DLPC120ZXSRQ1 [TI]

适用于 DLP3030-Q1 芯片组的汽车类 DLP® 数字微镜器件控制器 | ZXS | 216 | -40 to 105;
DLPC120ZXSRQ1
型号: DLPC120ZXSRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 DLP3030-Q1 芯片组的汽车类 DLP® 数字微镜器件控制器 | ZXS | 216 | -40 to 105

控制器
文件: 总39页 (文件大小:1662K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
DLPC120-Q1 DMD 控制器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
– 温度等240°C 105°C环境温度)  
• 与三DMD 器件兼容:  
DLP3030-Q10.3 WVGA S450  
DLP3020-Q10.3 WVGA S247  
DLP3021-Q10.3 WVGA S247  
• 视频输入接口:  
DLPC120-Q1 适用于汽车应用的 DMD 显示控制器是  
与三个数字微镜器件 (DMD) 之一DLP3030-Q1、  
DLP3020-Q1 DLP3021-Q1兼容的芯片组的一部  
分。DLPC120-Q1 的核心逻辑负责接受视频输入并对  
数据进行格式化以便在 DMD 显示时还控制  
RGB LED 来形成实时图像。DLPC120-Q1 还负责根据  
外部系统控制或 DMD 温度输入来控制 DMD 的上电和  
断电事件。通过与外部调光电路和微控制器结合,  
DLPC120-Q1 支持的宽调光范围 > 5000:1适合于  
HUD 应用。通常情况下DLPC120-Q1 是主机处理器  
I2C 接口的外围器件。  
24 位并行RGB888RGB666 RGB565)  
60Hz 帧速率  
QVGA WVGA 的输入分辨率  
– 像素时钟高40MHz  
• 视频处理:  
– 图像缩放  
器件信息  
器件型号(1)  
封装尺寸标称值)  
封装  
– 可编程去伽玛曲线  
– 边框调整  
– 水平和垂直图像翻转  
DMD 接口:  
DLPC120-Q1  
NFBGA (216)  
17.00mm × 17.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
78MHz DDR DMD 接口  
– 一致DMD 数据加载和复位控制过热工作范围  
– 断电时自动停DMD  
DMD 温度管理  
Color & Dimming control  
Flash  
SPI  
I2C  
• 外部存储器支持  
TMS320  
F28023  
Color  
LEDs  
Controller  
& Driver  
Host  
SPI  
DLPC120-Q1  
DDR2312MHz 时钟624MHz 数据速率)  
– 串行闪39MHz 时钟  
• 系统控制  
Illumination  
Control  
& Feedback  
Video  
Processing &  
DMD  
real-time  
optical  
24-bit RGB  
& Syncs  
Formatting  
feedback  
loop  
I2C 通讯接口  
– 可编程启动界面  
DMD 电源和复位驱动器控制  
– 基于闪存的可编程配置  
• 测试支持  
photo diode  
LED Enable  
Timing Control  
Data & Control  
DLP3030-Q1  
Reset  
.3" WLP(H) s450  
DVSP DMD  
Power Good  
I2C  
TMP411  
-Q1  
Data &  
Address  
DMD Power  
– 内置测试图形发生器  
JTAG支持边界扫描  
• 采216 1.0mm BGA 封装  
DDR-2 DRAM  
frame buffer  
TPS65100  
-Q1  
Power Enable  
2 应用  
典型系统图  
宽视场和增强现实抬头显(HUD)  
• 车内投影显示和照明  
数字仪表组、导航和信息娱乐系统挡风玻璃显示  
汽车小灯  
• 动态地面投影  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: DLPS096  
 
