DLP471TP [TI]

0.47-inch 4K UHD DLP® digital micromirror device (DMD);
DLP471TP
型号: DLP471TP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

0.47-inch 4K UHD DLP® digital micromirror device (DMD)

文件: 总48页 (文件大小:1895K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
DLP471TP 0.47 4K 超高DMD  
1 特性  
3 说明  
0.47 英寸对角线微镜阵列  
DLP471TP 数字微镜器件 (DMD) 是一款数控微机电系  
(MEMS) 空间照明调制器 (SLM)可用于实现高亮  
4K 超高清显示系统。TI DLP® 产品 0.47 英寸 4K  
UHD 芯片组由 DMDDLPC6540 显示控制器以及  
DLPA3005 PMIC LED 驱动器组成。芯片组的外形  
紧凑为体型小巧的 4K 超高清显示器提供完整的系统  
解决方案。  
4K 超高(3840 × 2160) 显示分辨率  
5.4 µm 微镜间距  
±17° 微镜倾斜度相对于平坦表面)  
– 底部照明  
• 高速串行接(HSSI) 输入数据总线  
• 支4K UHD (60Hz)  
• 支1080p240Hz)  
DLPC6540 显示控制器、DLPA3005 电源管理  
IC (PMIC) LED 驱动器支LED 正常运行  
器件信息(1)  
封装尺寸标称值)  
器件型号  
DLP471TP  
封装  
FQQ (270)  
25.65mm × 16.9mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
移动智能电视  
移动投影仪  
数字标牌  
LS_Interface  
HSSI Macro A Data Pair  
DMD DCLKA  
8
8
HSSI Macro B Data Pair  
DMD DCLKB  
DLPC6540  
Display Controller  
DLP471TP  
HSSI DMD  
Vx1  
V
V
V
OFFSET  
BIAS  
2
I C/SPI  
Power  
Management  
RESET  
1.8 V  
VREG  
简化版应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: DLPS173  
 
