DLP660TEAAFYG [TI]

0.66-inch, 4K UHD, 2XLVDS DLP® digital micromirror device (DMD) | FYG | 350 | 0 to 70;
DLP660TEAAFYG
型号: DLP660TEAAFYG
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

0.66-inch, 4K UHD, 2XLVDS DLP® digital micromirror device (DMD) | FYG | 350 | 0 to 70

文件: 总49页 (文件大小:1849K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DLP660TE  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
DLP660TE 0.66 4K UHD 数字微镜器件  
1 特性  
3 说明  
0.66 英寸对角线微镜阵列  
TI DLP® DLP660TE 数字微镜器件 (DMD) 是一款数控  
微光机电系(MOEMS) 空间光调制(SLM)可实现  
明亮、经济实惠的全 4K UHD 显示解决方案。与适当  
的光学系统配合使用时DLP660TE DMD 可显示真  
4K UHD 分辨率830 万屏幕像素),并能够向各种显  
示介质上投射准确且清晰的图像。DLP660TE DMD 通  
DLPC4420 显示控制器、DLPA100 控制器电源和  
电机驱动器配合使用可实现高性能系统而且非常适  
4K UHD 高亮度显示应用。  
– 系统可在屏幕上显4K 超高(UHD) 3840 ×  
2160 像素  
5.4 微米微镜间距  
±17° 微镜倾斜度相对于平坦表面)  
– 底部照明  
2xLVDS 输入数据总线  
DLP660TE 芯片组包括:  
DLP660TE DMD  
DLPC4420 控制器  
器件信息(1)  
DLPA100 控制器电源管理和电机驱动IC  
封装尺寸标称值)  
器件型号  
DLP660TE  
封装  
FYG (350)  
35mm × 32mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
4K 超高清显示  
数字标牌  
激光电视  
投影映射  
DLP660TE 简化应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: DLPS163  
 