 
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
Table of Contents  
6.13 JTAG Interface Timing Requirements ....................19  
6.14 I2C Interface Timing Requirements ........................20  
7 Parameter Measurement Information..........................21  
7.1 Parallel Interface Input Source Timing......................21  
7.2 Design for Test Functions......................................... 21  
8 Detailed Description......................................................22  
8.1 Overview...................................................................22  
8.2 Functional Block Diagram.........................................22  
8.3 Feature Description...................................................23  
8.4 Device Functional Modes..........................................26  
9 Application and Implementation..................................26  
9.1 Application Information............................................. 26  
9.2 Typical Application.................................................... 27  
10 Power Supply Recommendations..............................29  
10.1 Power Supply Filtering............................................29  
11 Layout...........................................................................30  
11.1 Layout Guidelines................................................... 30  
12 Device and Documentation Support..........................33  
12.1 第三方产品免责声明................................................33  
12.2 Device Support....................................................... 33  
12.3 Documentation Support.......................................... 34  
12.4 接收文档更新通知................................................... 34  
12.5 支持资源..................................................................34  
12.6 Trademarks.............................................................34  
12.7 Electrostatic Discharge Caution..............................34  
12.8 术语表..................................................................... 34  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
5.1 LED Driver Interface................................................... 5  
5.2 DMD Temperature Interface........................................5  
General Purpose I/O.........................................................6  
5.3 Main Video and Data Control Interface.......................6  
5.4 DMD Interface.............................................................7  
5.5 Memory Interface........................................................8  
Board Level Test and Debug.............................................9  
Manufacturing Test Support..............................................9  
Test Point Interface........................................................... 9  
Power and Ground..........................................................10  
6 Specifications................................................................ 12  
6.1 Absolute Maximum Ratings...................................... 12  
6.2 ESD Ratings............................................................. 12  
6.3 Recommended Operating Conditions.......................12  
6.4 Thermal Information..................................................12  
6.5 Electrical Characteristics...........................................13  
6.6 Electrical Characteristics for I/O ...............................13  
6.7 Power Supply and Reset Timing Requirements....... 13  
6.8 Reference Clock PLL Timing Requirements.............15  
6.9 Parallel Interface General Timing Requirements...... 16  
6.10 Parallel Interface Frame Timing Requirements ......16  
6.11 Flash Memory Interface Timing Requirements ...... 17  
6.12 DMD Interface Timing Requirements .....................18  
Information.................................................................... 35  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (March 2018) to Revision B (April 2022)  
Page  
• 添加DLP3020-Q1 DLP3021-Q1 作为支持的器件删除DLP3000-Q1..................................................... 1  
• 包括数字仪表组、导航和信息娱乐挡风玻璃显示、汽车小灯和动态地面投影应用。.......................................... 1  
• 根据最新的德州仪(TI) 和行业数据表标准对本文档进行了更新。...................................................................1  
• 将封装尺寸16mm × 16mm 更新17mm × 17mm并添加DLP3020-Q1 DLP3021-Q1 器件作为支持  
的器件删除DLP3000...................................................................................................................................... 1  
This document is updated per the latest Texas Instruments and industry inclusive terminologies. All  
occurrences of MISO are now POCI; all occurrences of MOSI are now PICO.................................................. 3  
Updated LED Driver Interface ............................................................................................................................5  
Updated Design Requirements ........................................................................................................................27  
Updated General PCB Recommendations ......................................................................................................31  
Changes from Revision * (November 2017) to Revision A (March 2018)  
Page  
• 将器件状态从预告信更改为量产数.............................................................................................................1  
Changed case-to-junction thermal coefficient from 0.77°C/W : to 0.28°C/W in Thermal Information table......12  
Updated Temperature Monitor Function .......................................................................................................... 25  
Updated Application Information ......................................................................................................................26  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DLPC120-Q1  
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
5-1. ZXS Package 216-Pin BGA Top View  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DLPC120-Q1  
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
5-1. DLPC120-Q1 Device Initialization and Programming Pin Descriptions  
PIN  
I/O  
I/O  
CLOCK  
NAME  
NO.  
POWER  
TYPE  
SYSTEM  
DESCRIPTION  
Functional Reset (Active Low). Resets internal logic and causes  
PLL startup and PLL locking. Assertion is required after power  
supplies are within limits. See 6.7 for timing requirements.  
RESETZ  
H13  
I2  
I2  
I2  
Async  
Async  
N/A  
System Power Good indicator. Should be held low until all  
DLPC120-Q1 power has been within operating limits. See 6.7  
for timing requirements. Must be set high to enable normal  
operation. When set low, the DLPC120-Q1 begins the parking  
routine for the DMD. Together with pin E14 (LED_R_PWM /  
PWRGOOD_CNTRL), this signal is critical for DLP30xx-Q1  
parking as part of the Pre-Conditioning Sequence and subsequent  
un-parking. See DLPC120-Q1 Programmer's Guide for  
implementation details.  
PWRGOOD  
G13  
G15  
Reference Clock Input (16 MHz). Can be driven by crystal across  
this pin and PLL_REFCLK_O or by external oscillator. See 6.7  
for timing requirements.  
PLL_REFCLK_I  
PLL_REFCLK_O  
HUD_INTR  
G14  
A14  
O6  
O6  
N/A  
N/A  
Crystal output. Used with PLL_REFCLK_I.  
Interrupt signal. This active high signal indicates one of the  
interrupt sources in the controller has been triggered.  
3.30 V  
I2C Clock for Device configuration and control. Requires external  
pull-up. Port 1 peripheral command/control interface.  
IIC_SCL_1  
IIC_SDA_1  
IIC_SCL_2  
IIC_SDA_2  
P16  
N15  
M15  
N16  
B8  
B8  
B8  
B8  
N/A  
N/A  
N/A  
N/A  
I2C Data for Device configuration and control. Requires external  
pull-up. Port 1 peripheral command/control interface.  
I2C Clock Debug Port. Requires external pull-up. Port 2 peripheral  
command/control interface.  
I2C Data Debug Port. Requires external pull-up. Port 2 peripheral  
command/control interface.  
Serial Data input from the external SPI Flash device. This  
provides device logical programming data as well as functional  
configuration parameter data.  
FLASH_POCI  
F14  
I2  
FLASH_SCLK  
FLASH_CSZ  
F15  
E16  
O6  
O6  
FLASH_SCLK  
N/A  
Chip Select output for the external SPI Flash device. Active low.  
Clock for the external SPI Flash device.  
FLASH_SCLK  
Serial Data output to the external SPI Flash device. This pin  
sends address and control information as well as data when  
programming.  
FLASH_PICO  
E15  
O6  
FLASH_SCLK  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DLPC120-Q1  
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
5.1 LED Driver Interface  
PIN  
I/O  
I/O  
CLOCK  
SYSTEM  
N/A  
DESCRIPTION  
NAME  
NO.  
POWER TYPE  
LED_B_PWM  
D16  
O6  
Function reserved for future use.  
Repurposed for power good control. Together with pin G13  
(PWRGOOD), this signal is used for DLP30xx-Q1 parking as part of  
the preconditioning sequence and subsequent unparking. See the  
DLPC120-Q1 Programmer's Guide for implementation details.  
LED_R_PWM  
(PWRGOOD_CNTRL)  
E14  
O6  
N/A  
LED_G_PWM  
LED_B_EN  
F13  
C15  
O6  
O6  
N/A  
N/A  
Function reserved for future use.  
Blue LED enable strobe. Controlled by programmable DMD  
sequence timing (active high)  
Red LED enable strobe. Controlled by programmable DMD  
sequence timing (active high)  
LED_R_EN  
LED_G_EN  
LED_S_EN  
LED_D_EN  
LEDDRV_ON  
C16  
D14  
B16  
E13  
D15  
O6  
O6  
O6  
O6  
N/A  
N/A  
Green LED enable strobe. Controlled by programmable DMD  
sequence timing (active high)  
LED shunt enable. Controlled by programmable DMD sequence  
timing (active high)  
N/A  
LED drive enable. Controlled by programmable DMD sequence  
timing (active high)  
N/A  
3.30 V  
O6  
LED driver enable. Active high output control to external LED drive  
logic  
Async  
LED enable (active high input). A logic low on this signal forces  
LEDDRV_ON low and RGB strobes low. These signals are enabled  
100 ms after LED_EN transitions to a high (assuming  
corresponding SW parameters are also set to enable LED  
operation).  
LED_EN  
F16  
I2  
Async  
LED threshold compare (active low input). A logic low on this signal  
indicates a threshold is reached, and in discontinuous mode  
controls shunt enable (LED_S_EN).  
LED_COMPZ  
D13  
I2  
Async  
AST_CLR0  
AST_HLD0  
AST_INTR0  
AST_CLR1  
AST_HLD1  
AST_INTR1  
L12  
M13  
L13  
O6  
O6  
O6  
O6  
O6  
O6  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Function reserved for future use  
Function reserved for future use  
Sequence timer interrupt port  
Function reserved for future use  
Function reserved for future use  
Function reserved for future use  
M12  
R16  
M14  
5.2 DMD Temperature Interface  
PIN  
I/O  
I/O  
CLOCK  
NAME  
NO.  
POWER TYPE  
SYSTEM  
DESCRIPTION  
Temperature control serial data. This signal is used to  
communicate with the TMP411 to read the temperature values.  
Follows I2C protocol as required by TMP411.  
TMP_SDA  
K13  
B8  
Async  
Temperature control serial clock. This signal is used to  
communicate with the TMP411 to read the temperature values.  
Follows I2C protocol as required by TMP411.  
3.30 V  
B8  
TMP_SCL  
M16  
C14  
Async  
Async  
HTR_ENABLE  
O6  
Reserved pin  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DLPC120-Q1  
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
General Purpose I/O  
PIN  
I/O  
I/O  
CLOCK  
NAME  
NO.  
POWER TYPE  
SYSTEM  
DESCRIPTION  
This pin is configured by default to be asserted at the lowest  
brightness mode to activate flicker reduction logic in the LED  
driver circuit. It is deasserted, otherwise, to deactivate the flicker  
reduction logic for normal operation. Contact a TI Applications  
Engineer for implementation details.  
AUXBIT_0  
(FLICKER_SELECT)  
C13  
O6  
Async  
DMD sequencer reset AUX Bit 1. Intended for system debug.  