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
Table of Contents  
7.7 Micromirror Power Density Calculation.....................25  
7.8 Micromirror Landed-On/Landed-Off Duty Cycle....... 28  
8 Application and Implementation..................................31  
8.1 Application Information............................................. 31  
8.2 Typical Application.................................................... 31  
8.3 Temperature Sensor Diode.......................................32  
9 Power Supply Recommendations................................33  
9.1 DMD Power Supply Power-Up Procedure................33  
9.2 DMD Power Supply Power-Down Procedure........... 33  
10 Layout...........................................................................35  
10.1 Layout Guidelines................................................... 35  
10.2 Impedance Requirements.......................................35  
10.3 Layers..................................................................... 35  
10.4 Trace Width, Spacing..............................................36  
10.5 Power......................................................................36  
10.6 Trace Length Matching Recommendations............ 37  
11 Device and Documentation Support..........................38  
11.1 第三方产品免责声明................................................38  
11.2 Device Support........................................................38  
11.3 Documentation Support.......................................... 39  
11.4 支持资源..................................................................39  
11.5 Trademarks............................................................. 39  
11.6 静电放电警告...........................................................39  
11.7 术语表..................................................................... 39  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 8  
6.1 Absolute Maximum Ratings........................................ 8  
6.2 Storage Conditions..................................................... 9  
6.3 ESD Ratings............................................................... 9  
6.4 Recommended Operating Conditions.........................9  
6.5 Thermal Information..................................................11  
6.6 Electrical Characteristics...........................................12  
6.7 Switching Characteristics..........................................13  
6.8 Timing Requirements................................................14  
6.9 System Mounting Interface Loads............................ 17  
6.10 Micromirror Array Physical Characteristics.............18  
6.11 Micromirror Array Optical Characteristics............... 19  
6.12 Window Characteristics.......................................... 21  
6.13 Chipset Component Usage Specification............... 21  
7 Detailed Description......................................................22  
7.1 Overview...................................................................22  
7.2 Functional Block Diagram.........................................22  
7.3 Feature Description...................................................23  
7.4 Device Functional Modes..........................................23  
7.5 Optical Interface and System Image Quality  
Considerations............................................................ 23  
7.6 Micromirror Array Temperature Calculation.............. 24  
Information.................................................................... 40  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (June 2022) to Revision B (July 2023)  
Page  
Added section "ILLUMINATION" to Recommended Operating Conditions ....................................................... 9  
Updated Micromirror Array Temperature Calculation ...................................................................................... 24  
Added Micromirror Power DensityCalculation ................................................................................................. 25  
Changes from Revision * (August 2020) to Revision A (June 2022)  
Page  
• 根据最新的德州仪器 (TI) 和行业标准对本文档进行了更新.................................................................................1  
Updated |TDELTA| MAX from 14°C to 15°C..........................................................................................................9  
Updated Micromirror Array Optical Characteristics ......................................................................................... 19  
Updated 9-1 ................................................................................................................................................ 33  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
2
Submit Document Feedback  
Product Folder Links: DLP471TP  
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11  
13 15 17 19 21 23 25  
2
4
6
8
10 12 14 16 18 20 22 24  
5-1. FQQ Package 270-Pin CLGA (Bottom View)  
5-1. Pin Functions  
PIN(2)  
TRACE  
LENGTH  
(mm)  
TYPE(1)  
DESCRIPTION  
TERMINATION  
NAME  
PAD ID  
A8  
D_AP(0)  
D_AN(0)  
D_AP(1)  
D_AN(1)  
D_AP(2)  
D_AN(2)  
D_AP(3)  
D_AN(3)  
D_AP(4)  
D_AN(4)  
D_AP(5)  
D_AN(5)  
D_AP(6)  
D_AN(6)  
D_AP(7)  
D_AN(7)  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
High-speed Differential Data Pair lane A0  
High-speed Differential Data Pair lane A0  
High-speed Differential Data Pair lane A1  
High-speed Differential Data Pair lane A1  
High-speed Differential Data Pair lane A2  
High-speed Differential Data Pair lane A2  
High-speed Differential Data Pair lane A3  
High-speed Differential Data Pair lane A3  
High-speed Differential Data Pair lane A4  
High-speed Differential Data Pair lane A4  
High-speed Differential Data Pair lane A5  
High-speed Differential Data Pair lane A5  
High-speed Differential Data Pair lane A6  
High-speed Differential Data Pair lane A6  
High-speed Differential Data Pair lane A7  
High-speed Differential Data Pair lane A7  
High-speed Differential Clock A  
2.15873  
2.16135  
8.33946  
8.34121  
6.41271  
6.41305  
1.8959  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
A7  
B2  
C2  
A6  
A5  
A10  
A9  
1.8959  
D1  
E1  
12.11543  
12.11539  
12.01561  
12.0164  
12.98403  
12.98177  
2.29773  
2.29773  
11.75367  
11.57432  
2.10786  
2.10711  
D3  
E3  
F3  
G3  
A12  
A11  
A3  
DCLK_AP  
DCLK_AN  
D_BP(0)  
A4  
High-speed Differential Clock A  
A14  
A15  
High-speed Differential Data Pair lane B0  
High-speed Differential Data Pair lane B0  
D_BN(0)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DLP471TP  
English Data Sheet: DLPS173  
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN(2)  
TRACE  
LENGTH  
(mm)  
TYPE(1)  
DESCRIPTION  
TERMINATION  
NAME  
PAD ID  
F23  
D_BP(1)  
D_BN(1)  
D_BP(2)  
D_BN(2)  
D_BP(3)  
D_BN(3)  
D_BP(4)  
D_BN(4)  
D_BP(5)  
D_BN(5)  
D_BP(6)  
D_BN(6)  
D_BP(7)  
D_BN(7)  
I
I
High-speed Differential Data Pair lane B1  
High-speed Differential Data Pair lane B1  
High-speed Differential Data Pair lane B2  
High-speed Differential Data Pair lane B2  
High-speed Differential Data Pair lane B3  
High-speed Differential Data Pair lane B3  
High-speed Differential Data Pair lane B4  
High-speed Differential Data Pair lane B4  
High-speed Differential Data Pair lane B5  
High-speed Differential Data Pair lane B5  
High-speed Differential Data Pair lane B6  
High-speed Differential Data Pair lane B6  
High-speed Differential Data Pair lane B7  
High-speed Differential Data Pair lane B7  
High-speed Differential Clock B  
High-speed Differential Clock B  
LVDS Data  
12.79448  
12.79438  
13.00876  
13.00932  
11.21886  
11.21881  
10.79038  
10.78946  
5.75986  
5.75928  
9.01461  
9.01416  
2.08767  
2.08767  
2.12928  
2.30933  
0
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
Differential 100 Ω  
G23  
E24  
E23  
A22  
A23  
D25  
D24  
A20  
A21  
B24  
B25  
A18  
A19  
A17  
A16  
T16  
R16  
T14  
R14  
R18  
T20  
C21  
R20  
T18  
R12  
T12  
I
I
I
I
I
I
I
I
I
I
I
I
DCLK_BP  
I
DCLK_BN  
I
LS_WDATA_P  
LS_WDATA_N  
LS_CLK_P  
I
I
LVDS Data  
0.27407  
2.43086  
2.40852  
2.00263  
4.61261  
3.03604  
2.88361  
1.89945  
4.02546  
3.62598  
I
LVDS CLK  
LS_CLK_N  
I
LVDS CLK  
LS_RDATA_A_BISTA  
BIST_B  
O
O
O
O
I
LVCMOS Output  
LVCMOS Output  
AMUX_OUT  
DMUX_OUT  
DMD_DEN_ARSTZ  
TEMP_N  
Analog Test Mux  
Digital Test Mux  
ARSTZ  
17.5-kΩpulldown  
I
Temp Diode N  
TEMP_P  
I
Temp Diode P  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
4
Submit Document Feedback  
Product Folder Links: DLP471TP  
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN(2)  
TRACE  
TYPE(1)  
DESCRIPTION  
TERMINATION  
LENGTH  
(mm)  
NAME  
PAD ID  
B13, C5,  
C9, C12,  
C15, C18,  
C22, D6,  
D7, D14,  
D16, D19,  
D20, E21,  
G21, J4,  
J21, J23,  
K3, K22,  
L2, L4,  
L22, M1,  
M3, M21,  
M23, M25,  
N2, N4, N6,  
N8, N16,  
N18, N20,  
N22, N24,  
P3, P5, P7,  
P9, P11,  
VDD  
P
Digital core supply voltage  
Plane  
P13, P15,  
P17, P19,  
P21, P23,  
P25, R2,  
R4, R6, R8,  
R10, T3,  
T5, T7, T9,  
T11, T13,  
T15, T17,  
T19, T21,  
T23  
A24, B3,  
B5, B7, B9,  
B11, B14,  
B16, B18,  
B20, B22,  
C1, C24,  
D4, D23,  
E2, F4,  
VDDA  
P
HSSI supply voltage  
Plane  
F22, H3,  
H22  
Supply voltage for negative bias of  
micromirror reset signal  
VRESET  
VBIAS  
A2, R1  
B1, P1  
P
P
P
Plane  
Plane  
Plane  
Supply voltage for positive bias of  
micromirror reset signal  
A1, A25,  
T1, T25  
Supply voltage for HVCMOS logic, stepped  
up logic level  
VOFFSET  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DLP471TP  
English Data Sheet: DLPS173  
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN(2)  
TRACE  
LENGTH  
(mm)  
TYPE(1)  
DESCRIPTION  
TERMINATION  
NAME  
PAD ID  
C4, C6, C8,  
C10, C13,  
C14, C17,  
C19, C23,  
D5, D8,  
D15, D17,  
D18, D21,  
D22, F21,  
H4, H21,  
J3, J22, K4,  
K21, K23,  
L3, L21,  
L23, M2,  
M4, M22,  
M24, N1,  
N3, N5, N7,  
N17, N19,  
N21, N23,  
N25, P2,  
VSS  
G
Ground  
Plane  
P4, P6, P8,  
P10, P12,  
P14, P16,  
P18, P20,  
P22, P24,  
R3, R5, R7,  
R9, R11,  
R13, R15,  
R17, R19,  
R21, R23,  
R25, T2,  
T4, T8, T10  
A13, B4,  
B6, B8,  
B10, B12,  
B15, B17,  
B19, B21,  
B23, C3,  
C7, C11,  
C16, C20,  
C25, D2,  
E4, E22,  
E25, F2,  
G4, G22,  
H23  
VSSA  
G
Ground  
Plane  
None  
DMD_Detect  
T6  
NC  
DMD detection  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
6
Submit Document Feedback  
Product Folder Links: DLP471TP  
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN(2)  
TRACE  
TYPE(1)  
DESCRIPTION  
TERMINATION  
LENGTH  
(mm)  
NAME  
PAD ID  
D9, D10,  
D11, D12,  
D13, E10,  
E11, E12,  
E13, E14,  
E15, E16,  
E17, E18,  
F24, G2,  
K2, L24,  
M12, M13,  
M14, M15,  
M16, M17,  
M18, N9,  
N10, N11,  
N12, N13,  
N14, N15,  
R22,  
N/C  
NC  
No connect pin  
None  
R24 ,T22,  
T24  
(1) I=Input, O=Output, P=Power, G=Ground, NC = No Connect  
(2) Only 238 pins are electrically connected for functional use.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DLP471TP  
English Data Sheet: DLPS173  
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not  
imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating  
Conditions. If outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
MIN  
MAX UNIT  
SUPPLY VOLTAGE  
Supply voltage for LVCMOS core logic and LVCMOS low speed interface  
(LSIF)(1)  
VDD  
2.3  
V
0.5  
VDDA  
Supply voltage for high speed serial interface (HSSI) receivers(1)  
Supply voltage for HVCMOS and micromirror electrode(1) (2)  
Supply voltage for micromirror electrode(1)  
2.2  
11  
V
V
V
V
V
V
V
0.3  
0.5  
0.5  
15  
VOFFSET  
VBIAS  
19  
0.5  
0.3  
11  
VRESET  
Supply voltage for micromirror electrode(1)  
Supply voltage delta (absolute value)(3)  
| VDDA VDD  
|
Supply voltage delta (absolute value)(4)  
| VBIAS VOFFSET  
|
Supply voltage delta (absolute value)(5)  
34  
| VBIAS VRESET  
|
INPUT VOLTAGE  
Input voltage for other inputs LSIF and LVCMOS(1)  
Input voltage for other inputs HSSI(1) (6)  
0.5  
0.2  
2.45  
V
V
VDDA  
LOW SPEED INTERFACE (LSIF)  
fCLOCK LSIF clock frequency (LS_CLK)  
130 MHz  
| VID  
IID  
|
LSIF differential input voltage magnitude(6)  
810  
10  
mV  
mA  
LSIF differential input current  
HIGH SPEED SERIAL INTERFACE (HSSI)  
fCLOCK HSSI clock frequency (DCLK)  
1.65 GHz  
| VID  
| VID  
|
|
HSSI differential input voltage magnitude Data Lane(6)  
HSSI differential input voltage magnitude Clock Lane(6)  
700  
700  
mV  
mV  
ENVIRONMENTAL  
Temperature, operating(7)  
0
90  
90  
°C  
°C  
TWINDOW and TARRAY  
Temperature, non-operating(7)  
40  
Absolute temperature delta between any point on the window edge and the  
ceramic test point TP1(8)  
|TDELTA  
TDP  
|
30  
81  
°C  
°C  
Dew point temperature, operating and nonoperating (noncondensing)  
(1) All voltage values are with respect to the ground terminals (VSS). The following required power supplies must be connected for proper  
DMD operation: VDD, VDDA, VOFFSET, VBIAS, and VRESET. All VSS connections are also required.  
(2) VOFFSET supply transients must fall within specified voltages.  
(3) Exceeding the recommended allowable absolute voltage difference between VDDA and VDD may result in excessive current draw.  
(4) Exceeding the recommended allowable absolute voltage difference between VBIAS and VOFFSET may result in excessive current draw.  
(5) Exceeding the recommended allowable absolute voltage difference between VBIAS and VRESET may result in excessive current draw.  
(6) This maximum input voltage rating applies when each input of a differential pair is at the same voltage potential. LVDS and HSSI  
differential inputs must not exceed the specified limit or damage may result to the internal termination resistors.  
(7) The highest temperature of the active array (as calculated using Micromirror Array Temperature Calculation) or of any point along the  
window edge as defined in 7-1. The locations of thermal test points TP2, TP3, TP4 and TP5 in 7-1 are intended to measure the  
highest window edge temperature. If a particular application causes another point on the window edge to be at a higher temperature,  
that point should be used.  
(8) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown in 图  
7-1. The window test points TP2, TP3, TP4, and TP5 shown in 7-1 are intended to result in the worst case delta. If a particular  
application causes another point on the window edge to result in a larger delta temperature, that point should be used.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
8
Submit Document Feedback  
Product Folder Links: DLP471TP  
 
