruments Incorporated  
13  
 
DRV3205-Q1  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
www.ti.com.cn  
6.6 Serial Peripheral Interface Timing Requirements  
POS  
13  
MIN NOM MAX UNIT  
13.1  
13.2  
13.3  
13.4  
13.5  
13.6  
13.7  
13.8  
13.9  
ƒSPI  
tSPI  
thigh  
tlow  
tsucs  
td1  
SPI clock (SCLK) frequency  
SPI clock period(2)  
High time: SCLK logic high duration(2)  
Low time: SCLK logic low duration(2)  
Setup time NCS: time between falling edge of NCS and rising edge of SCLK(2)  
Delay time: time delay from falling edge of NCS to data valid at SDO(2)  
Setup time at SDI: setup time of SDI before the rising edge of SCLK(2)  
Delay time: time delay from falling edge of SCLK to data valid at SDO(2)  
Hold time: time between the falling edge of SCLK and rising edge of NCS(2)  
SPI transfer inactive time (time between two transfers)(2)  
Tri-state delay time: time between rising edge of NCS and SDO in tri-state(2)  
4(1)  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
250  
90  
90  
tSPI / 2  
60  
60  
tsusi  
td2  
30  
0
thcs  
45  
13.10 thlcs  
13.11 ttri  
250  
30  
(1) The maximum SPI clock tolerance is ±10%.  
(2) Ensured by characterization.  
NCS  
thcs  
thlcs  
tsucs  
SCLK  
tsucs  
thigh  
tlow  
SDI  
tsusi  
tsusi  
SDO  
td1  
td2  
ttri  
td1  
Figure 1. SPI Timing Parameters  
14  
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV3205-Q1  
www.ti.com.cn  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
6.7 Typical Characteristics  
45  
20  
19.5  
19  
VS = 36 V  
VS = 14 V  
VS = 4.75 V  
VS = 36 V  
VS = 14 V  
VS = 4.75 V  
40  
35  
30  
25  
20  
15  
10  
5
18.5  
18  
17.5  
17  
0
16.5  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
D001  
D002  
Figure 2. VS Quiescent Current Shutdown  
Figure 3. VS Quiescent Current Shutdown  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
LS On Time  
HS On Time  
LS Off Time  
HS Off Time  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (èC)  
Temperature (èC)  
D005  
D006  
Figure 4. Propagation Delay On Time vs Temperature  
Figure 5. Propagation Delay Off Time vs Temperature  
Copyright © 2015–2017, Texas Instruments Incorporated  
15  
DRV3205-Q1  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DRV3205-Q1 is designed to control 3-phase brushless DC motors in automotive applications using pulse-  
width modulation. Three high-side and three low-side gate drivers can be switched individually with low  
propagation delay. The input logic prevents simultaneous activation of the high-side and low-side driver of the  
same channel. A configuration and status register can be accessed through a SPI communication interface.  
7.2 Functional Block Diagram  
Battery voltage  
5  
22 µH  
1 F  
Controller  
GNDLS_B  
330 mꢀ  
6x VDS Monitor  
VSH  
+
Safety and Diagnostic  
- Overtemperature  
- Overvoltage, Undervoltage  
- Watch dog  
œ
- Clock Monitoring  
- Overtemperature Detection  
- Short Circuit  
- Shoot-through Protection  
- VDS/VGS Monitoring  
- Dead Time Control  
3 Phase Gate Driver  
3 × PowerStage  
ERR  
GHSx(1) R  
VDDIO  
ADREF  
gate  
SHSx(1)  
Level  
shift  
BLDC  
Motor  
VDDIO  
RVSET  
EN  
NCS  
SCLK  
SDI  
GLSx(1)  
SLSx(1)  
Rgate  
Control Logic  
- Program Gate Current  
- Program Gain  
- Sleep Mode Control  
SDO  
IHSx, ILSx  
DRVOFF  
Power Supply  
3x Current Shunt  
RO  
IPy(2)  
Bridge Driver  
Reference and Bias  
Digital  
+
+
VCC5  
VCC3  
Bandgap,  
Bias, Oscillator  
œ
œ
INy(2)  
1 F  
0.1 F  
Clamp  
Safety Relevant  
Copyright © 2016, Texas Instruments Incorporated  
(1) x = 1, 2, 3  
(2) y = 1, 2, 3  
(3) An external reference voltage (VCC5 or VCC3) cannot be used for ADREF voltage.  
16  
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV3205-Q1  
www.ti.com.cn  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
7.3 Programming  
7.3.1 SPI  
The SPI slave interface is used for serial communication with the external SPI master (external MCU). The SPI  
