DLPA1000YFFT [TI]

用于 DLP2000 (0.2 nHD) DMD 的 PMIC/LED 驱动器 | YFF | 49 | -10 to 85;
DLPA1000YFFT
型号: DLPA1000YFFT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于 DLP2000 (0.2 nHD) DMD 的 PMIC/LED 驱动器 | YFF | 49 | -10 to 85

驱动 集成电源管理电路 驱动器
文件: 总48页 (文件大小:1787K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
DLPA1000 电源管理和 LED 驱动器 IC  
1 特性  
过流和欠压保护  
间距为 0.4mm 49 焊球 DSBGA 封装  
1
具有降压/升压直流/直流转换器和集成式 MOSFET  
的高效 RGB LED 驱动器  
2 应用  
通过六个低阻抗 (<100mΩ) MOSFET 开关进行通  
道选择  
DLP® Pico™投影仪  
每个通道具有独立的 10 位电流控制  
DMD 调节器  
嵌入式移动投影  
智能手机  
平板电脑  
摄像机  
仅需一个电感器  
VOFS8.5V  
VBIAS16V  
VRST–10V  
笔记本电脑  
移动附件  
复位信号生成和电源定序  
可佩戴(近眼)显示  
电池供电投影仪  
RGB LED 闪光灯解码器支持:  
共阳极 RGB  
3 说明  
阴极-阴极-阳极 RGB  
DLPA1000 是一款专用于 DLP2000 数字微镜器件  
(DMD) PMIC/RGB LED 驱动器,与 DLPC2607 数  
字控制器搭配使用。为确保这些芯片组可靠运行,必须  
使用 DLPA1000。  
33MHz 串行外设接口 (SPI)  
用于测量模拟信号的多路复用器  
电池电压  
LED 电压,LED 电流  
光传感器(用于白点修正)  
外部温度传感器  
器件信息(1)  
器件型号  
DLPA1000  
封装  
封装尺寸(标称值)  
监控和保护电路  
DSBGA (49)  
2.40mm × 2.40mm  
热模警告和热关断  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
电池电量不足和欠压锁定  
简化电路原理图  
Main System  
Processor  
(MPU)  
RESETZ  
INTZ  
VBIAS  
VOFS  
VRST  
DLP2000  
DMD  
SPI (4)  
LED_SEL0  
LED_SEL1  
PWM_IN  
CMP_OUT  
DLPC2607  
Pico Processor  
VLED  
SW4  
SW5  
SW6  
DLPA1000  
RGB LED  
Assembly  
PWR_EN  
VINA  
DPP  
Power Supplies  
Single Cell Li-Ion  
Light  
Sensor  
Temp.  
Sensor  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSDP7  
 
 
 
 
 
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
目录  
7.5 Programming........................................................... 20  
7.6 Register Maps......................................................... 21  
Application and Implementation ........................ 35  
8.1 Application Information............................................ 35  
8.2 Typical Application .................................................. 35  
Power Supply Recommendations...................... 39  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Requirements................................................ 9  
6.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 11  
7.1 Overview ................................................................ 11  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 12  
7.4 Device Functional Modes........................................ 19  
8
9
10 Layout................................................................... 40  
10.1 Layout Guidelines ................................................. 40  
10.2 Layout Example .................................................... 41  
11 器件和文档支持 ..................................................... 42  
11.1 文档支持................................................................ 42  
11.2 接收文档更新通知 ................................................. 42  
11.3 社区资源................................................................ 42  
11.4 ....................................................................... 42  
11.5 静电放电警告......................................................... 42  
11.6 Glossary................................................................ 42  
12 机械、封装和可订购信息....................................... 42  
7
4 修订历史记录  
Changes from Original (February 2017) to Revision A  
Page  
已更改 应用 部分 .................................................................................................................................................................... 1  
已添加 文档支持 部分 ........................................................................................................................................................... 42  
2
Copyright © 2017, Texas Instruments Incorporated  
 
