DLP9500 [TI]

DLP® 0.95 1080p 2xLVDS A 型 DMD;
DLP9500
型号: DLP9500
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DLP® 0.95 1080p 2xLVDS A 型 DMD

文件: 总54页 (文件大小:1536K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
DLP9500 DLP® 0.95 1080p 2x LVDS A DMD  
1 特性  
3 说明  
0.95 英寸对角线微镜阵列  
DLP9500 1080p 芯片组是 DLP® Discovery™4100 平  
1
台的一部分,用于实现高分辨率、高性能的空间照明调  
制。DLP9500 0.95 1080p 芯片组的基本款数字微  
镜器件 (DMD)DLP Discovery 4100 平台还提供具有  
随机行寻址选项的最高级独立微镜控制。除了采用密封  
封装外,DLP9500 具有独特的功能和价值,非常适合  
支持各种工业、医疗和高级显示 应用的需求。  
1920 × 1080 铝阵列,微米级微镜(1080p 分  
辨率)  
10.8µm 微镜间距  
±12°微镜倾斜角(相对于平板状态)  
设计用于边缘照明  
专用于可见光  
400nm 700nm):  
除了 DLP9500 DMD 以外,0.95 1080p 芯片组还包括  
专用的 DLPC410 控制器(用于支持 23,148Hz1 位  
二进制)和 2,893Hz8 位灰度)的)、一个  
窗透射率 96%(单通,通过两个窗面)  
微镜反射率 89%  
阵列衍射效率 87%  
DLPR410 单元(DLP Discovery 4100 配置 PROM)  
和两个 DLPA200 单元(DMD 微镜驱动器)。  
阵列填充因子 94%  
四条 16 位低压差分信令 (LVDS)、双倍数据速率  
(DDR) 输入数据总线  
DLP9500 需要与芯片组的其他元件结合使用才能实现  
可靠功能和操作。一套专用的芯片组能够使开发人员更  
加轻松地访问 DMD 并使用高速而独立的微镜控制。  
高达 400MHz 的输入数据时钟速率  
42.2mm × 42.2mm × 7mm 封装尺寸  
气密封装  
DLP9500 是一款数控微光机电系统 (MEMS) 空间照明  
调制器 (SLM)。当与适当的光系统成对使用  
时,DLP9500 可用于调制入射光的振幅、方向和/或相  
位。  
2 应用  
工业:  
数字成像平版印刷  
器件信息 (1)  
激光打标  
器件型号  
DLP9500  
封装  
封装尺寸(标称值)  
LCD OLED 修复  
计算机直接制版打印机  
SLA 3D 打印机  
LCCC (355)  
42.16mm × 42.16mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
针对机器视觉和工厂自动化的 3D 扫描仪  
平板印刷  
简化原理图  
医疗领域:  
光照治疗器件  
眼科学  
直接制造  
高光谱成像  
3D 生物识别  
共轭焦显微镜  
显示:  
3D 成像显微镜  
自适应照明  
增强现实和信息覆盖  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: DLPS025  
 
 
 
 
 
 
 
 
 
 
 
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 26  
8.4 Device Functional Modes........................................ 32  
8.5 Window Characteristics and Optics ....................... 34  
8.6 Micromirror Array Temperature Calculation............ 35  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
(说明 (续))....................................................... 4  
Pin Configuration and Functions......................... 4  
Specifications....................................................... 13  
7.1 Absolute Maximum Ratings .................................... 13  
7.2 Storage Conditions.................................................. 13  
7.3 ESD Ratings............................................................ 13  
7.4 Recommended Operating Conditions..................... 14  
7.5 Thermal Information................................................ 15  
7.6 Electrical Characteristics......................................... 15  
7.7 LVDS Timing Requirements ................................... 17  
7.8 LVDS Waveform Requirements.............................. 18  
7.9 Serial Control Bus Timing Requirements................ 19  
7.10 Systems Mounting Interface Loads....................... 20  
7.11 Micromirror Array Physical Characteristics........... 21  
7.12 Micromirror Array Optical Characteristics ............. 22  
7.13 Window Characteristics......................................... 23  
7.14 Chipset Component Usage Specification ............. 23  
Detailed Description ............................................ 23  
8.1 Overview ................................................................. 23  
8.2 Functional Block Diagram ....................................... 24  
8.7 Micromirror Landed-On and Landed-Off Duty  
Cycle ........................................................................ 38  
9
Application and Implementation ........................ 40  
9.1 Application Information............................................ 40  
9.2 Typical Application ................................................. 41  
10 Power Supply Recommendations ..................... 43  
10.1 Power-Up Sequence (Handled by the DLPC410) 43  
10.2 DMD Power-Up and Power-Down Procedures..... 43  
11 Layout................................................................... 44  
11.1 Layout Guidelines ................................................. 44  
11.2 Layout Example .................................................... 46  
12 器件和文档支持 ..................................................... 47  
12.1 器件支持 ............................................................... 47  
12.2 文档支持................................................................ 48  
12.3 相关链接................................................................ 48  
12.4 接收文档更新通知 ................................................. 48  
12.5 社区资源................................................................ 48  
12.6 ....................................................................... 48  
12.7 静电放电警告......................................................... 48  
12.8 术语表 ................................................................... 48  
13 机械、封装和可订购信息....................................... 48  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision D (March 2017) to Revision E  
Page  
已更改 窗透射率 .................................................................................................................................................................... 1  
已更改 微镜反射率 ................................................................................................................................................................. 1  
已更改 阵列衍射效率 ............................................................................................................................................................. 1  
已更改 阵列填充因子 .............................................................................................................................................................. 1  
已更改 高速图形速率 .............................................................................................................................................................. 1  
Changed Recommended Operating Conditions table; split Environmental into 3 wavelength regions; simplified and  
reorganized the table footnotes............................................................................................................................................ 14  
Changed Thermal Metric text ............................................................................................................................................... 15  
Changed Micromirror array optical efficiency ...................................................................................................................... 22  
Changed Micromirror array fill factor ................................................................................................................................... 22  
Changed Micromirror array diffraction efficiency ................................................................................................................. 22  
Changed Micromirror surface reflectivity ............................................................................................................................. 22  
Changed Window transmission ........................................................................................................................................... 22  
Changed Window transmittance, Minimum ......................................................................................................................... 23  
Changed Window transmittance, Average .......................................................................................................................... 23  
Changed Micromirror Array Temperature Calculation to indicate that it is based on lumens.............................................. 36  
Added Micromirror Array Temperature Calculation based on power ................................................................................... 37  
已添加 接收文档更新通知 ............................................................................................................................................. 48  
2
版权 © 2012–2018, Texas Instruments Incorporated  
 