communication starts with the NCS falling edge and ends with NCS rising edge. The NCS high level keeps the  
SPI slave interface in reset state, and the SDO output in tri-state.  
7.3.1.1 Address Mode Transfer  
The address mode transfer is an 8-bit protocol. Both SPI slave and SPI master transmit the MSB first.  
1
2
3
4
5
6
7
8
NCS  
SCLK  
SDI  
R7  
D7  
R6  
D6  
R5  
D5  
R4  
D4  
R3  
D3  
R2  
D2  
R1  
D1  
R0  
D0  
X
X
SDO  
NOTE: SPI master (MCU) and SPI slave (DRV3205-Q1) sample received data on the !~ falling!~rising SCLK edge and  
transmit on the !~ rising!~falling SCLK edge.  
Figure 6. Single 8-Bit SPI Frame/Transfer  
After the NCS falling edge, the first word of 7 bits are address bits followed by the RW bit. During first address  
transfer, the device returns the STAT1 register on SDO.  
Each complete 8-bit frame will be processed. If NCS goes high before a multiple of 8 bits is transferred, the bits  
are ignored.  
7.3.1.1.1 SPI Address Transfer Phase  
Figure 7. SPI Address Transfer Phase Bits  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Function  
ADDR6  
ADDR5  
ADDR4  
ADDR3  
ADDR2  
ADDR1  
ADDR0  
RW  
ADDR [6:0] Register address  
RW Read and write access  
RW = 0: Read access. The SPI master performs a read access to selected register. During  
following SPI transfer, the device returns the requested register read value on SDO, and  
device interprets SDI bits as a next address transfer.  
RW = 1: Write access. The master performs a write access on the selected register. The  
slave updates the register value during next SPI transfer (if followed immediately) and  
returns the current register value on SDO.  
Copyright © 2015–2017, Texas Instruments Incorporated  
17  
DRV3205-Q1  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
www.ti.com.cn  
7.3.1.2 SPI Data Transfer Phase  
Figure 8. SPI Data Transfer Phase Bits  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Function  
DATA7  
DATA6  
DATA5  
DATA4  
ADDR3  
DATA2  
DATA1  
DATA0  
DATA [7:0] Data value for write access (8-Bit).  
Figure 8 shows data value encoding scheme during a write access. Mixing the two access  
modes (write and read access) during one SPI communication sequence (NCS = 0) is  
possible. The SPI communication can be terminated after single 8-bit SPI transfer by  
asserting NCS = 1. Device returns STAT1 register (for the very first SPI transfer after power-  
up) or current register value that was addressed during SPI Transfer Address Phase.  
7.3.1.3 Device Data Response  
Figure 9. Device Data Response Bits  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Function  
REG7  
REG6  
REG5  
REG4  
REG3  
REG2  
REG1  
REG0  
REG [7:0] Internal register value. All unused bits are set to 0.  
Figure 10 shows a complete 16-bit SPI frame. Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, and  
Figure 16 show the frame examples.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
NCS  
SCLK  
SDI  
R7  
D7  
R6  
D6  
R5  
D5  
R4  
D4  
R3  
D3  
R2  
D2  
R1  
D1  
R0  
D0  
R7  
D7  
R6  
D6  
R5  
D5  
R4  
D4  
R3  
D3  
R2  
D2  
R1  
D1  
R0  
D0  
X
X
SDO  
8-bit SPI Transfer  
8-bit SPI Transfer  
16-bit SPI Frame  
SPI Master (MCU) and SPI slave (DRV32!~ 20!~05-Q1) sample received data on the rising SCLK edge, and transmit  
data on the falling SCLK edge  
Figure 10. 16-Bit SPI Frame  
NCS  
ADDR1, RW = 1 (WR)  
1st Transfer  
WR DATA1  
2nd Transfer  
ADDR2, RW = 0 (RD)  
3rd Transfer  
SDI  
Zero Vector  
SDO  
Status Flags  
Response to Transfer 1  
Status Flags  
Response to Transfer 3  
Figure 11. Write Access Followed by Read Access  
NCS  
SDI  
ADDR1, RW = 0 (RD)  
1st Transfer  
ADDR2, RW = 0 (RD)  
—Zero Vector“  
Zero Vector  
3rd Transfer  
Status Flags  
Response to Transfer 1  
Status Flags  
Response to Transfer 3  
SDO  
Figure 12. Read Access Followed by Read Access  
18  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
 