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
5 Pin Configuration and Functions  
YFF  
49-Pin DSBGA  
Bottom View  
1
2
3
4
5
6
7
G
F
SW1  
SW2  
SW3  
VINA  
SW4  
SW5  
SW6  
V6V  
VLED  
L2  
VLED  
VLED  
L2  
LED_SEL0  
LED_SEL1  
PWR_EN  
SPI_CLK  
RESETZ  
AGND1  
TEST  
SENS1  
CMP_OUT  
SPI_CSZ  
INTZ  
RLIM_K  
SENS2  
PWM_IN  
SPI_DIN  
VSPI  
RLIM  
RLIM  
V2V5  
E
D
C
B
A
PROJ_ON  
DGND  
AGND  
VOFS  
VBIAS  
PGNDL  
PGNDL  
SPI_DOUT  
REF_VRST  
PGNDR  
L1  
L1  
VINL  
VINL  
VINR  
SWN  
SWP  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VINL  
NO.  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
B1  
B2  
B3  
B4  
B5  
B6  
POWER  
POWER  
GND  
Power supply input for VLED BUCK-BOOST power stage. Connect to system power.  
Power supply input for VLED BUCK-BOOST power stage. Connect to system power.  
Analog ground. Connect to ground plane.  
VINL  
AGND1  
VINR  
POWER  
IN (A)  
Power supply input for DMD switch mode power supply. Connect to system power.  
Connection for the DMD SMPS-inductor (high-side switch).  
SWN  
PGNDR  
SWP  
GND  
Power ground for DMD SMPS. Connect to ground plane.  
IN(A)  
Connection for the DMD SMPS-inductor (low-side switch).  
L1  
IN (A)  
Connection for VLED BUCK-BOOST inductor.  
L1  
IN(A)  
Connection for VLED BUCK-BOOST inductor.  
RESETZ  
INTZ  
OUT(D)  
OUT(D)  
POWER  
IN(A)  
Reset output to the DLP system (active low). Pin is held low to reset DLP system.  
Interrupt output signal (open drain). Connect to pull-up resistor or short to ground.  
Power Supply input for SPI interface. Connect to system I/O voltage.  
Reference pin for the VRST regulator. Connect to VRST rail through 100-kΩ resistor.  
VSPI  
REF_VRST  
Copyright © 2017, Texas Instruments Incorporated  
3
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
B7  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
F1  
F2  
F3  
F4  
VBIAS  
OUT(A)  
GND  
VBIAS output rail. Connect to ceramic capacitor.  
Power ground for VLED BUCK-BOOST. Connect to ground plane.  
Power ground for VLED BUCK-BOOST. Connect to ground plane.  
Clock input for SPI interface.  
PGNDL  
PGNDL  
SPI_CLK  
SPI_CSZ  
SPI_DIN  
SPI_DOUT  
VOFS  
GND  
IN(D)  
IN(D)  
SPI chip select (active low).  
IN(D)  
SPI data input.  
OUT(D)  
OUT(A)  
IN(A)  
SPI data output.  
VOFS output rail. Connect to ceramic capacitor.  
Connection for VLED BUCK-BOOST inductor.  
Connection for VLED BUCK-BOOST inductor.  
Enable pin for the external power supplies (active high).  
Analog-comparator output.  
L2  
L2  
IN(A)  
PWR_EN  
CMP_OUT  
PWM_IN  
DGND  
OUT(D)  
OUT(A)  
IN(D)  
Reference voltage input for analog comparator.  
Digital ground. Connect to ground plane.  
Analog ground. Connect to ground plane.  
VLED BUCK-BOOST converter output pin.  
VLED BUCK-BOOST converter output pin.  
Digital input to the RGB STROBE DECODER.  
Input signal from light sensor.  
GND  
AGND  
GND  
VLED  
OUT (A)  
OUT(A)  
IN(D)  
VLED  
LED_SEL1  
SENS1  
SENS2  
PROJ_ON  
V2V5  
IN(A)  
IN(A)  
Input signal from temperature sensor.  
IN(D)  
Input signal to enable/disable the IC and DLP projector.  
Internal supply filter pin for digital logic. Typical 2.45 V.  
Internal supply filter pin for gate driver circuitry. Typical 6 V.  
VLED BUCK-BOOST converter output pin.  
Digital input to the RGB STROBE DECODER.  
Test pin for digital, must be tied to the output capacitor of V2V5.  
OUT (D)  
OUT(D)  
OUT(A)  
IN(D)  
V6V  
VLED  
LED_SEL0  
TEST  
IN(D)  
Kelvin sense connection for LED current sense resistor. For best accuracy, route signal with a  
dedicated trace separated from F6/F7 and connect directly at sense resistor.  
RLIM_K  
F5  
IN(A)  
RLIM  
RLIM  
F6  
F7  
OUT(A)  
OUT(A)  
Connection to LED current sense resistor. Connect to a 100-mΩ resistor.  
Connection to LED current sense resistor. Connect to pin F6.  
High-side MOSFET switch for LED anode. Connect to RGB LED assembly.  
If output is not used, short to VLED.  
SW1  
SW2  
SW3  
G1  
G2  
G3  
OUT(A)  
OUT(A)  
OUT(A)  
High-side MOSFET switch for LED anode. Connect to RGB LED assembly.  
If output is not used, short to VLED.  
High-side MOSFET switch for LED anode. Connect to RGB LED assembly.  
If output is not used, short to VLED.  
VINA  
SW4  
SW5  
SW6  
G4  
G5  
G6  
G7  
POWER  
OUT(A)  
OUT(A)  
OUT(A)  
Power supply input for sensitive analog circuitry.  
Low-side MOSFET switch for LED cathode. Connect to RGB LED assembly.  
Low-side MOSFET switch for LED cathode. Connect to RGB LED assembly.  
Low-side MOSFET switch for LED cathode. Connect to RGB LED assembly.  
4
Copyright © 2017, Texas Instruments Incorporated  
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–18  
MAX  
7
UNIT  
V
Input voltage  
VINL, VINA, VINR  
Ground pins to system ground  
0.3  
7
V
SWN  
SWP, VBIAS  
VOFS  
–0.3  
–0.3  
20  
10  
Voltage  
V
V6V, VLED, L1, L2, SW1, SW2, SW3, SW4, SW5, SW6,  
INTZ, PROJ_ON  
–0.3  
–0.3  
7
All pins unless noted otherwise  
Source current  
3.6  
V
RESETZ, PWR_EN, CMP_OUT  
SPI_DOUT  
1
5.5  
1
mA  
RESETZ, PWR_EN, CMP_OUT  
SPI_DOUT, INTZ  
Sink current  
mA  
5.5  
Peak output current  
Internally limited  
Internally limited  
mA  
W
Continuous total power dissipation  
Operating ambient temperature  
Storage temperature  
TA  
–30  
–65  
85  
°C  
°C  
Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
Full functional and parametric performance  
2.7  
3.6  
6
Input voltage at VINL, VINA, VINR  
V
Extended operation, limited parametric  
performance  
2.3  
3.6  
1.8  
6
Voltage at VSPI  
1.7  
–10  
–10  
3.6  
85  
V
TA  
TJ  
Operating ambient temperature  
Operating junction temperature  
°C  
°C  
125  
Copyright © 2017, Texas Instruments Incorporated  
5
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
6.4 Thermal Information  
DLPA1000  
THERMAL METRIC(1)  
YFF (DSBGA)  
UNIT  
49 PINS  
49  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
0.1  
6.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.1  
ψJB  
6.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
VIN = 3.6 V, TA = –10°C to 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
INPUT VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Input voltage range  
Extended input voltage range(1)  
Low battery warning threshold  
Hysteresis  
2.7  
2.3  
3.6  
3.6  
3
6
V
6
VIN  
VINA, VINR, VINL  
VINA falling  
V
mV  
V
VLOW_BAT  
VINA rising  
100  
2.3  
100  
Undervoltage lockout threshold  
Hysteresis  
VINA falling  
VUVLO  
VINA rising  
mV  
V
VSTARTUP  
Startup voltage  
VBIAS, VOFS, VRST loaded with 2 mA  
2.5  
INPUT CURRENT  
IQ  
ACTIVE2 mode  
STANDBY mode  
SLEEP mode  
12  
360  
10  
mA  
µA  
µA  
ISTD  
ISLEEP  
INTERNAL SUPPLIES  
VV6V  
Internal supply, analog  
6.25  
100  
2.5  
V
nF  
V
CLDO_V6V  
VV2V5  
Filter capacitor for V6V LDO  
Internal supply, logic  
CLDO_V2V5 Filter capacitor for V2V5 LDO  
2.2  
µF  
DMD REGULATOR  
Switch E (from VINR to SWN)  
Switch F (from SWP to PGND)  
Switch G (from SWP to VBIAS)(2)  
1000  
320  
RDS(ON)  
MOSFET on resistance  
Forward voltage drop  
mΩ  
1.3  
1.3  
VINR = 5 V, VSWP = 2 V, IF = 100 mA  
VFW  
V
Switch H (from SWP to VOFS)  
VINR = 5 V, VSWP = 2 V, IF = 100 mA  
RDIS  
tPG  
Discharge resistor (SWP to GND)  
Power-good timeout  
Switch current limit  
Active when all rails are disabled  
Not tested in production  
2
6
kΩ  
ms  
mA  
µH  
ILIMIT  
L
200(3)  
Inductor value  
10  
(1) Full functional but limited parametric performance.  
(2) Including rectifying diode.  
(3) Contact factory for 100-mA and 300-mA options.  
6
Copyright © 2017, Texas Instruments Incorporated  
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
Electrical Characteristics (continued)  
VIN = 3.6 V, TA = –10°C to 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
VOFS REGULATOR  
Output voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
8.5  
V
2%  
DC output voltage accuracy  
DC load regulation  
IOUT = 2 mA  
–2%  
VOFS  
VIN = 3.6 V, IOUT= 0 mA to 4 mA  
–19  
35  
V/A  
VINA, VINL, VINR 2.7 V to 6 V,  
IOUT = 2 mA  
DC line regulation  
mV/V  
mV  
VRIPPLE  
IOUT  
Output ripple  
VIN = 3.6 V, IOUT = 4 mA, COUT = 220 nF  
240  
Output current  
0
3
mA  
VOFS rising  
85%  
62%  
2
Power-good threshold  
(fraction of nominal output voltage)  
PG  
VOFS falling  
RDIS  
C
Output discharge resistor  
Output capacitor  
Active when rail is disabled  
Recommended value  
kΩ  
110  
220  
nF  
VBIAS REGULATOR  
Output voltage  
16  
V
DC output voltage accuracy  
DC load regulation  
IOUT = 2 mA  
–2%  
2%  
VBIAS  
VIN = 3.6 V, IOUT = 0 mA to 4 mA  
–14  
18  
V/A  
VINA, VINL, VINR 2.7 V to 6 V,  
IOUT = 2 mA  
DC line regulation  
mV/V  
VRIPPLE  
IOUT  
Output ripple  
VIN = 3.6 V, IOUT = 4 mA, COUT = 220 nF  
240  
mV  
mA  
Output current  
0
4
VOFS rising  
85%  
62%  
2
Power-good threshold  
(fraction of nominal output voltage)  
PG  
VOFS falling  
RDIS  
C
Output discharge resistor  
Output capacitor  
Active when rail is disabled  
Recommended value  
kΩ  
110  
220  
nF  
VRST REGULATOR  
Output voltage  
–10  
V
DC output voltage accuracy  
DC load regulation  
IOUT = 2 mA  
–2%  
2%  
VRST  
VIN = 3.6 V, IOUT = 0 mA to 4 mA  
13  
V/A  
VINA, VINL, VINR 2.7 V to 6 V,  
IOUT = 2 mA  
DC line regulation  
Output ripple  
–21  
mV/V  
VRIPPLE  
VIN = 3.6 V, IOUT = 4 mA, COUT = 220 nF  
240  
500  
mV  
mV  
mA  
V
VREF_VRST Reference voltage  
IOUT  
PG  
C
Output current  
0
110  
1.2  
4
5.9  
2.5  
Power-good threshold  
Output capacitor  
–9.1  
220  
Recommended value  
nF  
VLED BUCK-BOOST  
Output voltage range  
VLED  
V
Default output voltage  
Output overvoltage protection  
Fault detection threshold  
Switch current limit  
SW4/5/6 in OPEN position  
Clamps buck-boost output  
Triggers VLED_OVP interrupt  
3.5  
5.9  
VOVP  
V
V
A
VLED_OVP  
ISW  
5.4  
1.65  
2.2  
Switch A (from VINL to L1)  
Switch B (from L1 to GND)  
Switch C (from L2 to GND)  
Switch D (from L2 to VLED)  
100  
100  
RDS(ON)  
MOSFET on resistance  
mΩ  
100  
100  
fSW  
Switching frequency  
Output capacitance  
2.25  
2 × 10  
MHz  
µF  
COUT  
Copyright © 2017, Texas Instruments Incorporated  
7
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (continued)  
VIN = 3.6 V, TA = –10°C to 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
RGB STROBE CONTROLLER SWITCHES  
SW1, SW2, SW3  
50  
40  
100  
mΩ  
100  
RDS(ON)  
ILEAK  
Drain-source on resistance  
Off-state leakage current  
SW4, SW5, SW6  
VDS = 5 V  
1
µA  
LED CURRENT CONTROL  
Vf  
LED forward voltage  
ILED = 1 A  
4.8  
V
VIN = 3.1 V, VLED = 4.4 V  
VIN = 4 V, VLED = 4.4 V  
700  
Maximum LED drive current  
DC current accuracy, SW4, 5, 6  
Transient LED current limit range  
Current rise time(4)  
mA  
1000  
SWx_IDAC[9:0] = 0x100h  
RLIM = 100 mΩ, 0.1%, TA = 25°C  
ILED  
258  
272  
286  
50  
mA  
mA  
µs  
ILIM[2:0] = 000  
ILIM[2:0] = 111  
260  
1250  
ILED from 5% to 95%, ILED = 300 mA, transient  
current limit disabled  
trise  
MEASUREMENT SYSTEM (AFE)  
AFE_GAIN[1:0] = 01  
AFE_GAIN[1:0] = 10  
AFE_GAIN[1:0] = 11  
PGA, AFE_CAL_DIS = 1  
Comparator  
1
9.5  
18  
G
Amplifier gain (PGA)  
V/V  
–1  
1
VOFS  
Input referred offset voltage(4)  
mV  
µs  
–1.5  
1.5  
To 1% of final value  
To 0.1% of final value  
15  
52  
tsettle  
Settling time(4)  
fsample  
Sampling rate(4)  
19 kHz  
LOGIC LEVELS AND TIMING CHARACTERISTICS  
IO = 0.5 mA, sink current  
(RESETZ, PWR_EN, CMP_OUT)  
0
0
0.3  
V
VOL  
Output low-level  
Output high-level  
IO = 5 mA, sink current  
(SPI_DOUT, INTZ)  
0.3  
IO = 0.5 mA, source current  
(RESETZ, PWR_EN, CMP_OUT)  
1.3  
1.3  
2.5  
V
VOH  
IO = 5 mA, sink current  
(SPI_DOUT)  
2.5  
TEST, PROJ_ON, LED_SEL0, LED_SEL1,  
SPI_CSZ, SPI_CLK, SPI_DIN  
VIL  
Input low-level  
Input high-level  
Input bias current  
0.4  
0.5  
V
V
TEST, PROJ_ON, LED_SEL0, LED_SEL1,  
SPI_CSZ, SPI_CLK, SPI_DIN  
VIH  
1.2  
VIO = 3.3 V  
Any input pin  
I(bias)  
µA  
(PROJ_ON, TEST) pins  
1
ms  
ns  
tdeglitch  
Deglitch time(4)  
(LED_SEL0, LED_SEL1) pins  
300  
(4) Not tested in production.  
8
Copyright © 2017, Texas Instruments Incorporated  
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
Electrical Characteristics (continued)  
VIN = 3.6 V, TA = –10°C to 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
INTERNAL OSCILLATOR  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
fOSC  
Oscillator frequency  
Frequency accuracy  
9
MHz  
10%  
TA = –40°C to 85°C  
–10%  
THERMAL SHUTDOWN  
Thermal warning (HOT threshold)  
120  
10  
TWARN  
°C  
°C  
Hysteresis  
Thermal shutdown (TSD threshold)  
Hysteresis  
150  
15  
TSHTDWN  
6.6 Timing Requirements  
VBAT = 3.6 V ±5%, TA = 25°C, CL = 10 pF (unless otherwise noted)  
PARAMETER  
MIN  
0
TYP  
MAX  
UNIT  
MHz  
ns  
fCLK  
tCLKL  
tCLKH  
tt  
Serial clock frequency  
33.34  
Pulse width low, SPI_CLK, 50% level  
Pulse width high, SPI_CLK, 50% level  
Transition time, 20% to 80% level, all signals  
SPI_CSZ falling to SPI_CLK rising, 50% level  
SPI_CLK falling to SPI_CSZ rising, 50% level  
SPI_DIN data setup time, 50% level  
SPI_DIN data hold time, 50% level  
10  
10  
0.2  
8
ns  
4
1
ns  
tCSCR  
tCFCS  
tCDS  
tCDH  
tiS  
ns  
ns  
7
6
ns  
ns  
SPI_DOUT data setup time(1), 50% level  
SPI_DOUT data hold time(1), 50% level  
SPI_CLK falling to SPI_DOUT data valid, 50% level  
SPI_CSZ rising to SPI_DOUT HiZ  
10  
0
ns  
tiH  
ns  
tCFDO  
tCSZ  
13  
6
ns  
ns  
(1) The DPPxxxx processors send and receive data on the falling edge of the clock.  
SPI_CSZ  
(SS)  
tCSCR  
tCLKL  
tCLKH  
tCFCS  
SPI_CLK  
(SCLK)  
tCDS  
tCDH  
SPI_DIN  
(MOSI)  
tCFDO  
tiH  
tCSZ  
tiS  
SPI_DOUT  
(MISO)  
HiZ  
HiZ  
Figure 1. SPI Timing Diagram  
Copyright © 2017, Texas Instruments Incorporated  
9
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
6.7 Typical Characteristics  
The maximum output current of the buck-boost is a function of input voltage (VIN), and output voltage (VLED). The  
relationship between VIN, VLED, and MAX ILED is shown in Figure 2. Please note that VLED is the output of the buck-boost  
regulator which includes the voltage drop across the sense resistor (100 mΩ), internal strobe control switch (100-mΩ max),  
and the forward voltage of the LED. For example, to drive 1-A of current through a LED with Vf = 4.2 V, the minimum input  
voltage needs to be 3.7 V (VLED = 4.2 V + 1 A × 100 mΩ + 1 A × 100 mΩ = 4.4 V). For an input voltage of 3.1 V and a drive  
current of 700 mA, the max VLED voltage cannot exceed 4.4 V.  
1100  
1000  
VLED=3.6V  
900  
800  
VLED=4.0V  
700  
600  
VLED=4.4V  
500  
400  
VLED=4.8V  
300  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VIN [V]  
Measured on a typical unit. Note that VLED is the output of the buck-boost regulator and includes the voltage drop across the sense resistor,  
internal strobe control switch, and the forward voltage of the LED.  
Figure 2. Maximum LED Output Current as a Function of Input Voltage (VIN) and BB Output Voltage (VLED)  
10  
Copyright © 2017, Texas Instruments Incorporated  
 