 
 
 
 
 
 
 
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
6.2 Storage Conditions  
Applicable for the DMD as a component or non-operating in a system.  
MIN  
MAX  
85  
24  
36  
6
UNIT  
°C  
TDMD  
DMD temperature  
40  
TDP-AVG  
TDP-ELR  
CTELR  
Average dew point temperature, non-condensing(1)  
Elevated dew point temperature range, non-condensing(2)  
Cumulative time in elevated dew point temperature range  
°C  
28  
°C  
months  
(1) The average temperature over time (including storage and operating temperatures) that the device is not in the elevated dew point  
temperature range.  
(2) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total  
cumulative time of CTELR  
.
6.3 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V
Electrostatic  
discharge  
V(ESD)  
Charged device model (CDM), per JEDEC specification ANSI/ESDA/JEDEC  
JS-002(2)  
±500  
V
(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.  
6.4 Recommended Operating Conditions  
Over operating free-air temperature range and supply voltages (unless otherwise noted). The functional performance of the  
device specified in this data sheet is achieved when operating the device within the limits defined by the Recommended  
Operating Conditions. No level of performance is implied when operating the device above or below the Recommended  
Operating Conditions limits.  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGES (1) (2)  
Supply voltage for LVCMOS core logic and low speed  
interface (LSIF)  
VDD  
1.71  
1.8  
1.95  
V
VDDA  
Supply voltage for high speed serial interface (HSSI) receivers  
Supply voltage for HVCMOS and micromirror electrode(3)  
Supply voltage for micromirror electrode  
Supply voltage for micromirror electrode  
Supply voltage delta, absolute value(4)  
1.71  
9.5  
1.8  
10  
1.95  
10.5  
V
V
V
V
V
VOFFSET  
VBIAS  
17.5  
18  
18.5  
VRESET  
14.5  
14  
13.5  
0.3  
| VDDA VDD  
|
| VBIAS VOFFSET  
|
Supply voltage delta, absolute value(5)  
Supply voltage delta, absolute value  
|
10.5  
33  
V
V
| VBIAS VRESET  
LVCMOS INPUT  
VIH  
VIL  
High level input voltage(6)  
Low level input voltage(6)  
0.7 × VDD  
V
V
0.3 × VDD  
LOW SPEED SERIAL INTERFACE (LSIF)  
fCLOCK  
DCDIN  
LSIF clock frequency (LS_CLK)(7)  
108  
44%  
150  
575  
700  
90  
120  
350  
130  
56%  
440  
MHz  
LSIF duty cycle distortion (LS_CLK)  
LSIF differential input voltage magnitude(7)  
LSIF voltage(7)  
| VID  
|
mV  
mV  
mV  
Ω
VLVDS  
VCM  
ZLINE  
ZIN  
1520  
1300  
110  
Common mode voltage(7)  
900  
100  
100  
Line differential impedance (PWB/trace)  
Internal differential termination resistance  
80  
120  
Ω
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DLP471TP  
English Data Sheet: DLPS173  
 
 
 