 
DRV3205-Q1  
www.ti.com.cn  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
NCS  
SDI  
ADDR1, RW = 1 (WR)  
1st Transfer  
WR DATA1  
2nd Transfer  
ADDR2, RW = 1 (WR)  
3rd Transfer  
WR DATA2  
4th Transfer  
SDO  
Status Flags  
Response to Transfer 1  
Status Flags  
Response to Transfer 3  
Figure 13. Write Access Followed by Write Access  
NCS  
SDI  
ADDR1, RW = 0 (RD)  
1st Transfer  
ADDR2, RW = 1 (WR)  
2nd Transfer  
WR DATA2  
3rd Transfer  
Zero Vector  
Status Flags  
Status Flags  
Response to Transfer 1  
Response to Transfer 2  
SDO  
Figure 14. Read Access Followed by Write Access  
NCS  
SDI  
ADDR1, RW = 0 (RD)  
1st Transfer  
ADDR2, RW = 0 (RD)  
2nd Transfer  
ADDR3, RW = 1 (WR)  
3rd Transfer  
WR DATA3  
4th Transfer  
SDO  
Status Flags  
Response to Transfer 1  
Response to Transfer 2  
Response to Transfer 3  
Figure 15. Read Access Followed by Read Access Followed by Write Access  
NCS  
SDI  
ADDR1, RW = 0 (RD)  
1st Transfer  
ADDR2, RW = 0 (RD)  
2nd Transfer  
ADDR3, RW = 0 (RD)  
3rd Transfer  
Zero Vector  
SDO  
Status Flags  
Response to Transfer 1  
Response to Transfer 2  
Response to Transfer 3  
Figure 16. Read Access Followed by Read Access Followed by Read Access  
Copyright © 2015–2017, Texas Instruments Incorporated  
19  
DRV3205-Q1  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
www.ti.com.cn  
7.4 Register Maps  
Table 1. Register Address Map  
Reset Event(2)  
(bit wide exception)  
Reset  
Value  
CRC  
Check  
Address Name  
Access State(1)  
W/R : D,  
A([6:3])  
0×01  
Configuration register 0 (CFG0)  
8'h3F  
Yes  
RST1-4  
R : A(7,[2:0], SF  
W/R: D  
R: A, SF  
0×02  
0×03  
0×04  
0×05  
0×06  
0×07  
0×08  
0×09  
Configuration register 1 (CFG1)  
8'h3F  
8'h00  
8'h00  
8'h00  
8'h00  
8'h00  
8'hC0  
8'h80  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
RST1-4  
RST1-4  
RST1-4  
RST1-4  
RST1-4  
RST1-4  
RST1  
W/R: D  
R: A, SF  
Configuration register 2 (CFG2)  
W/R: D  
R: A, SF  
HS 1/2/3 drive register (CURR0) ON  
LS 1/2/3 drive register (CURR1) ON  
HS 1/2/3 drive register (CURR2) OFF  
LS 1/2/3 drive register (CURR3) OFF  
Safety/error configuration register (SECR1)  
Safety function configuration register (SFCR1)  
W/R: D  
R: A, SF  
W/R: D  
R: A, SF  
W/R: D  
R: A, SF  
W/R: D  
R: A, SF  
W/R: D  
R: A, SF  
RST1-3  
0×0A  
0×0B  
0×0C  
0×0D  
0×0E  
Status register 0 (STAT0)  
Status register 1 (STAT1)  
Status register 2 (STAT2)  
Status register 3 (STAT3)  
Status register 4 (STAT4)  
8'h00  
8'h80  
8'h00  
8'h03  
8'h00  
No  
No  
No  
No  
No  
R: D, A, SF  
R: D, A, SF  
R: D, A, SF  
R: D, A, SF  
R: D, A, SF  
RST1-4  
RST1-3  
RST1-3  
RST1-3  
RST1-3  
RST1-3  
(Bit[4]:RST1)  
0×0F  
Status register 5 (STAT5)  
8'h03  
No  
R: D, A, SF  
0×10  
0×11  
Status register 6 (STAT6)  
Status register 7 (STAT7)  
8'h00  
8'h00  
No  
No  
R: D, A, SF  
R: D, A, SF  
RST1-3  
RST1-4  
RST1-4  
(Bit[0]:RST1)  
0×12  