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
7 Detailed Description  
7.1 Overview  
DLPA1000 is a power management IC optimized for TI DLP® Pico™ Projector systems and meant for use in  
either embedded or accessory mobile phone applications. For embedded applications, the projector is built into  
the mobile phone and operates from the mobile phone’s single cell battery. In accessory applications, the  
projector resides in its own enclosure and has its own battery or external power supply and operates as a stand-  
alone device.  
DLPA1000 contains a complete LED driver and can supply up to 1 A per LED. Integrated high-current switches  
are included for sequentially selecting a red, green, or blue LED. The DLPA1000 also contains three regulated  
DC supplies for the DMD: VBIAS, VRST and VOFS.  
The DLPA1000 contains a serial periphery interface (SPI) used for setting the configuration. Using SPI, currents  
can be set independently for each LED with 10-bit resolution. Other features included are the generation of the  
system reset, power sequencing, input signals for sequentially selecting the active LED, IC self-protection, and  
an analog multiplexer and comparator to support A/D conversion of system parameters.  
7.2 Functional Block Diagram  
VINA  
V2V5  
V6V  
Reference  
System  
From system power  
LDO_V2V5  
LDO_V6V  
VLED  
2.2 F  
1 F  
VREF  
UVLO  
VLED_OVP  
100 nF  
VINL  
VINL  
LOW_BAT  
VREF  
From system power  
A
B
C
D
AGND  
1 F  
L1  
L1  
AFE_GAIN [1:0]  
AFE_SEL[2:0]  
AGND1  
AFE  
VINA/3  
VLED/3  
SW4  
SW5  
SW6  
PWM_IN  
PGNDL  
PGNDL  
From host  
To host  
2.2 F  
CMP_OUT  
VLED  
Buck-Boost  
MUX  
RLIM_K  
L2  
L2  
SENS1  
SENS2  
From light sensor  
VLED  
VLED  
VLED  
From temperature sensor  
10 F  
VINR  
From system power  
10 F  
E
10 F  
SWN  
REF_VRST  
SWP  
SW1  
SW2  
SW3  
SW4  
SW5  
SW6  
VRST (œ10 V)  
100k  
220 nF  
RGB  
Strobe  
Decoder  
DMD  
Reset  
Regulators  
10 F  
H
G
RGB LED  
Assembly  
F
220 nF  
PGNDR  
VBIAS  
VOFS  
RLIM  
VBIAS (16 V)  
VOFS (8.5 V)  
RLIM  
100 m  
RLIM_K  
220 nF  
TEST  
PROJ_ON  
LED_SEL0  
LED_SEL1  
V2V5  
LDO_V2V5  
From host  
From host  
From host  
RESETZ  
PWR_EN  
To system  
To system  
V2V5  
0.1 F  
Digital  
Core  
VSPI  
SPI_CSZ  
SPI_CLK  
SPI_DIN  
From host  
From host  
From host  
From host  
To host  
VIO  
INTZ  
To DPP (optional)  
SPI  
SPI_DOUT  
DGND  
Copyright © 2017, Texas Instruments Incorporated  
Copyright © 2017, Texas Instruments Incorporated  
11  
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 DMD Regulators  
DLPA1000 contains three switch-mode power supplies that power the DMD. These rails are VOFS, VBIAS, and  
VRST. 100 ms after pulling the PROJ_ON pin high, VOFS is powered up, followed by VBIAS and VRST with an  
additional 10-ms delay. Only after all three rails are enabled can the LED driver and STROBE DECODER circuit  
be enabled. If any one of the rails encounters a fault such as an output short, all three rails are disabled  
simultaneously. The detailed power-up and power-down diagram is shown in Figure 3.  
5 ms (min.)  
5 ms (min.)  
System Power 2.5 V  
PROJ_ON  
2.3 V  
3.5 ms fixed delay  
PWR_EN  
129 ms  
100 ms  
RESETZ  
PROJ_ON interrupt bit  
INTZ pin  
VOFS  
VBIAS  
VRST  
HiZ  
HiZ  
12 ms  
PRECHARGE  
25 ms  
10 ms  
PRECHARGE  
VLED  
OFF  
ACTIVE1  
ACTIVE2  
ACTIVE1  
OFF  
Power-up or down is initiated by pulling the PROJ_ON pin high or low, respectively. Upon pulling PROJ_ON high, the  
device enters ACTIVE2 mode immediately because DMD_EN and VLED_EN bits default to 1.  
Figure 3. Power-Up and Power-Down Timing of the DMD REGULATOR and VLED Supplies  
7.3.2 RGB Strobe Decoder  
DLPA1000 contains RGB color-sequential circuitry that is composed of six NMOS switches, the LED driver, the  
strobe decoder and the LED current control. The NMOS switches are connected to the terminals of the external  
LED package and turn the currents through the LEDs on and off. The strobe decoder controls the gates of the  
NMOS switches according to the LED_SEL[1:0] input signals and the MAP bit of the SYSTEM register. The MAP  
bit selects one of two package configurations. A ‘1’ indicates a cathode-cathode-anode package and a ‘0’  
indicates the common anode package. The two package connections are shown in Figure 4 and the  
corresponding switch map in Table 1 and Table 2.  
12  
Copyright © 2017, Texas Instruments Incorporated  
 
 
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
Feature Description (continued)  
The LED_SEL[1:0] signals typically receive a rotating code switching from RED to GREEN to BLUE and then  
back to RED. When the LED_SEL[1:0] input signals select a specific color, the NMOSFETs are controlled based  
on the color selected, and a 10-bit current control DAC for this color is selected that provides a color correction  
current to the RGB LEDs feedback control network.  
VLED  
VLED  
SW3  
SW2  
SW1  
SW3  
SW2  
SW1  
SW1  
SW2  
SW3  
SW1  
SW2  
SW3  
SW4  
SW5  
SW6  
SW4  
SW5  
SW6  
R
G
B
G
B
R
SW4  
SW5  
SW6  
SW4  
SW5  
SW6  
RLIM  
RLIM  
100m  
100m  
RLIM_K  
RLIM_K  
Figure 4. LEFT: Switch Connection for a Common-Anode LED Assembly  
RIGHT: Switch Connection for a Cathode-Cathode-Anode LED Assembly  
Table 1. Switch Positions for Common Anode RGB LEDs (MAP = 0)  
MAP = 0 (Common Anode, Default)  
LED_SEL[1:0]  
0x00h  
SW6  
open  
open  
open  
SW5  
open  
open  
closed  
open  
SW4  
open  
closed  
open  
open  
SW3  
SW2  
SW1  
IDAC input  
closed  
closed  
closed  
closed  
closed  
closed  
closed  
closed  
closed  
closed  
closed  
closed  
N/A  
0x01h  
SW4_IDAC[9:0]  
SW5_IDAC[9:0]  
SW6_IDAC[9:0]  
0x02h  
0x03h  
closed  
Table 2. Switch Positions for Cathode-Cathode-Anode RGB LEDs (MAP = 1)  
MAP = 1 (Cathode-Cathode-Anode LED Arrangement)  
LED_SEL[1:0]  
0x00h  
SW6  
open  
closed  
open  
open  
SW5  
open  
SW4  
open  
SW3  
open  
open  
closed  
open  
SW2  
open  
open  
open  
closed  
SW1  
open  
closed  
open  
open  
IDAC input  
N/A  
0x01h  
open  
open  
SW4_IDAC[9:0]  
SW5_IDAC[9:0]  
SW6_IDAC[9:0]  
0x02h  
closed  
closed  
closed  
closed  
0x03h  
The switching of the six NMOS switches is controlled such that switches are returned to the OPEN position first  
before the CLOSED connections are made (Break Before Make). The dead time between opening and closing  
switches is controlled through the BBM register. Switches that already are in the CLOSED position and are to  
remain in the CLOSED state according to the SWCNTRL register, are not opened during the BBM delay time.  
7.3.3 LED Current Control  
DLPA1000 provides time-sequential circuitry to drive three LEDs with independent current control. A system  
based on a common anode LED configuration is shown in Figure 6 and consists of a buck-boost converter which  
provides the voltage to drive the LEDs, three switches connected to the cathodes of the LEDs, a 100-mΩ resistor  
used to sense the LED current, and a current DAC to control the LED current.  
The STROBE DECODER controls the switch positions as described in the section above. With all switches in the  
OPEN position, the buck-boost output assumes an output voltage of 3.5 V.  
Copyright © 2017, Texas Instruments Incorporated  
13  
 