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
Table of Contents  
7.5 Optical Interface and System Image Quality  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
Pin Functions - Test Pads............................................... 11  
6 Specifications................................................................ 12  
6.1 Absolute Maximum Ratings...................................... 12  
6.2 Storage Conditions................................................... 13  
6.3 ESD Ratings............................................................. 13  
6.4 Recommended Operating Conditions.......................13  
6.5 Thermal Information..................................................18  
6.6 Electrical Characteristics...........................................18  
6.7 Capacitance at Recommended Operating  
Conditions................................................................... 18  
6.8 Timing Requirements................................................19  
6.9 System Mounting Interface Loads............................ 22  
6.10 Micromirror Array Physical Characteristics.............22  
6.11 Micromirror Array Optical Characteristics............... 24  
6.12 Window Characteristics.......................................... 25  
6.13 Chipset Component Usage Specification............... 25  
7 Detailed Description......................................................26  
7.1 Overview...................................................................26  
7.2 Functional Block Diagram.........................................26  
7.3 Feature Description...................................................27  
7.4 Device Functional Modes..........................................27  
Considerations............................................................ 27  
7.6 Micromirror Array Temperature Calculation.............. 28  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle....... 29  
8 Application and Implementation..................................32  
8.1 Application Information............................................. 32  
8.2 Typical Application.................................................... 32  
8.3 DMD Die Temperature Sensing................................ 34  
9 Power Supply Recommendations................................36  
9.1 DMD Power Supply Power-Up Procedure................36  
9.2 DMD Power Supply Power-Down Procedure........... 36  
10 Layout...........................................................................39  
10.1 Layout Guidelines................................................... 39  
10.2 Layout Example...................................................... 39  
11 Device and Documentation Support..........................41  
11.1 第三方产品免责声明................................................41  
11.2 Device Support........................................................41  
11.3 Documentation Support.......................................... 42  
11.4 接收文档更新通知................................................... 42  
11.5 支持资源..................................................................42  
11.6 Trademarks............................................................. 42  
11.7 静电放电警告...........................................................42  
11.8 术语表..................................................................... 42  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 43  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (July 2022) to Revision C (February 2023)  
Page  
• 将控制器更改DLPC4420将芯片组元件链接到产品页面..............................................................................1  
• 将控制器更改DLPC4420更新了图..............................................................................................................1  
Added the lamp illumination section................................................................................................................. 13  
Added the DMD efficiency specification............................................................................................................24  
Changed controller to DLPC4420.....................................................................................................................26  
Changed controller to DLPC4420.....................................................................................................................27  
Changed controller to DLPC4420, added a table with legacy part numbers and mechanical ICD...................32  
Changed controller to DLPC4420.....................................................................................................................34  
Changed controller to DLPC4420.....................................................................................................................34  
Changed controller to DLPC4420.....................................................................................................................34  
Changed controller to DLPC4420.....................................................................................................................39  
Changed controller to DLPC4420.....................................................................................................................42  
Changes from Revision A (September 2020) to Revision B (July 2022)  
Page  
Changed SCP specifications to reflect 'Rise/Fall Time'.................................................................................... 19  
Corrected 6-3 .............................................................................................................................................. 19  
Changed controller to DLPC4420, updated the application diagrams..............................................................32  
Changes from Revision (April 2019) to Revision A (September 2020)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DLP660TE  
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
Revised Pin Functions table to add LVDS and LVCMOS types to previously pins.............................................4  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DLP660TE  
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
5 Pin Configuration and Functions  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
X
Y
Z
AA  
25 23 21 19 17 15 13 11  
26 24 22 20 18 16 14 12 10  
9
7
5
3
1
8
6
4
2
5-1. Series 610 350-pin FYG Bottom View  
CAUTION  
To ensure reliable, long-term operation of the 0.66-inch UHD S610 DMD, it is critical to properly manage the layout and  
operation of the signals identified in the table below. For specific details and guidelines, refer to the PCB Design  
Requirements for TI DLP Standard TRP Digital Micromirror Devices application report before designing the board.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DLP660TE  
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
5-1. Pin Functions  
PIN  
TYPE  
SIGNAL DATA RATE  
DESCRIPTION  
NAME  
NO.  
DATA INPUTS  
D_AN(0)  
D_AP(0)  
D_AN(1)  
D_AP(1)  
D_AN(2)  
D_AP(2)  
D_AN(3)  
D_AP(3)  
D_AN(4)  
D_AP(4)  
D_AN(5)  
D_AP(5)  
D_AN(6)  
D_AP(6)  
D_AN(7)  
D_AP(7)  
D_AN(8)  
D_AP(8)  
D_AN(9)  
D_AP(9)  
D_AN(10)  
D_AP(10)  
D_AN(11)  
D_AP(11)  
D_AN(12)  
D_AP(12)  
D_AN(13)  
D_AP(13)  
D_AN(14)  
D_AP(14)  
D_AN(15)  
D_AP(15)  
C7  
C8  
D4  
E4  
C5  
C4  
D6  
C6  
D8  
D7  
D3  
E3  
B3  
C3  
E11  
E10  
E6  
Input  
2xLVDS  
LVDS pair for Data Bus A (15:0)  
E5  
B10  
C10  
B8  
B9  
C13  
C14  
D15  
E15  
B12  
B13  
B15  
B16  
C16  
C17  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DLP660TE  
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN  
TYPE  
SIGNAL DATA RATE  
DESCRIPTION  
NAME  
NO.  
Y8  
D_BN(0)  
D_BP(0)  
D_BN(1)  
D_BP(1)  
D_BN(2)  
D_BP(2)  
D_BN(3)  
D_BP(3)  
D_BN(4)  
D_BP(4)  
D_BN(5)  
D_BP(5)  
D_BN(6)  
D_BP(6)  
D_BN(7)  
D_BP(7)  
D_BN(8)  
D_BP(8)  
D_BN(9)  
D_BP(9)  
D_BN(10)  
D_BP(10)  
D_BN(11)  
D_BP(11)  
D_BN(12)  
D_BP(12)  
D_BN(13)  
D_BP(13)  
D_BN(14)  
D_BP(14)  
D_BN(15)  
D_BP(15)  
Y7  
X4  
W4  
Z3  
Y3  
X6  
Y6  
X8  
X7  
X3  
W3  
W15  
X15  
W11  
W10  
W6  
W5  
AA9  
AA10  
Z8  
Input  
2xLVDS  
LVDS pair for Data Bus B (15:0)  
Z9  
Y13  
Y14  
Z10  
Y10  
Z12  
Z13  
Z15  
Z16  
Y16  
Y17  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DLP660TE  
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN  
TYPE  
SIGNAL DATA RATE  
DESCRIPTION  
NAME  
NO.  
C18  
C19  
A20  
A19  
L23  
K23  
C23  
B23  
G23  
H23  
H24  
G24  
B18  
B19  
C21  
B21  
D23  
E23  
D25  
C25  
L24  
K24  
K25  
J25  
D_CN(0)  
D_CP(0)  
D_CN(1)  
D_CP(1)  
D_CN(2)  
D_CP(2)  
D_CN(3)  
D_CP(3)  
D_CN(4)  
D_CP(4)  
D_CN(5)  
D_CP(5)  
D_CN(6)  
D_CP(6)  
D_CN(7)  
D_CP(7)  
D_CN(8)  
D_CP(8)  
D_CN(9)  
D_CP(9)  
D_CN(10)  
D_CP(10)  
D_CN(11)  
D_CP(11)  
D_CN(12)  
D_CP(12)  
D_CN(13)  
D_CP(13)  
D_CN(14)  
D_CP(14)  
D_CN(15)  
D_CP(15)  
Input  
2xLVDS  
LVDS pair for Data Bus C (15:0)  
B24  
A24  
D26  
C26  
G25  
F25  
K26  
J26  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DLP660TE  
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN  
TYPE  
SIGNAL DATA RATE  
DESCRIPTION  
NAME  
NO.  
Y18  
Y19  
AA20  
AA19  
N23  
P23  
Y23  
Z23  
U23  
T23  
T24  
U24  
Z18  
Z19  
Y21  
Z21  
X23  
W23  
X25  
Y25  
N24  
P24  
P25  
R25  
Z24  
AA24  
X26  
Y26  
U25  
V25  
P26  
R26  
B6  
D_DN(0)  
D_DP(0)  
D_DN(1)  
D_DP(1)  
D_DN(2)  
D_DP(2)  
D_DN(3)  
D_DP(3)  
D_DN(4)  
D_DP(4)  
D_DN(5)  
D_DP(5)  
D_DN(6)  
D_DP(6)  
D_DN(7)  
D_DP(7)  
D_DN(8)  
D_DP(8)  
D_DN(9)  
D_DP(9)  
D_DN(10)  
D_DP(10)  
D_DN(11)  
D_DP(11)  
D_DN(12)  
D_DP(12)  
D_DN(13)  
D_DP(13)  
D_DN(14)  
D_DP(14)  
D_DN(15)  
D_DP(15)  
DCLK_AN  
DCLK_AP  
DCLK_BN  
DCLK_BP  
DCLK_CN  
DCLK_CP  
DCLK_DN  
DCLK_DP  
Input  
2xLVDS  
LVDS pair for Data Bus D (15:0)  
Input  
Input  
Input  
Input  
LVDS  
LVDS  
LVDS  
LVDS  
LVDS pair for Data Clock A  
LVDS pair for Data Clock B  
LVDS pair for Data Clock C  
LVDS pair for Data Clock D.  
B5  
Z6  
Z5  
G26  
F26  
U26  
V26  
DATA CONTROL INPUTS  
SCTRL_AN  
A10  
A9  
Input  
LVDS  
LVDS pair for Serial Control (Sync) A  
SCTRL_AP  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DLP660TE  
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN  
TYPE  
Input  
Input  
Input  
SIGNAL DATA RATE  
DESCRIPTION  
NAME  
NO.  
Y4  
SCTRL_BN  
SCTRL_BP  
SCTRL_CN  
SCTRL_CP  
SCTRL_DN  
SCTRL_DP  
LVDS  
LVDS  
LVDS  
LVDS pair for Serial Control (Sync) B  
LVDS pair for Serial Control (Sync) C  
LVDS pair for Serial Control (Sync) D  
Y5  
E24  
D24  
W24  
X24  
DAD CONTROL INPUTS  
RESET_ADDR(0)  
RESET_ADDR(1)  
RESET_ADDR(2)  
RESET_ADDR(3)  
RESET_MODE(0)  
RESET_MODE(1)  
R3  
R4  
T3  
U2  
P4  
V3  
Reset Driver Address Select. Bond Pad  
connects to an internal Pull Down circuit  
Input  
LVCMOS  
Reset Driver Mode Select. Bond Pad  
connects to an internal Pull Down circuit  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Active Low. Output Enable signal for internal  
Reset Driver circuitry. Bond Pad connects to  
an internal Pull Up circuit  
RESET_OEZ  
R2  
RESET_SEL(0)  
RESET_SEL(1)  
P3  
V2  
Reset Driver Level Select. Bond Pad  
connects to an internal Pull Down circuit  
Rising edge on RESET_STROBE latches in  
the control signals. Bond Pad connects to an  
internal Pull Down circuit  
RESET_STROBE  
W8  
U4  
Active Low. Places reset circuitry in known  
VOFFSET state. Bond Pad connects to an  
internal Pull Down circuit  
RESETZ  
Input  
LVCMOS  
SCP CONTROL  
SCPCLK  
Serial Communications Port Clock. SCPCLK  
is only active when SCPENZ goes low. Bond  
Pad connects to an internal Pull Down circuit  
W17  
W18  
Input  
Input  
LVCMOS  
LVCMOS  
Serial Communications Port Data.  
Synchronous to the Rising Edge of SCPCLK.  
Bond Pad connects to an internal Pull Down  
circuit  
SCPDI  
Active Low Serial Communications Port  
Enable. Bond Pad connects to an internal  
Pull Down circuit  
SCPENZ  
SCPDO  
X18  
Input  
LVCMOS  
LVCMOS  
W16  
Output  
Serial Communications Port output  
EXTERNAL REGULATOR SIGNALS  
Active High. Enable signal for external VBIAS  
regulator  
EN_BIAS  
J4  
H3  
J3  
Output  
Output  
Output  
LVCMOS  
LVCMOS  
LVCMOS  
Active High. Enable signal for external  
VOFFSET regulator  
EN_OFFSET  
Active High. Enable signal for external  
VRESET regulator  
EN_RESET  
OTHER SIGNALS  
RESET_IRQZ  
Active Low. Output Interrupt to DLP controller  
(ASIC)  
U3  
Output  
LVCMOS  
TEMP_PLUS  
TEMP_MINUS  
POWER  
E16  
E17  
Analog  
Analog  
Temperature Sensor Diode Anode.(1)  
Temperature Sensor Diode Cathode. (1)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DLP660TE  
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN  
TYPE  
SIGNAL DATA RATE  
DESCRIPTION  
NAME  
NO.  
Power supply for Positive Bias level of  
micromirror reset signal  
VBIAS  
A5, A6, A7  
Power  
A8, B2, C1, D1, D10,  
D12, D19, E1, E19,  
E20, E21, F1, K1, L1,  
M1, N1, P1,V1, W1,  
W19, W20, W21, X1,  
X10, X12, X19, Y1,  
Z1, Z2, AA2, AA8,  
Power supply for low voltage CMOS logic.  
Power supply for normal high voltage at  
micromirror address electrodes. Power  
supply for Offset level during power down  
sequence  
VCC  
Power  
Power  
A11, A16, A17, A18,  
A21, A22, A23, AA11,  
AA16, AA17, AA18,  
AA21, AA22, AA23,  
Power supply for low voltage CMOS LVDS  
interface  
VCCI  
Power supply for high voltage CMOS logic.  
Power supply for stepped high voltage at  
micromirror address electrodes. Power  
supply for Offset level of MBRST(15:0)  
A3, A4, A25, B26,  
L26, M26, N26, Z26,  
AA3, AA4, AA25  
VOFFSET  
Power  
Power  
G1, H1, J1, R1, T1,  
U1  
Power supply for Negative Reset level of  
micromirror reset signal  
VRESET  
B4, B7, B11, B14,  
B17, B20, B22, B25,  
C2, C9, C20, C22,  
C24, D2, D5, D9,  
D11, D14, D18, D20,  
D21, D22, E2, E7,  
E9, E22, E25, E26,  
F4, F23, F24, H2, H4,  
H25, H26, J23, J24,  
K2, L2, L3, L4, L25,  
M2, M3, M4, M23,  
M24, M25, N2, N3,  
N25, P2,R23, R24,  
T2, T4, T25, T26, V4,  
V23, V24, W2, W7,  
W9, W22, W25, W26,  
X2, X5, X9, X11, X20,  
X21, X22, Y2, Y9,  
Y20, Y22, Y24, Z4,  
Z7, Z11, Z14, Z17,  
Z20, Z22, Z25  
VSS (Ground)  
Ground  
Common Return for all power  
RESERVED SIGNALS  
Connect to ground on the printed circuit  
board (PCB). Bond Pad connects to an  
internal Pull Down circuit  
RESERVED_PFE  
E18  
G4  
Ground  
Ground  
Connect to ground on the printed circuit  
board (PCB). Bond Pad connects to an  
internal Pull Down circuit  
RESERVED_TM  
Do Not Connect on the printed circuit board  
(PCB)  
RESERVED_TP0  
RESERVED_TP1  
RESERVED_TP2  
RESERVED_BA  
RESERVED_BB  
E8  
J2  
Input  
Input  
Do Not Connect on the printed circuit board  
(PCB)  
Do Not Connect on the printed circuit board  
(PCB)  
G2  
N4  
K4  
Input  
Do Not Connect on the printed circuit board  
(PCB)  
Output  
Output  
Do Not Connect on the printed circuit board  
(PCB)  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DLP660TE  
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
5-1. Pin Functions (continued)  
PIN  
TYPE  
SIGNAL DATA RATE  
DESCRIPTION  
NAME  
NO.  
Do Not Connect on the printed circuit board  
(PCB)  
RESERVED_BC  
X17  
Output  
Output  
Do Not Connect on the printed circuit board  
(PCB)  
RESERVED_BD  
D17  
(1) VSS must be connected for proper DMD operation.  
Pin Functions - Test Pads  
Pin Number  
E13  
System Board  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
C12  
D13  
C11  
E14  
E12  
C15  
D16  
W13  
Y12  
X13  
Y11  
W14  
W12  
Y15  
X16  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DLP660TE  
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
MAX  
UNIT  
Supply Voltages  
VCC  
Supply voltage for LVCMOS core logic(2)  
Supply voltage for LVDS receivers(2)  
2.3  
2.3  
11  
V
V
V
V
V
V
V
V
0.5  
0.5  
0.5  
0.5  
15  
VCCI  
VOFFSET  
VBIAS  
Supply voltage for HVCMOS and micromirror electrode(2) (3)  
Supply voltage for micromirror electrode(2)  
Supply voltage for micromirror electrode(2)  
Supply voltage delta (absolute value)(4)  
Supply voltage delta (absolute value)(5)  
Supply voltage delta (absolute value)(6)  
19  
VRESET  
|VCC VCCI  
0.3  
0.3  
11  
|
|VBIAS VOFFSET  
|
34  
|VBIAS VRESET  
|
Input Voltages  
Input voltage for all other LVCMOS input pins(2)  
Input voltage for all other LVDS input pins(2) (6)  
Input differential voltage (absolute value)(6)  
Input differential current(7)  
VCC + 0.5  
VCCI + 0.5  
500  
V
V
0.5  
0.5  
|VID  
|
mV  
mA  
IID  
6.25  
Clocks  
Clock frequency for LVDS interface, DCLK_A  
Clock frequency for LVDS interface, DCLK_B  
Clock frequency for LVDS interface, DCLK_C  
Clock frequency for LVDS interface, DCLK_D  
400  
400  
400  
400  
MHz  
MHz  
MHz  
MHz  
ƒCLOCK  
ƒCLOCK  
ƒCLOCK  
ƒCLOCK  
Environmental  
TARRAY and TWINDOW  
0
90  
90  
°C  
°C  
Temperature, operating(8)  
Temperature, non–  
40  
operating(8)  
Absolute Temperature delta between any point on the  
window edge and the ceramic test point TP1 (9)  
|TDELTA  
TDP  
|
30  
81  
°C  
°C  
Dew Point Temperature, operating and nonoperating  
(noncondensing)  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and  
this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltages are referenced to common ground VSS. VBIAS, VCC, VCCI, VOFFSET, and VRESET power supplies are all required for proper  
DMD operation. VSS must also be connected.  
(3) VOFFSET supply transients must fall within specified voltages.  
(4) Exceeding the recommended allowable voltage difference between VCC and VCCI may result in excessive current draw.  
(5) Exceeding the recommended allowable voltage difference between VBIAS and VOFFSET may result in excessive current draw.  
(6) Exceeding the recommended allowable voltage difference between VBIAS and VRESET may result in excessive current draw.  
(7) LVDS differential inputs must not exceed the specified limit or damage may result to the internal termination resistors.  
(8) The highest temperature of the active array (as calculated using 7.6 ) or of any point along the window edge as defined in 7-2.  
The locations of thermal test points TP2, TP3, TP4 and TP5 in 7-2 are intended to measure the highest window edge temperature.  
If a particular application causes another point on the window edge to be at a higher temperature, that point is used.  
(9) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown in 图  
7-2. The window test points TP2, TP3, TP4 and TP5 shown in 7-2 are intended to result in the worst case delta. If a particular  
application causes another point on the window edge to result in a larger delta temperature, that point is be used.  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DLP660TE  
 