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
Changes from Revision C (September 2015) to Revision D  
Page  
Removed '692' from Pin Configurations image ...................................................................................................................... 4  
Added RH name for relative humidity in Absolute Maximum Ratings.................................................................................. 13  
Clarified TGRADIENT footnote in Absolute Maximum Ratings.................................................................................................. 13  
Changed Tstg to TDMD in Storage Conditions to conform to current nomenclature............................................................... 13  
Changed typical micromirror crossover time to the time required to transition from mirror position to the other in  
Micromirror Array Optical Characteristics............................................................................................................................. 22  
Added typical micromirror switching time - 13 µs in Micromirror Array Optical Characteristics .......................................... 22  
Changed "Micromirror switching time" to "Array switching time" for clarity in Micromirror Array Optical Characteristics.... 22  
Added clarification to Micromirror switching time at 400 MHz with global reset in Micromirror Array Optical  
Characteristics...................................................................................................................................................................... 22  
更新了20 21............................................................................................................................................................. 47  
已添加 相关链接 ............................................................................................................................................................... 48  
Changes from Revision B (July 2013) to Revision C  
Page  
添加了 ESD 额定值 表、特性 说明 部分、器件功能模式应用和实施 部分、电源建议 部分、布局 部分、器件和文档  
支持 部分以及机械、封装和可订购信息 部分 ......................................................................................................................... 1  
在 特性 和 说明 部分进行了少量措辞更改 .............................................................................................................................. 1  
Changed the name of Micromirror clocking pulse reset in Pin Functions ............................................................................ 11  
Changed ESD Ratings table to match new standard........................................................................................................... 13  
Added Max Recommended DMD Temperature – Derating Curve....................................................................................... 15  
Moved Max Recommended DMD Temperature – Derating Curve to ................................................................................. 15  
Replaced Figure 4. ............................................................................................................................................................... 19  
Changed units from lbs to N................................................................................................................................................. 20  
Added explanation for the15 MBRST lines to the DLP9500 from each DLPA200............................................................... 26  
Changed Thermal Test Point Location graphic.................................................................................................................... 35  
Added program interface to system interface list in Design Requirements.......................................................................... 42  
Corrected number of banks of DMD mirrors to 15 in Device Description ............................................................................ 42  
删除了 DLP Discovery 4100 芯片组数据表的链接................................................................................................................ 48  
添加了 社区资源 部分 ........................................................................................................................................................... 48  
Changes from Revision A (September 2012) to Revision B  
Page  
已添加 DLPR4101 增强型 PROM 至芯片组列表中的 DLPR410 ............................................................................................ 1  
已添加 DLPR4101 增强型 PROM 至相关文档中的 DLPR410.............................................................................................. 48  
Changes from Original (August 2012) to Revision A  
Page  
将器件状态从产品预览更改成了生产” ................................................................................................................................. 1  
版权 © 2012–2018, Texas Instruments Incorporated  
3
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
5 (说明 (续))  
电子方面,DLP9500 1 CMOS 存储器单元的两维阵列组成,其组织结构为 1920 存储器单元列乘以 1080 存  
储器单元行的栅格。CMOS 存储器阵列通过四条 16 位低压差分信令 (LVDS) 双倍数据速率 (DDR) 总线逐行进行寻  
址。寻址通过串行控制总线处理。特定的 CMOS 存储器访问协议由 DLPC410 数字控制器处理。  
6 Pin Configuration and Functions  
FLN Type A Package  
355-Pin LCCC  
Bottom View  
31  
29  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
7
5
3
1
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
A
C
E
G
J
B
D
F
H
K
M
P
T
L
N
R
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
AK  
AL  
4
Copyright © 2012–2018, Texas Instruments Incorporated  
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
Pin Functions  
(1)  
PIN  
TYPE  
(I/O/P)  
DATA  
INTERNAL  
TRACE  
(MILS)  
SIGNAL  
CLOCK  
DESCRIPTION  
(2)  
(3)  
RATE  
TERM  
NAME  
NO.  
DATA BUS A  
Differentially  
terminated – 100 Ω  
D_AN(0)  
D_AN(1)  
D_AN(2)  
D_AN(3)  
D_AN(4)  
D_AN(5)  
D_AN(6)  
D_AN(7)  
D_AN(8)  
D_AN(9)  
D_AN(10)  
D_AN(11)  
D_AN(12)  
D_AN(13)  
D_AN(14)  
D_AN(15)  
D_AP(0)  
D_AP(1)  
D_AP(2)  
D_AP(3)  
D_AP(4)  
D_AP(5)  
D_AP(6)  
D_AP(7)  
D_AP(8)  
D_AP(9)  
D_AP(10)  
F2  
H8  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
512.01  
158.79  
471.24  
159.33  
585.41  
551.17  
229.41  
300.54  
346.35  
782.27  
451.52  
74.39  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
E5  
Differentially  
terminated – 100 Ω  
G9  
Differentially  
terminated – 100 Ω  
D2  
Differentially  
terminated – 100 Ω  
G3  
Differentially  
terminated – 100 Ω  
E11  
F8  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
C9  
Differentially  
terminated – 100 Ω  
H2  
Differentially  
terminated – 100 Ω  
B10  
G15  
D14  
F14  
C17  
H16  
F4  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
194.26  
148.29  
244.9  
Input data bus A  
(2x LVDS)  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
73.39  
Differentially  
terminated – 100 Ω  
509.63  
152.59  
464.09  
152.39  
591.39  
532.16  
230.78  
300.61  
338.16  
773.17  
449.57  
Differentially  
terminated – 100 Ω  
H10  
E3  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
G11  
D4  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
G5  
Differentially  
terminated – 100 Ω  
E9  
Differentially  
terminated – 100 Ω  
F10  
C11  
H4  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
B8  
(1) The following power supplies are required to operate the DMD: VCC, VCC1, VCC2. VSS must also be connected.  
(2) DDR = Double Data Rate. SDR = Single Data Rate. Refer to the LVDS Timing Requirements for specifications and relationships.  
(3) Refer to Electrical Characteristics for differential termination specification.  
Copyright © 2012–2018, Texas Instruments Incorporated  
5
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
Pin Functions (continued)  
(1)  
PIN  
TYPE  
(I/O/P)  
DATA  
RATE  
INTERNAL  
TERM  
TRACE  
(MILS)  
SIGNAL  
CLOCK  
DESCRIPTION  
(2)  
(3)  
NAME  
NO.  
Differentially  
terminated – 100 Ω  
D_AP(11)  
H14  
Input  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DDR  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
71.7  
Differentially  
terminated – 100 Ω  
D_AP(12)  
D_AP(13)  
D_AP(14)  
D16  
F16  
C15  
G17  
DDR  
DDR  
DDR  
DDR  
198.69  
143.72  
240.14  
74.05  
Input data bus A  
(2x LVDS)  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
D_AP(15)  
DATA BUS B  
D_BN(0)  
Differentially  
terminated – 100 Ω  
AH2  
AD8  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
525.25  
190.59  
525.25  
494.91  
222.67  
205.45  
309.05  
285.62  
483.58  
711.58  
462.21  
74.39  
Differentially  
terminated – 100 Ω  
D_BN(1)  
D_BN(2)  
D_BN(3)  
D_BN(4)  
D_BN(5)  
D_BN(6)  
D_BN(7)  
D_BN(8)  
D_BN(9)  
D_BN(10)  
D_BN(11)  
D_BN(12)  
D_BN(13)  
D_BN(14)  
D_BN(15)  
D_BP(0)  
D_BP(1)  
D_BP(2)  
D_BP(3)  
D_BP(4)  
D_BP(5)  
D_BP(6)  
D_BP(7)  
D_BP(8)  
Differentially  
terminated – 100 Ω  
AJ5  
Differentially  
terminated – 100 Ω  
AE3  
Differentially  
terminated – 100 Ω  
AG9  
AE11  
AH10  
AF10  
AK8  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
AG5  
AL11  
AE15  
AH14  
AF14  
AJ17  
AD16  
AH4  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Input data bus B  
(2x LVDS)  
Differentially  
terminated – 100 Ω  
194.26  
156  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
247.9  
Differentially  
terminated – 100 Ω  
111.52  
525.02  
190.61  
524.22  
476.07  
222.8  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
AD10  
AJ3  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
AE5  
Differentially  
terminated – 100 Ω  
AG11  
AE9  
Differentially  
terminated – 100 Ω  
219.48  
306.55  
298.04  
480.31  
Differentially  
terminated – 100 Ω  
AH8  
Differentially  
terminated – 100 Ω  
AF8  
Differentially  
terminated – 100 Ω  
AK10  
6
Copyright © 2012–2018, Texas Instruments Incorporated  
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
Pin Functions (continued)  
(1)  
PIN  
TYPE  
(I/O/P)  
DATA  
RATE  
INTERNAL  
TERM  
TRACE  
(MILS)  
SIGNAL  
CLOCK  
DESCRIPTION  
(2)  
(3)  
NAME  
NO.  
Differentially  
terminated – 100 Ω  
D_BP(9)  
AG3  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DDR  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
727.18  
Differentially  
terminated – 100 Ω  
D_BP(10)  
D_BP(11)  
D_BP(12)  
D_BP(13)  
D_BP(14)  
AL9  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
461.02  
71.35  
Differentially  
terminated – 100 Ω  
AD14  
AH16  
AF16  
AJ15  
AE17  
Input data bus B  
(2x LVDS)  
Differentially  
terminated – 100 Ω  
197.69  
150.38  
243.14  
113.36  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
D_BP(15)  
DATA BUS C  
D_CN(0)  
Differentially  
terminated – 100 Ω  
B14  
E15  
A17  
G21  
B20  
F20  
D22  
G23  
B26  
F28  
C29  
G27  
D26  
H28  
E29  
J29  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
459.04  
342.79  
456.22  
68.24  
Differentially  
terminated – 100 Ω  
D_CN(1)  
D_CN(2)  
D_CN(3)  
D_CN(4)  
D_CN(5)  
D_CN(6)  
D_CN(7)  
D_CN(8)  
D_CN(9)  
D_CN(10)  
D_CN(11)  
D_CN(12)  
D_CN(13)  
D_CN(14)  
D_CN(15)  
D_CP(0)  
D_CP(1)  
D_CP(2)  
D_CP(3)  
D_CP(4)  
D_CP(5)  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
362.61  
163.07  
204.16  
105.59  
450.51  
302.04  
429.8  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Input data bus C  
(2x LVDS)  
Differentially  
terminated – 100 Ω  
317.1  
Differentially  
terminated – 100 Ω  
276.76  
186.78  
311.3  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
262.62  
463.64  
347.65  
456.45  
67.72  
Differentially  
terminated – 100 Ω  
B16  
E17  
A15  
H20  
B22  
F22  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
362.76  
161.69  
Differentially  
terminated – 100 Ω  
Copyright © 2012–2018, Texas Instruments Incorporated  
7
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
Pin Functions (continued)  
(1)  
PIN  
TYPE  
(I/O/P)  
DATA  
RATE  
INTERNAL  
TERM  
TRACE  
(MILS)  
SIGNAL  
CLOCK  
DESCRIPTION  
(2)  
(3)  
NAME  
NO.  
Differentially  
terminated – 100 Ω  
D_CP(6)  
D20  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DDR  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
DCLK_C  
195.09  
104.86  
451.41  
294.22  
429.68  
314.98  
276.04  
186.25  
312.07  
262.94  
Differentially  
terminated – 100 Ω  
D_CP(7)  
D_CP(8)  
D_CP(9)  
D_CP(10)  
D_CP(11)  
D_CP(12)  
D_CP(13)  
D_CP(14)  
H22  
B28  
F26  
C27  
G29  
D28  
H26  
E27  
J27  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Input data bus C  
(2x LVDS)  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
D_CP(15)  
DATA BUS D  
D_DN(0)  
Differentially  
terminated – 100 Ω  
AK14  
AG15  
AL17  
AE21  
AK20  
AF20  
AH22  
AE23  
AK26  
AF28  
AJ29  
AE27  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
492.53  
342.78  
491.83  
74.24  
Differentially  
terminated – 100 Ω  
D_DN(1)  
D_DN(2)  
D_DN(3)  
D_DN(4)  
D_DN(5)  
D_DN(6)  
D_DN(7)  
D_DN(8)  
D_DN(9)  
D_DN(10)  
D_DN(11)  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
356.23  
163.07  
204.16  
105.59  
450.51  
302.04  
429.8  
Differentially  
terminated – 100 Ω  
Input data bus D  
(2x LVDS)  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
298.87  
8
Copyright © 2012–2018, Texas Instruments Incorporated  
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
Pin Functions (continued)  
(1)  
PIN  
TYPE  
(I/O/P)  
DATA  
RATE  
INTERNAL  
TERM  
TRACE  
(MILS)  
SIGNAL  
CLOCK  
DESCRIPTION  
(2)  
(3)  
NAME  
NO.  
Differentially  
terminated – 100 Ω  
D_DN(12)  
AH26  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DDR  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
DCLK_D  
276.76  
Differentially  
terminated – 100 Ω  
D_DN(13)  
D_DN(14)  
D_DN(15)  
D_DP(0)  
D_DP(1)  
D_DP(2)  
D_DP(3)  
D_DP(4)  
D_DP(5)  
D_DP(6)  
D_DP(7)  
D_DP(8)  
D_DP(9)  
D_DP(10)  
D_DP(11)  
D_DP(12)  
D_DP(13)  
D_DP(14)  
D_DP(15)  
AD28  
AG29  
AC29  
AK16  
AG17  
AL15  
AD20  
AK22  
AF22  
AH20  
AD22  
AK28  
AF26  
AJ27  
AE29  
AH28  
AD26  
AG27  
AC27  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
186.78  
311.3  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
262.62  
495.13  
342.47  
492.06  
67.72  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
356.37  
161.98  
195.09  
102.86  
451.41  
296.7  
Differentially  
terminated – 100 Ω  
Input data bus D  
(2x LVDS)  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
429.68  
302.74  
276.04  
186.25  
312.07  
262.94  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Copyright © 2012–2018, Texas Instruments Incorporated  
9
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
Pin Functions (continued)  
(1)  
PIN  
TYPE  
(I/O/P)  
DATA  
RATE  
INTERNAL  
TERM  
TRACE  
(MILS)  
SIGNAL  
CLOCK  
DESCRIPTION  
(2)  
(3)  
NAME  
NO.  
DATA CLOCKS  
Differentially  
terminated – 100 Ω  
DCLK_AN  
DCLK_AP  
DCLK_BN  
DCLK_BP  
DCLK_CN  
DCLK_CP  
DCLK_DN  
D10  
D8  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
325.8  
319.9  
Input data bus A  
Clock (2x LVDS)  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
AJ11  
AJ9  
318.92  
318.74  
252.01  
241.18  
252.01  
241.18  
Input data bus B  
Clock (2x LVDS)  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
C23  
C21  
AJ23  
AJ21  
Input data bus C  
Clock (2x LVDS)  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Input data bus D  
Clock (2x LVDS)  
Differentially  
terminated – 100 Ω  
DCLK_DP  
DATA CONTROL INPUTS  
SCTRL_AN  
Differentially  
terminated – 100 Ω  
J3  
J5  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DCLK_A  
DCLK_A  
DCLK_B  
DCLK_B  
DCLK_C  
DCLK_C  
DCLK_D  
DCLK_D  
608.14  
607.45  
698.12  
703.8  
Serial control for  
data bus A (2x  
LVDS)  
Differentially  
terminated – 100 Ω  
SCTRL_AP  
SCTRL_BN  
SCTRL_BP  
SCTRL_CN  
SCTRL_CP  
SCTRL_DN  
SCTRL_DP  
Differentially  
terminated – 100 Ω  
AF4  
AF2  
E23  
E21  
AG23  
AG21  
Serial control for  
data bus B (2x  
LVDS)  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
232.46  
235.21  
235.53  
235.66  
Serial control for  
data bus C (2x  
LVDS)  
Differentially  
terminated – 100 Ω  
Differentially  
terminated – 100 Ω  
Serial control for  
data bus D (2x  
LVDS)  
Differentially  
terminated – 100 Ω  
SERIAL COMMUNICATION AND CONFIGURATION  
SCPCLK  
SCPDO  
SCPDI  
AE1  
AC3  
AD2  
AD4  
B4  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
pull-down  
SCP_CLK  
SCP_CLK  
SCP_CLK  
Serial port clock  
Serial port output  
Serial port input  
Serial port enable  
Device reset  
324.26  
281.38  
261.55  
184.86  
458.78  
471.57  
521.99  
pull-down  
pull-down  
pull-down  
pull-down  
pull-down  
SCPEN  
PWRDN  
MODE_A  
MODE_B  
J1  
Data bandwidth  
mode select  
G1  
10  
Copyright © 2012–2018, Texas Instruments Incorporated  
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
Pin Functions (continued)  
(1)  
PIN  
TYPE  
(I/O/P)  
DATA  
RATE  
INTERNAL  
TERM  
TRACE  
(MILS)  
SIGNAL  
CLOCK  
DESCRIPTION  
(2)  
(3)  
NAME  
NO.  
MICROMIRROR CLOCKING PULSE (BIAS RESET)  
MBRST(0)  
MBRST(1)  
MBRST(2)  
MBRST(3)  
MBRST(4)  
MBRST(5)  
MBRST(6)  
MBRST(7)  
MBRST(8)  
MBRST(9)  
MBRST(10)  
MBRST(11)  
MBRST(12)  
MBRST(13)  
MBRST(14)  
MBRST(15)  
MBRST(16)  
MBRST(17)  
MBRST(18)  
MBRST(19)  
MBRST(20)  
MBRST(21)  
MBRST(22)  
MBRST(23)  
MBRST(24)  
MBRST(25)  
MBRST(26)  
MBRST(27)  
MBRST(28)  
MBRST(29)  
POWER  
L5  
M28  
P4  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
898.97  
621.98  
846.88  
784.18  
763.34  
749.61  
878.25  
783.83  
969.36  
621.24  
918.43  
685.14  
812.31  
591.89  
878.5  
P30  
L3  
P28  
P2  
T28  
M4  
L29  
T4  
N29  
N3  
Micromirror clocking  
pulse reset MBRST  
signals clock  
micromirrors into  
state of LVCMOS  
memory cell  
L27  
R3  
V28  
V4  
660.15  
848.64  
796.31  
715  
associated with each  
mirror.  
R29  
Y4  
AA27  
W3  
W27  
AA3  
W29  
U5  
604.35  
832.39  
675.21  
861.18  
662.66  
850.06  
726.56  
861.48  
683.83  
878.5  
U29  
Y2  
AA29  
U3  
Y30  
789.2  
A3, A5, A7, A9,  
A11, A13, A21,  
A23, A25, A27,  
A29, B2,  
C1, C31, E31,  
G31, J31, K2,  
L31, N31, R31,  
U31, W31,  
Power for LVCMOS  
logic  
VCC  
Power  
Analog  
AA31, AC1,  
AC31, AE31,  
AG1, AG31,  
AJ31, AK2,  
AK30, AL3, AL5,  
AL7, AL19, AL21,  
AL23, AL25,  
AL27  
H6, H12, H18,  
H24, M6, M26,  
P6, P26, T6, T26,  
V6, V26,  
Power supply for  
LVDS Interface  
VCCI  
Power  
Analog  
Y6, Y26, AD6,  
AD12, AD18,  
AD24  
Copyright © 2012–2018, Texas Instruments Incorporated  
11  
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
Pin Functions (continued)  
(1)  
PIN  
TYPE  
(I/O/P)  
DATA  
RATE  
INTERNAL  
TERM  
TRACE  
(MILS)  
SIGNAL  
CLOCK  
DESCRIPTION  
(2)  
(3)  
NAME  
NO.  
L1, N1, R1, U1,  
W1, AA1  
Power for high  
voltage CMOS logic  
VCC2  
Power  
Analog  
A1, B12, B18,  
B24, B30, C7,  
C13, C19, C25,  
D6, D12,  
D18, D24, D30,  
E1, E7, E13, E19,  
E25, F6, F12,  
F18, F24,  
F30, G7, G13,  
G19, G25, K4,  
K6, K26, K28,  
K30, M2, M30,  
N5, N27, R5, T2,  
T30, U27, V2,  
V30, W5, Y28,  
AB2, AB4,  
Common return for  
all power inputs  
VSS  
Power  
Analog  
AB6, AB26,  
AB28, AB30,  
AD30, AE7,  
AE13, AE19,  
AE25, AF6,  
AF12, AF18,  
AF24, AF30,  
AG7, AG13,  
AG19, AG25,  
AH6, AH12,  
AH18, AH24,  
AH30, AJ1,  
AJ7, AJ13, AJ19,  
AJ25, AK6, AK12,  
AK18, AL29  
RESERVED SIGNALS (NOT FOR USE IN SYSTEM)  
RESERVED_FC  
RESERVED_FD  
RESERVED_PFE  
RESERVED_STM  
RESERVED_AE  
J7  
Input  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
pull-down  
J9  
pull-down  
pull-down  
pull-down  
pull-down  
Pins should be  
connected to VSS  
J11  
AC7  
C3  
A19, B6, C5,  
H30, J13, J15,  
J17, J19, J21,  
J23, J25, R27,  
No connection (any  
connection to these  
terminals may result  
in undesirable  
AA5, AC11,  
AC13, AC15,  
AC17, AC19,  
AC21, AC23,  
NO_CONNECT  
effects)  
AC25, AC5, AC9,  
AK24, AK4, AL13  
12  
Copyright © 2012–2018, Texas Instruments Incorporated  
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted).  
(1)  
MIN  
MAX  
UNIT  
ELECTRICAL  
(2) (3)  
VCC  
Voltage applied to VCC  
Voltage applied to VCCI  
–0.5  
–0.5  
–0.5  
4
4
9
V
V
V
(2) (3)  
VCCI  
VCC2  
(2) (3) (4)  
Voltage applied to VVCC2  
Clocking pulse waveform voltage applied to MBRST[29:0] input pins (supplied  
by DLPA200s)  
VMBRST  
–28  
28  
V
(4)  
|VCC – VCCI  
|
Supply voltage delta (absolute value)  
0.3  
V
V
(2)  
Voltage applied to all other input terminals  
–0.5  
VCC + 0.3  
Maximum differential voltage, damage can occur to internal termination resistor  
if exceeded, see Figure 3  
|VID  
|
700  
mV  
Current required from a high-level output, VOH = 2.4 V  
Current required from a low-level output, VOL = 0.4 V  
–20  
15  
mA  
mA  
ENVIRONMENTAL  
(5)  
Array temperature – operational  
20  
70  
80  
°C  
°C  
TARRAY  
(5)  
Array temperature – non-operational  
–40  
Absolute temperature delta between the window test points (TP2, TP3) and the  
ceramic test point TP1  
TDELTA  
RH  
10  
95  
°C  
%
(6)  
Relative humidity (non-condensing)  
(1) Stresses beyond those listed under may cause permanent damage to the device. These are stress ratings only, which do not imply  
functional operation of the device at these or any other conditions beyond those indicated under . Exposure to absolute-maximum-rated  
conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS (ground).  
(3) Voltages VCC, VCCI, and VCC2 are required for proper DMD operation.  
(4) Exceeding the recommended allowable absolute voltage difference between VCC and VCCI may result in excess current draw. The  
difference between VCC and VCCI, |VCC – VCCI|, should be less than the specified limit.  
(5) The worst-case temperature of any test point shown in Figure 17, or the active array as calculated by the Micromirror Array Temperature  
Calculation - Lumens Based.  
(6) As either measured, predicted, or both between any two points - measured on the exterior of the package, or as predicted at any point  
inside the micromirror array cavity. Refer to Micromirror Array Temperature Calculation - Lumens Based.  
7.2 Storage Conditions  
Applicable for the DMD as a component or non-operating in a system  
MIN  
MAX  
80  
UNIT  
°C  
TDMD  
RH  
Storage temperature  
–40  
Storage humidity (non-condensing)  
95  
%
7.3 ESD Ratings  
VALUE  
±2000  
±250  
UNIT  
All pins except  
MBRST[29:0]  
Electrostatic  
VESD  
(1)  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001  
V
discharge  
MBRST[29:0] pins  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible if necessary precautions are taken.  
Copyright © 2012–2018, Texas Instruments Incorporated  
13  
 