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
For a common-anode RGB LED configuration (MAP = 0, default), the BUCK-BOOST output voltage (VLED)  
assumes a value such that the voltage drop across the sense resistor equals (SW4_IDAC[9:0] × 100 mΩ) when  
SW4 is closed. The exact value of VLED depends on the current setting and the voltage drop across the LED but  
is limited to 6.5 V. When the STROBE decoder switches from SW4 to SW5, the Buck-Boost assumes a new  
output voltage such that the sense voltage equals (SW5_IDAC[9:0] × 100 mΩ), and finally, when SW6 is  
selected, V(RLIM_K) is regulated to (SW6_IDAC[9:0] × 100 mΩ).  
Similarly, the regulation current setting switches from SW4_IDAC[9:0] to SW5_IDAC[9:0] to SW6_IDAC[9:0]  
depending on the LED_SEL[1:0] setting with a MAP setting of 1 (cathode-cathode-anode configuration). See  
Table 2 for details.  
7.3.3.1 LED Current Accuracy  
LED drive current is controlled by a current DAC (digital to analog converter) and can be set independently for  
switch SW4, SW5, and SW6. The DAC is trimmed to achieve a LED drive current of 272 mA at code 0x100h with  
an accuracy of ±14 mA. The first order gain-error of the DAC can be neglected, therefore the LED driver current  
accuracy of ±14 mA can be assumed over the full current range. For example, at full-scale (SWx_IDAC[9:0] =  
0x3FFh) the LED current is regulated to 1030 mA ±14 mA or ±1.4%. At the lowest setting (0x001h) the LED  
current is regulated to 20 mA ±14 mA and the resulting relative error is large; however this is not a typical  
operating point for a projector application. A typical drive current for projection LEDs is 300 mA and the resulting  
regulation error is < 5%.  
7.3.3.2 Transient Current Limiting  
Typically the forward voltages of the GREEN and BLUE diodes are close to each other (~3 V to 4 V) but Vf of the  
RED diode is significantly lower (1.8 V to 2.5 V). This can lead to a current spike in the RED diode when the  
strobe controller switches from GREEN or BLUE to RED because VLED is regulated to a higher voltage than  
required to drive the RED diode. DLPA1000 provides transient current limiting for each switch to limit the current  
in the LEDs during the transition. The transient current limit value is controlled through the ILIM[2:0] bits in the  
IREG register. The same register also contains three bits to select which switch employs the transient current  
limiting feature. In a typical application it is required only for the RED diode and the ILIM[2:0] value should be set  
approximately 10% higher than the DC regulation current. The effect that the transient current limit has on the  
LED current is shown in Figure 5.  
1500  
1200  
900  
600  
300  
0
1500  
1200  
900  
600  
300  
0
Current overshoot due  
to Buck-Boost output  
voltage change.  
Transient current  
limit active  
TIME  
TIME  
LEFT: RED LED current without transient current limit. The current overshoots because the buck-boost voltage starts  
at the (higher) level of the GREEN or BLUE LED.  
RIGHT: LED current with transient current limit.  
Figure 5. RED LED Current With and Without Transient Current Limit  
14  
Copyright © 2017, Texas Instruments Incorporated  
 
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
VLED  
SW4  
VLED  
BUCK-BOOST  
FB  
SW4LIM_EN  
0
ILIM[2:0]  
VDAC  
E/A  
1
SW5LIM_EN  
SW5  
0
E/A  
1
SW6LIM_EN  
SW6  
RLIM  
0
LED_SEL[1:0]  
STROBE  
DECODER  
MAP  
E/A  
1
SW4_IDAC[9:0]  
SW5_IDAC[9:0]  
SW6_IDAC[9:0]  
RLIM_K  
IDAC  
200 W  
100 mW  
Copyright © 2017, Texas Instruments Incorporated  
Figure 6. Block Diagram of the LED Driver Circuitry  
7.3.4 Measurement System  
The measurement system is composed of a 8:1 analog multiplexer (MUX), a programmable-gain amplifier and a  
comparator. It works together with the DPP processor to provide:  
White-point correction (WPC) by independently adjusting the R/G/B LED currents, after measuring the  
brightness of each color from an external light sensor.  
A measurement of the battery voltage.  
A measurement of the LED forward voltage.  
A measurement of the exact LED current.  
A measurement of temperature as derived by measuring the voltage across an external thermistor.  
A block diagram of the measurement system is shown in Figure 7.  
Copyright © 2017, Texas Instruments Incorporated  
15  
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
VINA VLED  
AFE_GAIN [1:0]  
AFE_SEL[2:0]  
2R  
2R  
AFE  
PWM_IN  
From host  
To host  
SW4  
SW5  
SW6  
RLIM_K  
CMP_OUT  
MUX  
1R  
1R  
SENS1  
SENS2  
From light sensor  
From temperature sensor  
Copyright © 2017, Texas Instruments Incorporated  
Figure 7. Block Diagram of the Measurement System  
Table 3. Recommended Configuration of the AFE for Different Input Selections  
RECOMMENDED GAIN SETTING  
AFE-GAIN[1:0]  
RECOMMENDED SETTING OF  
AFE_CAL_DIS BIT  
AFE_SEL[2:0]  
SELECTED INPUT  
0x00h  
0x01h  
0x02h  
0x03h  
SENS2  
VLED  
0x01h (1x)  
0x01h (1x)  
0x01h (1x)  
0x01h (1x)  
Setting has no effect on measurement  
Setting has no effect on measurement  
Setting has no effect on measurement  
Setting has no effect on measurement  
VINA  
SENS1  
Set to 1 if sense voltage is > 100 mV,  
otherwise set to 0 (default).  
0x04h  
0x05h  
0x06h  
0x07h  
RLIM_K  
SW4  
0x03h (18x)  
0x02h (9.5x)  
0x02h (9.5x)  
0x02h (9.5x)  
Set to 1 if sense voltage is > 200 mV,  
otherwise set to 0 (default).  
Set to 1 if sense voltage is > 200 mV,  
otherwise set to 0 (default).  
SW5  
Set to 1 if sense voltage is > 200 mV,  
otherwise set to 0 (default).  
SW6  
7.3.5 Protection Circuits  
DLPA1000 has several protection circuits to protect the IC as well as the system from damage due to excessive  
power consumption, die temperature, or over-voltages. These circuits are described below.  
7.3.5.1 Thermal Warning (HOT) and Thermal Shutdown (TSD)  
DLPA1000 continuously monitors the junction temperature and issues a HOT interrupt if temperature exceeds  
the HOT threshold. If the temperature continues to increase above the thermal shutdown threshold, all rails are  
disabled and the TSD bit in the INT register is set. Once the temperature drops by 15°C, the output rails are  
powered up in sequence and normal operation resumes (DMD_EN bit is not reset by TSD fault).  
Thermal shutdown  
threshold  
hysteresis  
Thermal warning  
threshold  
hysteresis  
Temperature  
HOT  
(internal signal)  
TSD  
(internal signal)  
Available time for controlled  
shutdown of System  
Figure 8. Definition of the Thermal Shutdown and Hot-Die Temperature Warning  
16  
Copyright © 2017, Texas Instruments Incorporated  
 
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
7.3.5.2 Low Battery Warning (BAT_LOW) and Undervoltage Lockout (UVLO)  
If the battery voltage drops below the BAT_LOW threshold (typically 3 V) the BAT_LOW interrupt is issued but  
normal operation continues. Once the battery drops below the undervoltage threshold (typically 2.3 V) the UVLO  
interrupt is issued, all rails are powered down in sequence, the DMD_EN bit is reset, and the part enters  
STANDBY mode. The power rails cannot be re-enabled before the input voltage recovers to > 2.4 V. To re-  
enable the rails, the PROJ_ON pin must be toggled.  
VINA  
hysteresis  
BAT_LOW threshold  
hysteresis  
UVLO threshold  
ACTIVE  
BAT LOW  
(internal signal)  
INACTIVE  
200 ms  
ACTIVE  
deglitch  
UVLO  
(internal signal)  
INACTIVE  
200 ms  
deglitch  
Figure 9. Undervoltage Lockout is Asserted When the Input Supply Drops Below the UVLO Threshold  
7.3.5.3 DMD Regulator Fault (DMD_FLT)  
The DMD regulator is continuously monitored to check if the output rails are in regulation and if the inductor  
current increases as expected during a switching cycle. If either one of the output rails drops out of regulation  
(e.g. due to a shorted output) or the inductor current does not increase as expected during a switching cycle (due  
to a disconnected inductor), the DMD_FLT interrupt bit is set in the INT register, the DMD_EN bit is reset, and  
the DMD regulator is shut down. Resetting the DMD_EN bit also causes the LED driver to power down. To  
restart the system, the PROJ_ON pin must be toggled.  
7.3.5.4 V6V Power-Good (V6V_PGF) Fault  
The VLED buck-boost requires the V6V rail for proper operation. The rail is continuously monitored and should  
the output drop below the power-good threshold, the V6V_PGF bit is set. The buck-boost is disabled and  
attempts to restart automatically.  
7.3.5.5 VLED Over-Voltage (VLED_OVP) Fault  
If the buck-boost output voltage rises above 6.5 V, the VLED_OVP interrupt is set but the buck-boost regulator is  
not turned off. A typical condition to cause this fault is an open LED.  
7.3.6 Interrupt Pin (INTZ)  
The interrupt pin is used to signal events and fault conditions to the host processor. Whenever a fault or event  
occurs in the IC, the corresponding interrupt bit is set in the INT register, and the open-drain output is pulled low.  
The INTZ pin is released (returns to HiZ state) and fault bits are cleared when the INT register is read by the  
host. However, if a failure persists, the corresponding INT bit remains set and the INTZ pin is pulled low again  
after a maximum of 32 µs.  
Interrupt events include fault conditions such as power-good faults, over-voltage, over-temperature shut-down,  
and under-voltage lock-out.  
The MASK register is used to mask events from generating interrupts, i.e. from pulling the INTZ pin low. The  
MASK settings affect the INTZ pin only and have no impact on protection and monitor circuits themselves. When  
an interrupt is masked, the event causing the interrupt still sets the corresponding bit in the INT register.  
However, it does not pull the INTZ pin low.  
Copyright © 2017, Texas Instruments Incorporated  
17  
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
Note that persisting fault conditions such as thermal shutdown can cause the INTZ pin to be pulled low for an  
extended period of time which can keep the host in a loop trying to resolve the interrupt. If this behavior is not  
desired, set the corresponding mask bit after receiving the interrupt and keep polling the INT register to see  
when the fault condition has disappeared. After the fault is resolved, unmask the interrupt bit again.  
7.3.7 Serial Peripheral Interface (SPI)  
DLPA1000 provides a 4-wire SPI port that supports high-speed serial data transfers up to 33.3 MHz. Register  
and data buffer write and read operations are supported. The SPI_CSZ input serves as the active low chip select  
for the SPI port. The SPI_CSZ input must be forced low in order to write or read registers and data buffers.  
When SPI_CSZ is forced high, the data at the SPI_DIN input is ignored, and the SPI_DOUT output is forced to a  
high-impedance state. The SPI_DIN input serves as the serial data input for the port; the SPI_DOUT output  
serves as the serial data output. The SPI_CLK input serves as the serial data clock for both the input and output  
data. Data is latched at the SPI_DIN input on the rising edge of SPI_CLK, while data is clocked out of the  
SPI_DOUT output on the falling edge of SPI_CLK. Figure 10 illustrates the SPI port protocol. Byte 0 is referred to  
as the command byte, where the most significant bit is the write/not read bit. For the W/nR bit, a 1 indicates a  
write operation, while a 0 indicates a read operation. The remaining seven bits of the command byte are the  
register address targeted by the write or read operation. The SPI port supports write and read operations for  
multiple sequential register addresses through the implementation of an auto-increment mode. As shown in  
Figure 10, the auto-increment mode is invoked by simply holding the SPI_CSZ input low for multiple data bytes.  
The register address is automatically incremented after each data byte transferred, starting with the address  
specified by the command byte. After reaching address 0x7Fh the address pointer jumps back to 0x00h.  
Set SPI_CSZ=1 here to write/read one register location  
Hold SPI_CSZ=0 to enable auto-increment mode  
SPI_CSZ  
SPI_DIN  
Header  
Register Data (write)  
Byte0  
Byte1  
Byte2  
Byte3  
ByteN  
Register Data (read)  
Data for A[6:0]  
Data for A[6:0]+1  
Data for A[6:0]+(N-2)  
SPI_DOUT  
SPI_CLK  
Byte 0  
Byte 1  
W/nR  
W/nR  
SPI_DIN  
A6 A5 A4 A3 A2 A1 A0 N7 N6 N5 N4 N3 N2 N1 N0  
Set high for write, low for read  
Register Address  
SPI_CLK  
Figure 10. SPI Protocol  
18  
Copyright © 2017, Texas Instruments Incorporated  
 