 
 
 
 
 
 
 
 
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
6.2 Storage Conditions  
Applicable for the DMD as a component or non-operating in a system  
MIN  
MAX  
80  
UNIT  
°C  
Tstg  
DMD storage temperature  
40  
TDP-AVG Average dew point temperature, (non-condensing) (1)  
28  
°C  
TDP-MAX Elevated dew point temperature range , (non-condensing) (2)  
28  
36  
°C  
CTELR  
Cumulative time in elevated dew point temperature range  
24 Months  
(1) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.  
(2) Exposure to dew point temperatures in the elevated range during storage and operation is limited to less than a total cumulative time of  
CTELR  
.
6.3 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD) Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.4 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted). The functional performance of the device specified in  
this data sheet is achieved when operating the device within the limits defined by recommended operating conditions . No  
level of performance is implied when operating the device above or below the limits.  
MIN  
NOM  
MAX  
UNIT  
Voltage Supply  
VCC  
LVCMOS logic supply voltage(1)  
1.65  
1.65  
1.8  
1.8  
10  
1.95  
1.95  
10.5  
18.5  
13.5  
0.3  
V
V
V
V
V
V
V
V
VCCI  
LVCMOS LVDS Interface supply voltage(1)  
Mirror electrode and HVCMOS voltage(1) (2)  
Mirror electrode voltage(1)  
VOFFSET  
VBIAS  
9.5  
17.5  
18  
VRESET  
Mirror electrode voltage(1)  
14.5  
14  
0
Supply voltage delta (absolute value)(3)  
Supply voltage delta (absolute value)(4)  
Supply voltage delta (absolute value)(5)  
|VCC VCCI  
|VBIAS VOFFSET  
|VBIAS VRESET  
|
10.5  
33  
|
|
LVCMOS Interface  
VIH(DC)  
DC input high voltage(6)  
DC input low voltage(6)  
AC input high voltage(6)  
AC input low voltage(6)  
PWRDNZ pulse width(7)  
0.7 × VCC  
0.3  
VCC + 0.3  
0.3 × VCC  
VCC + 0.3  
0.2 × VCC  
V
V
VIL(DC)  
VIH(AC)  
0.8 × VCC  
0.3  
V
VIL(AC)  
V
tPWRDNZ  
10  
ns  
SCP Interface  
ƒSCPCLK  
SCP clock frequency(8)  
500  
900  
kHz  
ns  
µs  
µs  
ns  
ns  
µs  
tSCP_PD  
Propagation delay, clock to Q, from rising edge of SCPCLK to valid SCPDO(9)  
Time between the falling edge of SCPENZ and the first rising edge of SCPCLK  
Time between the falling edge of SCPCLK and the rising edge of SCPENZ  
SCPDI clock setup time (before SCPCLK falling edge)(9)  
SCPDI hold time (after SCPCLK falling edge)(9)  
0
2
tSCP_NEG_ENZ  
tSCP_POS_ENZ  
tSCP_DS  
2
800  
900  
2
tSCP_DH  
tSCP_PW_ENZ  
LVDS Interface  
ƒCLOCK  
SCPENZ inactive pulse width (high level)  
Clock frequency for LVDS interface (all channels), DCLK(11)  
Input differential voltage (absolute value)(12)  
Common mode voltage(12)  
400  
440  
MHz  
mV  
mV  
mV  
ns  
|VID  
|
150  
1100  
880  
300  
VCM  
1200  
1300  
1520  
2000  
120  
VLVDS  
tLVDS_RSTZ  
ZIN  
LVDS voltage(12)  
Time required for LVDS receivers to recover from PWRDNZ  
Internal differential termination resistance  
80  
100  
Ω
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DLP660TE  
 
 
 
 
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
6.4 Recommended Operating Conditions (continued)  
Over operating free-air temperature range (unless otherwise noted). The functional performance of the device specified in  
this data sheet is achieved when operating the device within the limits defined by recommended operating conditions . No  
level of performance is implied when operating the device above or below the limits.  
MIN  
NOM  
MAX  
UNIT  
ZLINE  
Line differential impedance (PWB/trace)  
90  
100  
110  
Ω
Environmental  
Array temperature, long-term operational(14) (15) (16) (17)  
Array temperature, short-term operational(15) (18)  
Window temperatureoperational  
10  
0
40 to 70(16)  
°C  
°C  
°C  
TARRAY  
10  
85  
TWINDOW  
Absolute temperature delta between any point on the window edge and the ceramic test  
point TP1(19) (20)  
|TDELTA  
|
14  
°C  
TDP -AVG  
TDP-MAX  
CTELR  
Average dew point average temperature (non-condensing)(21)  
Elevated dew point temperature range (non-condensing)(22)  
Cumulative time in elevated dew point temperature range  
28  
36  
°C  
°C  
28  
24  
Months  
UNIT  
MIN  
NOM  
MAX  
VOLTAGE SUPPLY  
VCC  
LVCMOS logic supply voltage(1)  
1.65  
9.5  
1.8  
10  
1.95  
10.5  
18.5  
13.5  
10.5  
33  
V
V
V
V
V
V
VOFFSET  
VBIAS  
Mirror electrode and HVCMOS voltage(1) (2)  
Mirror electrode voltage(1)  
17.5  
18  
VRESET  
Mirror electrode voltage(1)  
14.5  
14  
Supply voltage difference (absolute value)(3)  
Supply voltage difference (absolute value)(4)  
|VBIAS VOFFSET  
|VBIAS VRESET  
LVCMOS INTERFACE  
|
|
VIH(DC)  
DC input high voltage(5)  
0.7 × VCC  
0.3  
VCC + 0.3  
0.3 × VCC  
VCC + 0.3  
0.2 × VCC  
V
V
VIL(DC)  
DC input low voltage(5)  
AC input high voltage(5)  
AC input low voltage(5)  
PWRDNZ pulse duration(6)  
VIH(AC)  
0.8 × VCC  
0.3  
V
VIL(AC)  
V
tPWRDNZ  
10  
ns  
SCP INTERFACE  
ƒSCPCLK  
SCP clock frequency(7)  
500  
900  
kHz  
ns  
tSCP_PD  
Propagation delay, clock to Q, from rising-edge of SCPCLK to valid SCPDO(8)  
Time between falling-edge of SCPENZ and the first rising-edge of SCPCLK  
Time between falling-edge of SCPCLK and the rising-edge of SCPENZ  
SCPDI clock setup time (before SCPCLK falling edge)(8)  
SCPDI hold time (after SCPCLK falling edge)(8)  
SCPENZ inactive pulse duration (high level)  
0
1
tSCP_NEG_ENZ  
tSCP_POS_ENZ  
tSCP_DS  
µs  
1
µs  
800  
900  
2
ns  
tSCP_DH  
ns  
tSCP_PW_ENZ  
ƒCLOCK  
|VID  
µs  
Clock frequency for LVDS interface (all channels), DCLK(9)  
Input differential voltage (absolute value)(10)  
400  
440  
MHz  
mV  
mV  
mV  
ns  
|
150  
1100  
880  
300  
VCM  
Common mode voltage(10)  
1200  
1300  
1520  
2000  
120  
VLVDS  
LVDS voltage(10)  
tLVDS_RSTZ  
Time required for LVDS receivers to recover from PWRDNZ  
Internal differential termination resistance  
ZIN  
80  
90  
100  
100  
Ω
ZLINE  
Line differential impedance (PWB/trace)  
110  
Ω
ENVIRONMENTAL  
Array temperature, long-term operational(11) (12) (13) (23)  
Array temperature, short-term operational(12) (15)  
Window temperature operational(16) (17)  
10  
0
40 to 70(23)  
°C  
°C  
°C  
TARRAY  
10  
85  
TWINDOW  
Absolute temperature delta between any point on the window edge and the ceramic test  
point TP1(18) (19)  
|TDELTA  
|
14  
°C  
TDP-AVG  
TDP-ELR  
CTELR  
Average dew point temperature (non-condensing)(20)  
Elevated dew point temperature range (non-condensing)(21)  
Cumulative time in elevated dew point temperature range  
28  
36  
°C  
°C  
28  
24  
months  
UNIT  
MIN  
NOM  
MAX  
VOLTAGE SUPPLY  
VCC  
LVCMOS logic supply voltage(1)  
1.65  
9.5  
1.8  
10  
1.95  
10.5  
V
V
VOFFSET  
Mirror electrode and HVCMOS voltage(1) (2)  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DLP660TE  
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
6.4 Recommended Operating Conditions (continued)  
Over operating free-air temperature range (unless otherwise noted). The functional performance of the device specified in  
this data sheet is achieved when operating the device within the limits defined by recommended operating conditions . No  
level of performance is implied when operating the device above or below the limits.  
MIN  
NOM  
MAX  
UNIT  
VBIAS  
Mirror electrode voltage(1)  
17.5  
18  
18.5  
V
V
V
V
VRESET  
Mirror electrode voltage(1)  
14.5  
14  
13.5  
10.5  
Supply voltage difference (absolute value)(3)  
Supply voltage difference (absolute value)(4)  
|VBIAS VOFFSET  
|
33  
|VBIAS VRESET  
|
LVCMOS INTERFACE  
VIH(DC)  
VIL(DC)  
VIH(AC)  
VIL(AC)  
DC input high voltage(5)  
0.7 × VCC  
0.3  
VCC + 0.3  
0.3 × VCC  
VCC + 0.3  
0.2 × VCC  
V
V
V
V
DC input low voltage(5)  
AC input high voltage(5)  
AC input low voltage(5)  
0.8 × VCC  
0.3  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DLP660TE  
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
6.4 Recommended Operating Conditions (continued)  
Over operating free-air temperature range (unless otherwise noted). The functional performance of the device specified in  
this data sheet is achieved when operating the device within the limits defined by recommended operating conditions . No  
level of performance is implied when operating the device above or below the limits.  
MIN  
NOM  
MAX  
UNIT  
tPWRDNZ  
PWRDNZ pulse duration(6)  
10  
ns  
SCP INTERFACE  
ƒSCPCLK  
SCP clock frequency(7)  
500  
900  
kHz  
ns  
µs  
µs  
ns  
ns  
µs  
tSCP_PD  
Propagation delay, Clock to Q, from rising-edge of SCPCLK to valid SCPDO(8)  
Time between falling-edge of SCPENZ and the first rising-edge of SCPCLK  
Time between falling-edge of SCPCLK and the rising-edge of SCPENZ  
SCPDI Clock setup time (before SCPCLK falling edge)(8)  
SCPDI Hold time (after SCPCLK falling edge)(8)  
0
1
tSCP_NEG_ENZ  
tSCP_POS_ENZ  
tSCP_DS  
1
800  
900  
2
tSCP_DH  
tSCP_PW_ENZ  
LVDS INTERFACE  
ƒCLOCK  
SCPENZ inactive pulse duration (high level)  
Clock frequency for LVDS interface (all channels), DCLK(10)  
Input differential voltage (absolute value)(11)  
Common mode voltage(11)  
400  
440  
MHz  
mV  
mV  
mV  
ns  
|VID  
|
150  
1100  
880  
300  
VCM  
1200  
1300  
1520  
2000  
120  
VLVDS  
LVDS voltage(11)  
tLVDS_RSTZ  
Time required for LVDS receivers to recover from PWRDNZ  
Internal differential termination resistance  
Line differential impedance (PWB/trace)  
ZIN  
80  
90  
100  
100  
Ω
ZLINE  
110  
Ω
ENVIRONMENTAL  
Array temperature, long-term operational(13) (14) (16)  
Array temperature, short-term operational(14) (17)  
Window temperature operational(21) (23)  
10  
0
40 to 70(15)  
°C  
°C  
°C  
TARRAY  
10  
85  
TWINDOW  
Absolute temperature delta between any point on the window edge and the ceramic test  
point TP1(18) (19)  
|TDELTA  
|
14  
°C  
TDP -AVG  
TDP-ELR  
CTELR  
Average dew point temperature (non-condensing)(20)  
Elevated dew point temperature range (non-condensing)(22)  
Cumulative time in elevated dew point temperature range  
28  
36  
24  
°C  
°C  
28  
Months  
ILLUMINATION (Lamp)  
L
Operating system luminance(19)  
7000  
2.00  
lm  
ILLUV  
ILLVIS  
ILLIR  
ILLθ  
Illumination wavelengths < 395 nm(13)  
Illumination wavelengths between 395 nm and 800 nm  
Illumination wavelengths > 800 nm  
0.68  
mW/cm2  
mW/cm2  
mW/cm2  
deg  
Thermally limited  
10  
55  
Illumination marginal ray angle(23)  
ILLUMINATION (Solid State)  
L
Operating system luminance(19)  
1000  
0.45  
lm  
ILLUV  
ILLVIS  
ILLIR  
ILLθ  
Illumination wavelengths < 436 nm(13)  
Illumination wavelengths between 436 nm and 800 nm  
Illumination wavelengths > 800 nm  
mW/cm2  
mW/cm2  
mW/cm2  
deg  
Thermally Limited  
10  
55  
Illumination marginal ray angle(23)  
(1) All voltages are referenced to common ground VSS. VBIAS, VCC, VCCI, VOFFSET, and VRESET power supplies are all required for  
proper DMD operation. VSS must also be connected.  
(2) VOFFSET supply transients must fall within specified max voltages.  
(3) To prevent excess current, the supply voltage delta |VCCI VCC| must be less than specified limit. See 9, 9-1, and 9-1.  
(4) To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than specified limit. See 9, 9-1, and 表  
9-1.  
(5) To prevent excess current, the supply voltage delta |VBIAS VRESET| must be less than specified limit. See 9, 9-1, and 9-1.  
(6) Low-speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC  
Standard No. 209B, Low-Power Double Data Rate (LPDDR)JESD209B.Tester Conditions for VIH and VIL.  
Frequency = 60 MHz. Maximum Rise Time = 2.5 ns @ (20% 80%)  
Frequency = 60 MHz. Maximum Fall Time = 2.5 ns @ (80% 20%)  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DLP660TE  
 