 
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
6.4 Recommended Operating Conditions (continued)  
Over operating free-air temperature range and supply voltages (unless otherwise noted). The functional performance of the  
device specified in this data sheet is achieved when operating the device within the limits defined by the Recommended  
Operating Conditions. No level of performance is implied when operating the device above or below the Recommended  
Operating Conditions limits.  
MIN  
TYP  
MAX  
UNIT  
HIGH SPEED SERIAL INTERFACE (HSSI)  
fCLOCK  
HSSI clock frequency (DCLK)(8)  
1.2  
44  
1.6  
56  
GHz  
%
DCDIN  
HSSI duty cycle distortion (DCLK)  
50  
| VID | Data  
| VID | CLK  
VCMDC Data  
VCMDC CLK  
HSSI differential input voltage magnitude Data Lane(8)  
HSSI differential input voltage magnitude Clock Lane(8)  
Input common mode voltage (DC) Data Lane(8)  
Input common mode voltage (DC) Clk Lane(8)  
100  
295  
200  
200  
600  
600  
800  
800  
mV  
mV  
mV  
mV  
600  
600  
AC peak to peak (ripple) on common mode voltage of Data  
Lane and Clock Lane(8)  
VCMACp-p  
100  
mV  
ZLINE  
Line differential impedance (PWB/trace)  
100  
100  
Ω
Ω
ZIN  
Internal differential termination resistance. ( RXterm  
)
80  
120  
ENVIRONMENTAL  
Array temperature, longterm operational(9) (10) (11) (12)  
Array temperature, short-term operational, 500 hr max(10) (13)  
Window temperature, operational(14)  
10  
0
40 to 70 (11)  
°C  
°C  
°C  
TARRAY  
10  
85  
TWINDOW  
Absolute temperature delta between any point on the window  
edge and the ceramic test point TP1(15)  
|TDELTA  
|
15  
°C  
Average dew point temperature (noncondensing)(16)  
Elevated dew point temperature range (non-condensing)(17)  
Cumulative time in elevated dew point temperature range  
TDP-AVG  
TDP-ELR  
CTELR  
24  
36  
6
°C  
°C  
28  
months  
ILLUMINATION  
ILLUV  
Illumination power at wavelengths < 410 nm(9)  
10 mW/cm2  
ILLVIS  
20.5  
W/cm2  
Illumination power at wavelengths 410 nm and 800  
nm(19)  
ILLIR  
Illumination power at wavelengths > 800 nm  
10 mW/cm2  
ILLBLU  
6.5  
1.2  
55  
W/cm2  
W/cm2  
deg  
Illumination power at wavelengths 410 nm and 475  
nm(19)  
ILLBLU1  
ILLθ  
Illumination power at wavelengths 410 nm and 445  
nm(19)  
Illumination marginal ray angle(18)  
(1) All power supply connections are required to operate the DMD: VDD, VDDA, VOFFSET, VBIAS, and VRESET. All VSS connections are  
required to operate the DMD.  
(2) All voltage values are with respect to the VSS ground pins.  
(3) VOFFSET supply transients must fall within specified max voltages.  
(4) To prevent excess current, the supply voltage delta | VDDA VDD | must be less than specified limit.  
(5) To prevent excess current, the supply voltage delta | VBIAS VOFFSET | must be less than specified limit.  
(6) LVCMOS input pin is DMD_DEN_ARSTZ.  
(7) See the low speed interface (LSIF) timing requirements in Timing Requirements.  
(8) See the high speed serial interface (HSSI) timing requirements in Timing Requirements.  
(9) Simultaneous exposure of the DMD to the maximum Recommended Operating Conditions for temperature and UV illumination will  
reduce device lifetime.  
(10) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point  
(TP1) shown in 7-1 and the package thermal resistance using the Micromirror Array Temperature Calculation.  
(11) Per 6-1, the maximum operational array temperature should be derated based on the micromirror landed duty cycle that the DMD  
experiences in the end application. Refer to Micromirror Landed-On/Landed-Off Duty Cycle for a definition of micromirror landed duty  
cycle.  
(12) Long-term is defined as the usable life of the device.  
(13) Short-term is the total cumulative time over the useful life of the device.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
10  
Submit Document Feedback  
Product Folder Links: DLP471TP  
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
(14) The locations of thermal test points TP2, TP3, TP4, and TP5 shown in 7-1 are intended to measure the highest window edge  
temperature. For most applications, the locations shown are representative of the highest window edge temperature. If a particular  
application causes additional points on the window edge to be at a higher temperature, test points should be added to those locations.  
(15) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown in  
7-1. The window test points TP2, TP3, TP4, and TP5 shown in 7-1 are intended to result in the worst case delta  
temperature. If a particular application causes another point on the window edge to result in a larger delta in temperature, that point  
should be used.  
(16) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range'.  
(17) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total  
cumulative time of CTELR  
.
(18) The maximum marginal ray angle of the incoming illumination light at any point in the micromirror array, including Pond of Micromirrors  
(POM), should not exceed 55 degrees from the normal to the device array plane. The device window aperture has not necessarily  
been designed to allow incoming light at higher maximum angles to pass to the micromirrors, and the device performance has not  
been tested nor qualified at angles exceeding this. Illumination light exceeding this angle outside the micromirror array (including POM)  
will contribute to thermal limitations described in this document, and may negatively affect lifetime.  
(19) The maximum allowable optical power incident on the DMD is limited by the maximum optical power density for each wavelength  
range specified and the micromirror array temperature (TARRAY).  
80  
70  
60  
50  
40  
30  
0/100  
100/0  
5/95 10/90 15/85 20/80 25/75 30/70 35/65 40/60 45/55 50/50  
65/35  
95/5  
90/10  
85/15  
80/20  
75/25  
70/30  
60/40  
55/45  
50/50  
Micromirror Landed Duty Cycle  
6-1. Maximum Recommended Array TemperatureDerating Curve  
6.5 Thermal Information  
DLP471TP  
FQQ PACKAGE  
270 PIN  
THERMAL METRIC  
Unit  
Thermal Resistance, active area to test point 1 (TP1)(1)  
1.0  
°C/W  
(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of  
maintaining the package within the temperature range specified in the 6.4. The total heat load on the DMD is largely driven by the  
incident light absorbed by the active area; although other contributions include light energy absorbed by the window aperture and  
electrical power dissipation of the array. Optical systems should be designed to minimize the light energy falling outside the window  
clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DLP471TP  
English Data Sheet: DLPS173  
 
 
 
 
 
 
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
MAX UNIT  
6.6 Electrical Characteristics  
Over operating free-air temperature range and supply voltages (unless otherwise noted)  
PARAMETER (1) (2)  
TEST CONDITIONS (1)  
MIN  
TYP  
CURRENT TYPICAL  
(3)  
IDD  
Supply current VDD  
Supply current VDDA  
800  
1000  
20  
1200 mA  
1200 mA  
25 mA  
4.0 mA  
mA  
(3)  
IDDA  
(4) (5)  
IOFFSET  
IBIAS  
Supply current VOFFSET  
(4) (5)  
Supply current VBIAS  
Supply current VRESET  
2.5  
(5)  
IRESET  
-9.3  
-6.9  
POWER TYPICAL  
(3)  
PDD  
Supply power dissipation VDD  
1440  
1620  
230  
2437.5 mW  
2340 mW  
(3)  
PDDA  
Supply power dissipation VDDA  
Supply power dissipation VOFFSET  
(4) (5)  
(4) (5)  
POFFSET  
367.5 mW  
70.3 mW  
PBIAS  
Supply power dissipation VBIAS  
Supply power dissipation VRESET  
Supply power dissipation Total  
43.2  
(5)  
PRESET  
107.8  
3441  
152.25 mW  
5367.55 mW  
PTOTAL  
LVCMOS INPUT  
IIL  
Low level input current (6)  
High level input current (6)  
VDD = 1.95 V, VI = 0 V  
nA  
100  
0.8 x VDD  
100  
IIH  
VDD = 1.95 V, VI = 1.95 V  
135 uA  
LVCMOS OUTPUT  
VOH  
VOL  
DC output high voltage (7)  
DC output low voltage (7)  
IOH = -2 mA  
IOL = 2 mA  
V
0.2 x VDD  
V
RECEIVER EYE CHARACTERISTICS  
A1  
A2  
X1  
X2  
Minimum data eye opening (8) (9)  
400  
600 mV  
600 mV  
Maximum data signal swing (8) (9)  
Maximum data eye closure (8)  
Maximum data eye closure (8)  
0.275  
UI  
UI  
0.4  
20  
Drift between Clock and Data between  
Training Patterns  
| tDRIFT  
|
ps  
CAPACITANCE  
CIN  
Input capacitance LVCMOS  
f = 1 MHz  
f = 1 MHz  
10 pF  
20 pF  
Input capacitance LSIF (low speed  
interface)  
CIN  
Input capacitance HSSI (high speed serial  
interface)  
CIN  
f = 1 MHz  
f = 1 MHz  
20 pF  
10 pF  
COUT  
Output capacitance  
(1) All power supply connections are required to operate the DMD: VDD, VDDA, VOFFSET, VBIAS, and VRESET. All VSS connections are  
required to operate the DMD.  
(2) All voltage values are with respect to the ground pins (VSS).  
(3) To prevent excess current, the supply voltage delta | VDDA VDD | must be less than specified limit.  
(4) To prevent excess current, the supply voltage delta | VBIAS VOFFSET | must be less than specified limit.  
(5) Supply power dissipation based on 3 global resets in 200 µs.  
(6) LVCMOS input specifications are for pin DMD_DEN_ARSTZ.  
(7) LVCMOS output specification is for pins LS_RDATA_A and LS_RDATA_B.  
(8) Refer to 6-11, Receiver Eye Mask (1e-12 BER).  
(9) Defined in Recommended Operating Conditions.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
12  
Submit Document Feedback  
Product Folder Links: DLP471TP  
 