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
7.4 Device Functional Modes  
Table 4. Modes of Operation  
MODE  
DESCRIPTION  
This is the lowest-power mode of operation. All power functions are turned off, registers are reset to their default values and  
the IC does not respond to SPI commands. RESETZ and PWR_EN pins are pulled low. The IC will enter OFF mode  
whenever the PROJ_ON pin is pulled low.  
OFF  
Logic core and registers are reset to default values, the IC does not respond to SPI commands, RESETZ and PWR_EN pins  
are pulled low, but the analog reference system is kept alive. The device enters RESET state when the input voltage drops  
below the UVLO threshold.  
RESET  
STANDBY  
All power functions are turned off but the IC does respond to the SPI interface. The device enters STANDBY mode when  
PROJ_ON pins is high, but DMD_EN bit is set to 0. Also, device enters STANDBY mode when a fault on the DMD regulator  
occurs or the temperature increases above thermal shutdown threshold (TSD).(1)  
The DMD supplies are powered up but LED power (VLED) and the STROBE DECODER are disabled. PROJ_ON pin must  
be high, DMD_EN bit must be set to 1, and VLED_EN bit set to 0.  
ACTIVE1  
ACTIVE2  
DMD supplies, LED power and STROBE DECODER are enabled. PROJ_ON pin must be high and DMD_EN and VLED_EN  
bits must both be set to 1.  
(1) DMD_EN power-up default is 1. Once the bit is set to 0, the PROJ_ON pin must be toggled to recover the bit to 1.  
Copyright © 2017, Texas Instruments Incorporated  
19  
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
POWER DOWN  
Valid power source connected  
VRST = OFF &  
VBIAS = OFF &  
VOFS = OFF &  
VLED = OFF &  
PROJ_ON = low  
ANY STATE  
OFF  
STROBE DECODER disabled &  
SPI interface disabled  
PWR_EN is low  
RESETZ is low  
All registers reset to default values  
PROJ_ON = high  
VRST= OFF &  
VBIAS= OFF &  
VOFS = OFF &  
VRST = OFF &  
VBIAS = OFF &  
VOFS = OFF &  
VLED = OFF &  
STROBE DECODER disabled &  
SPI interface enabled  
PWR_EN is high  
PROJ_ON = high &  
not UVLO  
VLED = OFF &  
STROBE DECODER disabled&  
SPI interface disabled  
PWR_EN is low  
RESETZ is low  
All registers reset to default values  
RESET  
STANDBY  
DMD_EN = 0(1) ||  
FAULT  
RESETZ is high  
DMD_EN = 1(1)  
No FAULT  
&
UVLO  
VRST = ON &  
VBIAS = ON &  
VOFS = ON &  
VLED = OFF &  
ACTIVE1  
STROBE DECODER disabled &  
SPI interface enabled  
PWR_EN is high  
RESETZ is high  
VLED_EN= 0  
VLED_EN = 1  
VRST = ON &  
VBIAS = ON &  
VOFS = ON &  
VLED = ON &  
ACTIVE2  
STROBE DECODER enabled  
SPI interface enabled  
PWR_EN is high  
RESETZ is high  
NOTES:  
|| = OR, & = AND, ( ) = rising edge, ( ) = falling edge  
­
¯
FAULT = Undervoltage on VRST, VBIAS, VOFS, or DMD regulator curren-tlimit fault(DMD_FLT) ||  
Thermal Shut Down (TSD)  
DMD_PG and UVLO faults reset the DMD_EN bit and keep the part in STANDBY mode.  
TSD does not reset DMD_EN bit, so part resumes normal operation after the part has cooled o.ff  
(1) :  
DMD_EN bit power-up default is1. The bit can be reset by writing to the ENABLE register but to set  
the bit back to1 requires toggling of PROJ_ON  
Figure 11. State Diagram  
7.5 Programming  
7.5.1 Password Protected Registers  
Register address 0x11h through 0x27h can be read-accessed the same way as any other register but are  
protected against accidental write operations through the PASSWORD register (address 0x10h). To write to a  
protected register, first:  
Write data 0xBAh to register address 0x10h, then  
Write data 0xBEh to register address 0x10h.  
20  
Copyright © 2017, Texas Instruments Incorporated  
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
Programming (continued)  
Both writes must be consecutive, i.e. there must be no other read or write operation in between sending the two  
bytes. Once the password has been successfully written, register 0x11h through 0x27h are unlocked and can be  
write accessed using the regular SPI protocol. They remain unlocked until any byte other than 0xBAh is written to  
the PASSWORD register or the part is power cycled.  
To check if the registers are unlocked, read back the PASSWORD register. If the data returned is 0x00h, the  
registers are locked. If the PASSWORD register returns 0x01h, the registers are unlocked.  
7.6 Register Maps  
Table 5. Register Address Map  
Address  
0x00h  
0x01h  
0x02h  
0x03h  
0x04h  
0x05h  
0x06h  
0x07h  
0x08h  
0x09h  
0x0Ah  
0x0Bh  
0x0Ch  
0x0Dh  
0x10h  
0x11h  
0x20h  
0x21h  
0x22h  
0x23h  
0x24h  
0x25h  
0x26h  
0x27h  
Acronym  
CHIPID  
ENABLE  
IREG  
Register Name  
Section  
Go  
Chip revision register  
Enable register  
Go  
Transient-current limit settings  
Regulation current MSBs, SW4  
Regulation current LSBs, SW4  
Regulation current MSBs, SW5  
Regulation current LSBs, SW5  
Regulation current MSBs, SW6  
Regulation current LSBs, SW6  
Reserved  
Go  
SW4MSB  
SW4LSB  
SW5MSB  
SW5LSB  
SW6MSB  
SW6LSB  
RESERVED  
AFE  
Go  
Go  
Go  
Go  
Go  
Go  
AFE (MUX) control  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
BBM  
Break before make timing  
Interrupt register  
INT  
INT MASK  
PASSWORD  
SYSTEM  
BYTE0  
Interrupt mask register  
Password register  
System configuration register  
User EEPROM, Byte0  
User EEPROM, Byte1  
User EEPROM, Byte2  
User EEPROM, Byte3  
User EEPROM, Byte4  
User EEPROM, Byte5  
User EEPROM, Byte6  
User EEPROM, Byte7  
BYTE1  
BYTE2  
BYTE3  
BYTE4  
BYTE5  
BYTE6  
BYTE7  
Copyright © 2017, Texas Instruments Incorporated  
21  
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
7.6.1 Chip ID (CHIPID) Register (address = 0x00h) [reset = A6h]  
Figure 12. CHIPID Register  
7
6
5
4
3
2
1
0
CHIPID[7:0]  
R-A6h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6. CHIPID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
1010 0000b = DLPA1000 (Rev 1p0)  
1010 0010b = DLPA1000 (Rev 1p1)  
1010 0110b = DLPA1000 (Rev 1p2)  
7-0  
CHIPID  
R
A6h  
7.6.2 Enable (ENABLE) Register (address = 0x01h) [reset = 3h]  
Figure 13. ENABLE Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
DMD_EN  
R/W-1h  
VLED_EN  
R/W-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7. ENABLE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
RESERVED  
R
0h  
N/A  
DMD Regulator enable/status bit  
0b = disabled (OFF)  
1b = enabled (ON)  
1
0
DMD_EN  
VLED_EN  
R/W  
R/W  
1h  
1h  
NOTE: Power-up default is 1. Once set to 0, the PROJ_ON pin  
must be toggled to set the bit back to 1. If bit is set to 0, VLED  
buck-boost will automatically be disabled.  
VLED Buck-Boost enable bit  
0b = disabled (OFF)  
1b = enabled (ON)  
NOTE: Bit does not reflect current status of VLED buck-boost.  
NOTE: If VLED is disabled, RGB Strobe Decoder will automatically  
be disabled  
22  
Copyright © 2017, Texas Instruments Incorporated  
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
7.6.3 Switch Transient Current Limit (IREG) Register (address = 0x02h) [reset = 28h]  
Figure 14. IREG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
ILIM[2:0]  
R/W-5h  
SW6LIM_EN  
R/W-0h  
SW5LIM_EN  
R/W-0h  
SW4LIM_EN  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8. IREG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
RESERVED  
R
0h  
N/A  
Transient current-limit  
000b = 260 mA  
001b = 300 mA  
010b = 345 mA  
011b = 385 mA  
100b = 440 mA  
101b = 660 mA  
110b = 880 mA  
111b = 1250 mA  
5-3  
ILIM[2:0]  
R/W  
5h  
NOTE: Transient current limit should always be set higher than  
regulation current  
Transient current-limit enable for SW6  
0b = transient current-limit is disabled  
1b = transient current-limit is enabled  
2
1
0
SW6LIM_EN  
SW5LIM_EN  
SW4LIM_EN  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Transient current-limit enable for SW5  
0b = transient current-limit is disabled  
1b = transient current-limit is enabled  
Transient current-limit enable for SW4  
0b = transient current-limit is disabled  
1b = transient current-limit is enabled  
Copyright © 2017, Texas Instruments Incorporated  
23  
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
7.6.4 SW4 LED DC Regulation Current, MSB (SW4MSB) Register (address = 0x03h) [reset = 0h]  
Figure 15. SW4MSB Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
SW4_IDAC[9:8]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. SW4MSB Register Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
SW4_IDAC[9:8]  
N/A  
R/W  
0h  
Switch4 DC regulation, most significant byte (MSB)  
7.6.5 SW4 LED DC Regulation Current, LSB (SW4LSB) Register (address = 0x04h) [reset = 0h]  
Figure 16. SW4LSB Register  
7
6
5
4
3
2
1
0
SW4_IDAC[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 10. SW4LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
SW4_IDAC[7:0]  
R/W  
0h  
Switch4 DC current limit, least significant byte (MSB)  
LED  
LED  
LED  
LED  
SW4_IDAC[9:0]  
SW4_IDAC[9:0]  
SW4_IDAC[9:0]  
SW4_IDAC[9:0]  
CURRENT(1)  
CURRENT(1)  
272 mA  
CURRENT(1)  
525 mA  
CURRENT(1)  
0x000h  
0x001h  
0x002h  
...  
0 mA  
19.99 mA  
20.98 mA  
...  
0x100h  
0x101h  
0x102h  
...  
0x200h  
0x201h  
0x202h  
...  
0x300h  
0x301h  
0x302h  
...  
777.99 mA  
778.98 mA  
779.97 mA  
...  
272.99 mA  
273.98 mA  
...  
525.98 mA  
526.97 mA  
...  
0x0FEh  
0x0FFh  
270.02 mA  
271.01 mA  
0x1FEh  
0x1FFh  
523.602 mA  
524.01 mA  
0x2FEh  
0x2FFh  
776.02 mA  
777 mA  
0x3FEh  
0x3FFh  
1029.01 mA  
1030 mA  
(1) Values shown are for a typical unit at TA = 25°C. Typical step size is 988 µA.  
24  
Copyright © 2017, Texas Instruments Incorporated  
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
7.6.6 SW5 LED DC Regulation Current, MSB (SW5MSB) Register (address = 0x05h) [reset = 0h]  
Figure 17. SW5MSB Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
SW5_IDAC[9:8]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. SW5MSB Register Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
SW5_IDAC[9:8]  
N/A  
R/W  
0h  
Switch5 DC regulation, most significant byte (MSB)  
7.6.7 SW5 LED DC Regulation Current, LSB (SW5LSB) Register (address = 0x06h) [reset = 0h]  
Figure 18. SW5LSB Register  
7
6
5
4
3
2
1
0
SW5_IDAC[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 12. SW5LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
SW5_IDAC[7:0]  
R/W  
0h  
Switch5 DC current limit, least significant byte (LSB)  
LED  
LED  
LED  
LED  
SW5_IDAC[9:0]  
SW5_IDAC[9:0]  
SW5_IDAC[9:0]  
SW5_IDAC[9:0]  
CURRENT(1)  
CURRENT(1)  
272 mA  
CURRENT(1)  
525 mA  
CURRENT(1)  
0x000h  
0x001h  
0x002h  
...  
0 mA  
19.99 mA  
20.98 mA  
...  
0x100h  
0x101h  
0x102h  
...  
0x200h  
0x201h  
0x202h  
...  
0x300h  
0x301h  
0x302h  
...  
777.99 mA  
778.98 mA  
779.97 mA  
...  
272.99 mA  
273.98 mA  
...  
525.98 mA  
526.97 mA  
...  
0x0FEh  
0x0FFh  
270.02 mA  
271.01 mA  
0x1FEh  
0x1FFh  
523.602 mA  
524.01 mA  
0x2FEh  
0x2FFh  
776.02 mA  
777 mA  
0x3FEh  
0x3FFh  
1029.01 mA  
1030 mA  
(1) Values shown are for a typical unit at TA = 25°C. Typical step size is 988 µA.  
Copyright © 2017, Texas Instruments Incorporated  
25  
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
7.6.8 SW6 LED DC Regulation Current, MSB (SW6MSB) Register (address = 0x07h) [reset = 0h]  
Figure 19. SW6MSB Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
SW6_IDAC[9:8]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 13. SW6MSB Register Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
SW6_IDAC[9:8]  
N/A  
R/W  
0h  
Switch6 DC regulation, most significant byte (MSB)  
7.6.9 SW6 LED DC Regulation Current, LSB (SW6LSB) Register (address = 0x08h) [reset = 0h]  
Figure 20. SW6LSB Register  
7
6
5
4
3
2
1
0
SW6_IDAC[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 14. SW6LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
SW6_IDAC[7:0]  
R/W  
0h  
Switch6 DC current limit, least significant byte (LSB)  
LED  
LED  
LED  
LED  
SW6_IDAC[9:0]  
SW6_IDAC[9:0]  
SW6_IDAC[9:0]  
SW6_IDAC[9:0]  
CURRENT(1)  
CURRENT(1)  
272 mA  
CURRENT(1)  
525 mA  
CURRENT(1)  
0x000h  
0x001h  
0x002h  
...  
0 mA  
19.99 mA  
20.98 mA  
...  
0x100h  
0x101h  
0x102h  
...  
0x200h  
0x201h  
0x202h  
...  
0x300h  
0x301h  
0x302h  
...  
777.99 mA  
778.98 mA  
779.97 mA  
...  
272.99 mA  
273.98 mA  
...  
525.98 mA  
526.97 mA  
...  
0x0FEh  
0x0FFh  
270.02 mA  
271.01 mA  
0x1FEh  
0x1FFh  
523.602 mA  
524.01 mA  
0x2FEh  
0x2FFh  
776.02 mA  
777 mA  
0x3FEh  
0x3FFh  
1029.01 mA  
1030 mA  
(1) Values shown are for a typical unit at TA = 25°C. Typical step size is 988 µA.  
26  
Copyright © 2017, Texas Instruments Incorporated  
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
7.6.10 Analog Front End Control (AFE) Register (address = 0x0Ah) [reset = 0h]  
Figure 21. AFE Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
AFE_EN  
R-0h  
AFE_CAL_DIS  
R/W-0h  
AFE_GAIN[1:0]  
R/W-0h  
AFE_SEL[2:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 15. AFE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R
0h  
N/A  
Enable bit for AFE  
0b = AFE is disabled  
1b = AFE is enabled  
6
5
AFE_EN  
R
0h  
0h  
NOTE: Comparator output is in HiZ state when disabled.  
Calibration disable bit. Set this bit high to disable the factory  
calibration setting. May result in lower offset error if sensed input  
voltage level is significantly greater than 40 mV (see Table 3).  
0b = Factory calibration setting is enabled  
AFE_CAL_DIS  
R/W  
1b = Factory calibration setting is disabled  
Gain setting of the programmable gain amplifier  
00b = amplifier is off  
01b = 1x  
10b = 9.5x  
4-3  
2-0  
AFE_GAIN  
R/W  
R/W  
0h  
0h  
11b = 18x  
AFE Multiplexer control  
000b = SENS2  
001b = VLED  
010b = VINA  
011b = SENS1  
100b = RLIM_K  
101b = SW4  
AFE_SEL[2:0]  
110b = SW5  
111b = SW6  
7.6.11 Strobe Decode - Break Before Make Timing Control (BBM) Register (address = 0x0Bh) [reset =  
0h]  
Figure 22. BBM Register  
7
6
5
4
3
2
1
0
BBM[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 16. BBM Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Break before make timing. Time between opening one set of switches and closing  
the next set.(1)  
0x00 = 222 ns  
0x01 = 333 ns  
0x02 = 444 ns  
...  
0x40 = 7326 ns  
0x41 = 7437 ns  
0x42 = 7548 ns  
...  
0x80 = 14430 ns  
0x81 = 14451 ns  
0x82 = 14652 ns  
...  
0xC0 = 21534 s  
0xC1 = 21645 ns  
0xC2 = 21756 ns  
...  
7-0  
BBM[7:0]  
R/W  
0h  
0x3E = 7104 ns  
0x3F = 7215 ns  
0x7E = 14208 ns  
0x7F = 14319 ns  
0xBE = 21312 ns  
0xBF = 21423 ns  
0xFE = 28416 ns  
0xFF = 28527 ns  
(1) It takes 333 ns to 444 ns to turn off the switches from the time a change occurs on LED_SEL[1:0].  
Copyright © 2017, Texas Instruments Incorporated  
27  
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
7.6.12 Interrupt (INT) Register (address = 0x0Ch) [reset = X]  
Figure 23. INT Register  
7
6
5
4
3
2
1
0
VLED_OVP  
R-X  
V6V_PGF  
R-X  
PROJ_ON  
R-X  
DMD_FLT  
R-X  
UVLO  
R-X  
BAT_LOW  
R-X  
TSD  
R-X  
HOT  
R-X  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; X = undefined  
Table 17. INT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
VLED BUCK_BOOST over-voltage fault interrupt (normal  
operation resumes)  
0b = No fault  
7
VLED_OVP  
R
X
1b = BUCK-BOOST output is above OVP threshold  
V6V power-good fault interrupt. (normal operation resumes)  
0b = No fault  
1b = V6V is not in regulation  
6
5
V6V_PGF  
PROJ_ON  
R
R
X
X
PROJ_ON interrupt (part enters OFF mode)  
0b = PROJ_ON pin is pulled high, normal mode  
1b = PROJ_ON pin is pulled low. Alerts the DPP that DMD  
regulator is about to shut down.  
DMD REGULATOR FAULT (part enters STANDBY mode and  
DMD_EN bit is cleared)  
0b = No fault  
1b = The inductor current is not increasing at the correct rate.  
Likely to be caused by an open inductor or one of the regulator  
outputs has dropped below the power-good threshold. Likely to be  
caused by a short.  
4
3
DMD_FLT  
R
R
X
X
NOTE: DMD_FLT resets DMD_EN bit to 0.  
Undervoltage lockout threshold (sensed at VINA pin) (part enters  
RESET state)  
0b = Battery voltage is above the UVLO threshold  
1b = Battery voltage has dropped below the UVLO threshold  
NOTE: UVLO resets DMD_EN bit to 0. 25ms after UVLO interrupt  
part enters RESET state with SPI disabled.  
UVLO  
Low-Battery warning (sensed at VINA pin) (normal operation  
resumes)  
0b = Battery voltage is above the low-battery threshold  
1b = Battery voltage has dropped below the low-battery threshold  
2
1
0
BAT_LOW  
TSD  
R
R
R
X
X
X
Thermal Shutdown interrupt (part enters STANDBY mode,  
DMD_EN bit is not cleared)  
0b = Die temperature is below the thermal shut-down threshold  
1b = Die temperature is above thermal shut-down threshold or has  
not cooled down enough to recover from TSD  
Thermal warning interrupt (normal operation resumes)  
0b = Die temperature is normal operating range  
1b = Die temperature is above the HOT threshold or has not  
cooled down enough to recover from HOT  
HOT  
28  
Copyright © 2017, Texas Instruments Incorporated  
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
7.6.13 Interrupt Mask (MASK) Register (address = 0x0Dh) [reset = 0h]  
Figure 24. MASK Register  
7
6
5
4
3
2
1
0
VLED_OVPM  
R/W-0h  
V6V_PGM  
R/W-0h  
PROJ_ONM  
R/W-0h  
DMD_FLTM  
R/W-0h  
UVLOM  
R/W-0h  
BAT_LOWM  
R/W-0h  
TSDM  
R/W-0h  
HOTM  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 18. MASK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
VLED BUCK_BOOST over-voltage fault interrupt mask  
0b = interrupt is not masked.  
1b = Interrupt is masked. INTZ pin is not pulled low when interrupt  
bit is set.  
7
VLED_OVPM  
R/W  
0h  
VLED BUCK_BOOST power-good fault interrupt mask  
0b = no fault  
6
5
4
3
2
1
0
V6V_PGM  
PROJ_ONM  
DMD_FLTM  
UVLOM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
1b = Interrupt is masked. INTZ pin is not pulled low when interrupt  
bit is set.  
PROJ_ON interrupt mask  
0b = interrupt is not masked.  
1b = Interrupt is masked. INTZ pin is not pulled low when interrupt  
bit is set.  
DMD REGULATOR fault mask  
0b = interrupt is not masked.  
1b = Interrupt is masked. INTZ pin is not pulled low when interrupt  
bit is set.  
Undervoltage lockout threshold (sensed at VINA pin) mask  
0b = interrupt is not masked.  
1b = Interrupt is masked. INTZ pin is not pulled low when interrupt  
bit is set.  
Low-Battery warning (sensed at VINA pin) mask  
0b = interrupt is not masked.  
1b = Interrupt is masked. INTZ pin is not pulled low when interrupt  
bit is set.  
BAT_LOWM  
TSDM  
Thermal Shutdown interrupt mask  
0b = interrupt is not masked.  
1b = Interrupt is masked. INTZ pin is not pulled low when interrupt  
bit is set.  
Thermal warning interrupt mask  
0b = interrupt is not masked.  
1b = Interrupt is masked. INTZ pin is not pulled low when interrupt  
bit is set.  
HOTM  
Copyright © 2017, Texas Instruments Incorporated  
29  
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
7.6.14 Password (PASSWORD) Register (address = 0x10h) [reset = 0h]  
Figure 25. PASSWORD Register  
7
6
5
4
3
2
1
0
PASSWORD[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 19. PASSWORD Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description(1)  
To write-access protected registers write 0xBAh followed by  
0xBEh to the register. Both writes need to be consecutive.  
To lock protected registers, write 0x00h.  
Reading the PASSWORD register returns 0x00h if the protected  
registers are locked for write access and 0x01h if they are  
unlocked.  
7-0  
PASSWORD[7:0]  
R/W  
0h  
(1) Protected registers can be read-accessed without writing to the PASSWORD register.  
7.6.15 System Configuration (SYSTEM) Register (address = 0x11h) [reset = 0h]  
Figure 26. SYSTEM Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
EEPROG  
R/W-0h  
RESERVED  
R/W-0h  
MAP  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 20. SYSTEM Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
RESERVED  
R
0h  
N/A  
EEPROM programming bit. When set high, BYTE0 through BYTE7  
settings are committed to EEPROM and become new power-up  
default values.  
To program the EEPROM, set this bit high and back low after 50  
ms. Power must not be interrupted during EEPROM programming  
to prevent loss of data.  
2
EEPROG  
R/W  
0h  
1
0
RESERVED  
MAP  
R/W  
R/W  
0h  
0h  
This bit should always be set to 0.  
Switch map selector bit:  
0b = Common anode configuration  
1b = Cathode-cathode-anode configuration  
NOTE: See switch control section for details.  
30  
Copyright © 2017, Texas Instruments Incorporated  
 