 
 
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
(7) PWRDNZ input pin resets the SCP and disables the LVDS receivers. PWRDNZ input pin overrides SCPENZ input pin and tristates the  
SCPDO output pin.  
(8) The SCP clock is a gated clock. Duty cycle must be 50% ± 10%. SCP parameter is related to the frequency of DCLK.  
(9) See 6-2.  
(10) CP internal oscillator is specified to operate all SCP registers. For all SCP operations, DCLK is required.  
(11) See LVDS Timing Requirements in 6.8 and 6-6.  
(12) See 6-5 LVDS Waveform Requirements.  
(13) Supported for video applications only  
(14) Simultaneous exposure of the DMD to the maximum 6.4 for temperature and UV illumination will reduce device lifetime.  
(15) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point 1  
(TP1) shown in 7-2 and the package thermal resistance 7.6.  
(16) Per 6-1, the maximum operational array temperature will be derated based on the micromirror landed duty cycle that the DMD  
experiences in the end application. See 7.7 for a definition of micromirror landed duty cycle.  
(17) Long-term is defined as the usable life of the device.  
(18) Array temperatures beyond those specified as long-term are recommended for short-term conditions only (power-up). Short-term is  
defined as cumulative time over the usable life of the device and is less than 500 hours.  
(19) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown in 图  
7-2. The window test points TP2, TP3, TP4, and TP5 shown in 7-2 are intended to result in the worst case delta temperature. If a  
particular application causes another point on the window edge to result in a larger delta temperature, that point is used.  
(20) DMD is qualified at the combination of the maximum temperature and maximum lumens specified. Operation of the DMD outside of  
these limits has not been tested.  
(21) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.  
(22) Exposure to dew point temperatures in the elevated range during storage and operation will be limited to less than a total cumulative  
time of CTELR  
.
(23) The maximum marginal ray angle of the incoming illumination light at any point in the micromirror array, including Pond of Micromirrors  
(POM), cannot exceed 55 degrees from the normal to the device array plane. The device window aperture has not necessarily been  
designed to allow incoming light at higher maximum angles to pass to the micromirrors, and the device performance has not been  
tested nor qualified at angles exceeding this. Illumination light exceeding this angle outside the micromirror array (including POM) will  
contribute to thermal limitations described in this document, and may negatively affect lifetime.  
80  
70  
60  
50  
40  
30  
0/100  
100/0  
5/95 10/90 15/85 20/80 25/75 30/70 35/65 40/60 45/55 50/50  
65/35  
95/5  
90/10  
85/15  
80/20  
75/25  
70/30  
60/40  
55/45  
50/50  
Micromirror Landed Duty Cycle  
6-1. Max Recommended Array TemperatureDerating Curve  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DLP660TE  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
6.5 Thermal Information  
DLP660TE  
FYG Package  
350 PINS  
0.60  
THERMAL METRIC  
UNIT  
Thermal resistance, active area to test point 1 (TP1)(1)  
°C/W  
(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of  
maintaining the package within the temperature range specified in the 6.4. The total heat load on the DMD is largely driven by the  
incident light absorbed by the active area; although other contributions include light energy absorbed by the window aperture and  
electrical power dissipation of the array. Optical systems need to be designed to minimize the light energy falling outside the window  
clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.  
6.6 Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC = 1.8 V, IOH = 2 mA  
VCC = 1.95 V, IOL = 2 mA  
VCC = 1.95 V  
MIN  
TYP  
MAX  
UNIT  
V
VOH  
VOL  
IOZ  
High level output voltage  
Low level output voltage  
High impedance output current  
Low level input current  
High level input current (1)  
Supply current VCC  
0.8 x VCC  
0.2 x VCC  
25  
V
-40  
-1  
µA  
IIL  
VCC = 1.95 V, VI = 0  
VCC = 1.95 V, VI = VCC  
VCC = 1.95 V  
µA  
IIH  
110  
1200  
µA  
ICC  
mA  
mA  
mA  
mA  
mA  
mW  
ICCI  
Supply current VCCI  
VCCI = 1.95 V  
330  
IOFFSET  
IBIAS  
IRESET  
Supply current VOFFSET (2)  
Supply current VBIAS (2) (3)  
Supply current VRESET (3)  
Supply power dissipation Total  
VOFFSET = 10.5 V  
13.2  
VBIAS = 18.5 V  
-3.641  
9.02  
VRESET = 14.5 V  
3320.25  
(1) Applies to LVCMOS pins only. Excludes LVDS pins and test pad pins.  
(2) To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than the specified limit in 6.4.  
(3) To prevent excess current, the supply voltage delta |VBIAS VRESET| must be less than specified limit in 6.4.  
6.7 Capacitance at Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CI_lvds  
CI_nonlvds  
CI_tdiode  
CO  
LVDS Input Capacitance 2xLVDS  
Non-LVDS Input capacitance 2xLVDS  
Temp Diode Input capacitance 2xLVDS  
Output Capacitance  
20  
20  
30  
20  
pF  
pF  
pF  
pF  
ƒ= 1 MHz  
ƒ= 1 MHz  
ƒ= 1 MHz  
ƒ= 1 MHz  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DLP660TE  
 
 
 