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
7.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
NOM  
MAX  
UNIT  
(2) (3)  
ELECTRICAL  
VCC  
Supply voltage for LVCMOS core logic  
Supply voltage for LVDS receivers  
3.0  
3.0  
3.3  
3.3  
8.5  
3.6  
3.6  
V
V
V
VCC1  
VCC2  
Mirror electrode and HVCMOS supply voltage  
8.25  
8.75  
Clocking Pulse Waveform Voltage applied to MBRST[29:0] Input Pins (supplied by  
DLPA200s)  
VMBRST  
-27  
26.5  
0.3  
V
V
(4)  
|VCCI–VCC|  
Supply voltage delta (absolute value)  
ENVIRONMENTAL (5) For Illumination Source Between 420 nm and 700 nm  
(6)(7) (8)(9)  
(10)  
Array temperature, Long–term operational  
20  
0
25-45  
65  
TARRAY  
°C  
(6)(7) (11)  
Array temperature, Short–term operational  
20  
TWINDOW  
|TDELTA  
ILLVIS  
Window temperature test points TP2 and TP3, Long-term operational(9)  
.
10  
70  
10  
°C  
°C  
Absolute temperature delta between the window test points (TP2, TP3) and the  
ceramic test point TP1.(12)  
|
Thermally  
limited  
Illumination(13)  
W/cm2  
ENVIRONMENTAL (5) For Illumination Source Between 400 nm and 420 nm  
(6)(7) (8)(9)  
TARRAY  
Array temperature, Long–term operational  
20  
30  
30  
°C  
°C  
TWINDOW  
Window temperature test points TP2 and TP3, Long-term operational(9)  
Absolute temperature delta between the window test points (TP2, TP3) and the  
ceramic test point TP1.(12)  
|TDELTA  
|
10  
°C  
W/cm2  
W
11  
ILL  
Illumination(13)  
26.6  
ENVIRONMENTAL (5) For Illumination Source <400 nm and >700 nm  
(6)(7) (8)(9)  
(10)  
Array temperature, Long–term operational  
20  
0
40  
TARRAY  
°C  
(6)(7) (11)  
Array temperature, Short–term operational  
20  
70  
10  
TWINDOW  
ILL  
Window temperature test points TP2 and TP3, Long-term operational(9)  
Illumination(13)  
10  
°C  
mW/cm2  
(1) The functional performance of the device specified in this data sheet is achieved when operating the device within the limits defined by  
the Recommended Operating Conditions. No level of performance is implied when operating the device above or below the  
Recommended Operating Conditions limits.  
(2) Voltages VCC, VCC1, and VCC2 are required for proper DMD operation. VSS must also be connected.  
(3) All voltages are referenced to common ground VSS  
.
(4) Exceeding the recommended allowable absolute voltage difference between VCC and VCC1 may result in excess current draw. The  
difference between VCC and VCC1, |VCC – VCC1|, should be less than the specified limit.  
(5) Optimal, long-term performance and optical efficiency of the Digital Micromirror Device (DMD) can be affected by various application  
parameters, including illumination spectrum, illumination power density, micromirror landed duty-cycle, ambient temperature (storage  
and operating), DMD temperature, ambient humidity (storage and operating), and power on or off duty cycle. TI recommends that  
application-specific effects be considered as early as possible in the design cycle.  
(6) In some applications, the total DMD heat load can be dominated by the amount of incident light energy absorbed. See Micromirror Array  
Temperature Calculation for further details.  
(7) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point 1  
(TP1) shown in Figure 17 and the package thermal resistance in Thermal Information using Micromirror Array Temperature Calculation.  
(8) Simultaneous exposure of the DMD to the maximum Recommended Operating Conditions for temperature and UV illumination will  
reduce device lifetime.  
(9) Long-term is defined as the usable life of the device.  
(10) Per Figure 1, the maximum operational array temperature should be derated based on the micromirror landed duty cycle that the DMD  
experiences in the end application. Refer to Micromirror Landed-On and Landed-Off Duty Cycle for a definition of micromirror landed  
duty cycle.  
(11) Array temperatures beyond those specified as long-term are recommended for short-term conditions only (power-up). Short-term is  
defined as cumulative time over the usable life of the device and is less than 500 hours.  
(12) The temperature delta is the highest difference between the ceramic test point (TP1) and window test points (TP2) and (TP3) in  
Figure 17.  
(13) Total integrated illumination power density on the array in the indicated wavelength range.  
14  
Copyright © 2012–2018, Texas Instruments Incorporated  
 
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
Figure 1. Max Recommended DMD Temperature – Derating Curve  
7.5 Thermal Information  
DLP9500  
THERMAL METRIC  
FLN (Package)  
355 PINS  
0.5  
UNIT  
(1)  
Thermal resistance, active area to test point 1 (TP1)  
°C/W  
(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package where it can be removed by an appropriate  
heat sink. The heat sink and cooling system must be capable of maintaining the package within the Recommended Operating  
Conditions. The total heat load on the DMD is largely driven by the incident light absorbed by the active area, although other  
contributions include light energy absorbed by the window aperture and electrical power dissipation of the array. Optical systems should  
be designed to minimize the light energy falling outside the window clear aperture since any additional thermal load in this area can  
significantly degrade the reliability of the device.  
7.6 Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
(1)  
High-level output voltage  
See Figure 11  
,
VOH  
VCC = 3 V, IOH = –20 mA  
2.4  
V
(1) Applies to LVCMOS pins only.  
Copyright © 2012–2018, Texas Instruments Incorporated  
15  
 