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
7.6.16 EEPROM User Register, Byte0 (BYTE0) (address = 0x20h) [reset = 0h]  
Figure 27. BYTE0 Register  
7
6
5
4
3
2
1
0
BYTE0[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 21. BYTE0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
User programmable EEPROM. See Table 20 for detail on how to  
program EEPROM.  
7-0  
BYTE0[7:0]  
R/W  
0h  
7.6.17 EEPROM User Register, Byte1 (BYTE1) (address = 0x21h) [reset = 0h]  
Figure 28. BYTE1 Register  
7
6
5
4
3
2
1
0
BYTE1[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 22. BYTE1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
User programmable EEPROM. See Table 20 for detail on how to  
program EEPROM.  
7-0  
BYTE1[7:0]  
R/W  
0h  
Copyright © 2017, Texas Instruments Incorporated  
31  
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
7.6.18 EEPROM User Register, Byte2 (BYTE2) (address = 0x22h) [reset = 0h]  
Figure 29. BYTE2 Register  
7
6
5
4
3
2
1
0
BYTE2[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 23. BYTE2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
User programmable EEPROM. See Table 20 for detail on how to  
program EEPROM.  
7-0  
BYTE2[7:0]  
R/W  
0h  
7.6.19 EEPROM User Register, Byte3 (BYTE3) (address = 0x23h) [reset = 0h]  
Figure 30. BYTE3 Register  
7
6
5
4
3
2
1
0
BYTE3[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 24. BYTE3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
User programmable EEPROM. See Table 20 for detail on how to  
program EEPROM.  
7-0  
BYTE3[7:0]  
R/W  
0h  
32  
Copyright © 2017, Texas Instruments Incorporated  
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
7.6.20 EEPROM User Register, Byte4 (BYTE4) (address = 0x24h) [reset = 0h]  
Figure 31. BYTE4 Register  
7
6
5
4
3
2
1
0
BYTE4[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 25. BYTE4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
User programmable EEPROM. See Table 20 for detail on how to  
program EEPROM.  
7-0  
BYTE4[7:0]  
R/W  
0h  
7.6.21 EEPROM User Register, Byte5 (BYTE5) (address = 0x25h) [reset = 0h]  
Figure 32. BYTE5 Register  
7
6
5
4
3
2
1
0
BYTE5[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 26. BYTE5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
User programmable EEPROM. See Table 20 for detail on how to  
program EEPROM.  
7-0  
BYTE5[7:0]  
R/W  
0h  
Copyright © 2017, Texas Instruments Incorporated  
33  
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
7.6.22 EEPROM User Register, Byte6 (BYTE6) (address = 0x26h) [reset = 0h]  
Figure 33. BYTE6 Register  
7
6
5
4
3
2
1
0
BYTE6[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 27. BYTE6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
User programmable EEPROM. See Table 20 for detail on how to  
program EEPROM.  
7-0  
BYTE6[7:0]  
R/W  
0h  
7.6.23 EEPROM User Register, Byte7 (BYTE7) (address = 0x27h) [reset = 0h]  
Figure 34. BYTE7 Register  
7
6
5
4
3
2
1
0
BYTE7[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 28. BYTE7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
User programmable EEPROM. See Table 20 for detail on how to  
program EEPROM.  
7-0  
BYTE7[7:0]  
R/W  
0h  
34  
Copyright © 2017, Texas Instruments Incorporated  
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
A DLPC2607 controller can be used with a DLP2000 DMD to provide a compact, reliable, high-efficiency display  
solution for many different video display applications. DMDs are spatial light modulators which reflect incoming  
light from an illumination source to one of two directions with the primary direction being into collection optics  
within a projection lens. The projection lens sends the light to the destination needed for the application. Each  
application is derived primarily from the optical architecture of the system and the format of the pixel data being  
input into the DLPC2607.  
In display applications using the DLP2000 DMD, the DLPA1000 provides necessary analog functions including  
analog power supplies and an RGB LED driver to provide a robust and efficient display solution. Display  
applications of interest include pico-projectors embedded in display devices like smart phones, tablets, cameras,  
and camcorders. Other applications include wearable (near-eye) displays, battery-powered mobile accessory,  
interactive display, low latency gaming displays, and digital signage.  
8.2 Typical Application  
A common application when using DLPA1000 with DLP2000 DMD and DLPC2607 controller is creating a pico-  
projector embedded in a handheld product. For example, a pico-projector may be embedded in a smart phone, a  
tablet, a camera, or camcorder. The DLPC2607 in the pico-projector embedded module typically receives images  
from a host processor within the product as shown in Figure 35. DLPA1000 provides power supply sequencing  
and controls the LED currents as required by the application.  
Projector Module Electronics  
BAT  
L5  
2.3 V œ 5.5 V  
DC  
Supplies  
1.8 V  
Dual  
1 V  
Connector  
PWR_EN  
Reg.  
MIC  
On/Off  
SYSPWR  
PROJ_ON  
L6  
LCD  
Panel  
VDD  
VLED  
RESETZ  
INTZ  
L1  
L2  
PARKZ  
RF  
I/F  
DLPA1000  
Analog  
RED  
PROJ_ON  
Flash  
GREEN  
BLUE  
ASIC  
INIT_DONE  
GPIO4  
SPI(4)  
FLASH,  
SDRAM,  
etc.  
BIAS, RST, OFS  
3
Illumination  
Optics  
Host  
Processor  
Parallel or  
BT.656  
LED_SEL(2)  
CLRL  
4
DLPC2607  
PWM_IN  
RGB  
28  
24/16/8  
DATA  
CMP_OUT  
I2C  
Keypad  
Thermistor  
nHD/WVGA  
DDR DMD  
CTRL  
DATA  
DDR  
1.8 V  
1 V  
VIO  
VCORE  
GPIO5  
DDR  
Mobile SDRAM  
Copyright © 2017, Texas Instruments Incorporated  
Figure 35. Typical Standalone Projector System Block Diagram  
Copyright © 2017, Texas Instruments Incorporated  
35  
 