 
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
6.8 Timing Requirements  
MIN  
NOM  
MAX UNIT  
SCP(1)  
tr  
Rise time  
Fall time  
20% to 80% reference points  
80% to 20% reference points  
30  
30  
ns  
ns  
tf  
LVDS(2)  
tr  
Rise slew rate  
Fall slew rate  
Clock Cycle  
Clock Cycle  
Clock Cycle  
Clock Cycle  
Pulse Width  
Pulse Width  
Pulse Width  
Pulse Width  
Setup Time  
Setup Time  
Setup Time  
Setup Time  
Setup Time  
Setup Time  
Setup Time  
Setup Time  
Hold Time  
20% to 80% reference points  
80% to 20% reference points  
DCLK_A, LVDS pair  
0.7  
0.7  
1
1
V/ns  
V/ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tf  
tC  
2.5  
tC  
DCLK_B, LVDS pair  
2.5  
tC  
DCLK_C,LVDS pair  
2.5  
tC  
DCLK_D, LVDS pair  
2.5  
tW  
DCLK_A LVDS pair  
1.19  
1.25  
1.25  
1.25  
1.25  
tW  
DCLK_B LVDS pair  
1.19  
tW  
DCLK_C LVDS pair  
1.19  
tW  
DCLK_D LVDS pair  
1.19  
tSu  
tSu  
tSu  
tSu  
tSu  
tSu  
tSu  
tSu  
th  
D_A(15:0) before DCLK_A, LVDS pair  
D_B(15:0) before DCLK_B, LVDS pair  
D_C(15:0) before DCLK_C, LVDS pair  
D_D(15:0) before DCLK_D, LVDS pair  
SCTRL_A before DCLK_A, LVDS pair  
SCTRL_B before DCLK_B, LVDS pair  
SCTRL_C before DCLK_C, LVDS pair  
SCTRL_D before DCLK_D, LVDS pair  
D_A(15:0) after DCLK_A, LVDS pair  
D_B(15:0) after DCLK_B, LVDS pair  
D_C(15:0) after DCLK_C, LVDS pair  
D_D(15:0) after DCLK_D, LVDS pair  
SCTRL_A after DCLK_A, LVDS pair  
SCTRL_B after DCLK_B, LVDS pair  
SCTRL_C after DCLK_C, LVDS pair  
SCTRL_D after DCLK_D, LVDS pair  
0.325  
0.325  
0.325  
0.325  
0.325  
0.325  
0.325  
0.325  
0.145  
0.145  
0.145  
0.145  
0.145  
0.145  
0.145  
0.145  
th  
Hold Time  
th  
Hold Time  
th  
Hold Time  
th  
Hold Time  
th  
Hold Time  
th  
Hold Time  
th  
Hold Time  
LVDS(2)  
tSKEW  
tSKEW  
Skew Time  
Skew Time  
Channel B relative to Channel A(3) (4), LVDS pair  
Channel D relative to Channel C(5) (6), LVDS pair  
+1.25  
+1.25  
ns  
ns  
1.25  
1.25  
(1) See 6-3 for Rise Time and Fall Time for SCP.  
(2) See 6-5 for Timing Requirements for LVDS.  
(3) Channel A (Bus A) includes the following LVDS pairs: DCLK_AN and DCLK_AP, SCTRL_AN and SCTRL_AP, D_AN(15:0) and  
D_AP(15:0).  
(4) Channel B (Bus B) includes the following LVDS pairs: DCLK_BN and DCLK_BP, SCTRL_BN and SCTRL_BP, D_BN(15:0) and  
D_BP(15:0).  
(5) Channel C (Bus C) includes the following LVDS pairs: DCLK_CN and DCLK_CP, SCTRL_CN and SCTRL_CP, D_CN(15:0) and  
D_CP(15:0).  
(6) Channel D (Bus D) includes the following LVDS pairs: DCLK_DN and DCLK_DP, SCTRL_DN and SCTRL_DP, D_DN(15:0) and  
D_DP(15:0).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DLP660TE  
 
 
 
 
 
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
fSCPCLK= 1 / tC  
tSCP_NEG_ENZ  
tSCP_POS_ENZ  
Falling Edge Capture for SCPDI  
Rising Edge Launch for SCPDO  
tC  
50%  
50%  
SCPENZ  
tSCP_DS  
tSCP_DH  
50%  
50%  
50%  
50%  
SCPCLK  
50%  
SCPDI  
50%  
DI  
SCPDO  
50%  
DO  
tSCP_PD  
6-2. SCP Timing Requirements  
See 6.4 for fSCPCLK, tSCP_DS, tSCP_DH , and tSCP_PD specifications.  
SCPCLK, SCPDI,  
SCPDO, SCPENZ  
100%  
80%  
20%  
0%  
tf  
tr  
Time  
6-3. SCP Requirements for Rise and Fall  
See 6.8 for tr and tf specifications and conditions.  
Device pin  
output under test  
Tester channel  
CLOAD  
6-4. Test Load Circuit for Output Propagation Measurement  
For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account.  
System designers use IBIS or other simulation tools to correlate the timing reference load to a system  
environment.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DLP660TE  
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
t
f
V
V
ID  
CM  
t
r
6-5. LVDS Waveform Requirements  
A. See 方程1 and 方程2.  
1
VLVDS max = V  
:
; + , × V  
,
;
ID max  
;
:
CM max  
:
2
(1)  
(2)  
1
VLVDS min = V  
:
; F , × V  
,
;
ID max  
;
:
CM min  
:
2
See 6.4 for VCM, VID, and VLVDS specifications and conditions.  
t
C .  
t
t
W .  
W .  
DCLK_P  
DCLK_N  
50%  
t
t
t
t
H.  
H.  
t
t
t
t
SU.  
SU.  
D_P(0:?)  
D_N(0:?)  
50%  
50%  
H.  
H.  
SU.  
SU.  
SCTRL_P  
SCTRL_N  
t
C .  
t
SKEW.  
t
t
W .  
W .  
DCLK_P  
DCLK_N  
50%  
t
t
t
H.  
H.  
t
t
t
t
SU.  
SU.  
D_P(0:?)  
D_N(0:?)  
50%  
H.  
SU.  
SU.  
SCTRL_P  
SCTRL_N  
50%  
6-6. Timing Requirements  
See 6.8 for timing requirements and LVDS pairs per channel (bus) defining D_P(0:?) and D_N(0:?).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DLP660TE  
 
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
6.9 System Mounting Interface Loads  
6-1. System Mounting Interface Loads  
PARAMETER  
MIN  
NOM  
MAX  
11.3  
11.3  
0
UNIT  
kg  
Thermal interface area  
Electrical interface area  
Thermal interface area  
Electrical interface area  
Condition 1: Maximum load of 22.6 kg evenly  
distributed within each area below: (1)  
kg  
kg  
Condition 2: Maximum load of 22.6 kg evenly  
distributed within each area below: (1)  
22.6  
kg  
(1) See 6-7.  
Electrical Interface Area  
Thermal Interface Area  
6-7. System Mounting Interface Loads  
6.10 Micromirror Array Physical Characteristics  
6-2. Micromirror Array Physical Characteristics  
PARAMETER DESCRIPTION  
Number of active columns (1)  
VALUE  
2716  
1528  
5.4  
UNIT  
M
N
P
micromirrors  
micromirrors  
µm  
Number of active rows (1)  
Micromirror (pixel) pitch (1)  
Micromirror Pitch × number  
of active columns  
Micromirror active array width (1)  
Micromirror active array height (1)  
14.67  
8.25  
mm  
mm  
Micromirror Pitch × number  
of active rows  
Micromirror active border (Top / Bottom) (2)  
Micromirror active border (Right / Left) (2)  
Pond of micromirrors (POM)  
Pond of micromirrors (POM)  
56  
20  
micromirrors / side  
micromirrors / side  
(1) See 6-8.  
(2) The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the Pond  
Of Mirrors(POM). These micromirrors are prevented from tilting toward the bright or onstate but still require an electrical bias to  
tilt toward off.”  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DLP660TE  
 
 
 
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
Off-State  
Light Path  
0
1
2
3
Active Micromirror Array  
M x N Micromirrors  
N x P  
Nœ 4  
Nœ 3  
Nœ 2  
Nœ 1  
M x P  
P
Incident  
Illumination  
Light Path  
P
P
Pond Of Micromirrors (POM) omitted for clarity.  
Details omitted for clarity.  
Not to scale.  
P
6-8. Micromirror Array Physical Characteristics  
Refer to section 6.10 table for M, N, and P specifications.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DLP660TE  
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
6.11 Micromirror Array Optical Characteristics  
6-3. Micromirror Array Optical Characteristics  
PARAMETER  
MIN  
NOM  
MAX  
18.4  
0
UNIT  
Mirror Tilt angle, variation device to device (1) (2)  
15.6  
17.0  
degrees  
Adjacent micromirrors  
Non-Adjacent micromirrors  
Number of out-of-specification  
micromirrors (3)  
micromirrors  
%
10  
68  
DMD Efficiency (420 nm 680 nm)  
(1) Limits on variability of micromirror tilt angle are critical in the design of the accompanying optical system. Variations in tilt angle within a  
device may result in apparent nonuniformities, such as line pairing and image mottling, across the projected image. Variations in the  
average tilt angle between devices may result in colorimetric and system contrast variations.  
(2) See 6-9.  
(3) An out-of-specification micromirror is defined as a micromirror that is unable to transition between the two landed states within the  
specified Micromirror Switching Time.  
Border micromirrors omitted for clarity  
Off State  
Light Path  
Details omitted for clarity.  
Not to scale.  
0
1
2
3
Tilted Axis of  
Pixel Rotation  
Off-State  
Landed Edge  
On-State  
Landed Edge  
Nœ 4  
Nœ 3  
Nœ 2  
Nœ 1  
Incident  
Illumination  
Light Path  
6-9. Micromirror Landed Orientation and Tilt  
Refer to section 6.10 table for M, N, and P specifications.  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DLP660TE  
 
 
 