Can be routed to a testpoint or left unconnected  
AUXBIT_1  
AUXBIT_2  
AUXBIT_6  
AUXBIT_7  
B14  
A15  
D11  
B13  
O6  
Async  
Async  
Async  
Async  
3.30 V  
DMD sequencer reset AUX Bit 2. Intended for system debug.  
Can be routed to a testpoint or left unconnected  
O6  
O6  
O6  
DMD sequencer reset AUX Bit 6. Intended for system debug.  
Can be routed to a testpoint or left unconnected  
DMD sequencer reset AUX Bit 7. Intended for system debug.  
Can be routed to a testpoint or left unconnected  
5.3 Main Video and Data Control Interface  
PIN  
I/O  
I/O  
TYPE  
I2  
CLOCK  
SYSTEM  
N/A  
NAME  
NO.  
T8  
POWER  
DESCRIPTION  
Pixel clock(1)  
PCLK  
P_VSYNC  
P_HSYNC  
P_DATAEN  
PDATA[0]  
PDATA[1]  
PDATA[2]  
PDATA[3]  
PDATA[4]  
PDATA[5]  
PDATA[6]  
PDATA[7]  
PDATA[8]  
PDATA[9]  
PDATA[10]  
PDATA[11]  
PDATA[12]  
PDATA[13]  
PDATA[14]  
PDATA[15]  
PDATA[16]  
PDATA[17]  
PDATA[18]  
PDATA[19]  
PDATA[20]  
PDATA[21]  
PDATA[22]  
PDATA[23]  
P7  
I2  
Vertical sync(2)  
Horizontal sync(2)  
Data valid(2)  
P8  
I2  
N8  
I2  
R8  
I2  
T9  
I2  
R9  
I2  
T10  
N9  
I2  
I2  
R10  
T11  
P10  
R11  
T12  
P11  
R12  
T13  
P12  
N11  
R13  
T14  
T15  
R14  
N12  
R15  
N13  
P14  
P15  
I2  
I2  
I2  
I2  
I2  
3.30 V  
I2  
PCLK  
I2  
Data(3)  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
I2  
(1) Pixel clock capture edge is software programmable.  
Submit Document Feedback  
Copyright © 2022 Texas Instruments Incorporated  
6
Product Folder Links: DLPC120-Q1  
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
(2) VSYNC, HSYNC, and data valid polarity are software programmable.  
(3) The 24-bit PDATA bus can be mapped based on pixel format. By default PDATA[23-16]=Red[7-0], PDATA[15-8]=Green[7-0], and  
PDATA[7-0]=Blue[7-0]. See the DLPC120-Q1 Programmer's Guide for more information.  
5.4 DMD Interface  
PIN  
I/O  
I/O  
CLOCK  
NAME  
NO.  
B12  
A13  
A12  
B11  
C10  
A11  
D9  
POWER TYPE  
SYSTEM  
DESCRIPTION  
DMD_D0  
DMD_D1  
DMD_D2  
DMD_D3  
DMD_D4  
DMD_D5  
DMD_D6  
DMD_D7  
DMD_D8  
DMD_D9  
DMD_D10  
DMD_D11  
DMD_D12  
DMD_D13  
DMD_D14  
DMD_DCLK  
DMD_LOADB  
DMD_SCTRL  
DMD_TRC  
DMD data pins. DMD data pins are DDR (Double Data Rate)  
signals that are clocked on both edges of DMD_DCLK.  
B10  
A10  
B9  
O5  
DMD_DCLK  
A9  
A8  
B8  
C8  
A7  
A6  
O5  
O5  
N/A  
DMD data clock (DDR)  
C7  
DMD_DCLK  
DMD_DCLK  
DMD_DCLK  
DMD data load signal (active low)  
DMD data serial control signal  
DMD data toggle rate control  
B6  
O5  
1.80 V  
B7  
O5  
DMD DAD output enable (active low). A pullup (10 kΩto 100  
kΩ) to the 1.8-V rail for the DMD interface is needed to keep  
this signal inactive when tristated.  
DMD_DAD_OEZ  
A5  
O5  
Async  
DMD_DAD_BUS  
DMD_DAD_STRB  
DMD_SAC_BUS  
DMD_SAC_CLK  
B5  
D7  
A4  
A3  
O5  
O5  
O5  
O5  
DMD_SAC_CLK  
DMD_DCLK  
DMD_SAC_CLK  
N/A  
DMD DAD bus data  
DMD DAD bus strobe.  
DMD SAC bus data  
DMD SAC bus clock  
DMD interface test clock. Signal connected to DMD JTAG  
interface to allow the verification of the interface. The  
interface is tristated when not active.  
DMD_JTCK  
DMD_JTMS  
B4  
C5  
O4  
O4  
N/A  
N/A  
DMD interface test mode. Signal connected to DMD JTAG  
interface to allow the verification of the interface. The  
interface is tristated when not active.  
DMD interface test data output. Signal connected to DMD  
JTAG interface to allow the verification of the interface. This  
signal connects to the DMD JTAG TDI. The interface is  
tristated when not active.  
DMD_JTDI  
D5  
O4  
N/A  
DMD interface test data input. Signal connected to DMD  
JTAG interface to allow the verification of the interface. This  
signal connects to the DMD JTAG TDO. Internal pulldown.  
DMD_JTDO  
C4  
I1  
O6  
N/A  
DMD_PWR_EN  
C11  
3.30 V  
Async  
DMD power regulator enable (active high)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DLPC120-Q1  
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
5.5 Memory Interface  
PIN  
I/O  
I/O  
CLOCK  
NAME  
NO.  
F2  
F1  
H1  
C1  
F4  
D2  
H2  
G1  
G2  
G3  
F3  
E1  
B1  
D1  
E2  
J1  
POWER  
TYPE  
SYSTEM  
DESCRIPTION  
MEM_CLK  
MEM_CLKZ  
MEM_A0  
MEM_A1  
MEM_A2  
MEM_A3  
MEM_A4  
MEM_A5  
MEM_A6  
MEM_A7  
MEM_A8  
MEM_A9  
MEM_A10  
MEM_A11  
MEM_A12  
MEM_BA0  
MEM_BA1  
MEM_RASZ  
MEM_CASZ  
MEM_WEZ  
MEM_CSZ  
MEM_CKE  
Os  
Os  
Os  
N/A  
DDR memory, Differential Memory Clock.  
MEM_CLK  
DDR memory, Multiplexed Row and Column Address.  
MEM_CLK  
DDR memory, Bank Select.  
J2  
D3  
J3  
Os  
Os  
Os  
Os  
Os  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
MEM_CLK  
DDR memory, Row Address Strobe (Active low).  
DDR memory, Column Address Strobe (Active low).  
DDR memory, Write Enable (Active low).  
DDR memory, Chip Select (Active low).  
1.80 V  
C2  
K2  
K1  
DDR memory, Clock Enable (Active high).  
DDR memory, On die termination (ODT). ODT is not verified  
and supported operational mode. This pin should be left open  
or connected to corresponding DDR2 pin.  
MEM_ODT  
MEM_RST  
MEM_ZQ  
E4  
C3  
J4  
Os  
Os  
Os  
MEM_CLK  
MEM_CLK  
MEM_CLK  
DDR memory, Reset. Do Not connect.  
DDR memory, External pad where to connect the external  
impedance calibration resistor. The user connects the PAD  
pin through an external 240 Ω± 1% resistor to ground.  
MEM_DQS0  
MEM_DQSZ0  
MEM_DQ0  
MEM_DQ1  
MEM_DQ2  
MEM_DQ3  
MEM_DQ4  
MEM_DQ5  
MEM_DQ6  
MEM_DQ7  
N1  
N2  
P2  
R1  
P1  
M2  
L3  
BSD  
BSD  
N/A  
N/A  
DDR memory, Lower Byte, R/W Data Strobe.  
DDR memory, Lower Byte, R/W Data Strobe, inverted.  
Bs  
MEM_DQS0  
DDR memory, Lower Byte, Bidirectional R/W Data.  
M1  
L2  
L1  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DLPC120-Q1  
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
PIN  
I/O  
I/O  
TYPE  
Bs  
CLOCK  
SYSTEM  
N/A  
NAME  
NO.  
R4  
T4  
T6  
R6  
T5  
R5  
P5  
T3  
T2  
R3  
POWER  
DESCRIPTION  
MEM_DQS1  
MEM_DQSZ1  
MEM_DQ8  
MEM_DQ9  
MEM_DQ10  
MEM_DQ11  
MEM_DQ12  
MEM_DQ13  
MEM_DQ14  
MEM_DQ15  
DDR memory, Upper Byte, R/W Data Strobe.  
BSD  
N/A  
DDR memory, Upper Byte, R/W Data Strobe, inverted.  
1.80 V  
Bs  
MEM_DQS1  
DDR memory, Upper Byte, Bidirectional R/W Data.  
Board Level Test and Debug  
PIN  
I/O  
I/O  
CLOCK  
NAME  
NO.  
POWER  
TYPE  
SYSTEM  
DESCRIPTION  
JTAG, Reset. Includes weak internal pull-up. Holds TAP controller  
and associated JTAG logic in idle state under normal operation.  
This pin should be pulled down with a 5 kΩor smaller  
resistor for normal operation.  
JTAGRSTZ  
J13  
I2  
Async  
3.30 V  
JTAGTDI  
JTAGTCK  
JTAGTMS  
JTAGTDO  
K15  
L15  
L16  
K14  
I2  
I2  
JTAGTCK  
N/A  
JTAG, Serial Data In. Includes weak internal pull-up.  
JTAG, Serial Data Clock. Includes weak internal pull-up.  
JTAG, Test Mode Select. Includes weak internal pull-up.  
JTAG, Serial Data Out.  
I2  
JTAGTCK  
JTAGTCK  
O6  
Manufacturing Test Support  
PIN  
I/O  
I/O  
CLOCK  
NAME  
NO.  
POWER  
TYPE  
SYSTEM  
DESCRIPTION  
Manufacturing Test Enable signal. Should be connected directly to  
ground on the PCB for normal operation. Weak Internal Pulldown.  
HWTEST_EN  
G16  
3.30 V  
I2  
O
N/A  
N/A  
N/A  
N/A  
Memory Controller Analog Test Output. Factory Test purposes  
only, should be left unconnected in system.  
MEM_ATO  
MEM_DTO0  
MEM_DTO1  
K3  
M4  
N4  
N/A  
Memory Controller Digital Test Output #1. Factory Test purposes  
only, should be left unconnected in system.  
3.30 V  
3.30 V  
Os  
Os  
Memory Controller Digital Test Output #2. Factory Test purposes  
only, should be left unconnected in system.  
Test Point Interface  
PIN  
NAME  
I/O  
I/O  
CLOCK  
NO.  
K16  
J14  
J15  
J16  
H16  
H15  
H12  
POWER  
TYPE  
SYSTEM DESCRIPTION  
TSTPT_0  
TSTPT_1  
TSTPT_2  
TSTPT_3  
TSTPT_4  
TSTPT_5  
TSTPT_6  
Reserved for Test Outputs. These test I/O should be left open or  
unconnected for normal operation in final product design. (DO  
NOT tie to GND), Internal Pullup on all signals. TSTPT_4  
should be pulled up using external 10 kΩresistor to ensure  
proper initialization.  
3.30 V  
B8  
Async  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DLPC120-Q1  
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
PIN  
I/O  
I/O  
CLOCK  
NAME  
NO.  
POWER  
TYPE  
SYSTEM DESCRIPTION  
This pin is configured by default to indicate whether the system  
is in Continuous Mode (High) or Discontinuous Mode (Low).  
Contact a TI Applications Engineer for implementation details. It  
can also be reserved as a Test Output.  
TSTPT_7 (CM_DM)  
H14  
3.30 V  
B8  
Async  
Power and Ground  
PIN  
I/O  
NAME  
NO.  
DESCRIPTION  
VCCIO_1  
VCCIO_2  
VCCIO_3  
B2, D4, G4, K4, M3, N5, P3, R7  
BA2, D10, D12, D6, D8  
PWR  
PWR  
PWR  
1.8 V (DDR2 MEM).  
1.8 V (DMD I/F).  
3.3 V (MISC IO).  
B15, E12, L14, N10, P13  
Voltage Referenced Input  
(50% of DDR Memory Voltage).  
MEM_VREF0  
MEM_VREF1  
H4  
N6  
Voltage Referenced Input  
(50% of DDR Memory Voltage).  
VCCA  
VSSA  
VDD  
G12  
F12  
PWR  
PLL Power Input.  
PLL R-C Return Path (NOT a GND).  
1.2-V core logic power supply.  
G8, G9, H7, H10, J7, J10, K8, K9  
PWR  
GND  
EFUSE Programming voltage (Used in Manufacturing Test  
VDDQ  
GND  
J12  
only.)  
Should be tied to GND.  
A1, A16, B3, C6, C9, C12, E3, G7,  
G10, H3, H8, H9, J8, J9, K7, K10,  
K12, L4, N3, N7, N14, P4, P6, P9,  
R2, T1, T7, T16  
GND  
Common Ground (I/O Ground).  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DLPC120-Q1  
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
5-2. I/O Type Subscript Definition  
I/O  
SUPPLY REFERENCE  
SUBSCRIPT  
DESCRIPTION  
1.8 V  
1
VDD  
2
3.3 V  
VCCIO_3  
VDD  
4
8 mA  
5
6
6, 10, or 12 mA  
8 mA  
VCCIO_2  
VCCA  
S
SSTL_18  
8 mA  
VCCIO_1  
VCCIO_3  
VCCIO_1  
8
SD  
TYPE  
I
SSTL_18 Differential  
Input  
O
Output  
B
Bidirectional  
Power  
N/A  
PWR  
GND  
Ground return  
5-3. Internal Pullup and Pulldown Characteristics  
INTERNAL PULL-UP AND PULL-DOWN  
RESISTOR CHARACTERISTICS  
VCCIO  
MIN  
TYP  
MAX  
UNIT  
Weak pull-up resistance  
3.3 V  
3.3 V  
1.8 V  
27  
32  
52  
39  
46  
91  
61  
79  
kΩ  
kΩ  
kΩ  
Weak pull-down resistance  
180  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DLPC120-Q1  
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted) (1)  
MIN  
MAX  
UNIT  
SUPPLY VOLTAGE(2)  
VCCIO_1  
0
0
0
0
0
1.98  
3.6  
V
V
V
V
V
VCCIO_2  
VCCIO_3  
3.6  
VCCA (PLL)  
VDD  
1.32  
1.32  
GENERAL  
TJ  
Operating junction temperature  
Storage temperature  
125  
150  
°C  
°C  
40  
40  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and  
this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to GND.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
All pins  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC  
Q100-011  
Corner pins (A1, A16, T1,  
and T16)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.14  
1.14  
1.71  
1.71  
3.135  
0.0  
NOM  
1.2  
1.2  
1.8  
1.8  
3.3  
0.0  
MAX  
1.26  
1.26  
1.89  
1.89  
3.465  
0.0  
UNIT  
V
VDD  
1.2-V supply voltage, core logic  
Analog voltage for PLL  
VCCA  
VCCIO_0  
VCCIO_1  
VCCIO_2  
VDDQ  
TJ  
V
DDR2 memory interface  
V
1.8-V supply voltage for DMD  
Pixel interface supply voltage  
EFuse programming voltage  
Operating junction temperature  
Operating ambient temperature(1)  
V
V
V
125  
°C  
°C  
40  
40  
TA  
105  
(1) Operating ambient temperature is dependent on system thermal design. Operating junction temperature may not exceed its specified  
range across ambient temperature conditions.  
6.4 Thermal Information  
DLPC120-Q1  
THERMAL METRIC(1)  
ZXS (BGA)  
216 PINS  
0.28  
UNIT  
Case-to-junction thermal coefficient  
°C/W  
ψJT  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DLPC120-Q1  
 