 
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
(1)  
Low-level output voltage  
See Figure 11  
,
VOL  
VCC = 3.6 V, IOH = 15 mA  
0.4  
V
Clocking pulse waveform applied to  
VMBRST MBRST[29:0] input pins (supplied by  
–27  
26.5  
V
DLPA200s)  
(1)  
IOZ  
IOH  
IOL  
High-impedance output current  
VCC = 3.6 V  
10  
–20  
–15  
15  
µA  
VOH = 2.4 V, VCC 3 V  
VOH = 1.7 V, VCC 2.25 V  
VOL = 0.4 V, VCC 3 V  
VOL = 0.4 V, VCC 2.25 V  
(1)  
High-level output current  
mA  
(1)  
Low-level output current  
mA  
V
14  
VCC  
+
(1)  
VIH  
High-level input voltage  
1.7  
0.3  
(1)  
VIL  
IIL  
Low-level input voltage  
–0.3  
0.7  
–60  
60  
V
µA  
µA  
mA  
mA  
mA  
W
(1)  
Low-level input current  
VCC = 3.6 V, VI = 0 V  
VCC = 3.6 V, VI = VCC  
VCC = 3.6 V,  
(1)  
IIH  
High-level input current  
ICC  
ICCI  
ICC2  
PD  
Current into VCC pin  
2990  
910  
25  
(2)  
Current into VOFFSET pin  
VCCI = 3.6 V  
Current into VCC2 pin  
VCC2 = 8.75 V  
Power dissipation  
4.4  
ZIN  
ZLINE  
CI  
Internal differential impedance  
Line differential impedance (PWB, trace)  
95  
90  
105  
110  
10  
Ω
100  
Ω
(1)  
Input capacitance  
ƒ = 1 MHz  
ƒ = 1 MHz  
ƒ = 1 MHz  
pF  
pF  
pF  
(1)  
CO  
CIM  
Output capacitance  
10  
Input capacitance for MBRST[29:0] pins  
270  
355  
(2) Exceeding the maximum allowable absolute voltage difference between VCC and VCCI may result in excess current draw (See Absolute  
Maximum Ratings for details).  
16  
Copyright © 2012–2018, Texas Instruments Incorporated  
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
7.7 LVDS Timing Requirements  
over operating free-air temperature range (unless otherwise noted); see Figure 2  
MIN  
200  
2.5  
NOM  
MAX  
UNIT  
MHz  
ns  
ƒDCLK_x  
DCLK_x clock frequency (where x = [A, B, C, or D])  
Clock cycle - DLCK_x  
400  
tc  
tw  
Pulse duration - DLCK_x  
1.25  
ns  
ts  
Setup time - D_x[15:0] and SCTRL_x before DCLK_x  
Hold time, D_x[15:0] and SCTRL_x after DCLK_x  
Skew between any two buses (A ,B, C, and D)  
0.35  
0.35  
ns  
th  
ns  
tskew  
–1.25  
1.25  
ns  
DCLK_AN  
DCLK_AP  
t
t
s
h
t
c
t
t
s
h
SCTRL_AN  
SCTRL_AP  
D_AN(15:0)  
D_AP(15:0)  
DCLK_BN  
DCLK_BP  
t
t
s
h
t
c
t
t
s
h
SCTRL_BN  
SCTRL_BP  
D_BN(15:0)  
D_BP(15:0)  
DCLK_CN  
DCLK_CP  
t
t
s
h
t
c
t
t
s
h
SCTRL_CN  
SCTRL_CP  
D_CN(15:0)  
D_CP(15:0)  
DCLK_DN  
DCLK_DP  
t
t
s
h
t
c
t
t
s
h
SCTRL_DN  
SCTRL_DP  
D_DN(15:0)  
D_DP(15:0)  
Figure 2. LVDS Timing Waveforms  
Copyright © 2012–2018, Texas Instruments Incorporated  
17  
 
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
7.8 LVDS Waveform Requirements  
over operating free-air temperature range (unless otherwise noted); see Figure 3  
MIN  
NOM  
400  
MAX  
UNIT  
mV  
mV  
mV  
ps  
|VID  
|
Input differential voltage (absolute difference)  
Common mode voltage  
100  
600  
VCM  
1200  
VLVDS  
LVDS voltage  
0
100  
100  
2000  
400  
tr  
tr  
Rise time (20% to 80%)  
Fall time (80% to 20%)  
400  
ps  
VLVDS max = VCM max + | 1/2 × VID max  
|
tf  
VID  
VCM  
tr  
VLVDS min = VCM min | 1/2 × VID max  
|
Figure 3. LVDS Waveform Requirements  
18  
Copyright © 2012–2018, Texas Instruments Incorporated  
 
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
7.9 Serial Control Bus Timing Requirements  
over operating free-air temperature range (unless otherwise noted); see Figure 4 and Figure 5  
MIN  
NOM  
MAX  
500  
300  
960  
UNIT  
kHz  
ns  
ƒSCP_CLK  
tSCP_SKEW  
tSCP_DELAY  
t SCP_EN  
t_SCP  
SCP clock frequency  
50  
Time between valid SCP_DI and rising edge of SCP_CLK  
Time between valid SCP_DO and rising edge of SCP_CLK  
Time between falling edge of SCP_EN and the first rising edge of SCP_CLK  
Rise time for SCP signals  
–300  
ns  
30  
ns  
200  
200  
ns  
tƒ_SCP  
Fall time for SCP signals  
ns  
t
f
= 1 / t  
clock c  
c
SCPCLK  
50%  
50%  
tSCP_SKEW  
SCPDI  
50%  
tSCP_DELAY  
SCPD0  
50%  
Figure 4. Serial Communications Bus Timing Parameters  
tf_SCP  
tr_SCP  
Input Controller VCC  
SCP_CLK,  
SCP_DI,  
SCP_EN  
VCC/2  
0 v  
Figure 5. Serial Communications Bus Waveform Requirements  
Copyright © 2012–2018, Texas Instruments Incorporated  
19  
 
 
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
MAX UNIT  
7.10 Systems Mounting Interface Loads  
PARAMETER  
MIN  
NOM  
Thermal interface area (see Figure 6)  
156  
1334  
712  
N
N
N
Maximum system mounting interface  
load to be applied to the:  
Electrical interface area (see Figure 6)  
Datum A Interface area (see Figure 6)  
Thermal Interface  
Area  
Electrical Interface  
Area  
Other Area  
Datum ‘A’ Areas  
Figure 6. System Interface Loads  
20  
Copyright © 2012–2018, Texas Instruments Incorporated  
 
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
7.11 Micromirror Array Physical Characteristics  
See 机械、封装和可订购信息 for additional details.  
VALUE  
1920  
1080  
10.8  
UNIT  
micromirrors  
micromirrors  
µm  
(1)  
M
N
P
Number of active micromirror columns  
(1)  
Number of active micromirror rows  
(1)  
Micromirror (pixel) pitch  
(1)  
Micromirror active array width  
M × P  
20.736  
11.664  
10  
mm  
(1)  
Micromirror active array height  
N × P  
mm  
(1) (2)  
Micromirror array border  
Pond of micromirrors (POM)  
micromirrors/side  
(1) See Figure 7.  
(2) The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the POM.  
These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state, but still require an electrical  
bias to tilt toward OFF.  
0
1
2
3
DMD Active Array  
N x P  
M x N Micromirrors  
N œ 4  
N œ 3  
N œ 2  
N œ 1  
M x P  
P
Border micromirrors omitted for clarity.  
Details omitted for clarity.  
P
Not to scale.  
P
P
Refer to the Micromirror Array Physical Characteristics table for M, N, and P specifications.  
Figure 7. Micromirror Array Physical Characteristics  
Copyright © 2012–2018, Texas Instruments Incorporated  
21  
 