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
6.12 Window Characteristics  
6-4. DMD Window Characteristics  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
Corning Eagle  
XG  
Window Material Designation S610  
Window Refractive Index at 546.1 nm  
1.5119  
Window Transmittance, minimum within the wavelength range 420680 nm.  
Applies to all angles 030° AOI. (1) (2)  
97%  
97%  
Window Transmittance, average over the wavelength range 420680 nm.  
Applies to all angles 3045° AOI. (1) (2)  
(1) Single-pass through both surfaces and glass.  
(2) AOI angle of incidence is the angle between an incident ray and the normal to a reflecting or refracting surface.  
6.13 Chipset Component Usage Specification  
Reliable function and operation of the DLP660TE DMD requires that it be used in conjunction with the other  
components of the applicable DLP chipset, including those components that contain or implement TI DMD  
control technology. TI DMD control technology is the TI technology and devices for operating or controlling a  
DLP DMD.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DLP660TE  
 
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
7 Detailed Description  
7.1 Overview  
The DMD is a 0.66-inch diagonal spatial light modulator which consists of an array of highly reflective aluminum  
micromirrors. The DMD is an electrical input, optical output micro-electrical-mechanical system (MEMS). The  
electrical interface is Low Voltage Differential Signaling (LVDS). The DMD consists of a two-dimensional array of  
1-bit CMOS memory cells. The array is organized in a grid of M memory cell columns by N memory cell rows.  
Refer to the 7.2. The positive or negative deflection angle of the micromirrors can be individually controlled by  
changing the address voltage of underlying CMOS addressing circuitry and micromirror reset signals (MBRST).  
The DLP660TE DMD is part of the chipset comprising of the DLP660TE DMD, the DLPC4420 display controller  
and the DLPA100 power and motor driver. To ensure reliable operation, the DLP660TE DMD must always be  
used with the DLPC4420 display controller and the DLPA100 power and motor driver.  
7.2 Functional Block Diagram  
Not to Scale. Details Omitted for Clarity. See Accompanying Notes in this Section.  
Channel A  
Interface  
Control  
Column Read & Write  
Control  
(0,0)  
Voltages  
Word Lines  
Voltage  
Generators  
Row  
Micromirror Array  
(M-1, N-1)  
Control  
Column Read & Write  
Control  
Channel B  
Interface  
For pin details on Channels A, B, C, and D, refer to Pin Configurations and Functions 5 and LVDS Interface section of 6.8.  
RESET_CTRL is utilized in applications when an external reset signal is required.  
7-1. Functional Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DLP660TE  
 
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
7.3 Feature Description  
7.3.1 Power Interface  
The DMD requires 5 DC voltages: DMD_P3P3V, DMD_P1P8V, VOFFSET, VRESET, and VBIAS. DMD_P3P3V  
is created by the DLPA100 power and motor driver and is used on the DMD board to create the other 4 DMD  
voltages, as well as powering various peripherals (TMP411, I2C, and TI level translators). DMD_P1P8V is  
created by the TI PMIC LP38513S and provides the VCC voltage required by the DMD. VOFFSET (10V),  
VRESET (-14V), and VBIAS(18V) are made by the TI PMIC TPS65145 and are supplied to the DMD to control  
the micromirrors.  
7.3.2 Timing  
The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its  
transmission line effects must be taken into account. 6-4 shows an equivalent test load circuit for the output  
under test. Timing reference loads are not intended as a precise representation of any particular system  
environment or depiction of the actual load presented by a production test. System designers use IBIS or other  
simulation tools to correlate the timing reference load to a system environment. The load capacitance value  
stated is only for characterization and measurement of AC timing signals. This load capacitance value does not  
indicate the maximum load the device is capable of driving.  
7.4 Device Functional Modes  
DMD functional modes are controlled by the DLPC4420 display controller. See the DLPC4420 display controller  
data sheet or contact a TI applications engineer.  
7.5 Optical Interface and System Image Quality Considerations  
7.5.1 Optical Interface and System Image Quality  
TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment  
optical performance involves making trade-offs between numerous component and system design parameters.  
Optimizing system optical performance and image quality strongly relate to optical system design parameter  
trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical  
performance is contingent on compliance to the optical system operating conditions described in the following  
sections.  
7.5.1.1 Numerical Aperture and Stray Light Control  
The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area are  
the same. This angle cannot exceed the nominal device micromirror tilt angle unless appropriate apertures are  
added in the illumination or projection pupils to block out flat-state and stray light from the projection lens. The  
micromirror tilt angle defines DMD capability to separate the "ON" optical path from any other light path,  
including undesirable flat-state specular reflections from the DMD window, DMD border structures, or other  
system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture exceeds the  
micromirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger than the  
illumination numerical aperture angle, objectionable artifacts in the displays border and active area can occur.  
7.5.1.2 Pupil Match  
TIs optical and image quality specifications assume that the exit pupil of the illumination optics is nominally  
centered within 2° of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable  
artifacts in the displays border and active area, which may require additional system apertures to control,  
especially if the numerical aperture of the system exceeds the pixel tilt angle.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DLP660TE  
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
7.5.1.3 Illumination Overfill  
The active area of the device is surrounded by an aperture on the inside DMD window surface that masks  
structures of the DMD chip assembly from normal view, and is sized to anticipate several optical operating  
conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window  
aperture opening and other surface anomalies that may be visible on the screen. Design he illumination optical  
system to limit light flux incident anywhere on the window aperture from exceeding approximately 10% of the  
average flux level in the active area. Depending on the particular systems optical architecture, overfill light may  
have to be further reduced below the suggested 10% level in order to be acceptable.  
7.6 Micromirror Array Temperature Calculation  
Array  
TP2  
2X 17.0  
TP4  
TP5  
2X 18.7  
Window Edge  
TP3  
TP3 (TP2)  
(4 surfaces)  
TP5  
TP4  
TP1  
8.6  
17.5  
TP1  
7-2. DMD Thermal Test Points  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DLP660TE  
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
Micromirror array temperature can be computed analytically from measurement points on the outside of the  
package, the package thermal resistance, the electrical power, and the illumination heat load. The relationship  
between micromirror array temperature and the reference ceramic temperature is provided by the following  
equations:  
TARRAY = TCERAMIC + (QARRAY × RARRAY-TO-CERAMIC  
)
QARRAY = QELECTRICAL + QILLUMINATION  
where  
TARRAY = computed array temperature (°C)  
TCERAMIC = measured ceramic temperature (°C) (TP1 location)  
RARRAY-TO-CERAMIC = thermal resistance of package from array to ceramic TP1 (°C/Watt)  
QARRAY = Total DMD power on the array (Watts) (electrical + absorbed)  
QELECTRICAL = nominal electrical power  
QILLUMINATION = (CL2W × SL)  
CL2W = Conversion constant for screen lumens to power on DMD (Watts/Lumen)  
SL = measured screen lumens  
The electrical power dissipation of the DMD is variable and depends on the voltages, data rates and operating  
frequencies. A nominal electrical power dissipation to use when calculating array temperature is 3.0 Watts. The  
absorbed power from the illumination source is variable and depends on the operating state of the micromirrors  
and the intensity of the light source. The equations shown above are valid for a 1-Chip DMD system with  
projection efficiency from the DMD to the screen of 87%.  
The conversion constant CL2W is based on array characteristics. It assumes a spectral efficiency of 300 lumens/  
Watt for the projected light and illumination distribution of 83.7% on the active array, and 16.3% on the array  
border.  
Sample calculations for typical projection application:  
QELECTRICAL = 3.0 W  
CL2W = 0.00266  
SL = 5000 lm  
TCERAMIC = 55.0°C  
QARRAY = 3.0 W + (0.00266 × 5000 lm) = 16.3 W  
TARRAY = 55.0°C + (16.3 W × 0.60°C/W) = 64.78°C  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle  
7.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle  
The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a  
percentage) that an individual micromirror is landed in the On state versus the amount of time the same  
micromirror is landed in the Off state.  
As an example, a landed duty cycle of 100/0 indicates that the referenced pixel is in the On state 100% of the  
time (and in the Off state 0% of the time); whereas 0/100 indicates that the pixel is in the Off state 100% of the  
time. Likewise, 50/50 indicates that the pixel is On 50% of the time and Off 50% of the time.  
Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other  
state (OFF or ON) is considered negligible and is thus ignored.  
Since a micromirror can only be landed in one state or the other (On or Off), the two numbers (percentages)  
always add to 100.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DLP660TE  
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
7.7.2 Landed Duty Cycle and Useful Life of the DMD  
Knowing the long-term average landed duty cycle (of the end product or application) is important because  
subjecting all (or a portion) of the DMDs micromirror array (also called the active array) to an asymmetric  
landed duty cycle for a prolonged period of time can reduce the DMDs usable life.  
Note that it is the symmetry or asymmetry of the landed duty cycle that is of relevance. The symmetry of the  
landed duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a  
landed duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly  
asymmetrical.  
7.7.3 Landed Duty Cycle and Operational DMD Temperature  
Operational DMD Temperature and Landed Duty Cycle interact to affect the DMDs usable life, and this  
interaction can be exploited to reduce the impact that an asymmetrical Landed Duty Cycle has on the DMDs  
usable life. This is quantified in the de-rating curve shown in 6-1. The importance of this curve is that:  
All points along this curve represent the same usable life.  
All points above this curve represent lower usable life (and the further away from the curve, the lower the  
usable life).  
All points below this curve represent higher usable life (and the further away from the curve, the higher the  
usable life).  
In practice, this curve specifies the Maximum Operating DMD Temperature that the DMD ideally will be operated  
at for a given long-term average Landed Duty Cycle.  
7.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application  
During a given period of time, the Landed Duty Cycle of a given pixel follows from the image content being  
displayed by that pixel.  
For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel  
will experience a 100/0 Landed Duty Cycle during that time period. Likewise, when displaying pure-black, the  
pixel will experience a 0/100 Landed Duty Cycle.  
Between the two extremes (ignoring for the moment color and any image processing that may be applied to an  
incoming image), the Landed Duty Cycle tracks one-to-one with the gray scale value, as shown in 7-1.  
7-1. Grayscale Value and Landed Duty Cycle  
Grayscale Value  
Landed Duty Cycle  
0%  
0/100  
10%  
10/90  
20%  
20/80  
30%  
30/70  
40%  
40/60  
50%  
50/50  
60%  
60/40  
70%  
70/30  
80%  
80/20  
90%  
90/10  
100%  
100/0  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DLP660TE  
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
Accounting for color rendition (but still ignoring image processing) requires knowing both the color intensity (from  
0% to 100%) for each constituent primary color (red, green, and blue) for the given pixel as well as the color  
cycle time for each primary color, where color cycle timeis the total percentage of the frame time that a  
given primary must be displayed in order to achieve the desired white point.  
During a given period of time, the landed duty cycle of a given pixel can be calculated as follows:  
Landed Duty Cycle = (Red_Cycle_% × Red_Scale_Value) + (Green_Cycle_% × Green_Scale_Value) + (Blue_Cycle_%  
×
Blue_Scale_Value)  
where  
Red_Cycle_% represents the percentage of the frame time that Red displays to achieve the desired white  
point.  
Green_Cycle_% represents the percentage of the frame time that Green displays to achieve the desired  
white point.  
Blue_Cycle_% represents the percentage of the frame time that Blue displays to achieve the desired white  
point.  
For example, assume that the red, green and blue color cycle times are 50%, 20%, and 30% respectively (in  
order to achieve the desired white point), then the Landed Duty Cycle for various combinations of red, green,  
blue color intensities will be as shown in 7-2 and 7-3.  
7-2. Example Landed Duty Cycle for Full-Color, Color Percentage  
Red Cycle Percentage  
Green Cycle Percentage  
Blue Cycle Percentage  
50%  
20%  
30%  
7-3. Example Landed Duty Cycle for Full-Color  
Red Scale Value  
Green Scale Value  
Blue Scale Value  
Landed Duty Cycle  
0/100  
0%  
100%  
0%  
0%  
0%  
0%  
0%  
50/50  
100%  
0%  
0%  
20/80  
0%  
100%  
0%  
30/70  
12%  
0%  
0%  
6/94  
35%  
0%  
0%  
7/93  
0%  
60%  
0%  
18/82  
100%  
0%  
100%  
100%  
0%  
70/30  
100%  
100%  
0%  
50/50  
100%  
12%  
0%  
80/20  
35%  
35%  
0%  
13/87  
60%  
60%  
100%  
25/75  
12%  
100%  
24/76  
100%  
100/0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DLP660TE  
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
Texas Instruments DLP technology is a micro-electro-mechanical systems (MEMS) technology that modulates  
light using a digital micromirror device (DMD). DMDs vary in resolution and size and can contain over 8-million  
micromirrors. Each micromirror of a DMD can represent either one or more pixels on the display and is  
independently controlled, synchronized with color sequential illumination, to create stunning images on any  
surface. DLP technology enables a wide variety of display products worldwide, from tiny projection modules  
embedded in smartphones to high powered digital cinema projectors, and emerging display products such as  
digital signage and laser TV.  
The most recent class of chipsets from Texas Instruments is based on a breakthrough micromirror technology,  
called TRP. With a smaller pixel pitch of 5.4 μm and increased tilt angle of 17 degrees, TRP chipsets enable  
higher resolution in a smaller form factor and enhanced image processing features while maintaining high optical  
efficiency. DLP chipsets are a great fit for any system that requires high resolution and high brightness displays.  
The following orderables have been replaced by the DLP660TE.  
Device Information(1)  
PART NUMBER  
2715-7132P  
PACKAGE  
BODY SIZE (NOM)  
MECHANICAL ICD  
2514366  
FYG (350)  
FYG (350)  
FYG (350)  
35 mm × 32 mm  
35 mm × 32 mm  
35 mm × 32 mm  
35 mm × 32 mm  
2514366  
2514366  
2514366  
2715-7137P  
2715-7139P  
2715-713AP  
FYG (350)  
8.2 Typical Application  
The DLP660TE DMD is the first full 4K UHD DLP digital micromirror device. When combined with two display  
controllers (DLPC4420), an FPGA, a power management device (DLPA100), and other electrical, optical and  
mechanical components the chipset enables bright, affordable, full 4K UHD display solutions. 8-1 shows a  
typical 4K UHD system application using the DLP660TE DMD.  
1.1V  
FPGA  
Voltage  
Regulators  
1.15V  
1.8V  
2.5V  
3.3V  
12V  
PWM Driver  
Flash  
EPROM  
I2  
1.1V  
1.8V  
3.3V  
(23) (16)  
DLPA100  
Controller  
PMIC  
C
ADDR  
DATA  
12V  
RGB_EN  
CTRL  
(3)  
RGB_PWM  
(3)  
FE CTRL  
DDR3  
USB CTRL  
DATA  
GPIO  
3.3 V  
CTRL  
DDR3  
DLPC4420  
Controller  
Primary  
VBIAS, VOFFSET, VRESET  
(3)  
ADDR  
DMD PMIC  
(Power Management IC)  
DATA  
Front End Device  
3D  
L/R  
SCP CTRL  
2xLVDS  
I2  
C
SPI  
HBT  
Vx1:  
XPR FPGA  
4K UHD DMD  
Vx1  
3840 × 2160 @ 60Hz  
2xLVDS  
I2  
DATA  
C
1.8 V  
GPIO  
DLPC4420  
Controller  
Secondary  
SPI  
Flash  
JTAG  
ACTUATOR CTRL  
Actuator  
Driver  
4-Position  
Actuator  
CTRL  
1.1V  
1.8V  
3.3V  
DLPA100  
Controller  
PMIC  
ADDR  
(23) (16)  
DATA  
I2  
C
12V  
TI DLP chipset  
Flash  
EPROM  
Third party component  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DLP660TE  
 