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
Typical Application (continued)  
8.2.1 Design Requirements  
A pico-projector is created by using a DLP chipset comprised of a DMD such as the DLP2000, a controller such  
as the DLPC2607, and a PMIC/LED driver such as the DLPA1000. The DLPA1000 provides the needed analog  
functions for the projector, the DLPC2607 does the digital image processing, and the DMD is the display device  
for producing the projected image. In addition to the three critical DLP components, other chips may be needed  
for the full system design, such as the battery (SYSPWR), a regulated 1.8-V supply for the controller VIO, and a  
regulated 1-V supply for the controller VCORE.  
The DLPA1000 provides power to the illumination source for the DMD, typically from red, green, and blue LEDs.  
These are often contained in three separate packages, but sometimes more than one color of LED die may be in  
the same package to reduce the overall size of the pico-projector. The entire pico-projector can be turned on and  
off by using a single signal called PROJ_ON. When PROJ_ON is high, the projector turns on and begins  
displaying images. When PROJ_ON is set low, the projector turns off and draws just microamps of current on  
SYSPWR. When PROJ_ON is set low, the 1.8-V and 1-V supplies can remain active to be used by other non-  
projector sections of the product.  
8.2.2 Detailed Design Procedure  
The DLPA1000 contains a buck-boost regulator for the LEDs, boost regulators for the DMD rails, and internal  
LDOs for logic state control and operation. Each regulator requires a few external components to operate,  
referenced by their designators in Figure 36 and Figure 38, and all capacitors should maintain the recommended  
values at expected operating temperatures and bias voltages.  
36  
Copyright © 2017, Texas Instruments Incorporated  
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
Typical Application (continued)  
TEST  
V2V5  
From system power  
VINA  
R1  
100 k  
C2  
1 F  
AGND  
C1  
2.2 F  
AGND1  
R2  
1 kꢁ  
V6V  
C3  
100 nF  
From host  
PWM_IN  
C4  
1 F  
From system power  
VINL  
VINL  
C6  
1 F  
To host  
CMP_OUT  
From light sensor  
SENS1  
SENS2  
L1  
L1  
From temperature sensor  
PGNDL  
PGNDL  
From system power  
L2  
2.2 H  
VINR  
C7  
10 F  
L2  
L2  
D6  
VRST (œ10 V)  
SWN  
REF_VRST  
SWP  
VLED  
VLED  
VLED  
C8  
220 nF  
R27  
100 kꢁ  
C9  
C10  
L1  
10 H  
10 F  
10 F  
DLPA1000  
PGNDR  
VBIAS  
SW1  
SW2  
SW3  
SW4  
SW5  
SW6  
VBIAS (16 V)  
VOFS (8.5 V)  
C11  
220 nF  
RGB LED  
Assembly  
VOFS  
C12  
220 nF  
RLIM  
RLIM  
R34  
100 mꢁ  
VIO  
RLIM_K  
R3  
100 kꢁ  
From host  
From host  
From host  
PROJ_ON  
LED_SEL0  
LED_SEL1  
INTZ  
RESETZ  
PWR_EN  
From host  
VSPI  
From host  
From host  
From host  
To host  
SPI_CSZ  
SPI_CLK  
SPI_DIN  
SPI_DOUT  
C5  
0.1 F  
DGND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 36. Schematic  
8.2.2.1 VLED Buck-Boost  
The VLED buck-boost provides the necessary voltages for the LED array capable of supporting both common  
anode and cathode-cathode-anode RGB LEDs. Configurations for both packages are detailed in the RGB Strobe  
Decoder section. Alternatively, a design could utilize an optical engine from an OEM that specializes in designing  
optics for DLP projectors, which typically integrate the LEDs and DMD into a single module. Current sensing  
through the LEDs is accomplished with a high-precision (0.1%) 100-mΩ sense resistor (R34) connecting RLIM to  
GND, with a separate trace providing a Kelvin connection to RLIM_K directly from the pad of the sense resistor.  
Copyright © 2017, Texas Instruments Incorporated  
37  
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
Typical Application (continued)  
The VLED buck-boost utilizes a single 2.2-µH inductor (L2) to generate the voltages for the LED array, bridging  
the pins labeled L1 to the pins labeled L2. The buck-boost also requires a 1-µF input bypass capacitor (C6)  
connecting VINL to GND, and two 10-µF output filter capacitors (C9 and C10) connecting VLED to GND. Ensure  
the inductor can handle the expected operating currents and refer to Calculating Inductor Peak Current to  
calculate the expected peak current for a design that can saturate the inductor's core.  
8.2.2.1.1 Calculating Inductor Peak Current  
To properly configure the DLPA1000 device, a 2.2-µH inductor (L2) must be connected between pins L1 and L2.  
The peak current for the inductor in steady state operation can be calculated.  
Equation 1 shows how to calculate the peak current I1 in step down mode operation and Equation 2 shows how  
to calculate the peak current I2 in boost mode operation. VIN1 is the maximum input voltage VIN2 is the  
minimum input voltage, f is the switching frequency (2.25 MHz) and L the inductor value (2.2 µH).  
VOUT VIN1 -VOUT  
(
2´VIN1 ´ f ´ L  
IOUT  
)
I1 =  
+
0.8  
(1)  
VIN 2  
V
-VIN 2  
VOUT ´ IOUT  
0.8´VIN 2  
(
2´VOUT ´ f ´ L  
)
OUT  
I2 =  
+
(2)  
The critical current value for selecting the right inductor is the higher value of I1 and I2. It also needs to be taken  
into account that load transients and error conditions may cause higher inductor currents. This also needs to be  
taken into account when selecting an appropriate inductor. Internally the switching current is limited to 2.2 A.  
8.2.2.2 DMD Supplies  
The PMIC also utilizes a single inductor (L1) to generate the low-current –10-V, 16-V, and 8.5-V supplies.  
Connect the inductor from SWP to SWN, and use a Schottky diode (D6) to generate the –10 V by connecting the  
cathode of the diode to the SWN side of the inductor and the anode of the diode to the load (VRST). Place a  
220-nF filter cap (C8) from VRST to GND and bridge VRST to the feedback pin (REF_VRST) using a 100-kΩ  
resistor (R27). Bypass VINR to GND using a 10-µF capacitor (C7), and ensure VBIAS and VOFS each have  
dedicated 220-nF output filter capacitors (C11 and C12).  
8.2.2.3 LDOs and Digital Logic  
Ensure V2V5 has a 2.2-µF output capacitor (C1), and that V6V has a 100-nF output capacitor (C3). It is critical  
that V2V5 externally connects to the TEST pin (R1), otherwise the PMIC will be unable to operate. UVLO for this  
device is typically 2.3 V.  
8.2.3 Application Curve  
Figure 37. Power-Up Sequence: PROJ_ON Asserted  
38  
Copyright © 2017, Texas Instruments Incorporated  
 