 
 
 
 
 
 
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
6.7 Switching Characteristics  
Over operating free-air temperature range and supply voltages (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Output propagation, Clock to Q (C2Q), rising edge of  
LS_CLK (differential clock signal) input to LS_RDATA  
output. (1)  
CL = 5 pF  
11.1  
11.3  
ns  
ns  
tpd  
CL = 10 pF  
Slew rate, LS_RDATA  
0.5  
V/ns  
20%80%, CL <10pF  
Output duty cycle distortion, LS_RDATA_A and  
LS_RDATA_B  
50-(C2Q rise C2Q fall )  
×130e6×100  
40%  
60%  
(1) See 6-2.  
LS_CLK_P  
1
0
1
0
1
0
1
0
1
0
LS_CLK_N  
1 period  
LS_WDATA_P  
LS_WDATA_N  
Stop (1)  
Start (0)  
tPD  
LS_RDATA_A  
BIST_A  
Acknowledge  
6-2. Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DLP471TP  
English Data Sheet: DLPS173  
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
MAX UNIT  
6.8 Timing Requirements  
Over operating free-air temperature range and supply voltages (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
LVCMOS  
tr  
tf  
Rise time(1)  
Fall time(1)  
20% to 80% reference points  
25  
25  
ns  
ns  
80% to 20% reference points  
LOW SPEED INTERFACE (LSIF)  
tr  
Rise time(2)  
20% to 80% reference points  
450  
450  
ps  
ps  
ns  
ns  
tf  
Fall time(2)  
80% to 20% reference points  
tW(H)  
tW(L)  
Pulse duration high(3)  
Pulse duration low(3)  
LS_CLK. 50% to 50% reference points  
LS_CLK. 50% to 50% reference points  
3.1  
3.1  
LS_WDATA valid before rising edge of LS_CLK  
(differential)  
tsu  
th  
Setup time(4)  
Hold time(4)  
1.5  
1.5  
ns  
ns  
LS_WDATA valid after rising edge of LS_CLK  
(differential)  
HIGH SPEED SERIAL INTERFACE (HSSI)  
Rise time - data(5) (6)  
50  
50  
115  
135  
115  
135  
ps  
ps  
ps  
ps  
ns  
ns  
From A1 to A1 minimum eye height specification  
From A1 to A1 minimum eye height specification  
From A1 to A1 minimum eye height specification  
From A1 to A1 minimum eye height specification  
DCLK. 50% to 50% reference points  
tr  
Rise time - clock(5) (6)  
Fall time data(5) (6)  
50  
tf  
Fall time clock(5) (6)  
50  
tW(H)  
tW(L)  
Pulse duration high(7)  
Pulse duration low(7)  
0.275  
0.275  
DCLK. 50% to 50% reference points  
(1) See 6-9 for rise time and fall time for LVCMOS.  
(2) See 6-4 for rise time and fall time for LSIF.  
(3) See 6-4 for pulse duration high and low time for LSIF.  
(4) See 6-4 for setup and hold time for LSIF.  
(5) See 6-11 for rise time and fall time for HSSI Eye Characteristics.  
(6) See 6-12 for rise time and fall time for HSSI.  
(7) See 6-12 for pulse duration high and low for HSSI.  
1.255 V  
V
LVDS(max)  
V
V
CM  
ID  
V
LVDS(min)  
0.575 V  
A. See 方程1 and 方程2  
6-3. LSIF Waveform Requirements  
1
VLVDS max = V  
:
; + , × V  
,
;
ID max  
;
:
CM max  
:
2
(1)  
(2)  
1
VLVDS min = V  
:
; F , × V  
,
;
ID max  
;
:
CM min  
:
2
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
14  
Submit Document Feedback  
Product Folder Links: DLP471TP  
 
 
 
 
 
 
 
 
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
t
t
W(H)|  
W(L)|  
LS_CLK_P  
50%  
LS_CLK_N  
t
t
H|  
SU|  
LS_WDATA_P  
50%  
LS_WDATA_N  
t
WINDOW|  
6-4. LSIF Timing Requirements  
V
, V  
, V  
LS_CLK_P LS_CLK_N LS_WDATA_P LS_WDATA_N  
, V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
tr  
tf  
6-5. LSIF Rise, Fall Time Slew  
+
(VIP + VIN  
)
VCM  
=
œ
2
LS_CLK_P,  
LS_WDATA_P  
VID  
LS_CLK_N,  
LS_WDATA_N  
LVDS  
Receiver  
VCM  
VIP  
VIN  
6-6. LSIF Voltage Requirements  
LS_CLK_P  
LS_WDATA_P  
Internal  
Termination  
ESD  
ESD  
(ZIN  
)
LVDS  
Receiver  
LS_CLK_N  
LS_WDATA_N  
6-7. LSIF Equivalent Input  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DLP471TP  
English Data Sheet: DLPS173  
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
V
IH  
V
T+  
DV  
T
V
Tœ  
V
IL  
DMD_DEN_ARTZ  
Time  
6-8. LVCMOS Input Hysteresis  
DMD_DEN_ARSTZ  
100  
90  
80  
V
OH  
70  
60  
50  
40  
30  
20  
V
OL  
10  
0
tr  
t
f
6-9. LVCMOS Rise, Fall Time Slew Rate  
t
f
V
HSSI(max)  
V
V
ID  
CM  
V
HSSI(min)  
t
r
A. See 方程3 and 方程4  
6-10. HSSI Waveform Requirements  
1
VHSSI max = V  
:
; + , × V  
,
;
ID max  
;
:
CM max  
:
2
(3)  
1
VHSSI min = V  
:
; F , × V  
,
;
ID max  
;
:
CM min  
:
2
(4)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
16  
Submit Document Feedback  
Product Folder Links: DLP471TP  
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
A2  
A1  
0V  
-A1  
-A2  
X1  
1-X1  
X2 1-X2  
0
1 UI  
6-11. HSSI Eye Characteristics  
t
C|  
t
t
W(H)|  
W(L)|  
DCLK_?P  
50%  
DCLK_?N  
6-12. HSSI CLK Characteristics  
6.9 System Mounting Interface Loads  
PARAMETER  
Thermal interface area(1)  
MIN  
TYP  
MAX  
100  
UNIT  
N
Electrical interface area(1)  
245  
N
(1) The load should be uniformly applied within the area shown in 6-13.  
Electrical Interface Area  
Thermal Interface Area  
6-13. System Mounting Interface Loads  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DLP471TP  
English Data Sheet: DLPS173  
 