 
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
1.1V  
1.15V  
1.8V  
2.5V  
3.3V  
12V  
12V  
1.21V  
1.8V  
3.3V  
1.21V  
1.8V  
3.3V  
FPGA  
Voltage  
Regulators  
DLPA100  
Controller PMIC  
CW Driver  
DLPA100  
Controller PMIC  
CW Driver  
12V  
Flash  
EPROM  
I2C  
5V  
5V  
(23) (16)  
ADDR  
DATA  
CTRL  
GPIO  
Wheel Motor #2  
Wheel Motor #1  
CTRL  
FE CTRL  
DDR3  
USB CTRL  
DATA  
DDR3  
DLPC4420  
Controller  
Primary  
VBIAS, VOFFSET, VRESET  
(3)  
3.3 V  
ADDR  
1.1V  
DMD PMIC  
(Power Management IC)  
CTRL  
1.8V  
3.3V  
DATA  
Front End Device  
3D  
L/R  
SCP CTRL  
2xLVDS  
I2C  
SPI  
HBT  
Vx1:  
4K UHD DMD  
XPR FPGA  
Vx1  
3840 × 2160 @ 60Hz  
2xLVDS  
I2C  
1.8 V  
DATA  
GPIO  
DLPC4420  
Controller  
Secondary  
SPI  
Flash  
JTAG  
ACTUATOR CTRL  
Actuator  
Driver  
4-Position  
Actuator  
1.1V  
1.8V  
3.3V  
ADDR  
DATA  
I2C  
(23) (16)  
TI DLP chipset  
Flash  
EPROM  
Third party component  
8-1. Typical DLPC4420 4K UHD Application (LED, Top; LPCW, Bottom)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DLP660TE  
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
8.2.1 Design Requirements  
At the high level, DLP660TE DMD systems will include an illumination source, a light engine, electronic  
components, and software. The designer must first choose an illumination source and design the optical engine  
taking into consideration the relationship between the optics and the illumination source. The designer must then  
understand the electronic components of a DLP660TE DMD system, which is made up of a DMD board and  
formatter board. The DMD board channels image data to and powers the DMD chip. The formatter board  
supports the rest of the electronic components, which can include an FPGA, the DLPC4420 display controller,  
power supplies, and drivers for illumination sources, color wheels, fans, and dynamic optical components.  
8.2.2 Detailed Design Procedure  
For connecting together the DLPC4420 display controller and the DLP660TE DMD, see the reference design  
schematic. Layout guidelines need be followed to achieve a reliable projector. To complete the DLP system an  
optical module or light engine is required that contains the DLP660TE DMD, associated illumination sources,  
optical elements, and necessary mechanical components.  
8.2.3 Application Curves  
8-2. Luminance vs. Current  
8.3 DMD Die Temperature Sensing  
The DMD features a built-in thermal diode that measures the temperature at one corner of the die outside the  
micromirror array. The thermal diode can be interfaced with the TMP411 temperature sensor as shown in 8-3.  
The serial bus from the TMP411 can be connected to the DLPC4420 display controller to enable its temperature  
sensing features. See the DLPC4420 ProgrammersGuide for instructions on installing the DLPC4420  
controller support firmware bundle and obtaining the temperature readings.  
The software application contains functions to configure the TMP411 to read the DMD temperature sensor diode.  
This data can be leveraged to incorporate additional functionality in the overall system design such as adjusting  
illumination, fan speeds, and so forth. All communication between the TMP411 and the DLPC4420 controller will  
be completed using the I2C interface. The TMP411 connects to the DMD via pins E16 and E17 as outlined in 节  
5.  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DLP660TE  
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
3.3V  
R1  
R2  
TMP411  
DLP660TE  
SCL  
VCC  
D+  
R3  
R5  
TEMP_P  
SDA  
ALERT  
THERM  
GND  
C1  
R4  
R6  
D-  
TEMP_N  
GND  
A. Details omitted for clarity, see the TI Reference Design for connections to the DLPC4420 controller.  
B. See the TMP411 data sheet for system board layout recommendation.  
C. See the TMP411 data sheet and the TI reference design for suggested component values for R1, R2, R3, R4, and C1.  
D. R5 = 0 Ω. R6 = 0 Ω. Zero ohm resistors need to be located close to the DMD package pins.  
8-3. TMP411 Sample Schematic  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DLP660TE  
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
9 Power Supply Recommendations  
The following power supplies are all required to operate the DMD:  
VSS  
VCC  
VCCI  
VBIAS  
VOFFSET  
VRESET  
DMD power-up and power-down sequencing is strictly controlled by the DLP display controller.  
CAUTION  
For reliable operation of the DMD, the following power supply sequencing requirements must be  
followed. Failure to adhere to any of the prescribed power-up and power-down requirements may  
affect device reliability. See 9-1 DMD Power Supply Sequencing Requirements.  
VBIAS, VCC, VCCI, VOFFSET, and VRESET power supplies must be coordinated during power-up  
and power-down operations. Failure to meet any of the below requirements will result in a significant  
reduction in the DMDs reliability and lifetime. Common ground VSS must also be connected.  
9.1 DMD Power Supply Power-Up Procedure  
During power-up, VCC and VCCI must always start and settle before VOFFSET plus Delay1 specified in 表  
9-1, VBIAS, and VRESET voltages are applied to the DMD.  
During power-up, it is a strict requirement that the voltage delta between VBIAS and VOFFSET must be  
within the specified limit shown in 6.4.  
During power-up, there is no requirement for the relative timing of VRESET with respect to VBIAS.  
Power supply slew rates during power-up are flexible, provided that the transient voltage levels follow the  
requirements specified in 6.1, in 6.4, and in 9-1.  
During power-up, LVCMOS input pins must not be driven high until after VCC and VCCI have settled at  
operating voltages listed in 6.4.  
9.2 DMD Power Supply Power-Down Procedure  
During power-down, VCC and VCCI must be supplied until after VBIAS, VRESET, and VOFFSET are  
discharged to within the specified limit of ground. See 9-1.  
During power-down, it is a strict requirement that the voltage delta between VBIAS and VOFFSET must be  
within the specified limit shown in 6.4.  
During power-down, there is no requirement for the relative timing of VRESET with respect to VBIAS.  
Power supply slew rates during power-down are flexible, provided that the transient voltage levels follow the  
requirements specified in 6.1, in 6.4, and in 9-1.  
During power-down, LVCMOS input pins must be less than specified in 6.4.  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DLP660TE  
 