 
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
7.12 Micromirror Array Optical Characteristics  
TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment optical  
performance involves making trade-offs between numerous component and system design parameters. See the related  
application reports (listed in 相关文档) for guidelines.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
(1) (2) (3)  
DMD parked state  
,
0
See Figure 12  
a
Micromirror tilt angle  
degrees  
(1) (4) (5)  
DMD landed state  
See Figure 12  
12  
(1) (4) (6) (7) (8)  
β
Micromirror tilt angle variation  
See Figure 12  
–1  
56  
44  
1
degrees  
µs  
(9)  
Micromirror crossover time  
3
(10)  
Micromirror switching time  
13  
22  
µs  
(11)  
Array switching time at 400 MHz with global reset  
µs  
Non-adjacent micromirrors  
Adjacent micromirrors  
See Figure 12  
10  
0
(12)  
Non-operating micromirrors  
micromirrors  
degrees  
(13)  
Orientation of the micromirror axis-of-rotation  
45  
46  
400 to 700 nm, with all  
micromirrors in the ON state  
(14) (15)  
Micromirror array optical efficiency  
70%  
(1) Measured relative to the plane formed by the overall micromirror array.  
(2) Parking the micromirror array returns all of the micromirrors to an essentially flat (0˚) state (as measured relative to the plane formed by  
the overall micromirror array).  
(3) When the micromirror array is parked, the tilt angle of each individual micromirror is uncontrolled.  
(4) Additional variation exists between the micromirror array and the package datums, as shown in 机械、封装和可订购信息.  
(5) When the micromirror array is landed, the tilt angle of each individual micromirror is dictated by the binary contents of the CMOS  
memory cell associated with each individual micromirror. A binary value of 1 results in a micromirror landing in an nominal angular  
position of +12°. A binary value of 0 results in a micromirror landing in an nominal angular position of –12°.  
(6) Represents the landed tilt angle variation relative to the nominal landed tilt angle.  
(7) Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different  
devices.  
(8) For some applications, it is critical to account for the micromirror tilt angle variation in the overall system optical design. With some  
system optical designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field  
reflected from the micromirror array. With some system optical designs, the micromirror tilt angle variation between devices may result in  
colorimetry variations and/or system contrast variation.  
(9) Micromirror crossover time is the transition time from landed to landed during a crossover transition and primarily a function of the  
natural response time of the micromirrors.  
(10) Micromirror switching time is the time after a micromirror clocking pulse until the micromirrors can be addressed again. It included the  
micromirror settling time.  
(11) Array switching is controlled and coordinated by the DLPC410 (DLPS024) and DLPA200 (DLPS015). Nominal switching time depends  
on the system implementation and represents the time for the entire micromirror array to be refreshed (array loaded plus reset and  
mirror settling time).  
(12) Non-operating micromirror is defined as a micromirror that is unable to transition nominally from the –12° position to +12° or vice versa.  
(13) Measured relative to the package datums 'B' and 'C', shown in the 机械、封装和可订购信息.  
(14) The minimum or maximum DMD optical efficiency observed in a specific application depends on numerous application-specific design  
variables, such as:  
(a) Illumination wavelength, bandwidth/line-width, degree of coherence  
(b) Illumination angle, plus angle tolerance  
(c) Illumination and projection aperture size, and location in the system optical path  
(d) Illumination overfill of the DMD micromirror array  
(e) Aberrations present in the illumination source and/or path  
(f) Aberrations present in the projection path  
The specified nominal DMD optical efficiency is based on the following use conditions:  
(a) Visible illumination (400 to 700 nm)  
(b) Input illumination optical axis oriented at 24° relative to the window normal  
(c) Projection optical axis oriented at 0° relative to the window normal  
(d) ƒ / 3 illumination aperture  
(e) ƒ / 2.4 projection aperture  
Based on these use conditions, the nominal DMD optical efficiency results from the following four components:  
(a) Micromirror array fill factor: nominally 94%  
(b) Micromirror array diffraction efficiency: nominally 87%  
(c) Micromirror surface reflectivity: nominally 89%  
(d) Window transmission: nominally 96% (single pass, through two surface transitions)  
(15) Does not account for the effect of micromirror switching duty cycle, which is application dependent. Micromirror switching duty cycle  
represents the percentage of time that the micromirror is actually reflecting light from the optical illumination path to the optical projection  
path. This duty cycle depends on the illumination aperture size, the projection aperture size, and the micromirror array update rate.  
22  
Copyright © 2012–2018, Texas Instruments Incorporated  
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
7.13 Window Characteristics  
(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Window material designation  
Window refractive index  
Corning 7056  
At wavelength 589 nm  
1.487  
(2)  
Window flatness  
Per 25 mm  
4
fringes  
µm  
(3)  
Window artifact size  
Window aperture  
Illumination overfill  
Within the Window Aperture  
400  
(4)  
See  
Refer to Illumination Overfill  
At wavelength 405 nm. Applies to 0° and 24° AOI only.  
95%  
96%  
Minimum within the wavelength range 420 nm to 680 nm.  
Applies to all angles 0° to 30° AOI.  
Window transmittance, single–pass  
(5)  
through both surfaces and glass  
Average over the wavelength range 420 nm to 680 nm.  
Applies to all angles 30° to 45° AOI.  
96%  
(1) See Window Characteristics and Optics for more information.  
(2) At a wavelength of 632.8 nm.  
(3) See the 机械、封装和可订购信息 section at the end of this document for details regarding the size and location of the window aperture.  
(4) For details regarding the size and location of the window aperture, see the package mechanical characteristics listed in the Mechanical  
ICD in the Mechanical, Packaging, and Orderable Information section.  
(5) See the TI application report DLPA031, Wavelength Transmittance Considerations for DLP DMD Window.  
7.14 Chipset Component Usage Specification  
The DLP9500 is a component of one or more DLP chipsets. Reliable function and operation of the DLP9500  
requires that it be used in conjunction with the other components of the applicable DLP chipset, including those  
components that contain or implement TI DMD control technology. TI DMD control technology is the TI  
technology and devices for operating or controlling a DLP DMD.  
8 Detailed Description  
8.1 Overview  
Optically, the DLP9500 consists of 2,073,600 highly reflective, digitally switchable, micrometer-sized mirrors  
(micromirrors), organized in a two-dimensional array of 1920 micromirror columns by 1080 micromirror rows ().  
Each aluminum micromirror is approximately 10.8 microns in size (see the Micromirror Pitch in ) and is  
switchable between two discrete angular positions: –12° and 12°. The angular positions are measured relative to  
a 0° flat state, which is parallel to the array plane (see Figure 12). The tilt direction is perpendicular to the hinge-  
axis, which is positioned diagonally relative to the overall array. The On State landed position is directed toward  
row 0, column 0 (upper left) corner of the device package (see the Micromirror Hinge-Axis Orientation in ). In the  
field of visual displays, the 1920 × 1080 pixel resolution is referred to as 1080p.  
Each individual micromirror is positioned over a corresponding CMOS memory cell. The angular position of a  
specific micromirror is determined by the binary state (logic 0 or 1) of the corresponding CMOS memory cell  
contents, after the mirror clocking pulse is applied. The angular position (–12° or +12°) of the individual  
micromirrors changes synchronously with a micromirror clocking pulse, rather than being synchronous with the  
CMOS memory cell data update. Therefore, writing a logic 1 into a memory cell followed by a mirror clocking  
pulse will result in the corresponding micromirror switching to a 12° position. Writing a logic 0 into a memory cell  
followed by a mirror clocking pulse will result in the corresponding micromirror switching to a –12° position.  
Updating the angular position of the micromirror array consists of two steps. First, updating the contents of the  
CMOS memory. Second, application of a micromirror clocking pulse to all or a portion of the micromirror array  
(depending upon the configuration of the system). Micromirror clocking pulses are generated externally by two  
DLPA200s, with application of the pulses being coordinated by the DLPC410 controller.  
Around the perimeter of the 1920 by 1080 array of micromirrors is a uniform band of border micromirrors. The  
border micromirrors are not user-addressable. The border micromirrors land in the –12° position once power has  
been applied to the device. There are 10 border micromirrors on each side of the 1920 by 1080 active array.  
Copyright © 2012–2018, Texas Instruments Incorporated  
23  
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
Overview (continued)  
Figure 8 shows a DLPC410 and DLP9500 chipset block diagram. The DLPC410 and DLPA200s control and  
coordinate the data loading and micromirror switching for reliable DLP9500 operation. The DLPR410 is the  
programmed PROM required to properly configure the DLPC410 controller. For more information on the chipset  
components, see Application and Implementation. For a typical system application using the DLP Discovery 4100  
chipset including a DLP9500, see Figure 18.  
8.2 Functional Block Diagram  
Figure 8 shows a simplified system block diagram with the use of the DLPC410 with the following chipset  
components:  
DLPC410  
Xilinx [XC5VLX30] FPGA configured to provide high-speed DMD data and control, and DLPA200  
timing and control  
DLPR410  
DLPA200  
DLP9500  
[XCF16PFSG48C] serial flash PROM contains startup configuration information (EEPROM)  
Two DMD micromirror drivers for the DLP9500 DMD  
Spatial light modulator (DMD)  
24  
Copyright © 2012–2018, Texas Instruments Incorporated  
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
USER INTERFACE  
DLPC410  
DLP9500  
= LVDS Bus  
DDC_DCLK_A  
DVALID_A  
DDC_DCLKOUT_A  
DDC_SCTRL_A  
DDC_DIN_A(15:0)  
DDC_DOUT_A(15:0)  
DDC_DCLK_B  
DVALID_B  
DDC_DCLKOUT_B  
DDC_SCTRL_B  
DDC_DIN_B(15:0)  
DDC_DOUT_B(15:0)  
DDC_DCLK_C  
DVALID_C  
DDC_DCLKOUT_C  
DDC_SCTRL_C  
DDC_DIN_C(15:0)  
DDC_DOUT_C(15:0)  
DDC_DCLK_D  
DVALID_D  
DDC_DCLKOUT_D  
DDC_SCTRL_D  
DDC_DIN_D(15:0)  
DDC_DOUT_D(15:0)  
COMP_DATA  
NS_FLIP  
SCPCLK  
SCPDO  
STEPVCC  
SCPDI  
WDT_ENBLZ  
PWR_FLOAT  
DMD_A_SCPENZ  
DMD_B_SCPENZ  
A_SCPENZ  
ROWMD(1:0)  
ROWAD(10:0)  
RST2BLKZ  
B_SCPENZ  
DLPA200  
BLKMD(1:0)  
BLKAD(10:0)  
A_STROBE  
A_MODE(1:0)  
A_SEL(1:0)  
A_ADDR(3:0)  
MBRST1_(15:0)  
RST_ACTIVE  
INIT_ACTIVE  
A
ECP2_FINISHED  
DMD_TYPE(3:0)  
OEZ  
INIT  
DDC_VERSION(2:0)  
DLPR410  
PROM_CCK_DDC  
PROGB_DDC  
PROM_DO_DDC  
DONE_DDC  
DLPA200  
TDI_JTAG  
INTB_DDC  
B_STROBE  
B_MODE(1:0)  
B_SEL(1:0)  
B_ADDR(3:0)  
MBRST2_(15:0)  
CS_B_0  
B
RDWR_B_0  
HSWAPEN_0  
TDO_XCF16DDC  
TCK_JTAG  
TCK_JTAG  
TDO_DDC  
VLED0  
VLED1  
DDC_M(2:0)  
ECP2_M_TP(31:0)  
DDCSPARE(1:0)  
ARSTZ  
DMD_A_RESET  
DMD_B_RESET  
CLKIN_R  
OSC  
50 Mhz  
Figure 8. DLPC410, DLPA200, DLPR410, and DLP9500 Functional Block Diagram  
Copyright © 2012–2018, Texas Instruments Incorporated  
25  
 
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
8.3 Feature Description  
Table 1. DMD Overview  
SINGLE BLOCK  
MODE  
(Patterns/s)  
GLOBAL RESET  
MODE  
(Patterns/s)  
DATA RATE  
(Giga Pixels/s)  
DMD  
ARRAY  
MIRROR PITCH  
DLP9500 - 0.95" 1080p  
1920 × 1080  
23148  
17857  
48  
10.8 μm  
8.3.1 DLPC410 - Digital Controller for DLP Discovery 4100 Chipset  
The DLPC410 chipset includes the DLPC410 controller which provides a high-speed LVDS data and control  
interface for DMD control. This interface is also connected to a second FPGA used to drive applications (not  
included in the chipset). The DLPC410 generates DMD and DLPA200 initialization and control signals in  
response to the inputs on the control interface.  
For more information, see the DLPC410 data sheet (DLPS024).  
8.3.2 DLPA200 - DMD Micromirror Drivers  
DLPA200 micromirror drivers provide the micromirror clocking pulse driver functions for the DMD. Two drivers  
are required for DLP9500.  
The DLPA200 is designed to work with multiple DLP chipsets. Although the DLPA200 contains 16 MBSRT output  
pins, only 15 lines are used with the DLP9500 chipset. For more information see and the DLPA200 data sheet  
(DLPS015).  
8.3.3 DLPR410 - PROM for DLP Discovery 4100 Chipset  
The DLPC410 controller is configured at startup from the DLPR410 PROM. The contents of this PROM can not  
be altered. For more information, see the DLPR410 data sheet (DLPS027) the DLPC410 data sheet (DLPS024).  
8.3.4 DLP9500 - DLP 0.95 1080p 2xLVDS Type-A DMD 1080p DMD  
8.3.4.1 DLP9500 1080p Chipset Interfaces  
This section will describe the interface between the different components included in the chipset. For more  
information on component interfacing, see Application and Implementation.  
8.3.4.1.1 DLPC410 Interface Description  
8.3.4.1.1.1 DLPC410 IO  
Table 2 describes the inputs and outputs of the DLPC410 to the user. For more details on these signals, see the  
DLPC410 data sheet (DLPS024).  
26  
Copyright © 2012–2018, Texas Instruments Incorporated  
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
Table 2. Input/Output Description  
PIN NAME  
DESCRIPTION  
I/O  
ARST  
Asynchronous active low reset  
I
I
I
CLKIN_R  
Reference clock, 50 MHz  
DIN_[A,B,C,D](15:0)  
DCLKIN[A,B,C,D]  
DVALID[A,B,C,D]  
ROWMD(1:0)  
ROWAD(10:0)  
BLK_AD(3:0)  
BLK_MD(1:0)  
PWR_FLOAT  
DMD_TYPE(3:0)  
RST_ACTIVE  
INIT_ACTIVE  
VLED0  
LVDS DDR input for data bus A,B,C,D (15:0)  
LVDS inputs for data clock (200 - 400 MHz) on bus A, B, C, and D  
LVDS input used to start write sequence for bus A, B, C, and D  
DMD row address and row counter control  
DMD row address pointer  
I
I
I
I
DMD mirror block address pointer  
I
DMD mirror block reset and clear command modes  
Used to float DMD mirrors before complete loss of power  
DMD type in use  
I
I
O
O
O
O
O
Indicates DMD mirror reset in progress  
Initialization in progress.  
System “heartbeat” signal  
VLED1  
Denotes initialization complete  
8.3.4.1.1.2 Initialization  
The INIT_ACTIVE (Table 2) signal indicates that the DLP9500, DLPA200s, and DLPC410 are in an initialization  
state after power is applied. During this initialization period, the DLPC410 is initializing the DLP9500 and  
DLPA200s by setting all internal registers to their correct states. When this signal goes low, the system has  
completed initialization. System initialization takes approximately 220 ms to complete. Data and command write  
cycles should not be asserted during the initialization.  
During initialization the user must send a training pattern to the DLPC410 on all data and DVALID lines to  
correctly align the data inputs to the data clock. For more information, see the interface training pattern  
information in the DLPC410 data sheet.  
8.3.4.1.1.3 DMD Device Detection  
The DLPC410 automatically detects the DMD type and device ID. DMD_TYPE (Table 2) is an output from the  
DLPC410 that contains the DMD information.  
8.3.4.1.1.4 Power Down  
To ensure long term reliability of the DLP9500, a shutdown procedure must be executed. Prior to power removal,  
assert the PWR_FLOAT (Table 2) signal and allow approximately 300 µs for the procedure to complete. This  
procedure assures the mirrors are in a flat state.  
8.3.4.1.2 DLPC410 to DMD Interface  
8.3.4.1.2.1 DLPC410 to DMD IO Description  
Table 3 lists the available controls and status pin names and their corresponding signal type, along with a brief  
functional description.  
Table 3. DLPC410 to DMD I/O Pin Descriptions  
PIN NAME  
DDC_DOUT_[A,B,C,D](15:0)  
DDC_DCLKOUT_[A,B,C,D]  
DDC_SCTRL_[A,B,C,D]  
DESCRIPTION  
I/O  
O
LVDS DDR output to DMD data bus A,B,C,D (15:0)  
LVDS output to DMD data clock A,B,C,D  
LVDS DDR output to DMD data control A,B,C,D  
O
O
Copyright © 2012–2018, Texas Instruments Incorporated  
27  
 