 
 
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
9 Power Supply Recommendations  
The DLPA1000 is designed to operate from a 2.3-V to 6-V input voltage supply or battery. To avoid insufficient  
supply current due to line drop, ringing due to trace inductance at the VIN terminal, or supply peak current  
limitations, additional bulk capacitance may be required. Electrolytic or tantalum type capacitors can dampen  
ringing often caused by ceramic input capacitors. The amount of bulk capacitance required should be evaluated  
such that the input voltage can remain in specification long enough for a proper fast shutdown to occur for the  
VOFS, VRST, and VBIAS supplies. The shutdown begins when the input voltage drops below the programmable  
UVLO threshold such as when the external power supply or battery supply is suddenly removed from the system.  
Copyright © 2017, Texas Instruments Incorporated  
39  
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. If the layout is not carefully done, the regulators could show stability problems as  
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground  
tracks. Input capacitors, output capacitors, and inductors should be placed as close as possible to the IC.  
40  
Copyright © 2017, Texas Instruments Incorporated  
DLPA1000  
www.ti.com.cn  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
10.2 Layout Example  
Place L1 as  
Place D6 close to  
L1 and C8 close  
to D6.  
Place L2 (VLED)  
C6 and C7  
close to the IC as  
possible. Max  
trace current is  
200 mA.  
as close to the IC  
as possible. Route  
on top level and  
avoid vias. Max  
current is 2 A.  
should be placed  
close to the IC  
(supply caps).  
Keep traces  
separated and  
star-connect to  
system power.  
Keep trace from  
R27 to pin [B6]  
shielded from  
[A5]-L1 trace as  
much as possible  
to avoid noise  
coupling.  
Place C11, and  
C12, (VBIAS,  
VOFS) close to  
the IC. Average  
current is <5 mA.  
Place C9 and  
C10 (VLED) as  
close to the IC as  
possible. Use  
wide metal (1 A  
current) and  
Place C1, as  
close to the IC as  
possible. This is  
an internal  
avoid vias.  
reference pin and  
needs to be  
shielded from  
noise.  
Keep trace [F5]  
R34 separated from  
trace [F6, F7] - R34  
and connect them  
directly at R34. R34  
is the LED sense  
resistor.  
Place C2 (supply  
cap) as close to  
the IC as possible.  
Star-connect to  
system power.  
Place C3 (V6V)  
close to IC and  
route on top metal.  
This is low-current  
trace.  
Figure 38. Layout  
Table 29. Layout Components  
LABEL  
DESCRIPTION  
C1  
C2  
V2V5 output filter cap  
VINA input cap  
C3  
V6V output filter cap  
VINL input cap  
C6  
C7  
VINR input cap  
C8  
VRST output filter cap  
VLED output filter cap  
VLED output filter cap  
VBIAS output filter cap  
VOFS output filter cap  
VRST rectifying diode  
DMD supply inductor  
C9  
C10  
C11  
C12  
D6  
L1  
L2  
VLED buck-boost inductor  
100k VRST feedback resistor  
100m RLIM sense resistor  
R27  
R34  
Copyright © 2017, Texas Instruments Incorporated  
41  
DLPA1000  
ZHCSGS6A FEBRUARY 2017REVISED MAY 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
DLPC2607 DLP PICO 处理器 2607 ASIC》  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
Pico, E2E are trademarks of Texas Instruments.  
DLP is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
42  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Mar-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLPA1000YFFR  
DLPA1000YFFT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFF  
YFF  
49  
49  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-10 to 85  
-10 to 85  
100  
100  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Mar-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Jun-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DLPA1000YFFR  
DLPA1000YFFT  
DSBGA  
DSBGA  
YFF  
YFF  
49  
49  
3000  
250  
180.0  
180.0  
8.4  
8.4  
3.16  
3.16  
3.16  
3.16  
0.71  
0.71  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Jun-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DLPA1000YFFR  
DLPA1000YFFT  
DSBGA  
DSBGA  
YFF  
YFF  
49  
49  
3000  
250  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
Pack Materials-Page 2  
D: Max = 3.184 mm, Min =3.124 mm  
E: Max = 2.988 mm, Min =2.928 mm  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DLPA100PT

DLP® driver for DLP660TE (0.66 4K UHD) DMD | DLP | 48 | 0 to 75
TI

DLPA200

DLP® DLPA200 DMD Micromirror Driver
TI

DLPA2000

DLP® PMIC/LED driver for DLP2010 (0.2 WVGA) DMD
TI

DLPA2000DYFFR

DLP® PMIC/LED driver for DLP2010 (0.2 WVGA) DMD | YFF | 56 | -10 to 85
TI

DLPA2005

DLP® PMIC/LED driver for DLP2010 and DLP2010NIR (0.2 WVGA) DMDs
TI

DLPA2005ERSLR

DLP® PMIC/LED driver for DLP2010 and DLP2010NIR (0.2 WVGA) DMDs | RSL | 48 | -10 to 85
TI

DLPA2005ERSLT

DLP® PMIC/LED driver for DLP2010 and DLP2010NIR (0.2 WVGA) DMDs | RSL | 48 | -10 to 85
TI

DLPA200PFC

DLP® DLPA200 DMD Micromirror Driver
TI

DLPA200PFCT

DLP® DLPA200 DMD Micromirror Driver
TI

DLPA200PFP

DMD Micromirror Driver
TI

DLPA200_1

DLP® DLPA200 DMD Micromirror Driver
TI

DLPA300

DLP® driver  for DLP780NE (0.78 1080p), DLP780TE (0.78 4K UHD), DLP800RE (0.80 WUXGA) DM
TI