0×13  
Status register 8 (STAT8)  
8'h00  
8'h00  
No  
No  
R: D, A, SF  
R: D, A, SF  
RST1-3  
(Bit[3:1]:RST1)  
Safety error status (SAFETY_ERR_STAT)  
0×14  
0×15  
0×16  
0×1E  
0×1F  
Status register 9 (STAT9)  
Reserved1  
8'h00  
8'h00  
8'h00  
8'h00  
8'hFF  
No  
No  
No  
No  
No  
R: D, A, SF  
W/R: D, A, SF  
W/R: D, A, SF  
W/R: D, A, SF  
R: D, A, SF  
RST1-3  
RST1-3  
RST1-3  
RST1-3  
RST1-3  
Reserved2  
SPI transfer write CRC register (SPIWR_CRC)  
SPI transfer read CRC register (SPIRD_CRC)  
W/R: D  
R: A, SF  
0×20  
0×21  
0×22  
SAFETY_CHECK_CTRL register ( SFCC1)  
CRC control register (CRCCTL)  
CRC calculated (CRCCALC)  
8'h01  
8'h00  
N/A  
No  
No  
No  
RST1-3  
RST1-3  
RST1-3  
W/R: D, A  
R: SF  
W/R: D  
R: A, SF  
0×23  
0×24  
Reserved 3  
8'h00  
8'h00  
No  
No  
W/R: D, A, SF  
R: D, A, SF  
RST1-3  
RST1-3  
HS/LS read back (RB0)  
W/R: D, A  
R: SF  
0×25  
HS/LS count control (RB1)  
8'h00  
No  
RST1-4  
(1) W/R: Write and Read access possible, W: Write access possible, R: Read access possible  
D: DIAGNOSITC STATE, A: ACTIVE STATE, SF: SAFE STATE, SY: STANDBY STATE, R: RESET  
(2) RST1: Power up, RST2: System clock error detected by clock monitor RST3: VCC3 UV/OV or from other state to RESET, RST4: LBIST  
20  
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV3205-Q1  
www.ti.com.cn  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
Register Maps (continued)  
Table 1. Register Address Map (continued)  
Reset Event(2)  
(bit wide exception)  
Reset  
Value  
CRC  
Check  
Address Name  
Access State(1)  
0×26  
0×27  
HS/LS count (RB2)  
8'h00  
8'hAB  
No  
R: D, A, SF  
RST1-4  
W/R: D  
R: A, SF  
Configuration register 3 (CFG3)  
Yes  
RST1-4  
W/R: D  
R: A, SF  
0×28  
0×29  
0×2A  
0×2B  
0×2C  
0×2D  
Configuration register 4 (CFG4)  
Configuration register 5 (CFG5)  
CSM unlock (CSM_UNLOCK1)  
CSM unlock (CSM_UNLOCK2)  
RO configuration register 2 (RO_CFG)  
8'h00  
8'hAB  
8'h00  
8'h3F  
8'h00  
8'h00  
Yes  
Yes  
No  
RST1-4  
RST1-3  
RST1-4  
RST1-4  
RST1-4  
RST1-3  
W/R: D  
R: A, SF  
W/R: D  
R: A, SF  
W/R: D  
R: A, SF  
No  
W/R: D  
R: A, SF  
Yes  
Yes  
W/R: D  
R: SF, A  
Safety BIST control register 1  
(SAFETY_BIST_CTL1)  
0×2E  
0×2F  
SPI test register (SPI_TEST)  
Reserved4  
8'h00  
8'h00  
No  
No  
W/R: D, A, SF  
W/R: D, A, SF  
RST1-4  
RST1-3  
W/R: D  
R: SF, A  
RST1-3  
(Bit[5]:RST1)  
Safety BIST control register 2  
(SAFETY_BIST_CTL2)  
0×30  
0×31  
0×32  
0×33  
0×34  
8'h00  
8'h02  
8'h08  
8'h04  
8'h40  
Yes  
Yes  
Yes  
Yes  
No  
W/R: D  
R: SF, A  
Watch dog timer configuration register  
(WDT_WIN1_CFG)  
RST1-4  
RST1-4  
RST1  
W/R: D  
R: SF, A  
Watch dog timer configuration register  
(WDT_WIN2_CFG)  
W/R: D  
R: SF, A  
Watch dog timer TOKEN register  
(WDT_TOKEN_FDBCK)  
Watch dog timer TOKEN register  
(WDT_TOKEN_VALUE)  
R: D, SF, A  
RST1-4  
Watch dog timer ANSWER register  
(WDT_ANSWER)  
0×35  