 
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
8.3.4.1.2.2 Data Flow  
Figure 9 shows the data traffic through the DLPC410. Special considerations are necessary when laying out the  
DLPC410 to allow best signal flow.  
LVDS BUS D  
sDIN_D(15:0)  
sDCLK_D  
LVDS BUS C  
sDIN_C(15:0)  
sDCLK_C  
sDVALID_C  
sDVALID_D  
DLPC410  
LVDS BUS D  
sDOUT_D(15:0)  
sDCLKOUT_D  
sSCTRL_D  
LVDS BUS A  
sDOUT_A(15:0)  
sDCLKOUT_A  
sSCTRL_A  
Figure 9. DLPC410 Data Flow  
Four LVDS buses transfer the data from the user to the DLPC410. Each bus has its data clock that is input edge  
aligned with the data (DCLK). Each bus also has its own validation signal that qualifies the data input to the  
DLPC410 (DVALID).  
Output LVDS buses transfer data from the DLPC410 to the DMD. Output buses LVDS C and LVDS D are used  
in addition to LVDS A and LVDS B with the DLP9500.  
8.3.4.1.3 DLPC410 to DLPA200 Interface  
8.3.4.1.3.1 DLPA200 Operation  
The DLPA200 DMD micromirror driver is a mixed-signal application-specific integrated circuit (ASIC) that  
combines the necessary high-voltage power supply generation and micromirror clocking pulse functions for a  
family of DMDs. The DLPA200 is programmable and controllable to meet all current and anticipated DMD  
requirements.  
The DLPA200 operates from a 12-V power supply input. For more detailed information on the DLPA200, see the  
DLPA200 data sheet.  
28  
Copyright © 2012–2018, Texas Instruments Incorporated  
 
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
8.3.4.1.3.2 DLPC410 to DLPA200 IO Description  
The serial communications port (SCP) is a full duplex, synchronous, character-oriented (byte) port that allows  
exchange of commands from the DLPC410 to the DLPA200s.  
DLPA200  
SCP bus  
DLPC410  
SCP bus  
DLPA200  
Figure 10. Serial Port System Configuration  
Five signal lines are associated with the SCP bus: SCPEN, SCPCK, SCPDI, SCPDO, and IRQ.  
Table 4 lists the available controls and status pin names and their corresponding signal type, along with a brief  
functional description.  
Table 4. DLPC410 to DLPA200 I/O Pin Descriptions  
PIN NAME  
A_SCPEN  
DESCRIPTION  
Active-low chip select for DLPA200 serial bus  
DLPA200 control signal strobe  
DLPA200 mode control  
I/O  
O
O
O
O
O
O
O
O
O
O
A_STROBE  
A_MODE(1:0)  
A_SEL(1:0)  
A_ADDR(3:0)  
B_SCPEN  
DLPA200 select control  
DLPA200 address control  
Active-low chip select for DLPA200 serial bus (2)  
DLPA200 control signal strobe (2)  
DLPA200 mode control  
B_STROBE  
B_MODE(1:0)  
B_SEL(1:0)  
B_ADDR(3:0)  
DLPA200 select control  
DLPA200 address control  
The DLPA200 provides a variety of output options to the DMD by selecting logic control inputs: MODE[1:0],  
SEL[1:0] and reset group address A[3:0] (Table 4). The MODE[1:0] input determines whether a single output, two  
outputs, four outputs, or all outputs, will be selected. Output levels (VBIAS, VOFFSET, or VRESET) are selected  
by SEL[1:0] pins. Selected outputs are tri-stated on the rising edge of the STROBE signal and latched to the  
selected voltage level after a break-before-make delay. Outputs will remain latched at the last micromirror  
clocking pulse waveform level until the next micromirror clocking pulse waveform cycle.  
8.3.4.1.4 DLPA200 to DLP9500 Interface  
8.3.4.1.4.1 DLPA200 to DLP9500 Interface Overview  
The DLPA200 generates three voltages: VBIAS, VRESET, and VOFFSET that are supplied to the DMD MBRST  
lines in various sequences through the micromirror clocking pulse driver function. VOFFSET is also supplied  
directly to the DMD as DMDVCC2. A fourth DMD power supply, DMDVCC, is supplied directly to the DMD by  
regulators.  
The function of the micromirror clocking pulse driver is to switch selected outputs in patterns between the three  
voltage levels (VBIAS, VRESET and VOFFSET) to generate one of several micromirror clocking pulse  
waveforms. The order of these micromirror clocking pulse waveform events is controlled externally by the logic  
control inputs and timed by the STROBE signal. DLPC410 automatically detects the DMD type and then uses the  
DMD type to determine the appropriate micromirror clocking pulse waveform.  
Copyright © 2012–2018, Texas Instruments Incorporated  
29  
 
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
A direct micromirror clocking pulse operation causes a mirror to transition directly from one latched state to the  
next. The address must already be set up on the mirror electrodes when the micromirror clocking pulse is  
initiated. Where the desired mirror display period does not allow for time to set up the address, a micromirror  
clocking pulse with release can be performed. This operation allows the mirror to go to a relaxed state regardless  
of the address while a new address is set up, after which the mirror can be driven to a new latched state.  
A mirror in the relaxed state typically reflects light into a system collection aperture and can be thought of as off  
although the light is likely to be more than a mirror latched in the off state. System designers should carefully  
evaluate the impact of relaxed mirror conditions on optical performance.  
8.3.5 Measurement Conditions  
The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its  
transmission line effects must be taken into account. Figure 11 shows an equivalent test load circuit for the  
output under test. The load capacitance value stated is only for characterization and measurement of AC timing  
signals. This load capacitance value does not indicate the maximum load the device is capable of driving. All rise  
and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, VOL MAX and VOH  
MIN for output clocks.  
LOAD CIRCUIT  
R
L
From Output  
Under Test  
Tester  
Channel  
C
C
= 50 pF  
L
L
= 5 pF for Disable Time  
Figure 11. Test Load Circuit for AC Timing Measurements  
30  
Copyright © 2012–2018, Texas Instruments Incorporated  
 
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
Package Pin  
A1 Corner  
DLP9500  
Two Two  
“On-State” “Off-State”  
Micromirrors Micromirrors  
For Reference  
Flat-State  
( “parked” )  
Micromirror Position  
a
b
-a  
b
Silicon Substrate  
Silicon Substrate  
“On-State”  
Micromirror  
“Off-State”  
Micromirror  
Figure 12. Micromirror Landed Positions and Light Paths  
Copyright © 2012–2018, Texas Instruments Incorporated  
31  
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
8.4 Device Functional Modes  
The DLP9500 has only one functional mode; it is set to be highly optimized for low latency and high speed in  
generating mirror clocking pulses and timings.  
When operated with the DLPC410 controller in conjunction with the DLPA200 drivers, the DLP9500 can be  
operated in several display modes. The DLP9500 is loaded as 15 blocks of 72 rows each. The first 64 bits of  
pixel data and last 64 bits of pixel data for all rows are not visible. Below is a representation of how the image is  
loaded by the different micromirror clocking pulse modes. Figure 13, Figure 14, Figure 15, and Figure 16 show  
how the image is loaded by the different micromirror clocking pulse modes.  
There are four micromirror clocking pulse modes that determine which blocks are reset when a micromirror  
clocking pulse command is issued:  
Single block mode  
Dual block mode  
Quad block mode  
Global mode  
8.4.1 Single Block Mode  
In single block mode, a single block can be loaded and reset in any order. After a block is loaded, it can be reset  
to transfer the information to the mechanical state of the mirrors.  
Figure 13. Single Block Mode  
8.4.2 Dual Block Mode  
In dual block mode, reset blocks are paired together as follows (0-1), (2-3), (4-5), (6-7), (8-9), (10-11), (12-13),  
and (14). These pairs can be reset in any order. After data is loaded a pair can be reset to transfer the  
information to the mechanical state of the mirrors.  
Figure 14. Dual Block Mode  
32  
Copyright © 2012–2018, Texas Instruments Incorporated  
 
 
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
Device Functional Modes (continued)  
8.4.3 Quad Block Mode  
In quad block mode, reset blocks are grouped together in fours as follows (0-3), (4-7), (8-11) and (12-14). Each  
quad group can be randomly addressed and reset. After a quad group is loaded, it can be reset to transfer the  
information to the mechanical state of the mirrors.  
Figure 15. Quad Block Mode  
8.4.4 Global Block Mode  
In global mode, all reset blocks are grouped into a single group and reset together. The entire DMD must be  
loaded with the desired data before issuing a Global Reset to transfer the information to the mechanical state of  
the mirrors.  
Figure 16. Global Mode  
Copyright © 2012–2018, Texas Instruments Incorporated  
33  
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
8.5 Window Characteristics and Optics  
NOTE  
TI assumes no responsibility for image quality artifacts or DMD failures caused by optical  
system operating conditions exceeding limits described previously.  
8.5.1 Optical Interface and System Image Quality  
TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment  
optical performance involves making trade-offs between numerous component and system design parameters.  
Optimizing system optical performance and image quality strongly relate to optical system design parameter  
trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical  
performance is contingent on compliance to the optical system operating conditions described in the following  
sections.  
8.5.2 Numerical Aperture and Stray Light Control  
The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area  
should be the same. This angle should not exceed the nominal device mirror tilt angle unless appropriate  
apertures are added in the illumination, projection pupils, or both to block out flat-state and stray light from the  
projection lens. The mirror tilt angle defines DMD capability to separate the ON optical path from any other light  
path, including undesirable flat-state specular reflections from the DMD window, DMD border structures, or other  
system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture exceeds the mirror tilt  
angle, or if the projection numerical aperture angle is more than two degrees larger than the illumination  
numerical aperture angle, objectionable artifacts in the display’s border and/or active area could occur.  
8.5.3 Pupil Match  
TI recommends the exit pupil of the illumination is nominally centered within 2° (two degrees) of the entrance  
pupil of the projection optics. Misalignment of pupils can create objectionable artifacts in the display’s border  
and/or active area, which may require additional system apertures to control, especially if the numerical aperture  
of the system exceeds the pixel tilt angle.  
8.5.4 Illumination Overfill  
The active area of the device is surrounded by an aperture on the inside DMD window surface that masks  
structures of the DMD device assembly from normal view. The aperture is sized to anticipate several optical  
operating conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the  
window aperture opening and other surface anomalies that may be visible on the screen. The illumination optical  
system should be designed to limit light flux incident anywhere on the window aperture from exceeding  
approximately 10% of the average flux level in the active area. Depending on the optical architecture of a  
particular system, overfill light may have to be further reduced below the suggested 10% level to be acceptable.  
34  
Copyright © 2012–2018, Texas Instruments Incorporated  
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
8.6 Micromirror Array Temperature Calculation  
8.6.1 Thermal Test Points  
The temperature of the DMD case can be measured directly. For consistency, thermal test point locations 1, 2,  
and 3 are defined as shown in Figure 17.  
TP2  
TP2  
27.80  
TP3  
TP3  
TP3 (TP2)  
TP1  
21.08  
Figure 17. Thermal Test Points  
Copyright © 2012–2018, Texas Instruments Incorporated  
35  
 