 
 
 
 
 
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
6.4 Thermal Information (continued)  
DLPC120-Q1  
THERMAL METRIC(1)  
ZXS (BGA)  
216 PINS  
26.32  
UNIT  
TJA  
Junction-to-ambient thermal coefficient  
°C/W  
(1) For more information about traditional and new thermal metrics, see the , Semiconductor and IC Package Thermal Metrics Application  
Report (SPRA953).  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
140  
3
MAX UNIT  
IVDD  
Logic core power (1.2 V)  
PLL power (1.2 V)  
186  
10  
mA  
mA  
IVCCA  
DDR2 memory and DMD interface I/O  
power (1.8 V)  
IVCCIO_0/1  
IVCCIO_2  
180  
245  
mA  
Pixel data input power (3.3 V)  
Total power  
4
10  
mA  
469  
724  
mW  
6.6 Electrical Characteristics for I/O  
PARAMETER  
TEST CONDITIONS  
MIN  
1.17  
2.0  
TYP  
MAX UNIT  
VCCIO + 0.3  
High-level  
input  
threshold  
voltage  
1.8-V LVCMOS (I/O Type 1)  
3.3-V LVCMOS (I/O Type 2, 8)  
SSTL_18 (I/O Type S, SD)  
1.8-V LVCMOS (I/O Type 1)  
3.3-V LVCMOS (I/O Type 2, 8)  
SSTL_18 (I/O Type S, SD)  
VCCIO + 0.3  
VCCIO + 0.3  
0.63  
VIH  
V
1.08  
Low-level  
input  
threshold  
voltage  
0.3  
0.3  
0.3  
VIL  
0.8  
V
0.73  
1.8-V LVCMOS fixed current (I/O Type  
4)  
1.35  
1.35  
1.8-V LVCMOS variable current (I/O  
Type 5)  
High-level  
output  
VOH  
V
voltage  
3.3-V LVCMOS fixed current (I/O Type  
6, 8)  
2.4  
SSTL_18 (I/O Type S, SD)  
VCCIO 0.28  
1.8-V LVCMOS fixed current (I/O Type  
4)  
0.45  
0.45  
1.8-V LVCMOS variable current (I/O  
Type 5)  
Low-level  
output  
VOL  
V
voltage  
3.3-V LVCMOS fixed current (I/O Type  
6, 8)  
0.4  
SSTL_18 (I/O Type S, SD)  
0.28  
6.7 Power Supply and Reset Timing Requirements  
MIN  
MAX  
UNIT  
Power supplies can be applied in any order if they  
occur within this maximum timing. Otherwise,  
Time for all DLPC120-Q1 power rails to be  
applied  
tramp  
10  
ms  
refer to Note (1)  
.
PWRGOOD shall be controlled by  
LED_R_PWM / PWRGOOD_CNTRL signal,  
which is an output of the DLPC120-Q1 and will  
automatically be asserted after the device  
releases from reset.  
RESETZ rising edge (or PWRGOOD  
rising edgewhichever comes second) to  
DMD_PWR_EN rising edge  
tpwr_en  
150  
µs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DLPC120-Q1  
 
 
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
6.7 Power Supply and Reset Timing Requirements (continued)  
MIN  
MAX  
UNIT  
ms  
External delay between DMD_PWR_EN  
and DMD mirror supply voltages  
tdly  
This delay is not required for supported devices.  
toez  
DMD_PWR_EN rising edge to falling edge of DMD_OEZ  
5
ms  
It is required that the DMD executes a Pre-  
Conditioning Sequence prior to parking. The final  
action of this sequence is the de-assertion of the  
LED_R_PWM / PWRGOOD_CNTRL signal,  
which shall drive the PWRGOOD signal low. See  
the DLPC120-Q1 Programmer's Guide for  
instructions on how to execute the Pre-  
Conditioning Sequence.  
tprecondition DMD preconditioning timeI  
800  
200  
µs  
tpark  
DMD park time (approximate)  
PWRGOOD low to falling edge of DMD_PWR_EN  
Power supplies can be removed in any order if  
200  
500  
µs  
µs  
tpd_dmd  
they occur within this maximum timing.  
Otherwise, they shall be removed in the reverse  
order they were applied, per the tramp  
Time for DLPC120-Q1 power supplies to  
be removed  
tfall  
10  
ms  
specification and Note (1)  
.
(1) If the DLPC120-Q1 supplies cannot be applied according to this timing specification, then they must be applied in the following order,  
spanning no longer than 100 ms (shall be removed in the reverse order for power down):  
a. Apply VCCIO_2 (3.3 V)  
b. Apply VCCIO_0, VCCIO_1 (1.8 V) DDR Memory and DMD, in any order  
c. Apply VDD (1.2 V) DLPC120-Q1 core supply voltage  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DLPC120-Q1  
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
tramp  
tfall  
Power Supplies  
tprecondition  
DMD VCC rail must not  
go low until after  
DLPC120 reset  
PWRGOOD  
(ASIC input)  
PLL_REFCLK  
PLL_REFCLK must  
be stable before  
reset de-asserted  
RESETZ  
(ASIC input)  
tpwr_en  
RESETZ must not go low  
until after DMD MIRROR  
SUPPLIES are within 4V  
of ground  
tpd_dmd  
DMD_PWR_EN  
(ASIC output)  
toez  
tpark  
DMD_OEZ  
(ASIC output)  
tdly  
DMD MIRROR SUPPLIES  
(VBIAS, VOFFSET, VRESET)  
6-1. Power Supply and RESETZ Timing  
6.8 Reference Clock PLL Timing Requirements  
MIN  
NOM  
16.00  
MAX UNIT  
Clock frequency  
Cycle time  
MHz  
ns  
ƒclock  
No clock spreading(1)  
62.5  
tc  
With clock spreading(1)  
1.02 × tc  
ns  
tw(H)  
tw(L)  
tjp  
Pulse duration, high  
50% to 50% reference points  
50% to 50% reference points  
0.4 x tc  
0.4 x tc  
250  
ns  
Pulse duration, low  
ns  
Period jitter, PLL_REFCLK_I  
250  
ps  
(1) PLL clock spreading is configurable. See DLPC120-Q1 Programmer's Guide for a description of how to select spread spectrum  
options.  
tc  
tw(H)  
tw(L)  
50%  
50%  
PLL_REFCLK_I  
50%  
6-2. PLL Reference Clock Timing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DLPC120-Q1  
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
6.9 Parallel Interface General Timing Requirements  
MIN  
3.1  
MAX  
UNIT  
MHz  
ns  
Clock frequency, PCLK(1)  
40.0  
ƒclock  
tp_clkper  
tp_wh  
Clock period, PCLK  
VIH/VIL  
VIH/VIL  
VIH/VIL  
25.0  
6.0  
320.0  
Pulse width low, PCLK  
Pulse width high, PCLK  
ns  
tp_wl  
6.0  
ns  
Setup time - HSYNC, DATEN, PDATA(23:0)  
valid before the active edge of PCLK(2)  
tp_su  
VIH/VIL  
2.0  
ns  
Hold time - HSYNC, DATEN, PDATA(23:0)  
valid after the active edge of PCLK(2)  
tp_h  
tt  
VIH/VIL  
2.0  
0.2  
ns  
ns  
Transition time - PCLK  
10% to 90% reference points  
6
(1) This range includes the 200 ppm of the external oscillator.  
(2) The active (capture) edge of PCLK for HSYNC, DATEN, and PDATA(23:0) is software programmable, but defaults to rising edge.  
tp_clkper  
tp_wh  
tp_wl  
PCLK  
tp_h  
tp_su  
PDATA(23:0),  
DATAEN,  
HSYNC, VSYNC,  
6-3. Parallel Video Interface General Timing  
6.10 Parallel Interface Frame Timing Requirements  
MIN  
1
MAX  
UNIT  
Lines  
tp_vsw  
tp_vbp  
tvfp  
Vertical sync width  
Vertical back porch  
Vertical front porch  
Horizontal sync width  
Horizontal back porch  
Horizontal front porch  
50% reference points  
50% reference points  
50% reference points  
50% reference points  
50% reference points  
50% reference points  
6
Lines  
4(1)  
Lines  
thsw  
thbp  
5
PCLKs  
PCLKs  
PCLKs  
4
thfp  
40(1)  
(1) Values depend on many factors and may need to be higher depending on scaling ratio and other factors. See resolution table for  
typical values that have been verified.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DLPC120-Q1  
 