0×36  
0×37  
8'h00  
8'hC0  
8'hEC  
No  
No  
W/R: D, A, SF  
R: D, A, SG  
RST1-4  
RST1-4  
RST1-4  
Watch dog timer status register (WDT_STATUS)  
W/R: D  
R: SF, A  
Watch dog failure detection configuration register  
(WD_FAIL_CFG)  
Yes  
W/R: D  
R: A, SF  
0×38  
0×39  
0×3A  
0×3B  
Configuration register 6 (CFG6)  
Configuration register 7 (CFG7)  
Configuration register 8 (CFG8)  
Configuration register 9 (CFG9)  
8'h10  
8'h13  
8'h20  
8'hFE  
Yes  
Yes  
Yes  
Yes  
RST1-4  
RST1-4  
RST1-4  
RST1-4  
W/R : D  
R : A, SF  
W/R : D  
R : A, SF  
W/R : D  
R : A, SF  
Copyright © 2015–2017, Texas Instruments Incorporated  
21  
DRV3205-Q1  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV3205-Q1 is a predriver for automotive applications featuring three-phase brushless DC-motor control.  
Because this device has a boost regulator for charging high-side gates, it can handle gate charges of 250 nC. A  
boost converter allows full control on the power-stages even for a low battery voltage down to 4.75 V.  
8.2 Typical Application  
8.2.1 Three-Phase Motor Drive-Device for Automotive Application  
VBAT  
1 F  
5 ꢀ  
22 µH  
10 µF  
0.1 F  
0.1 F  
I/O  
Supply ADC REF  
10 ꢀ  
VBAT  
VBAT  
VBAT  
MCU  
V
CC  
2.2 mF  
2.2 mF  
2.2 mF  
R
GATE  
R
GATE  
R
GATE  
Power  
GHS1  
GLS1  
GHS2  
GLS2  
GHS3  
GLS3  
ILS1  
ILS2  
ILS3  
IHS1  
IHS2  
IHS3  
NCS  
SCLK  
SDI  
GLS3  
SLS3  
GHS3  
SHS3  
GLS2  
SLS2  
GHS2  
SHS2  
GLS1  
SLS1  
GHS1  
GLS3  
SHS1  
SHS2  
SHS3  
SLS3  
GHS3  
SHS3  
GLS2  
SLS2  
GHS2  
SHS2  
GLS1  
SLS1  
GHS1  
SHS1  
PowerPADTM (GND)(1)  
DRV3205-Q1  
PWM  
R
GATE  
R
GATE  
R
GATE  
SLS1  
IP1  
SLS2  
IP2  
GLS3  
IP3  
SPI  
SDO  
EN  
ERR  
IN1  
IN2  
IN3  
SHS1  
GPIO  
1 F  
ADC  
330 mꢀ  
100 pF  
0.1 F  
Copyright © 2016, Texas Instruments Incorporated  
(1) This schematic of the DRV3205-Q1 48-pin HTQFP does not provide a true representation of physical pin locations.  
(2) Use same supply from the TPS6538x as the supply used for the MCU IO.  
(3) Resistor not required for reverse protected battery.  
(4) L1 = B82442A1223K000 INDUCTOR, SMT, 22 uH, 10%, 480 mA). The maximum inductor current must be more than  
VGNDLS_B / 330 mΩ.  
(5) D1 = SS28 (DIODE, SMT, SCHOTTKY, 80 V, 2 A). A fast recovery diode is recommended.  
(6) QxHS, QxLS = IRFS3004PBF (HEXFET, N-CHANNEL, POWER MOSFET, D2PACK)  
(7) Rshunt1 and Rshunt2 = BVR-Z-R0005 (RES, SMT, 4026, PRECISION POWER, 0.0005 Ω, 1%, 5 W)  
(8) Rgate = Must be adjust based on system requirement such as EMI, Slew rate, and power  
Figure 17. Typical Application Diagram  
8.3 System Example  
Figure 18 shows a typical system example for an electric power-steering system.  
22  
Copyright © 2015–2017, Texas Instruments Incorporated  
DRV3205-Q1  
www.ti.com.cn  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
FR  
Flexray  
CAN  
CAN  
IGN  
VBAT  
BOOST  
CAN  
Supply  
CAN  
FR  
OUT  
OUT  
EN  
EN  
WakeUp  
Relay Driver  