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
Micromirror Array Temperature Calculation (continued)  
8.6.2 Micromirror Array Temperature Calculation - Lumens Based  
Micromirror array temperature cannot be measured directly; therefore, it must be computed analytically from:  
the measurement points (Figure 17)  
the package thermal resistance  
the electrical power  
the illumination heat load  
The relationship between micromirror array temperature and the reference ceramic temperature (thermal test  
point TP1 in Figure 17) is provided by the following equations:  
TARRAY = T CERAMIC + (QARRAY × RARRAY-TO-CERAMIC  
QARRAY = QELECTRICAL + QILLUMINATION  
)
where  
TARRAY = computed array temperature (°C)  
TCERAMIC = measured ceramic temperature (°C) (TP1 location)  
RARRAY-TO-CERAMIC = thermal resistance of DMD package (specified in Thermal Information) from array to  
ceramic TP1 (°C/W)  
QARRAY = total power (electrical + absorbed) on the array (Watts)  
QELECTRICAL = nominal electrical power (Watts)  
QILLUMINATION = (CL2W × SL) (Watts)  
CL2W = conversion constant for screen lumens to power on DMD (Watts/lumen)  
SL = measured screen lumens  
The electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating  
frequencies. A nominal electrical power dissipation to use when calculating array temperature is 4.4 Watts. The  
absorbed power from the illumination source is variable and depends on the operating state of the micromirrors  
and the intensity of the light source. The conversion constant CL2W is based on the DMD input illumination  
characteristics. It assumes a spectral efficiency of 300 lumens/Watt for the projected light and an illumination  
distribution of 83.7% on the active array and 16.3% on the array border. The equations shown above are valid for  
a system with a total projection efficiency through the projection lens from the DMD to the screen of 87%.  
Sample calculation for typical application:  
TCeramic = 55°C (measured)  
SL = 2000 lm (measured)  
QELECTRICAL = 4.4 Watts  
RARRAY-TO-CERAMIC = 0.5 °C/W  
CL2W = 0.00274 W/lm  
QARRAY = 4.4 + (0.00274 W/lm × 2000 lm) = 9.88 W  
TARRAY = 55°C + (9.88 W x 0.5 °C) = 59.9 °C  
36  
Copyright © 2012–2018, Texas Instruments Incorporated  
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
Micromirror Array Temperature Calculation (continued)  
8.6.3 Micromirror Array Temperature Calculation - Power Density Based  
Micromirror array temperature cannot be measured directly; therefore, it must be computed analytically from:  
the measurement points (Figure 17)  
the package thermal resistance  
the electrical power  
the illumination heat load  
The relationship between array temperature and the reference ceramic temperature (thermal test point TP1 in  
Figure 17) is provided by the following equations:  
TARRAY = T CERAMIC + (QARRAY × RARRAY-TO-CERAMIC  
QARRAY = QELECTRICAL + (0.42 x QINCIDENT  
)
)
where  
TARRAY = computed array temperature (°C)  
TCERAMIC = measured ceramic temperature (°C) (TP1 location)  
RARRAY-TO-CERAMIC = thermal resistance of DMD package (specified in Thermal Information) from array to  
ceramic TP1 (°C/W)  
QARRAY = total power (electrical + absorbed) on the array (Watts)  
QELECTRICAL = nominal electrical power (Watts)  
QINCIDENT = total incident optical power on DMD (Watts)  
The electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating  
frequencies. A nominal electrical power dissipation to use when calculating array temperature is 4.4 watts. The  
absorbed power from the illumination source is variable and depends on the operating state of the micromirrors  
and the intensity of the light source. The equations shown above are valid for each DMD chip in a system. It  
assumes an illumination distribution of 83.7% on the active array and 16.3% on the array border.  
Sample Calculation for each DMD in a system with a measured illumination power density:  
TCeramic = 20°C (measured)  
ILLDENSITY = 11 Watts per cm2 (optical power on DMD per unit area) (measured)  
Overfill = 16.3% (optical design)  
QELECTRICAL = 4.4 Watts  
RARRAY-TO-CERAMIC = 0.5 °C/W  
Area of array = ( 2.0736 cm x 1.1664 cm ) = 2.419 cm2  
ILLAREA = 2.419 cm2 / (83.7%) = 2.89 cm2  
QINCIDENT =11 W/cm2 x 2.89 cm2 = 31.79 W  
QARRAY = 4.4 W + (0.42 x 31.79 W) = 17.75 W  
TARRAY = 20°C + (17.75 W x 0.5 °C) = 28.9 °C  
Copyright © 2012–2018, Texas Instruments Incorporated  
37  
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
8.7 Micromirror Landed-On and Landed-Off Duty Cycle  
8.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle  
The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a  
percentage) that an individual micromirror is landed in the On–state versus the amount of time the same  
micromirror is landed in the Off–state.  
As an example, a landed duty cycle of 100/0 indicates that the referenced pixel is in the On-state 100% of the  
time (and in the Off-state 0% of the time); whereas 0/100 would indicate that the pixel is in the Off-state 100% of  
the time. Likewise, 50/50 indicates that the pixel is On 50% of the time and Off 50% of the time.  
Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other  
state (OFF or ON) is considered negligible and is thus ignored.  
Because a micromirror can only be landed in one state or the other (on or off), the two numbers (percentages)  
always add to 100.  
8.7.2 Landed Duty Cycle and Useful Life of the DMD  
Knowing the long-term average landed duty cycle (of the end product or application) is important because  
subjecting all (or a portion) of the DMD’s micromirror array (also called the active array) to an asymmetric landed  
duty cycle for a prolonged period of time can reduce the usable life of the DMD.  
Note that it is the symmetry/asymmetry of the landed duty cycle that is of relevance. The symmetry of the landed  
duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a landed  
duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly  
asymmetrical.  
8.7.3 Landed Duty Cycle and Operational DMD Temperature  
Operational DMD temperature and landed duty cycle interact to affect the usable life of the DMD, and this  
interaction can be exploited to reduce the impact that an asymmetrical landed duty cycle has on the DMD’s  
usable life. This is quantified in the derating curve shown in Figure 1. The importance of this curve is that:  
All points along this curve represent the same usable life.  
All points above this curve represent lower usable life (and the further away from the curve, the lower the  
usable life).  
All points below this curve represent higher usable life (and the further away from the curve, the higher the  
usable life).  
In practice, this curve specifies the maximum operating DMD temperature that the DMD should be operated at  
for a give long-term average landed duty.  
8.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application  
During a given period of time, the landed duty cycle of a given pixel follows from the image content being  
displayed by that pixel.  
For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel  
will experience a 100/0 landed duty cycle during that time period. Likewise, when displaying pure-black, the pixel  
will experience a 0/100 landed duty cycle.  
Between the two extremes (ignoring for the moment color and any image processing that may be applied to an  
incoming image), the landed duty cycle tracks one-to-one with the gray scale value, as shown in Table 5.  
38  
Copyright © 2012–2018, Texas Instruments Incorporated  
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
Table 5. Grayscale Value and Landed Duty Cycle  
GRAYSCALE VALUE  
LANDED DUTY CYCLE  
0%  
10%  
20%  
30%  
40%  
50%  
60%  
70%  
80%  
90%  
100%  
0/100  
10/90  
20/80  
30/70  
40/60  
50/50  
60/40  
70/30  
80/20  
90/10  
100/0  
Accounting for color rendition (but still ignoring image processing) requires knowing both the color intensity (from  
0% to 100%) for each constituent primary color (red, green, and/or blue) for the given pixel as well as the color  
cycle time for each primary color, where “color cycle time” is the total percentage of the frame time that a given  
primary must be displayed to achieve the desired white point.  
During a given period of time, the landed duty cycle of a given pixel can be calculated as follows:  
Landed Duty Cycle = (Red_Cycle_% × Red_Scale_Value) + (Green_Cycle_% × Green_Scale_Value) +  
(Blue_Cycle_% × Blue_Scale_Value)  
where:  
Red_Cycle_%, Green_Cycle_%, and Blue_Cycle_%, represent the percentage of the frame time that Red,  
Green, and Blue are displayed (respectively) to achieve the desired white point.  
For example, assume that the red, green and blue color cycle times are 50%, 20%, and 30% respectively (to  
achieve the desired white point), then the landed duty for various combinations of red, green, blue color  
intensities would be as shown in Table 6.  
Table 6. Example Landed Duty Cycle for Full-Color  
RED CYCLE PERCENTAGE  
50%  
GREEN CYCLE PERCENTAGE  
20%  
BLUE CYCLE PERCENTAGE  
30%  
LANDED DUTY CYCLE  
RED SCALE VALUE  
GREEN SCALE VALUE  
BLUE SCALE VALUE  
0%  
100%  
0%  
0%  
0%  
0%  
0%  
0/100  
50/50  
20/80  
30/70  
6/94  
100%  
0%  
0%  
0%  
100%  
0%  
12%  
0%  
0%  
35%  
0%  
0%  
7/93  
0%  
60%  
0%  
18/82  
70/30  
50/50  
80/20  
13/87  
25/75  
24/76  
100/0  
100%  
0%  
100%  
100%  
0%  
100%  
100%  
0%  
100%  
12%  
0%  
35%  
35%  
0%  
60%  
60%  
100%  
12%  
100%  
100%  
Copyright © 2012–2018, Texas Instruments Incorporated  
39  
 
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DLP9500 devices must be coupled with the DLPC410 controller to provide a reliable solution for many  
different applications. The DMDs are spatial light modulators which reflect incoming light from an illumination  
source to one of two directions, with the primary direction being into a projection collection optic. Each application  
is derived primarily from the optical architecture of the system and the format of the data coming into the  
DLPC410. Applications of interest include 3D printing, lithography, medical systems, and compressive sensing.  
40  
Copyright © 2012–2018, Texas Instruments Incorporated  
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
9.2 Typical Application  
A typical embedded system application using the DLPC410 controller and DLP9500 is shown in Figure 18. In this configuration, the DLPC410 controller  
supports input from an FPGA. The FPGA sends low-level data to the controller, enabling the system to be highly optimized for low latency and high  
speed.  
OPTICAL  
SENSOR  
(CAMERA)  
LED  
DRIVERS  
LEDS  
LED  
SENSORS  
LVDS BUS (A,B,[C,D])  
DDC_DCLK, DVALID, DDC_DIN(15:0)  
LVDS BUS (A,B,[C,D])  
DDC_DCLKOUT, DDCSCTRL, DDC_DOUT(15:0)  
USER  
INTERFACE  
SCP BUS  
SCPCLK, SCPDO, SCPDI, DMD_SCPENZ, A_SCPENZ, B_SCPENZ  
ROW and BLOCK SIGNALS  
ROWMD(1:0), ROWAD(10:0), BLKMD(1:0), BLKAD(3:0), RST2BLKZ  
CONTROL SIGNALS  
COMP_DATA, NS_FLIP, WDT_ENBLZ, PWR_FLOAT  
DLP9500  
DLPA200 CONTROL  
MBRST1_(15:0)  
CONNECTIVITY  
(USB, ETHERNET, ETC.)  
A_MODE(1:0), A_SEL(1:0),  
DLPA200  
USER - MAIN  
PROCESSOR / FPGA  
DLPC410 INFO SIGNALS  
RST_ACTIVE, INIT_ACTIVE, ECP2_FINISHED,  
DMD_TYPE(3:0), DDC_VERSION(2:0)  
A_ADDR(3:0), OEZ, INIT  
A
DLPC410  
PGM SIGNALS  
PROM_CCK_DDC, PROGB_DDC,  
PROM_DO_DDC, DONE_DDC, INTB_DDC  
DLPA200 CONTROL  
MBRST2_(15:0)  
B_MODE(1:0), B_SEL(1:0),  
VOLATILE  
and  
DLPR410  
DLPA200  
B_ADDR(3:0), OEZ, INIT  
NON-VOLATILE  
STORAGE  
B
JTAG  
VLED0  
VLED1  
ARSTZ  
CLKIN_R  
OSC  
50 Mhz  
DMD_RESET  
POWER MANAGMENT  
~
Figure 18. DLPC410 and DLP9500 Embedded Example Block Diagram  
Copyright © 2012–2018, Texas Instruments Incorporated  
41  
 