 
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
1 Frame  
tp_vsw  
VSYNC  
(This diagram assumes the VSYNC  
active edge is the Rising edge)  
tp_vbp  
tp_vfp  
HSYNC  
DATAEN  
1 Line  
tp_hsw  
HSYNC  
(This diagram assumes the HSYNC  
active edge is the Rising edge)  
tp_hfp  
tp_hbp  
DATAEN  
PDATA(23:0)  
PCLK  
P
n-2  
P
n-1  
P0  
P1  
P2  
P3  
Pn  
6-4. Parallel Interface Frame Timing  
6.11 Flash Memory Interface Timing Requirements  
MIN  
NOM  
MAX UNIT  
Clock frequency, FLASH_SCLK(1)  
39.00  
25.64  
MHz  
ns  
ƒclock  
tclkper  
twh  
Clock period, FLASH_SCLK  
Pulse width high, FLASH_SCLK  
Pulse width low, FLASH_SCLK  
50% reference points  
50% reference points  
50% reference points  
10  
10  
ns  
twl  
ns  
20% to 80% reference points,  
Cload = 20 pF  
tt  
Transition time, all signals  
1
3
ns  
ns  
ns  
ns  
Flash POCI valid data max delay after  
FLASH_SCLK falling edge  
tvalid_POCI  
tvalid_PICO_b  
tvalid_PICO_a  
50% reference points  
50% reference points  
50% reference points  
10  
PICO valid before rising edge of  
FLASH_SCLK  
2.2  
5.2  
PICO valid after rising edge of  
FLASH_SCLK  
(1) Spread Spectrum clock modulation, when enabled, will affect the nominal frequency of the FLASH_SCLK.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DLPC120-Q1  
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
tclkper  
twl  
FLASH_SCLK  
(DLPC120 Output)  
twh  
tvalid_POCI  
FLASH_POCI  
(DLPC120 Input)  
tvalid_PICO_b  
tvalid_PICO_a  
FLASH_PICO  
(DLPC120 Outputs)  
6-5. Flash Interface Timing  
6.12 DMD Interface Timing Requirements  
MIN  
75.00  
12.5  
NOM  
MAX  
UNIT  
MHz  
ns  
Clock frequency, DMD_DCLK and DMD_SAC_CLK(1)  
78.00  
80.00  
15.0  
200  
ƒclock  
tp_clkper  
tp_clkjit  
Clock period, DMD_DCLK and DMD_SAC_CLK  
Clock jitter, DMD_DCLK and DMD_SAC_CLK  
50% reference points  
Maximum fclock  
ps  
Pulse width high, DMD_DCLK and  
DMD_SAC_CLK  
tp_wh  
50% reference points  
6.2  
ns  
Pulse width low, DMD_DCLK and  
DMD_SAC_CLK  
tp_wl  
tt  
50% reference points  
6.2  
0.5  
ns  
ns  
Transition time, all signals  
20% to 80% reference points  
1.5  
1.5  
Output setup time DMD_D(14:0),  
DMD_SCTRL, DMD_LOADB and DMD_TRC  
relative to both rising and falling edges of  
DMD_DCLK(2)  
tp_su  
50% reference points  
ns  
Output hold time DMD_D(14:0), DMD_SCTRL,  
DMD_LOADB and DMD_TRC signals relative to  
both rising and falling edges of DMD_DCLK(2)  
tp_h  
50% reference points  
50% reference points  
50% reference points  
1.5  
0.20  
1.65  
ns  
ns  
ns  
DMD data skew DMD_D(14:0), DMD_SCTRL,  
DMD_LOADB and DMD_TRC signals relative to  
each other  
tp_d1_skew  
DAD/ SAC data skew - DMD_SAC_BUS,  
DMD_DAD_OEZ and DMD_DAD_BUS signals  
relative to DMD_SAC_CLK  
tp_d2_skew  
tp_d3_skew  
tp_clk_skew  
DMD_DAD_STRB signal relative to DMD_DCLK 50% reference points  
1.65  
0.25  
ns  
ns  
Clock skew DMD_DCLK and DMD_SAC_CLK  
50% reference points  
relative to each other  
(1) This range includes the 200 PPM of the external oscillator.  
(2) Output setup and hold numbers already account for ASIC clock jitter. Only routing skew and DMD setup/ hold need be considered in  
system timing analysis.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DLPC120-Q1  
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
tp_d1_skew  
DMD_D(14:0)  
DMD_SCTRL  
DMD_TRC  
DMD_LOADB  
tp_h  
tp_su  
DMD_DCLK  
tp_wl  
tp_wh  
tclk_skew  
DMD_SAC_CLK  
tp_d2_skew  
DMD_SAC_BUS  
DMD_DAD_OEZ  
DMD_DAD_BUS  
tp_d3_skew  
DMD_DAD_STRB  
6-6. DMD Interface Timing  
6.13 JTAG Interface Timing Requirements  
MIN  
MAX  
UNIT  
MHz  
ns  
Clock frequency, JTAGTCK  
Cycle time, JTAGTCK  
Pulse duration high  
10  
ƒclock  
tc  
100  
40  
tw(H)  
tw(L)  
tt  
50% to 50% reference points  
50% to 50% reference points  
20% to 80% reference points  
ns  
Pulse duration low  
40  
ns  
Transition time, tt = tf = tr  
5
ns  
Setup time, JTAGTDI valid before JTAGTCK rising edge, and JTAGTMS valid before  
JTAGTCK rising edge  
tsu  
10  
ns  
th  
Hold time, JTAGTDI valid after JTAGTCK, and JTAGTMS valid after JTAGTCK  
Output propagation, clock to Q. JTAGTCK falling edge to JTAGTDO  
10  
3
ns  
ns  
tpd  
20  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DLPC120-Q1  
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
tt  
tc  
tw(H)  
tw(L)  
80%  
20%  
JTAGTCK  
(input)  
50%  
50%  
50%  
tsu  
th  
JTAGTDI  
JTAGTMS  
(inputs)  
Valid  
tpd(max)  
JTAGTDO  
(outputs)  
Valid  
6-7. JTAG Interface Timing  
6.14 I2C Interface Timing Requirements  
MIN  
20  
MAX  
UNIT  
Clock frequency  
400  
kHz  
ƒscl  
tsch  
tscl  
tsp  
Clock duration high  
0.6  
μs  
μs  
ns  
Clock duration low  
1.3  
Spike time  
0
400  
tsds  
tsdh  
ticr  
Setup time  
100(3)  
ns  
Hold time  
0(1)  
0.9(2)  
300  
μs  
ns  
(4)  
Input rise time  
20 + 0.1 x Cb  
(4)  
tocf  
tbuf  
tsts  
tsth  
tsph  
Output fall time  
1 + 0.1 x Cb  
300  
ns  
Bus free time between stop and start conditions  
Start or repeated start condition setup  
Start or repeated start condition hold  
Stop condition hold  
1.3  
0.6  
0.6  
0.6  
μs  
μs  
μs  
μs  
(1) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge  
the undefined region of the falling edge of SCL.  
(2) The maximum tHD_DAT has only to be met if the device does not stretch the LOW period (tLOW) of the SCL signal.  
(3) A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement tSU_DAT 250 ns must then be met.  
This is automatically the case since the device does not stretch the LOW period of the SCL signal.  
(4) Cb = total capacitance of one bus line in pF.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DLPC120-Q1  
 
 
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Parallel Interface Input Source Timing  
The supported sources with typical timings are shown in 7-1.  
7-1. Parallel Interface Supported Resolutions (Typical Timing)  
RESOLUTION  
HORIZONTAL  
VERTICAL  
CLOCK  
MHz  
SYNC  
WIDTH  
SYNC  
WIDTH  
HORIZONTAL  
VERTICAL  
FP  
BP  
FP  
BP  
320  
320  
320  
400  
480  
500  
640  
640  
640  
800  
852  
853  
854  
854  
864  
960  
960  
960  
960  
608  
120  
160  
240  
240  
240  
250  
160  
240  
480  
480  
480  
480  
240  
480  
480  
160  
240  
250  
480  
684(1)  
40  
42  
32  
32  
32  
50  
24  
24  
41  
50  
70  
50  
74  
74  
72  
72  
70  
70  
70  
70  
70  
40  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4
7
7
7
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3.1  
4.2  
42  
15  
16  
8
7
6.3  
48  
6
7.8  
96  
14  
15  
19  
8
9.4  
50  
36  
11  
14  
35  
35  
35  
35  
14  
35  
35  
5
10.2  
8.3  
41  
104  
84  
12.6  
25.2  
31.5  
31.5  
31.5  
15.8  
31.5  
31.5  
12.6  
18.9  
19.7  
37.8  
33.33  
9
144  
68  
9
9
67  
9
68  
9
68  
9
60  
9
164  
164  
164  
164  
46  
9
13  
14  
35  
104  
9
9
9
30  
(1) Optical Bypass Mode.  
7.2 Design for Test Functions  
The DLPC120-Q1 has several built-in test features. These tests can be run to verify ASIC functionality on startup  
or during normal operation. Refer to DLPC120-Q1 Programmer's Guide for more detail regarding test usage. 表  
7-2 defines the execution time of each test.  
7-2. Test Execution Times  
TEST NAME  
LENGTH (ms) SUMMARY  
The Short DDR2 BIST implements a memory check using a March13 Algorithm to verify the  
external DDR2 SDRAM frame buffer space. It runs at power-up or also can be executed on  
demand, but it is recommended to run only at power-up, since the image will flash if executed  
on demand. The short version runs a portion of the long test.  
DDR2 BIST (Short)  
DDR2 BIST (Long)  
FLASH BIST (1 MByte)  
145  
470  
215  
The Long DDR2 BIST is the same as the Short DDR2 BIST, but it runs the test multiple times.  
The Flash BIST calculates configuration memory checksum (32 bits) for data integrity of the  
Flash data and interface. Flash checksum is recommended to be done at power-up to verify  
configuration settings. The Flash BIST memory range to perform checksum is programmable to  
up to 32M.  
The System BIST validates the DLPC120-Q1 internal logic. It sends a known test pattern image  
through the ASIC to verify the checksum at the last stage before the data reaches the DMD.  
When enabled, the checksum for each frame of data is calculated and stored in an I2C register.  
System BIST(2)  
See(1)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DLPC120-Q1  
 