VBAT  
Voltage  
Monitoring  
µC IO  
Supply  
Preregulator  
KL30  
NHET  
Charge  
Pump  
µC Core  
Supply  
3 × PowerStage  
VSH  
- Input Capture  
- Input Capture  
Vds  
Mon  
Bandgap  
Ref 2  
GHSx  
SHSx  
SPR  
Motor  
Protected  
Sensor  
Supply  
Switch  
- PWM  
Bridge  
Driver  
Voltage  
Monitoring  
3 × IHSx  
3 × ILSx  
GLSx  
SLSx  
Sensors  
WD  
OFF  
Reset and  
Enable  
nRESET  
nERROR  
SPI  
x = [1..3]  
ADC1  
ADC2  
µC ERROR  
Monitor  
Current Sense  
3 channels  
3x  
Q&A  
Watchdog  
Diagnose  
and Config  
SPI  
SPI  
Error Monitoring:  
- VDS Monitoring  
- Shoot-through  
- Voltage Monitoring on  
VBAT, VBOOST, and  
internal supplies.  
- Temperature Warning  
- And so forth  
Tj Over  
Temp  
shutdown  
Ta/Tj Over  
Temp  
shutdown  
Bridge Error  
Monitoring  
Diagnose  
and Config  
INT  
TPS6538x-Q1  
TMS570  
DRV3205  
Analog Sensor Signal  
Digital Sensor Signal  
Power Supply  
Bridge Driver  
Networks  
Safety Diagnostics  
Copyright © 2016, Texas Instruments Incorporated  
Figure 18. Typical System – Electrical Power Steering Example  
Copyright © 2015–2017, Texas Instruments Incorporated  
23  
DRV3205-Q1  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
www.ti.com.cn  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range of 4.75 V to 40 V. The protection circuit  
must be placed for protection against reverse supply connection.  
10 Layout  
10.1 Layout Guidelines  
Use the following guidelines when designing a PCB for the DRV3205-Q1:  
In addition to the GND pins, the DRV3205-Q1 makes an electrical connection to GND through the  
PowerPAD. Always check that the PowerPAD has been properly soldered (see PowerPAD™ Thermally  
Enhanced Package [SLMA002]).  
The VS bypass capacitors should be placed close to the power supply terminals. See the VS box in Figure 19  
Place the VCC5 and VCC5 bypass capacitors close to the corresponding pins with a low impedance path to  
the ground plane pin (pin 16). See the VCC3 VCC5 bypass box in Figure 19.  
AGND should all be tied to the ground plane through a low impedance trace or copper fill.  
Add stitching vias to reduce the impedance of the GND path from the top to bottom side.  
Try to clear the space around and below the DRV3205-Q1 to allow for better heat spreading from the  
PowerPAD.  
Route the sense lines, IPx and INx, each with a unique trace, directly to either side of the sense resistor. See  
the SENSE box in Figure 19.  
Keep the BOOST components close to the device and current loops small. See the BOOST boxes in  
Figure 19.  
Place the current sense resistors close to the respective low-side FET. See the SENSE box in Figure 19.  
Place the GNDLS_B resistor close to the device pin. See the GNDLS_B box in Figure 19.  
10.2 Layout Example  
BOOST  
Bypass  
SENSE  
SENSE  
SENSE  
BOOST  
L
BOOST  
D
VS  
VCC3  
VCC5  
Bypass  
Figure 19. Layout Schematic  
24  
版权 © 2015–2017, Texas Instruments Incorporated  
 