 
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
9.2.1 Design Requirements  
All applications using the DLP9500 1080p chipset require both the controller and the DMD components for  
operation. The system also requires an external parallel flash memory device loaded with the DLPC410  
configuration and support firmware. The chipset has several system interfaces and requires some support  
circuitry. The following interfaces and support circuitry are required:  
DLPC410 system interfaces:  
Control interface  
Trigger interface  
Input data interface  
Illumination interface  
Reference clock  
Program interface  
DLP9500 interfaces:  
DLPC410 to DLP9500 digital data  
DLPC410 to DLP9500 control interface  
DLPC410 to DLP9500 micromirror reset control interface  
DLPC410 to DLPA200 micromirror driver  
DLPA200 to DLP9500 micromirror reset  
9.2.1.1 Device Description  
The DLP9500 1080p chipset offers developers a convenient way to design a wide variety of industrial, medical,  
telecom and advanced display applications by delivering maximum flexibility in formatting data, sequencing data,  
and light patterns.  
The DLP9500 1080p chipset includes the following four components: DMD digital controller (DLPC410),  
EEPROM (DLPR410), DMD micromirror driver (DLPA200), and a DMD (DLP9500).  
DLPC410 Digital Controller for DLP Discovery 4100 chipset  
Provides high speed 2XLVDS data and control interface to the user  
Drives mirror clocking pulse and timing information to the DLPA200  
Supports random row addressing  
Controls illumination  
DLPR410 PROM for DLP Discovery 4100 chipset  
Contains startup configuration information for the DLPC410  
DLPA200 DMD Micromirror Driver  
Generates micromirror clocking pulse control (sometimes referred to as a reset) of 15 banks of DMD  
mirrors. (Two are required for the DLP9500).  
DLP9500 DLP 0.95 1080p 2xLVDS Type-A DMD  
Steers light in two digital positions (+12° and –12°) using 1920 × 1080 micromirror array of aluminum  
mirrors.  
Table 7. DLP DLP9500 Chipset Configurations  
QUANTITY  
TI PART  
DLP9500  
DLPC410  
DLPR410  
DLPA200  
DESCRIPTION  
DLP 0.95 1080p 2xLVDS Type-A DMD  
Digital Controller for DLP Discovery 4100 chipset  
PROM for DLP Discovery 4100 chipset  
DMD Micromirror Driver  
1
1
1
2
42  
Copyright © 2012–2018, Texas Instruments Incorporated  
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
Reliable function and operation of DLP9500 1080p chipsets require the components be used in conjunction with  
each other. This document describes the proper integration and use of the DLP9500 1080p chipset components.  
The DLP9500 1080p chipset can be combined with a user programmable application FPGA (not included) to  
create high performance systems.  
9.2.2 Detailed Design Procedure  
The DLP9500 DMD is well suited for visible light applications requiring fast, spatially programmable light patterns  
using the micromirror array. See the block diagram in Figure 8 to see the connections between the DLP9500  
DMD, the DLPC410 digital controller, the DLPR410 EEPROM, and the DLPA200 DMD micromirror drivers. An  
example application block diagram can be found in Figure 18. Layout guidelines should be followed for reliability.  
10 Power Supply Recommendations  
10.1 Power-Up Sequence (Handled by the DLPC410)  
The sequence of events for DMD system power-up is:  
1. Apply logic supply voltages to the DLPA200 and to the DMD according to DMD specifications.  
2. Place DLPA200 drivers into high impedance states.  
3. Turn on DLPA200 bias, offset, or reset supplies according to driver specifications.  
4. After all supply voltages are assured to be within the limits specified and with all micromirror clocking pulse  
operations logically suspended, enable all drivers to either VOFFSET or VBIAS level.  
5. Begin micromirror clocking pulse operations.  
10.2 DMD Power-Up and Power-Down Procedures  
Failure to adhere to the prescribed power-up and power-down procedures may affect device reliability. The  
DLP9500 power-up and power-down procedures are defined by the DLPC410 data sheet (DLPS024). These  
procedures must be followed to ensure reliable operation of the device.  
Copyright © 2012–2018, Texas Instruments Incorporated  
43  
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The DLP9500 is part of a chipset that is controlled by the DLPC410 in conjunction with the DLPA200. These  
guidelines are targeted at designing a PCB board with these components.  
11.1.1 Impedance Requirements  
Signals should be routed to have a matched impedance of 50 Ω ±10% except for LVDS differential pairs  
(DMD_DAT_Xnn, DMD_DCKL_Xn, and DMD_SCTRL_Xn) which should be matched to 100 Ω ±10% across  
each pair.  
11.1.2 PCB Signal Routing  
When designing a PCB board for the DLP9500 controlled by the DLPC410 in conjunction with the DLPA200s,  
the following are recommended:  
Signal trace corners should be no sharper than 45°. Adjacent signal layers should have the predominate traces  
routed orthogonal to each other. TI recommends that critical signals be hand routed in the following order: DDR2  
Memory, DMD (LVDS signals), then DLPA200 signals.  
TI does not recommend signal routing on power or ground planes.  
TI does not recommend ground plane slots.  
High speed signal traces should not cross over slots in adjacent power and/or ground planes.  
Table 8. Important Signal Trace Constraints  
SIGNAL  
CONSTRAINTS  
P-to-N data, clock, and SCTRL: <10 mils (0.25 mm); Pair-to-pair <10 mils (0.25 mm); Bundle-to-bundle  
<2000 mils (50 mm, for example DMD_DAT_Ann to DMD_DAT_Bnn)  
Trace width: 4 mil (0.1 mm)  
Trace spacing: In ball field – 4 mil (0.11 mm); PCB etch – 14 mil (0.36 mm)  
Maximum recommended trace length <6 inches (150 mm)  
LVDS (DMD_DAT_xnn,  
DMD_DCKL_xn, and  
DMD_SCTRL_xn)  
Table 9. Power Trace Widths and Spacing  
MINIMUM TRACE  
MINIMUM TRACE  
SPACING  
SIGNAL NAME  
LAYOUT REQUIREMENTS  
WIDTH  
GND  
Maximize  
5 mil (0.13 mm)  
10 mil (0.25 mm)  
15 mil (0.38 mm)  
Maximize trace width to connecting pin as a minimum  
VCC, VCC2  
MBRST[14:0]  
20 mil (0.51 mm)  
11 mil (0.28 mm)  
11.1.3 Fiducials  
Fiducials for automatic component insertion should be 0.05-inch copper with a 0.1-inch cutout (antipad). Fiducials  
for optical auto insertion are placed on three corners of both sides of the PCB.  
11.1.4 PCB Layout Guidelines  
A target impedance of 50 for single ended signals and 100 between LVDS signals is specified for all signal  
layers.  
11.1.4.1 DMD Interface  
The digital interface from the DLPC410 to the DMD are LVDS signals that run at clock rates up to 400 MHz. Data  
is clocked into the DMD on both the rising and falling edge of the clock, so the data rate is 800 MHz. The LVDS  
signals should have 100 differential impedance. The differential signals should be matched but kept as short  
as possible. Parallel termination at the LVDS receiver is in the DMD; therefore, on board termination is not  
necessary.  
44  
Copyright © 2012–2018, Texas Instruments Incorporated  
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
11.1.4.1.1 Trace Length Matching  
The DLPC410 DMD data signals require precise length matching. Differential signals should have impedance of  
100 (with 5% tolerance). It is important that the propagation delays are matched. The maximum differential pair  
uncoupled length is 100 mils with a relative propagation delay of ±25 mil between the p and n. Matching all  
signals exactly will maximize the channel margin. The signal path through all boards, flex cables and internal  
DMD routing must be considered in this calculation.  
11.1.4.2 DLP9500 Decoupling  
General decoupling capacitors for the DLP9500 should be distributed around the PCB and placed to minimize  
the distance from IC voltage and ground pads. Each decoupling capacitor (0.1 µF recommended) should have  
vias directly to the ground and power planes. Via sharing between components (discreet or integrated) is  
discouraged. The power and ground pads of the DLP9500 should be tied to the voltage and ground planes with  
their own vias.  
11.1.4.2.1 Decoupling Capacitors  
Decoupling capacitors should be placed to minimize the distance from the decoupling capacitor to the supply and  
ground pin of the component. TI recommends that the placement of and routing for the decoupling capacitors  
meet the following guidelines:  
The supply voltage pin of the capacitor should be located close to the device supply voltage pin or pins. The  
decoupling capacitor should have vias to ground and voltage planes. The device can be connected directly to  
the decoupling capacitor (no via) if the trace length is less than 0.1 inch. Otherwise, the component should be  
tied to the voltage or ground plane through separate vias.  
The trace lengths of the voltage and ground connections for decoupling capacitors and components should  
be less than 0.1 inch to minimize inductance.  
The trace width of the power and ground connection to decoupling capacitors and components should be as  
wide as possible to minimize inductance.  
Connecting decoupling capacitors to ground and power planes through multiple vias can reduce inductance  
and improve noise performance.  
Decoupling performance can be improved by using low ESR and low ESL capacitors.  
11.1.4.3 VCC and VCC2  
The VCC pins of the DMD should be connected directly to the DMD VCC plane. Decoupling for the VCC should  
be distributed around the DMD and placed to minimize the distance from the voltage and ground pads. Each  
decoupling capacitor should have vias directly connected to the ground and power planes. The VCC and GND  
pads of the DMD should be tied to the VCC and ground planes with their own vias.  
The VCC2 voltage can be routed to the DMD as a trace. Decoupling capacitors should be placed to minimize the  
distance from the DMD’s VCC2 and ground pads. Using wide etch from the decoupling capacitors to the DMD  
connection will reduce inductance and improve decoupling performance.  
11.1.4.4 DMD Layout  
See the respective sections in this data sheet for package dimensions, timing and pin out information.  
11.1.4.5 DLPA200  
The DLPA200 generates the micromirror clocking pulses for the DMD. The DMD-drive outputs from the  
DLPA200 (MBRST[29:0] should be routed with minimum trace width of 11 mil and a minimum spacing of 15 mil.  
The VCC and VCC2 traces from the output capacitors to the DLPA200 should also be routed with a minimum  
trace width and spacing of 11 mil and 15 mil, respectively. See the DLPA200 customer data sheet DLPS015 for  
mechanical package and layout information.  
Copyright © 2012–2018, Texas Instruments Incorporated  
45  
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
11.2 Layout Example  
For LVDS (and other differential signal) pairs and groups, it is important to match trace lengths. In the area of the  
dashed lines, Figure 19 shows correct matching of signal pair lengths with serpentine sections to maintain the  
correct impedance.  
Figure 19. Mitering LVDS Traces to Match Lengths  
46  
版权 © 2012–2018, Texas Instruments Incorporated  
 
DLP9500  
www.ti.com.cn  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
12 器件和文档支持  
12.1 器件支持  
12.1.1 器件命名规则  
20 提供了读取任一 DLP 器件完整器件名称的图例。  
20. 器件命名规则  
12.1.2 器件标记  
21 显示了器件标记字段。  
TI Internal Numbering  
DMD Part Number  
2-Dimensional Matrix Code  
YYYYYYY  
(DMD Part Number  
and Serial Number)  
DLP9500_FLN  
GHXXXXX LLLLLLM  
LLLLLL  
Part 1 of Serial Number  
(7 characters)  
Part 2 of Serial Number  
(7 characters)  
TI Internal Numbering  
21. DLP9500 器件标记  
版权 © 2012–2018, Texas Instruments Incorporated  
47  
 
 
DLP9500  
ZHCSA86E AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
12.2 文档支持  
12.2.1 相关文档  
以下文档包含关于使用 DLP9500 器件的更多信息。  
《适用于 DLP Discovery 4100 芯片组的 DLPC410 数字控制器数据表》  
DLPA200 DMD 微镜驱动器数据表》  
《适用于 DLP Discovery 4100 芯片组的 DLPR410 PROM 数据表》  
12.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
10. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
DLP9500  
DLPA200  
DLPC410  
DLPR410  
12.4 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.6 商标  
Discovery, E2E are trademarks of Texas Instruments.  
DLP is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.7 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.8 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
48  
版权 © 2012–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Sep-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLP9500BFLN  
ACTIVE  
CLGA  
FLN  
355  
12  
RoHS & Green  
NI-PD-AU  
N / A for Pkg Type  
20 to 70  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DLP9500BFLN

DLP® 0.95 1080p 2xLVDS A 型 DMD | FLN | 355 | 20 to 70
TI

DLP9500UV

DLP® 0.95 1080p 2xLVDS UV A 型 DMD
TI

DLP9500UVFLN

DLP® 0.95 1080p 2xLVDS UV A 型 DMD | FLN | 355 | 20 to 30
TI

DLPA004

DATA BUS TRANSIENT SUPPRESSOR
DIODES

DLPA004-7

DATA BUS TRANSIENT SUPPRESSOR
DIODES

DLPA006

DATA BUS TRANSIENT SUPPRESSOR/THREE PHASE FULL WAVE BRIDGE RECTIFIER
DIODES

DLPA006-7

DATA BUS TRANSIENT SUPPRESSOR/THREE PHASE FULL WAVE BRIDGE RECTIFIER
DIODES

DLPA006_08

DATA BUS TRANSIENT SUPPRESSOR / 3-PHASE FULL WAVE BRIDGE RECTIFIER
DIODES

DLPA006_1

DATA BUS TRANSIENT SUPPRESSOR/THREE PHASE FULL WAVE BRIDGE RECTIFIER
DIODES

DLPA100

DLP® driver for DLP660TE (0.66 4K UHD) DMD
TI

DLPA1000

用于 DLP2000 (0.2 nHD) DMD 的 PMIC/LED 驱动器
TI

DLPA1000YFFR

用于 DLP2000 (0.2 nHD) DMD 的 PMIC/LED 驱动器 | YFF | 49 | -10 to 85
TI