 
 
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
7-2. Test Execution Times (continued)  
TEST NAME  
LENGTH (ms) SUMMARY  
The DMD JTAG BIST validates the connection between the ASIC and DMD. It uses the DMD  
JTAG interface to sample the ASIC pins and compare against expected values, and it also tries  
to detect shorts between signals. The BIST is run on demand.  
DMD Interface Test  
6.93  
The Front End Video Checksum is used to verify that the video is received correctly at the front  
end on the specified region of the frame. When enabled, it calculates the checksum for the  
specified region of the video frame and stored in an I2C register.  
Front End Video  
Checksum  
See(1)  
See(1)  
The Video Detect test shall be used to monitor external video VSYNC. If external video is not  
valid, the DMD must be put into a safe state (e.g. switched to an internal black test  
pattern).  
Video Detect Test  
(1) The length of these tests will vary depending on frame rate but will not exceed 2 frames.  
(2) Some processing options must be turned off for this test.  
8 Detailed Description  
8.1 Overview  
The DLPC120-Q1 is compatible with three DMD components:  
DLP3030-Q1 - 0.3 WVGA S450 DMD  
DLP3020-Q1 - 0.3 WVGA FQR DMD  
DLP3021-Q1 - 0.3 WVGA FQR DMD  
The DLPC120-Q1 formats incoming video data from a parallel interface and drives the DMD timing to display the  
video. It also controls illumination enables to strobe illuminators synchronously with the DMD mirror movement.  
The DLPC120-Q1 is designed for automotive applications with a wide operating temperature range and  
diagnostic features to identify certain failure modes.  
8.2 Functional Block Diagram  
PIXEL  
DATA  
DLPC120  
24  
16  
FRAME  
MEMORY  
CONTROLLER  
FRONT END  
PROCESSING  
DDR  
DRAM  
DDR  
VIDEO-GRAPHICS  
PROCESSING  
CONFIGURATION  
CONTROL  
DISPLAY  
CONTROL  
DMD  
FORMATTING  
CLOCKS  
& RESETS  
PLL  
I2C  
SPI  
DDR  
SERIAL  
FLASH  
LED  
DRIVER  
OSC  
0.3 WVGA  
DMD  
HOST  
CONTROLLER  
Copyright © 2017, Texas Instruments Incorporated  
8-1. Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DLPC120-Q1  
 