DRV3205-Q1  
www.ti.com.cn  
ZHCSFI6E SEPTEMBER 2015REVISED FEBRUARY 2017  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
相关文档请参阅以下部分:  
24V 汽车 系统 中的 DRV3205-Q1 应用》  
DRV3205-Q1 评估模块用户指南》  
DRV3205-Q1 源引脚上的负电压应力》  
DRV3205-Q1 安全手册》  
《采用 DRV3205-Q1 的电动助力转向设计指南》  
PowerPAD™ 散热增强型封装》  
《保护汽车电机驱动系统免受反极性情况的影响》  
《用于 DRV3205-Q1 的看门狗计时器配置问答》  
《用于安全相关应用中的微控制器的 TPS653850-Q1 多轨 电源》  
《用于安全相关应用中的微控制器的 TPS653853-Q1 多轨 电源》  
11.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015–2017, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV3205QPHPRQ1  
ACTIVE  
HTQFP  
PHP  
48  
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
DRV32205Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV3205QPHPRQ1  
HTQFP  
PHP  
48  
1000  
330.0  
16.4  
9.6  
9.6  
1.5  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTQFP PHP 48  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
DRV3205QPHPRQ1  
1000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
PHP 48  
7 x 7, 0.5 mm pitch  
TQFP - 1.2 mm max height  
QUAD FLATPACK  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226443/A  
www.ti.com  
PACKAGE OUTLINE  
PHP0048G  
PowerPADTM HTQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
7.2  
6.8  
B
NOTE 3  
37  
48  
PIN 1 ID  
1
36  
7.2  
6.8  
9.2  
TYP  
8.8  
NOTE 3  
12  
25  
13  
24  
A
0.27  
48X  
44X 0.5  
0.17  
0.08  
C A B  
4X 5.5  
1.2 MAX  
C
SEATING PLANE  
SEE DETAIL A  
0.08  
(0.13)  
TYP  
13  
24  
12  
25  
0.25  
(1)  
GAGE PLANE  
5.17  
3.89  
49  
0.75  
0.45  
0.15  
0.05  
0 -7  
A
16  
36  
DETAIL A  
TYPICAL  
1
48  
37  
5.17  
3.89  
4X (0.109) NOTE 5  
4225861/A 4/2020  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MS-026.  
5. Feature may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PHP0048G  
PowerPADTM HTQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
6.5)  
NOTE 10  
(5.17)  
SYMM  
48  
37  
SOLDER MASK  
DEFINED PAD  
48X (1.6)  
1
36  
48X (0.3)  
SYMM  
49  
(5.17)  
(1.1 TYP)  
(8.5)  
44X (0.5)  
12  
25  
(R0.05) TYP  
(
0.2) TYP  
VIA  
METAL COVERED  
BY SOLDER MASK  
13  
24  
(1.1 TYP)  
SEE DETAILS  
(8.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4225861/A 4/2020  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package,  
Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
10. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PHP0048G  
PowerPADTM HTQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(5.17)  
BASED ON  
0.125 THICK STENCIL  
SEE TABLE FOR  
SYMM  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
48  
37  
48X (1.6)  
1
36  
48X (0.3)  
(8.5)  
(5.17)  
SYMM  
49  
BASED ON  
0.125 THICK  
STENCIL  
44X (0.5)  
12  
25  
(R0.05) TYP  
METAL COVERED  
BY SOLDER MASK  
24  
13  
(8.5)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
5.78 X 5.78  
5.17 X 5.17 (SHOWN)  
4.72 X 4.72  
0.125  
0.150  
0.175  
4.37 X 4.37  
4225861/A 4/2020  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DRV3205QPHPRQ1