 
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
6.10 Micromirror Array Physical Characteristics  
PARAMETER DESCRIPTION  
VALUE  
1920  
1080  
5.4  
UNIT  
Number of active columns(1) (2)  
Number of active rows(1) (2)  
Micromirror (pixel) pitch (1)  
M
micromirrors  
micromirrors  
μm  
N
P
Micromirror active array width(1)  
Micromirror active array height(1)  
Micromirror active border(3)  
Micromirror pitch × number of active columns  
Micromirror pitch × number of active rows  
Pond of micromirror (POM)  
10.368  
5.832  
20  
mm  
mm  
micromirrors/side  
(1) See 6-14.  
(2) The fast switching speed of the DMD micromirrors combined with advanced DLP image processing algorithms enables each  
micromirror  
to display four distinct pixels on the screen during every frame, resulting in a full 3840 × 2160 pixel image being displayed.  
(3) The structure and qualities of the border around the active array includes a band of partially functional micromirrors referred to as the  
Pond Of Micromirrors (POM). These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state  
but still require an electrical bias to tilt toward the OFF state.  
Off-State  
Light Path  
0
1
2
3
Active Micromirror Array  
N x P  
M x N Micromirrors  
Nœ 4  
Nœ 3  
Nœ 2  
Nœ 1  
M x P  
P
Incident  
Illumination  
Light Path  
P
P
Pond Of Micromirrors (POM) omitted for clarity.  
Details omitted for clarity.  
Not to scale.  
P
6-14. Micromirror Array Physical Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
18  
Submit Document Feedback  
Product Folder Links: DLP471TP  
 
 
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
6.11 Micromirror Array Optical Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
Micromirror tilt angle  
Landed state (1)  
17  
1.4  
°
°
°
°
Micromirror tilt angle tolerance(2) (3) (4) (5)  
Micromirror tilt direction (6) (7)  
Micromirror tilt direction (6) (7)  
Micromirror crossover time (8)  
Micromirror switching time (9)  
1.4  
Landed ON state  
Landed OFF state  
Typical performance  
Typical performance  
Gray 10 Screen (12)  
Gray 10 Screen (12)  
White Screen  
270  
180  
1
3
μs  
6
Bright pixel(s) in active area (11)  
0
1
4
0
0
Bright pixel(s) in the POM (13)  
Dark pixel(s) in the active area (14)  
Adjacent pixel(s) (15)  
Image  
micromirrors  
performance(10)  
Any Screen  
Unstable pixel(s) in active area (16)  
Any Screen  
(1) Measured relative to the plane formed by the overall micromirror array.  
(2) Additional variation exists between the micromirror array and the package datums.  
(3) Represents the landed tilt angle variation relative to the nominal landed tilt angle.  
(4) Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different  
devices.  
(5) For some applications, it is critical to account for the micromirror tilt angle variation in the overall system optical design. With some  
system optical designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field  
reflected from the micromirror array. With some system optical designs, the micromirror tilt angle variation between devices may result  
in colorimetry variations, system efficiency variations or system contrast variations.  
(6) When the micromirror array is landed (not parked), the tilt direction of each individual micromirror is dictated by the binary contents of  
the CMOS memory cell associated with each individual micromirror. A binary value of 1 results in a micromirror landing in the ON State  
direction. A binary value of 0 results in a micromirror landing in the OFF State direction. See 6-15.  
(7) Micromirror tilt direction is measured as in a typical polar coordinate system: Measuring counter-clockwise from a 0° degree reference  
which is aligned with the +X Cartesian axis.  
(8) The time required for a micromirror to nominally transition from one landed state to the opposite landed state.  
(9) The minimum time between successive transitions of a micromirror.  
(10) Conditions of Acceptance: All DMD image quality returns will be evaluated using the following projected image test conditions:  
Test set degamma shall be linear  
Test set brightness and contrast shall be set to nominal  
The diagonal size of the projected image shall be a minimum of 20 inches  
The projections screen shall be 1X gain  
The projected image shall be inspected from a 38 inch minimum viewing distance  
The image shall be in focus during all image quality tests  
(11) Bright pixel definition: A single pixel or mirror that is stuck in the ON position and is visibly brighter than the surrounding pixels  
(12) Gray 10 screen definition: All areas of the screen are colored with the following settings:  
Red = 10/255  
Green = 10/255  
Blue = 10/255  
(13) POM definition: Rectangular border of off-state mirrors surrounding the active area  
(14) Dark pixel definition: A single pixel or mirror that is stuck in the OFF position and is visibly darker than the surrounding pixels  
(15) Adjacent pixel definition: Two or more stuck pixels sharing a common border or common point, also referred to as a cluster  
(16) Unstable pixel definition: A single pixel or mirror that does not operate in sequence with parameters loaded into memory. The unstable  
pixel appears to be flickering asynchronously with the image  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DLP471TP  
English Data Sheet: DLPS173  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
Border micromirrors omitted for clarity  
Off State  
Light Path  
Details omitted for clarity.  
Not to scale.  
0
1
2
3
Tilted Axis of  
Pixel Rotation  
Off-State  
Landed Edge  
On-State  
Landed Edge  
Nœ 4  
Nœ 3  
Nœ 2  
Nœ 1  
Incident  
Illumination  
Light Path  
6-15. Micromirror Landed Orientation and Tilt  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
20  
Submit Document Feedback  
Product Folder Links: DLP471TP  
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
6.12 Window Characteristics  
DESCRIPTION(1)  
MIN  
TYP MAX  
Corning Eagle XG  
1.5119  
Window material  
Window refractive index  
Window aperture (2)  
Illumination overfill (3)  
At wavelength 546.1 nm  
See (2)  
See (3)  
.
.
Minimum within the wavelength range 420 nm to  
680 nm. Applies to all angles 0° to 30° AOI(4)  
97%  
97%  
Window transmittance, single-pass  
through both surfaces and glass  
Average over the wavelength range 420 nm to 680  
nm. Applies to all angles 30° to 45° AOI(4)  
(1) See 7.5 for more information.  
(2) See the package mechanical characteristics for details regarding the size and location of the window aperture.  
(3) The active area of the DLP471TP device is surrounded by an aperture on the inside of the DMD window surface that masks structures  
of the DMD device assembly from normal view. The aperture is sized to anticipate several optical conditions. Overfill light illuminating  
the area outside the active array can scatter and create adverse effects to the performance of an end application using the DMD. The  
illumination optical system should be designed to limit light flux incident outside the active array to less than 10% of the average flux  
level in the active area. Depending on the particular system's optical architecture and assembly tolerances, the amount of overfill light  
on the outside of the active array may cause system performance degradation.  
(4) Angle of incidence (AOI) is the angle between an incident ray and the normal to a reflecting or refracting surface.  
6.13 Chipset Component Usage Specification  
Reliable function and operation of the DLP471TP DMD requires that it be used in conjunction with the other  
components of the applicable DLP chipset, including those components that contain or implement TI DMD  
control technology. TI DMD control technology consists of the TI technology and devices used for operating or  
controlling a DLP DMD.  
备注  
TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system  
operating conditions exceeding limits described previously.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DLP471TP  
English Data Sheet: DLPS173  
 
 
 