 
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Serial Flash Interface  
The DLPC120-Q1 utilizes an external SPI serial flash memory device for configuration support. The minimum  
required size is dependent on the desired minimum number of Sequences, CMT tables, and Splash options,  
while the maximum supported size is 64 Mb. The DLPC120-Q1 can be used to Read, Erase, and program the  
serial flash. Refer to DLPC120-Q1 Programmer's Guide for details of Flash configuration information.  
The DLPC120-Q1 utilizes a single SPI interface, employing SPI mode 0 protocol, operating at a frequency of  
39.0 MHz. All read operations assume the Flash supports address auto-incrementing. The DLPC120-Q1 should  
support any flash device that meets these criteria plus the criteria listed in 8-1.  
8-1. SPI Flash Instruction Op Code Compatibility Requirements  
FLASH COMMAND  
Fast Read (Single Output)  
Read Electronic Signature  
Others  
OPCODE  
0x0B  
0xAB  
May vary  
The DLPC120-Q1 does not have any specific Page, Block or Sector size requirements. If the user would like to  
use a portion of the serial flash for storing external data (such as calibration data) via the I2C interface, then the  
minimum sector size needs to be considered as it will drive minimum erase size. Note that use of serial flash for  
storing external data may impact the number of features that can be supported.  
The DLPC120-Q1 does not drive the /HOLD (active low Hold) or /WP (active low Write Protect) pins on the flash  
device and thus these pins should be tied to a logic high on the PCB via an external pull-up.  
8-2. DLPC120-Q1 Compatible SPI Flash Device Options  
VENDOR  
ISSI  
PART NUMBER  
IS25LP064A-JMLE  
W25Q64CVSFAG  
DENSITY (Mb)  
SUPPLY VOLTAGE SUPPORTED(1)  
64  
64  
64  
64  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
Winbond  
Spansion  
Micron  
S25FL064P0XMFV000  
M25P64-VMF3TPB  
(1) The Flash supply voltage must match VCCIO_2 on the DLPC120-Q1. Multiple voltage options are often available under the same base  
part number.  
8.3.2 Serial Flash Programming  
The external serial flash may also be programmed via the same SPI interface which is connected to the  
DLPC120-Q1. In order to avoid conflicting data on this interface, the DLPC120-Q1 must be held in reset while  
the flash memory is programmed. See flash specification for details of the programming configuration.  
8.3.3 DDR2 Memory Interface  
The DLPC120-Q1 ASIC DDR2 Memory interface consists of a 16-bit wide, 312-MHz (nominal) DDR2 interface  
with standard signaling. The DLPC120-Q1 only support DDR2 interface with external termination. The DDR2  
interface is a very high speed signaling interface.  
A DDR2 memory should be selected that supports the 312-MHz clock frequency and compliant to the JEDEC  
standard for DDR2 memories (JESD79-2A).  
8-3. Compatible JEDEC DDR2 Devices  
PARAMETER  
MIN  
DDR2-800  
X16  
MAX  
UNITS  
JEDEC DDR2 device speed grade(1)  
JEDEC DDR2 device bit width  
JEDEC DDR2 device count  
JEDEC DDR2 Memory size  
Bits  
1
Device(s)  
MByte  
512  
1024  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DLPC120-Q1  
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
8-3. Compatible JEDEC DDR2 Devices (continued)  
PARAMETER  
MIN  
MAX  
UNITS  
CAS Latency  
5
5
(1) The DDR2 interface operates with a clock frequency of 312 MHz, higher DDR2 speed grades are supported due to inherent JEDEC  
DDR2 backwards compatibility.  
8-4. DLPC120-Q1 Compatible DDR2 Device Options  
VENDOR  
ISSI  
PART NUMBER  
SIZE  
512 Mb  
1 Gb  
ORGANIZATION  
SPEED GRADE  
CL  
5
IS46DR16320C-25DBLA2  
MT47H64M16HR-25E AAT  
MT47H32M16HR-25E AAT  
32Mx16  
DDR2-800  
Micron  
Micron  
32Mx16  
DDR2-800  
5
512 Mb  
32Mx16  
DDR2-800  
5
8.3.4 JTAG and DMD Interface Test  
The DLPC120-Q1 has two test interfaces using JTAG protocol:  
A standard JTAG (IEEE-1149) function of the ASIC is provided. The TI-provided BSDL file contains the  
details of the DLPC120-Q1 boundary scan chain. This JTAG interface is provided to enable system level  
validation of proper assembly of the DLPC120-Q1 onto a PCB.  
The DLPC120-Q1's DMD interface is designed to be the controller for an in-system DMD interface test. The  
DMD interface should be connected directly to the DMD's JTAG pins. This interface is exclusively designed  
and verified to support the DLP3030-Q1, DLP3020-Q1 and DLP3021-Q1.  
DLPC120  
DMD  
Boundary Scan Register  
JTAGRSTZ  
JTAGTCK  
JTAGTMS  
JTAGTDI  
DMD_JTCK  
DMD_JTMS  
DMD_JTDI  
DMD_JTDO  
JTAG  
TAP  
Controller  
JTAG  
TAP  
Controller  
DMD  
I/F  
Tester  
State Machine  
JTAGTDO  
DMD Interface  
(data and control)  
Boundary Scan Register  
CORE LOGIC  
8-2. JTAG and DMD Interface Test  
Using the DMD JTAG function, the DMD interface signals are toggled, and the connection at the DMD is verified  
by using the DMD JTAG signals to sample the inputs, and then toggled back to the DLPC120-Q1 for comparison  
to expected values. All DMD logic signals, except DAD OEZ, are tested individually for stuck high or low  
independently. Alternating data pattern for adjacent pins, as well as "walking 1s" and "walking 0s" patterns  
are used during the test. The DAD_OEZ is only tested in the high state as asserting this signal and toggling the  
inputs could cause damage to the DMD. Refer to 8-3 for recommended connections for the DLPC120-Q1  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DLPC120-Q1  
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
boundary scan test configuration. Refer to 8-4 for recommended connections of the DLPC120-Q1 to DMD  
interface test. For additional information about the DMD Boundary scan function refer to the specific DMD device  
datasheet.  
test  
connector  
JTAGRSTZ  
JTAGTCK  
JTAGTMS  
JTAGTDO  
JTAGTDI  
JTAGRSTZ  
JTAGTCK  
JTAGTMS  
JTAGTDI  
JTAGTDO  
DLPC120  
3.3 V  
DLPC120 standard JTAG I/F  
8-3. DLPC120-Q1 JTAG Boundary Scan Connection Example  
DMD_JTCK  
DMD interface test I/F  
DMD_JTMS  
1.8 V  
DMD_JTDO  
DLPC120  
DMD_JTDI  
DMD (Data & control signals)  
location of optional board  
to board connection  
DMD (Data & control signals)  
DMD_JTCK  
DMD input pins and  
input boundary JTAG  
pins available for test  
when disconnected from  
DLPC120 via board to  
board connection  
DMD  
DMD input boundary scan JTAG I/F  
DMD_JTMS  
DMD_JTDI  
DMD_JTDO  
1.8 V  
8-4. DLPC120-Q1 JTAG to DMD Interface Connection Example  
8.3.5 Temperature Monitor Function  
The DLPC120-Q1 connects with the TMP411 through a standard I2C bus protocol using the TMP_SDA and  
TMP_SCL pins. The internal temperature controller initializes the TMP411 to read the temperature of the DMD.  
The TMP controller issues a set of read commands at eight times per second through the I2C interface to read  
the remote temperature (DMD) and local temperature from the TMP411.  
The TMP411 monitors the DMD temperature and controls the DMD park operation when the DMD is operated  
beyond the required specification. See the DLP3030-Q1, DLP3020-Q1 and DLP3021-Q1 Data Sheet for the  
DMD operating temperature. If the DMD park operation is used, then a 1-degree hysteresis is applied. See the  
DLPC120-Q1 Programmer's Guide for description of this function.  
8.3.6 Host Command Interface  
The DLPC120-Q1 provides two I2C interface port for host commands. Only one of these ports is intended to be  
used at a time. The unused port is meant for system debug or development purposes. The I2C protocol and  
register definitions are defined in the DLPC120-Q1 Programmer's Guide.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DLPC120-Q1  
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
8.4 Device Functional Modes  
The DLPC120-Q1 has three operational display modes, which are selected with command list execution via the  
Host control interface. These display modes are External Video, Splash Screen, and Test Pattern.  
8.4.1 External Video Mode  
Upon the release of reset and initialization, the DLPC120-Q1 will automatically enter in External Video mode.  
This mode will process the video source on the parallel RGB input interface at a given resolution and frame rate.  
The system supports multiple input video resolutions, and the resolution expected by the DLPC120-Q1 can be  
configured via command list execution. See 7-1 for the different external video resolutions supported by the  
system.  
8.4.2 Splash Screen Mode  
This mode displays a custom, static image, which is stored in the DLPC120-Q1 Application Serial Flash memory.  
The content of the splash image is configurable. The Flash memory can store multiple Splash Screens, where  
the quantity is limited by the size of the splash images, size of the memory chip, and capacity of the remaining  
memory contents. Splash Screens are displayed via command list execution. Contact a TI Applications Engineer  
in order to change the splash images stored in the Flash memory.  
8.4.3 Test Pattern Mode  
This mode displays a fixed, static image, which is stored in the DLPC120-Q1 Application Serial Flash memory.  
The content of the test patterns are pre-defined, limited by the design of the DLPC120-Q1. Test Patterns are  
displayed via command list execution. See DLPC120-Q1 Programmer's Guide for a list and image of the  
supported Test Patterns.  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The DLPC120-Q1 is a DLP display processor that supports automotive head-up display (HUD) applications. It  
accepts data from a variety of video input resolutions and provides the digital image processing and control  
necessary to drive an LED based DLP display system. This document reflects the operation, pinout, and timing  
associated with the DLPC120-Q1 device only.  
The DLPC120-Q1 is compatible with three DMD components:  
DLP3030-Q1 0.3 WVGA S-450 DMD  
DLP3020-Q1 0.3 WVGA FQR DMD  
DLP3021-Q1 0.3 WVGA FQR DMD  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DLPC120-Q1  
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
9.2 Typical Application  
color & dimming control bus  
FLASH  
LSMFLULTAdaStaH  
SEQ/CMT data  
ICP code  
TMP411 data  
- Devices included in HUD reference design  
- Devices available in TI catalog portfolio  
SPI  
TMS320  
F28023  
Color  
Controller  
& Driver  
LED_COMPZ  
RGBSD_EN(5)  
I2C2(2)  
SPI (4)  
HUD  
Display  
Graphics &  
Control  
Processor  
LEDs  
(parallel RGB)  
CLK  
HUD_INTR  
AST_INTR0  
Optional  
LVDS  
transmit/  
receiver  
chipset  
real-time  
optical  
feedback  
loop  
CAN  
XCVR  
CTL(4)  
OPA354 -Q1  
LED Sensor  
DATA(24)  
DLPC120  
JTAG(4)  
DMD JTAG(4)  
DLP3030-Q1  
debug port  
I2C1(2)  
DCLK, CTL(4), DATA(15)  
SAC_CLK, SAC, DAD(2)  
.3" WLP(H) s450  
DVSP DMD  
RESETZ  
PWRGOOD  
TMP(2)  
(2)  
automotive  
power  
conditioning/  
protection  
Discrete DC  
Supplies &  
Power Mgmt  
battery  
12V net  
TMP411  
-Q1  
DMD remote die  
temperature  
sensor  
DATA(16)  
ADDR  
CTL(9)  
(12)  
TPS65140  
-Q1  
DDR-2 DRAM  
Frame Buffer  
DMD_PWR_EN  
DC Supply  
Voltages  
9-1. DLPC120-Q1 System Block Diagram  
9.2.1 Design Requirements  
The 9-1 shows a typical projector application. For this application, the DLPC120-Q1 is controlled by a  
separate control processor, and the image data is received through the parallel RGB interface.  
As with prior DLP® electronics solutions, image data is 100% digital from the DLPC120-Q1 input port to the  
image projected on to the display screen. The image stays in digital form and is never converted into an analog  
signal. The DLPC120-Q1 processes the digital input image and converts the data into a bit-plane format, as  
needed by the DMD. The DMD then reflects light to the screen using binary pulse-width-modulation (PWM) for  
each pixel mirror. The viewers eyes integrate this light to form brilliant, crisp images.  
The DLPC120-Q1 provides signals that enable red, green, and blue LEDs to synchronize to the DMD PWM bit  
planes. These signals combined with an external MCU (TMS320F28023) can be used to create a very high  
dynamic dimming range necessary for automotive heads-up display (HUD) applications.  
The DLPC120-Q1 also features temperature monitoring of the DMD in order to automatically park the  
micromirrors when the DMD temperature is beyond the operating range.  
The DLPC120-Q1 uses the DDR2 SDRAM as a frame buffer to convert RGB video data into the necessary bit  
plane format required by the DMD. The DLPC120-Q1 also supports multiple input resolutions and scales them to  
match the native .3" WVGA DMD format. These images can also be electronically bezel-adjusted on the DMD,  
which could allow the displayed image to be electronically adjusted for mechanical misalignment. The DLPC120-  
Q1 is configured at power up with data stored in the Flash memory via SPI. The Flash interface is the primary  
method to configure the controller.  
The DLPC120-Q1 supports system diagnostic and self-check features, such as video detection, DDR2 memory  
Built-in Self Test (BIST), System BIST, Flash BIST, and JTAG (in system and DMD interface).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DLPC120-Q1  
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
Due to the mechanical nature of the micromirrors, the latency of the DMD and DLPC120-Q1 chipset is fixed  
across all temperature and operating conditions. The observed video latency is one frame, or 16.67 ms at an  
input frame rate of 60 Hz. However, please note that the use of the DLPC120-Q1 bezel adjustment feature, if  
enabled, requires an additional frame of processing.  
Contact a TI Applications Engineer in order to gain access to a fully functional reference design based on the  
DLP30xx-Q1 chipset.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DLPC120-Q1  
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 Power Supply Filtering  
The following filtering circuits are recommended for the various supply inputs.  
68 Ohm 1 A  
1.8 V  
VCC18  
VDD18_B  
VDD  
2.2 µF  
2.2 µF  
2.2 µF  
0.1 µF  
0.1 µF  
0.1 µF 0.01 µF 0.01 µF 0.01 µF 0.01 µF  
2.2 µF  
10-1. VCC18 Recommended Filter  
68 Ohm 1 A  
1.8 V  
2.2 µF  
2.2 µF  
2.2 µF  
0.1 µF  
0.1 µF  
0.1 µF 0.01 µF 0.01 µF 0.01 µF 0.01 µF  
2.2 µF  
10-2. VDD18_B Recommended Filter  
68 Ohm 1 A  
1.2 V  
2.2 µF  
2.2 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF 0.01 µF 0.01 µF  
2.2 µF  
10-3. VDD Recommended Filter  
68 Ohm 1 A  
3.3 V  
VDD33  
2.2 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF 0.01 µF 0.01 µF 0.01 µF  
2.2 µF  
10-4. VDD33 Recommended Filter  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DLPC120-Q1  
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
11.1.1 PCB layout guidelines for internal ASIC PLL power  
The PLLs two analog supplies, VCCA and VSSA, shall be filtered with two series ferrite beads and two shunt  
0.1-µF and 0.01-µF capacitors. The ferrite on VSSA is preferred but optional.  
Ferrite  
VDD  
VCCA  
0.1 µF  
0.01 µ F  
Ferrite  
VSSA  
VSS  
11-1. PLL Power Guidelines  
11-1. Recommended PLL Filter Components  
COMPONENT  
Shunt Capacitor  
Shunt Capacitor  
PARAMETER  
RECOMMENDED VALUE  
UNIT  
µF  
µF  
Ω
Capacitance  
0.1  
Capacitance  
0.01  
Impedance at 10 MHz  
Impedance at 100 MHz  
DC Resistance  
>= 180  
>= 600  
< 0.40  
Series Ferrite  
Ω
Ω
Example ferrite bead recommendations are listed in 11-2.  
11-2. PLL Power Ferrite Bead Recommendations  
PART NUMBER  
BLM18EG601SN1  
BLM15AX601SN1  
R @ DC  
Z @ 10 MHz  
Z @ 100 MHz  
Z @1-GHz SIZE  
0603  
0.35  
200  
600  
600  
0.34  
190  
0402  
The capacitors should be mounted as close to the package balls as possible.  
11.1.2 DLPC120-Q1 Reference Clock  
The DLPC120-Q1 requires an external reference clock to feed its internal PLL. A crystal or oscillator can supply  
this reference. The recommended crystal configurations and reference clock frequencies are listed in 11-3,  
with additional required discrete components shown in 11-2 and defined in 11-3.  
PLL_REFCLK_I  
PLL_REFCLK_O  
R
FB  
R
S
Crystal  
C
C
L2  
L1  
A. CL = Crystal load capacitance  
B. RFB = Feedback Resistor  
11-2. Discrete Components Required When Using Crystal  
11.1.2.1 Recommended Crystal Oscillator Configuration  
11-3. Recommended Crystal Configuration  
PARAMETER  
RECOMMENDED  
UNIT  
Crystal circuit configuration  
Parallel resonant  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DLPC120-Q1  
 