具有电流分流放大器和增强保护功能的汽车类 12V 和 24V 电池三相栅极驱动器 | PHP | 48 | -40 to 125
TI

DRV3220-Q1

具有增强保护功能的汽车类 12V 和 24V 电池三相栅极驱动器
TI

DRV3220QPHPRQ1

具有增强保护功能的汽车类 12V 和 24V 电池三相栅极驱动器 | PHP | 48 | -40 to 125
TI

DRV3245AEPHPRQ1

具有精确电流感应和增强保护功能的汽车 0 级 12V 电池三相栅极驱动器单元 | PHP | 48 | -40 to 150
TI

DRV3245AQPHPRQ1

具有精确电流感应和增强保护功能的汽车 1 级 12V 电池三相栅极驱动器单元 | PHP | 48 | -40 to 125
TI

DRV3245BEPHPRQ1

具有精确电流感应和增强保护功能的汽车 0 级 12V 电池三相栅极驱动器单元 | PHP | 48 | -40 to 150
TI

DRV3245BQPHPRQ1

具有精确电流感应和增强保护功能的汽车 1 级 12V 电池三相栅极驱动器单元 | PHP | 48 | -40 to 125
TI

DRV3245CQPHPRQ1

具有精确电流感应和增强保护功能的汽车 1 级 12V 电池三相栅极驱动器单元 | PHP | 48 | -40 to 125
TI

DRV3245E-Q1

具有精确电流感应和增强保护功能的汽车 0 级 12V 电池三相栅极驱动器单元
TI

DRV3245Q-Q1

具有精确电流感应和增强保护功能的汽车 1 级 12V 电池三相栅极驱动器单元
TI

DRV3245SQPHPRQ1

具有精确电流感应和增强保护功能的汽车 1 级 12V 电池三相栅极驱动器单元 | PHP | 48 | -40 to 150
TI

DRV3255-Q1

具有 4.5A 栅极驱动峰值灌电流的集成式三相 48V 汽车栅极驱动器单元 (GDU)
TI