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DMD is a 0.47-inch diagonal spatial light modulator which consists of an array of highly reflective aluminum  
micromirrors. The DMD is an electrical input, optical output micro-optical-electrical-mechanical system  
(MOEMS). The fast switching speed of the DMD micromirrors combined with advanced DLP image processing  
algorithms enables each micromirror to display four distinct pixels on the screen during every frame, resulting in  
a full 3840 × 2160 pixel image being displayed. The electrical interface is low voltage differential signaling  
(LVDS). The DMD consists of a two-dimensional array of 1-bit CMOS memory cells. The array is organized in a  
grid of M memory cell columns by N memory cell rows. Refer to the Functional Block Diagram. The positive or  
negative deflection angle of the micromirrors can be individually controlled by changing the address voltage of  
underlying CMOS addressing circuitry and micromirror reset signals (MBRST).  
The DLP 0.474K UHD chipset is comprised of the DLP471TP DMD, DLPC6540 display controller, and the  
DLPA3005 PMIC and the LED driver. To ensure reliable operation, the DLP471TP DMD must always be used  
with the DLP display controller and the PMIC specified in the chipset.  
7.2 Functional Block Diagram  
Channel A Interface  
Control  
Control  
Column Read/Write  
Bit Lines  
(0,0)  
Word  
Lines  
Voltages  
Voltage  
Generators  
Micromirror  
Array  
Row  
(M-1,N-1)  
Bit Lines  
Control  
Column Read/Write  
Control  
Channel B Interface  
.
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
22  
Submit Document Feedback  
Product Folder Links: DLP471TP  
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Power Interface  
The DMD requires 4 DC voltages: 1.8 V source, VOFFSET, VRESET, and VBIAS. In a typical LED-based system, 1.8  
V is provided by a TPS54320 and the VOFFSET, VRESET, and VBIAS is managed by the DLPA3005 PMIC and LED  
driver.  
7.3.2 Timing  
The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its  
transmission line effects must be considered. Timing reference loads are not intended to be precise  
representations of any particular system environment or depiction of the actual load presented by a production  
test. System designers should use IBIS or other simulation tools to correlate the timing reference load to a  
system environment. The load capacitance value stated is only for characterization and measurement of AC  
timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving.  
7.4 Device Functional Modes  
DMD functional modes are controlled by the DLPC6540 display controller. See the DLPC6540 display controller  
data sheet or contact a TI applications engineer.  
7.5 Optical Interface and System Image Quality Considerations  
TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment  
optical performance involves making trade-offs between numerous component and system design parameters.  
Optimizing system optical performance and image quality strongly relate to optical system design parameter  
trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical  
performance is contingent on compliance to the optical system operating conditions described in the following  
sections.  
7.5.1 Numerical Aperture and Stray Light Control  
The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area  
should be the same. This angle should not exceed the nominal device micromirror tilt angle unless appropriate  
apertures are added in the illumination and/or projection pupils to block out flat-state and stray light from the  
projection lens. The micromirror tilt angle defines DMD capability to separate the "ON" optical path from any  
other light path, including undesirable flat-state specular reflections from the DMD window, DMD border  
structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture  
exceeds the micromirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger  
than the illumination numerical aperture angle (and vice versa), contrast degradation and objectionable artifacts  
in the display border and/or active area could occur.  
7.5.2 Pupil Match  
TIs optical and image quality specifications assume that the exit pupil of the illumination optics is nominally  
centered within 2° of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable  
artifacts in the display border and/or active area, which may require additional system apertures to control,  
especially if the numerical aperture of the system exceeds the pixel tilt angle.  
7.5.3 Illumination Overfill  
The active area of the device is surrounded by an aperture on the inside DMD window surface that masks  
structures of the DMD chip assembly from normal view, and is sized to anticipate several optical operating  
conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window  
aperture opening and other surface anomalies that may be visible on the screen. The illumination optical system  
should be designed to limit light flux incident anywhere on the window aperture from exceeding approximately  
10% of the average flux level in the active area. Depending on the particular system optical architecture, overfill  
light may have to be further reduced below the suggested 10% level in order to be acceptable.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DLP471TP  
English Data Sheet: DLPS173  
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
7.6 Micromirror Array Temperature Calculation  
TP2  
Array  
2X 7.37  
TP4  
TP5  
2X 12.43  
TP3  
TP3 (TP2)  
Window Edge  
(4 surfaces)  
TP4  
TP5  
TP1  
5.45  
12.43  
TP1  
7-1. DMD Thermal Test Points  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
24  
Submit Document Feedback  
Product Folder Links: DLP471TP  
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
Micromirror array temperature cannot be measured directly, therefore it must be computed analytically from  
measurement points on the outside of the package, the package thermal resistance, the electrical power, and  
the illumination heat load. The relationship between array temperature and the reference ceramic temperature  
(thermal test TP1 in 7-1) is provided by the following equations:  
TARRAY = TCERAMIC + (QARRAY × RARRAY-TO-CERAMIC  
)
QARRAY = QELECTRICAL + QILLUMINATION  
where  
TARRAY = Computed array temperature (°C)  
TCERAMIC = Measured ceramic temperature (°C) (TP1 location)  
RARRAY-TO-CERAMIC = Thermal resistance of package specified in 6.5 from array to ceramic TP1 (°C/Watt)  
QARRAY = Total DMD power on the array (W) (electrical + absorbed)  
QELECTRICAL = Nominal electrical power (W)  
QINCIDENT = Incident illumination optical power (W)  
QILLUMINATION = (DMD average thermal absorptivity × QINCIDENT) (W)  
DMD average thermal absorptivity = 0.4  
The electrical power dissipation of the DMD is variable and depends on the voltages, data rates and operating  
frequencies. A nominal electrical power dissipation to use when calculating array temperature is 2.5 Watts. The  
absorbed power from the illumination source is variable and depends on the operating state of the micromirrors  
and the intensity of the light source. The equations shown above are valid for a single chip or multichip DMD  
system. It assumes an illumination distribution of 83.7% on the active array, and 16.3% on the array border.  
The sample calculation for a typical projection application is as follows:  
QINCIDENT = 9.4 W (measured)  
TCERAMIC = 55.0°C (measured)  
QELECTRICAL = 2.5 W  
QARRAY = 2.5 W + (0.40 × 9.4 W) = 6.26 W  
TARRAY = 55.0°C + (6.26 W × 1.0°C/W) = 61.3°C  
7.7 Micromirror Power Density Calculation  
The calculation of the optical power density of the illumination on the DMD in the different wavelength bands  
uses the total measured optical power on the DMD, percent illumination overfill, area of the active array, and  
ratio of the spectrum in the wavelength band of interest to the total spectral optical power.  
ILLUV = [OPUV-RATIO × QINCIDENT] × 1000 ÷ AILL (mW/cm2)  
ILLVIS = [OPVIS-RATIO × QINCIDENT] ÷ AILL (W/cm2)  
ILLIR = [OPIR-RATIO × QINCIDENT] × 1000 ÷ AILL (mW/cm2)  
ILLBLU = [OPBLU-RATIO × QINCIDENT] ÷ AILL (W/cm2)  
ILLBLU1 = [OPBLU1-RATIO × QINCIDENT] ÷ AILL (W/cm2)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DLP471TP  
English Data Sheet: DLPS173  
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
AILL = AARRAY ÷ (1 - OVILL) (cm2)  
where:  
ILLUV = UV illumination power density on the DMD (mW/cm2)  
ILLVIS = VIS illumination power density on the DMD (W/cm2)  
ILLIR = IR illumination power density on the DMD (mW/cm2)  