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
9-1. DMD Power Supply Requirements  
1. See 6.4, 5  
2. To prevent excess current, the supply voltage delta |VCCI VCC| must be less than specified limit in 6.4.  
3. To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than specified in 节  
6.4.  
4. To prevent excess current, the supply voltage delta |VBIAS VRESET| must be less than specified limit in  
6.4.  
5. VBIAS must power up after VOFFSET has powered up, per the Delay1 specification in 9-1.  
6. PG_OFFSET must turn off after EN_OFFSET has turned off, per the Delay2 specification in 9-1.  
7. DLP controller software enables the DMD power supplies to turn on after RESET_OEZ is at logic high.  
8. DLP controller software initiates the global VBIAS command.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DLP660TE  
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
9. After the DMD micromirror park sequence is complete, the DLP controller software initiates a hardware  
power-down that activates PWRDNZ and disables VBIAS, VRESET and VOFFSET.  
10. Under power-loss conditions where emergency DMD micromirror park procedures are being enacted by the  
DLP controller hardware, EN_OFFSET may turn off after PG_OFFSET has turned off. The OEZ signal may  
go high prior to PG_OFFSET turning off to indicate the DMD micromirror has completed the emergency park  
procedures.  
9-1. DMD Power-Supply Requirements  
Parameter  
Delay1  
Description  
Min  
NOM  
Max  
Unit  
ms  
ns  
Delay from VOFFSET settled at recommended operating voltage to  
VBIAS and VRESET power up  
1
2
Delay2  
PG_OFFSET hold time after EN_OFFSET goes low  
100  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DLP660TE  
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
10 Layout  
10.1 Layout Guidelines  
The DLP660TE DMD is part of a chipset that is controlled by the DLPC4420 display controller in conjunction with  
the DLPA100 power and motor driver. These guidelines help to design a PCB board with the DLP660TE DMD.  
The DLP660TE DMD board is a high-speed multilayer PCB, with primarily high-speed digital logic using dual-  
edge clock rates up to 400 MHz for DMD LVDS signals. The remaining traces are comprised of low speed digital  
LVTTL signals. TI recommends that mini power planes are used for VOFFSET, VRESET, and VBIAS. Solid  
planes are required for DMD_P3P3V(3.3 V), DMD_P1P8V, and Ground. The target impedance for the PCB is 50  
Ω ±10% with the LVDS traces being 100-Ω ±10% differential. TI recommends using an 8-layer stack-up as  
described in 10-1.  
10.2 Layout Example  
10.2.1 Layers  
The layer stack-up and copper weight for each layer is shown in 10-1. Small sub-planes are allowed on signal  
routing layers to connect components to major sub-planes on top or bottom layers if necessary.  
10-1. Layer Stack-Up  
LAYER  
NO.  
LAYER NAME  
Side A - DMD only  
COPPER WT. (oz.)  
COMMENTS  
1
1.5  
1
DMD, escapes, low frequency signals, power sub-planes.  
Solid ground plane (net GND).  
2
Ground  
3
Signal  
0.5  
1
50 Ωand 100 Ωdifferential signals  
4
Ground  
Solid ground plane (net GND)  
5
DMD_P3P3V  
1
+3.3-V power plane (net DMD_P3P3V)  
50 Ωand 100 Ωdifferential signals  
6
Signal  
0.5  
1
7
Ground  
Solid ground plane (net GND).  
8
Side B - All other Components  
1.5  
Discrete components, low frequency signals, power sub-planes  
10.2.2 Impedance Requirements  
TI recommends that the board has matched impedance of 50 Ω ±10% for all signals. The exceptions are listed  
in 10-2.  
10-2. Special Impedance Requirements  
Signal Type  
Signal Name  
Impedance (ohms)  
D_AP(0:15), D_AN(0:15)  
DCLKA_P, DCLKA_N  
SCTRL_AP, SCTRL_AN  
D_BP(0:15), D_BN(0:15)  
DCLKB_P, DCLKB_N  
SCTRL_BP, SCTRL_BN  
D_CP(0:15), D_CN(0:15)  
DCLKC_P, DCLKC_N  
SCTRL_CP, SCTRL_CN  
D_DP(0:15), D_DN(0:15)  
DCLKD_P, DCLKD_N  
SCTRL_DP, SCTRL_DN  
100 ±10% differential across  
each pair  
A channel LVDS differential pairs  
100 ±10% differential across  
each pair  
B channel LVDS differential pairs  
C channel LVDS differential pairs  
D channel LVDS differential pairs  
100 ±10% differential across  
each pair  
100 ±10% differential across  
each pair  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DLP660TE  
 
 
 
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
10.2.3 Trace Width, Spacing  
Unless otherwise specified, TI recommends that all signals follow the 0.005-inch/0.005-inch design rule.  
Minimum trace clearance from the ground ring around the PWB has a 0.1-inch minimum. An analysis of  
impedance and stack-up requirements determine the actual trace widths and clearances.  
10.2.3.1 Voltage Signals  
10-3. Special Trace Widths, Spacing Requirements  
MINIMUM TRACE WIDTH TO  
SIGNAL NAME  
GND  
LAYOUT REQUIREMENT  
Maximize trace width to connecting pin  
PINS (MIL)  
15  
15  
15  
15  
15  
15  
DMD_P3P3V  
DMD_P1P8V  
VOFFSET  
VRESET  
Maximize trace width to connecting pin  
Maximize trace width to connecting pin  
Create mini plane from U2 to U3  
Create mini plane from U2 to U3  
Create mini plane from U2 to U3  
VBIAS  
All U3 control  
connections  
10  
Use 10 mil etch to connect all signals/voltages to DMD pads  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DLP660TE  
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
11 Device and Documentation Support  
11.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.2 Device Support  
11.2.1 Device Nomenclature  
DLP660TE AA FYG  
Package Type  
TI Internal Numbering  
Device Descriptor  
11-1. Part Number Description  
11.2.2 Device Markings  
The device marking will include both human-readable information and a 2-dimensional matrix code. The human-  
readable information is described in 11-2. The 2-dimensional matrix code is an alpha-numeric character string  
that contains the DMD part number, Part 1 of Serial Number, and Part 2 of Serial Number. The first character of  
the DMD Serial Number (part 1) is the manufacturing year. The second character of the DMD Serial Number  
(part 1) is the manufacturing month. The last character of the DMD Serial Number (part 2) is the bias voltage bin  
letter.  
Example: *2715-7032 GHXXXXX LLLLLLM  
TI Internal Numbering  
2-Dimension Matrix Code  
(Part Number and  
Serial Number)  
DMD Part Number  
YYYYYYY  
*2715-713xP  
GHXXXXX LLLLLLM  
Part 1 of Serial Number  
(7 characters)  
Part 2 of Serial Number  
(7 characters)  
11-2. DMD Marking Locations  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DLP660TE  
 
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
11.3 Documentation Support  
11.3.1 Related Documentation  
The following documents contain additional information related to the chipset components used with the  
DLP660TE:  
DLPC4420 Display Controller  
DLPA100 Power and Motor Driver Data Sheet  
11.4 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.5 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.6 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
DLP® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.7 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.8 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DLP660TE  
 
 
 
 
 
 
 
DLP660TE  
www.ti.com.cn  
ZHCSLT4C APRIL 2019 REVISED FEBRUARY 2023  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DLP660TE  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLP660TEAAFYG  
ACTIVE  
CPGA  
FYG  
350  
1
RoHS & Green  
Call TI  
N / A for Pkg Type  
0 to 70  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DLP670RE

0.67 英寸 WUXGA DLP® 数字微镜器件 (DMD)
TI

DLP670REA0FYE

0.67 英寸 WUXGA DLP® 数字微镜器件 (DMD) | FYE | 350 | 0 to 70
TI

DLP670S

DLP® 0.67 英寸、2716x1600 阵列、S610 数字微镜器件 (DMD)
TI

DLP670SFYR

DLP® 0.67 英寸、2716x1600 阵列、S610 数字微镜器件 (DMD) | FYR | 350 | 0 to 70
TI

DLP7000

DLP® 0.7 XGA 2xLVDS A 型 DMD
TI

DLP7000BFLP

DLP® 0.7 XGA 2xLVDS A 型 DMD | FLP | 203 | 10 to 65
TI

DLP7000UV

DLP® 0.7XGA 2xLVDS UV A 型 DMD
TI

DLP7000UVFLP

DLP® 0.7XGA 2xLVDS UV A 型 DMD | FLP | 203 | 20 to 30
TI

DLP780NE

0.78 英寸 1080p DLP® 数字微镜器件 (DMD)
TI

DLP780NEA0FYU

0.78 英寸 1080p DLP® 数字微镜器件 (DMD) | FYU | 350 | 0 to 70
TI

DLP780TE

0.78 英寸 4K UHD DLP® 数字微镜器件 (DMD)
TI

DLP780TEA0FYU

0.78 英寸 4K UHD DLP® 数字微镜器件 (DMD) | FYU | 350 | 0 to 70
TI