 
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
11-3. Recommended Crystal Configuration (continued)  
PARAMETER  
RECOMMENDED  
Fundamental (first harmonic)  
16  
UNIT  
Crystal type  
Crystal nominal frequency  
MHz  
PPM  
Crystal frequency tolerance (including accuracy, temperature, aging and trim sensitivity) ±200  
Maximum crystal equivalent series resistance (ESR)  
Temperature range  
80  
Ω
°C  
40°C to +105°C  
1
RFB feedback resistor (nominal)  
CL1 external crystal load capacitor  
CL2 external crystal load capacitor  
MΩ  
pF  
See equation in (1)  
See equation in (2)  
pF  
A ground isolation ring around the  
crystal is recommended  
PCB layout  
(1) CL1 = 2 × (CL Cstray_pll_refclk_i), where: Cstray_pll_refclk_i = Sum of package and PCB stray capacitance at the crystal pin  
associated with the ASIC pin PLL_REFCLK_I. PLL_REFCLK_I device capacitance is approximately 3 pF.  
(2) CL2 = 2 × (CL Cstray_pll_refclk_o), where: Cstray_pll_refclk_o = Sum of package and PCB stray capacitance at the crystal pin  
associated with the ASIC pin PLL_REFCLK_O. PLL_REFCLK_O device capacitance is approximately 3 pF.  
11.1.3 General PCB Recommendations  
TI provides PCB design files that serve as a reference for DLPC120-Q1 and DLP30xx-Q1 chipset PCB  
schematics and layout designs. Please contact a TI Applications Engineer to access these files.  
11.1.4 PCB Routing Guidelines  
All signals should follow a 0.005-in width 0.015-in spacing design rule. Minimum trace clearance from the ground  
ring around the PCB shall be 0.1-in minimum. Actual trace widths and clearances will be determined based on  
an analysis of impedance and stack-up requirements, some variation is expected.  
11-4. PCB Trace Matching Recommendations  
GROUP  
SIGNAL  
CONSTRAINTS(1)  
MEM_CLK  
MEM_CLKZ  
MEM_DQS0  
MEM_DQSZ0  
MEM_DQS1  
MEM_DQSZ1  
Lengths Matched to 25 mils  
Max Total Length: 1500 mils  
Impedance: 100-Ωdifferential (± 10%)  
Lengths Matched to 50 mils  
Max Total Length: 1500 mils  
Impedance: 50 Ω(± 10%)  
DDR2 I/F  
MEM_DQ[0:15]  
MEM_RASZ  
MEM_CASZ  
MEM_WEZ  
MEM_CSZ  
MEM_CKE  
MEM_A[0:12]  
Lengths Matched to 100 mils  
Max Total Length: 1500 mils  
Impedance: 50 Ω(± 10%)  
DMD_D[0:14]  
DMD_DCLK  
DMD_BUS  
DMD_STRB  
DMD_OEZ  
DMD_LOADB  
DMD_SAC_CLK  
DMD_SAC_BUS  
DMD_SCTRL  
DMD_TRC  
Lengths Matched to 50 mils  
Max Total Length: 10000 mils  
Impedance: 50 Ω(± 10%)  
DMD I/F  
DMD_JTCK  
DMD_JTDI  
DMD_JTDO  
DMD_JTMS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DLPC120-Q1  
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
11-4. PCB Trace Matching Recommendations (continued)  
GROUP  
SIGNAL  
CONSTRAINTS(1)  
FLASH_DCLK,  
FLASH_POCI,  
FLASH_PICO,  
FLASH_CSZ  
Lengths Matched to 100 mils  
Max Total Length: 2500 mils  
Impedance: 50 Ω(± 10%)  
Serial Flash I/F  
(1) Trace lengths on Layers 1 and 10 should be less than 50 mils.  
11.1.5 Number of Layer Changes  
As a reference, the TI design uses no more than three layer changes per trace.  
Individual differentially matched signal pairs can be routed on different layers, but the signals of a given pair  
should not change.  
11.1.6 Terminations  
All DMD I/F signals should be terminated at the source with a 20-Ωseries resistor.  
MEM_CLK and MEM_CLKZ should be terminated with an external 100-Ωdifferential resistor across the two  
signals as close to the DRAM as possible. All other DDR2 control and data signals should be pulled to  
VTT(0.9 V) with a 56-Ωresistor as close to the DRAM as possible.  
11.1.7 General Handling Guidelines for Unused CMOS-Type Pins  
To avoid potentially damaging current caused by floating CMOS input-only pins, it is recommended that unused  
ASIC input pins be tied through a pull-up resistor to its associated power supply or a pull-down to ground. For  
ASIC inputs with an internal pull-up or pull-down resistors, it is unnecessary to add an external pullup or  
pulldown unless specifically recommended. Note that internal pull-up and pull-down resistors are weak and  
should not be expected to drive the external line. The DLPC120-Q1 implements very few internal resistors and  
these are noted in the pin list.  
Unused output-only pins can be left open. When possible, it is recommended that unused Bi-directional I/O pins  
be configured to their output state such that the pin can be left open. If this control is not available and the pins  
may become an input, then they should be pulled-up (or down) using an appropriate resistor.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DLPC120-Q1  
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 Device Support  
12.2.1 Device Nomenclature  
12.2.1.1 Device Markings  
Line 1: Part Number (P/N)  
PDLPC120ZXSQ1  
Line 2: TI Internal Marking Information  
ECP292533A-1G  
Line 3: Lot, Wafer, and Die Numbers  
LLLLLL.ZZZXX  
YYWW  
Line 4: Data Code (YY = Year,  
WW = Week)  
TAIWAN  
G1  
Line 5: Country of Assembly Origin  
Environmental  
Pin A1 ID  
Compliance Logo  
12-1. Device Marking  
PDLPC120ZXSRQ1  
—Q1- Automotive Grade  
—R“ - Tape and reel required for  
production orders. 500 pcs / reel.  
Removed for tray packaging.  
—ZXS“ - Package Designator. 216 pin  
plastic ball grid array  
—DLPC120- DLP Controller Base Part Name  
—P“ - Indicates Prototype, removed from  
production samples  
12-2. Part Number Definition  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DLPC120-Q1  
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
12.3 Documentation Support  
12.3.1 Related Documentation  
For related documentation see the following:  
DLP3030-Q1 product folder for the DLP3030-Q1 Data Sheet.  
DLP3020-Q1 product folder for the DLP3020-Q1 Data Sheet.  
DLP3021-Q1 product folder for the DLP3021-Q1 Data Sheet.  
12.4 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.5 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.6 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
DLP® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.8 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DLPC120-Q1  
 
 
 
 
 
 
DLPC120-Q1  
ZHCSHX7B NOVEMBER 2017 REVISED MAY 2022  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DLPC120-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLPC120ZXSQ1  
DLPC120ZXSRQ1  
ACTIVE  
NFBGA  
NFBGA  
ZXS  
216  
216  
90  
RoHS & Green  
RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
DLPC120ZXSQ1  
ECP292533A-1G  
Samples  
Samples  
ACTIVE  
ZXS  
500  
SNAGCU  
DLPC120ZXSQ1  
ECP292533A-1G  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2022  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DLPC1438

适用于 DLP300S 和 DLP301S 数字微镜器件 (DMD) 的 DLP® 控制器
TI

DLPC1438ZEZ

适用于 DLP300S 和 DLP301S 数字微镜器件 (DMD) 的 DLP® 控制器 | ZEZ | 201 | -30 to 105
TI

DLPC150

适用于 DLP2010NIR DMD 的 数字控制器
TI

DLPC150ZEZ

适用于 DLP2010NIR DMD 的 数字控制器 | ZEZ | 201 | -30 to 85
TI

DLPC200

DLP® Digital Controller for the DLP5500 DMD
TI

DLPC200ZEW

DLP® Digital Controller for the DLP5500 DMD
TI

DLPC200ZEWCM

暂无描述
TI

DLPC200ZEWT

DLP® Digital Controller for the DLP5500 DMD
TI

DLPC200_1

DLP® Digital Controller for the DLP5500 DMD
TI

DLPC200_17

DLP Digital Controller for the DLP5500 DMD
TI

DLPC230-Q1

适用于 DLP553x-Q1 芯片组的 DLP® 汽车数字微镜器件 (DMD) 控制器
TI

DLPC230S-Q1

适用于 DLP553x-Q1 芯片组的 DLP® 符合汽车功能安全标准的 DMD 控制器
TI