ILLBLU = BLU illumination power density on the DMD (W/cm2)  
ILLBLU1 = BLU1 illumination power density on the DMD (W/cm2)  
AILL = illumination area on the DMD (cm2)  
QINCIDENT = total incident optical power on DMD (W) (measured)  
AARRAY = area of the array (cm 2) (data sheet)  
OVILL = percent of total illumination on the DMD outside the array (%) (optical model)  
OPUV-RATIO = ratio of the optical power for wavelengths <410 nm to the total optical power in the illumination  
spectrum (spectral measurement)  
OPVIS-RATIO = ratio of the optical power for wavelengths 410 and 800 nm to the total optical power in the  
illumination spectrum (spectral measurement)  
OPIR-RATIO = ratio of the optical power for wavelengths >800 nm to the total optical power in the illumination  
spectrum (spectral measurement)  
OPBLU-RATIO = ratio of the optical power for wavelengths 410 and 475 nm to the total optical power in the  
illumination spectrum (spectral measurement)  
OPBLU1-RATIO = ratio of the optical power for wavelengths 410 and 445 nm to the total optical power in the  
illumination spectrum (spectral measurement)  
The illumination area varies and depends on the illumination overfill. The total illumination area on the DMD is  
the array area and overfill area around the array. The optical model is used to determine the percent of the total  
illumination on the DMD that is outside the array (OVILL) and the percent of the total illumination that is on the  
active array. From these values the illumination area (AILL) is calculated. The illumination is assumed to be  
uniform across the entire array.  
From the measured illumination spectrum, the ratio of the optical power in the wavelength bands of interest to  
the total optical power is calculated.  
Sample calculation:  
QINCIDENT = 9.40 W (measured)  
AARRAY = (1.0368 × 0.5832) = 0.6047 cm2 (data sheet)  
OVILL = 16.3% (optical model)  
OPUV-RATIO = 0.00021 (spectral measurement)  
OPVIS-RATIO = 0.99977 (spectral measurement)  
OPIR-RATIO = 0.00002 (spectral measurement)  
OPBLU-RATIO = 0.28100 (spectral measurement)  
OPBLU1-RATIO = 0.03200 (spectral measurement)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
26  
Submit Document Feedback  
Product Folder Links: DLP471TP  
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
AILL = 0.6047 ÷ (1 - 0.163) = 0.7224 cm2  
ILLUV = [0.00021 × 9.40W] × 1000 ÷ 0.7224 cm2 = 2.732 mW/cm2  
ILLVIS = [0.99977 × 9.40W] ÷ 0.7224 cm2 = 13.01 W/cm2  
ILLIR = [0.00002 × 9.40W] × 1000 ÷ 0.7224 cm2 = 0.260 mW/cm2  
ILLBLU = [0.28100 × 9.40W] ÷ 0.7224 cm2 = 3.66 W/cm2  
ILLBLU1 = [0.03200 × 9.40W] ÷ 0.7224 cm2 = 0.42 W/cm2  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DLP471TP  
English Data Sheet: DLPS173  
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
7.8 Micromirror Landed-On/Landed-Off Duty Cycle  
7.8.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle  
The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the percentage of time that an  
individual micromirror is landed in the ON state versus the amount of time the same micromirror is landed in the  
OFF state.  
For example, a landed duty cycle of 100/0 indicates that the referenced pixel is in the ON state 100% of the time  
(and in the OFF state 0% of the time); whereas 0/100 would indicate that the pixel is in the OFF state 100% of  
the time. Likewise, 50/50 indicates that the pixel is ON for 50% of the time (and OFF for 50% of the time).  
Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other  
state (OFF or ON) is considered negligible and is thus ignored.  
Since a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages)  
always add to 100.  
7.8.2 Landed Duty Cycle and Useful Life of the DMD  
Knowing the long-term average landed duty cycle (of the end product or application) is important because  
subjecting all (or a portion) of the DMD micromirror array (also called the active array) to an asymmetric landed  
duty cycle for a prolonged period of time can reduce the DMD useful life.  
Note that it is the symmetry/asymmetry of the landed duty cycle that is of relevance. The symmetry of the landed  
duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a landed  
duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly  
asymmetrical.  
7.8.3 Landed Duty Cycle and Operational DMD Temperature  
Operational DMD temperature and landed duty cycle interact to affect DMD useful life, and this interaction can  
be exploited to reduce the impact that an asymmetrical landed duty cycle has on the DMD useful life. This is  
quantified in the de-rating curve shown in 6-1. The importance of this curve is that:  
All points along this curve represent the same useful life.  
All points above this curve represent lower useful life (and the further away from the curve, the lower the  
useful life).  
All points below this curve represent higher useful life (and the further away from the curve, the higher the  
useful life).  
In practice, this curve specifies the maximum operating DMD temperature that the DMD should be operated at  
for a given long-term average landed duty cycle.  
7.8.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application  
During a given period of time, the landed duty cycle of a given pixel follows from the image content being  
displayed by that pixel.  
For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel  
operates under a 100/0 landed duty cycle during that time period. Likewise, when displaying pure-black, the  
pixel operates under a 0/100 landed duty cycle.  
Between the two extremes (ignoring for the moment color and any image processing that may be applied to an  
incoming image), the landed duty cycle tracks one-to-one with the gray scale value, as shown in 7-1.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
28  
Submit Document Feedback  
Product Folder Links: DLP471TP  
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
7-1. Grayscale Value and Landed Duty Cycle  
GRAYSCALE VALUE  
LANDED DUTY CYCLE  
0%  
10%  
20%  
30%  
40%  
50%  
60%  
70%  
80%  
90%  
100%  
0/100  
10/90  
20/80  
30/70  
40/60  
50/50  
60/40  
70/30  
80/20  
90/10  
100/0  
Accounting for color rendition (but still ignoring image processing) requires knowing both the color intensity (from  
0% to 100%) for each constituent primary color (red, green, and/or blue) for the given pixel as well as the color  
cycle time for each primary color, where color cycle timeis the total percentage of the frame time that a  
given primary must be displayed in order to achieve the desired white point.  
Use 方程5 to calculate the landed duty cycle of a given pixel during a given time period  
Landed Duty Cycle = (Red_Cycle_% × Red_Scale_Value) + (Green_Cycle_% × Green_Scale_Value) + (Blue_Cycle_% (5)  
×
Blue_Scale_Value)  
where  
Red_Cycle_%, represents the percentage of the frame time that red is displayed to achieve the desired white  
point  
Green_Cycle_% represents the percentage of the frame time that green is displayed to achieve the desired  
white point  
Blue_Cycle_%, represents the percentage of the frame time that blue is displayed to achieve the desired  
white point  
For example, assume that the red, green, and blue color cycle times are 30%, 50%, and 20% respectively (in  
order to achieve the desired white point), then the landed duty cycle for various combinations of red, green, blue  
color intensities would be as shown in 7-2 and 7-3.  
7-2. Example Landed Duty Cycle for Full-Color,  
Color Percentage  
CYCLE PERCENTAGE  
RED  
GREEN  
BLUE  
30%  
50%  
20%  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DLP471TP  
English Data Sheet: DLPS173  
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
7-3. Example Landed Duty Cycle for Full-Color  
SCALE VALUE  
GREEN  
0%  
LANDED DUTY  
CYCLE  
RED  
0%  
BLUE  
0%  
0/100  
50/50  
20/80  
30/70  
6/94  
100%  
0%  
0%  
0%  
100%  
0%  
0%  
0%  
100%  
0%  
12%  
0%  
0%  
35%  
0%  
7/93  
0%  
0%  
60%  
0%  
18/82  
70/30  
50/50  
80/20  
13/87  
25/75  
24/76  
100/0  
100%  
0%  
100%  
100%  
0%  
100%  
100%  
0%  
100%  
12%  
0%  
35%  
35%  
60%  
60%  
100%  
12%  
100%  
0%  
100%  
The last factor to account for in estimating the landed duty cycle is any applied image processing. Within the  
DLPC6540 controller, the gamma function affects the landed duty cycle.  
Gamma is a power function of the form Output_Level = A × Input_LevelGamma, where A is a scaling factor that is  
typically set to 1.  
In the DLPC6540 controller, gamma is applied to the incoming image data on a pixel-by-pixel basis. A typical  
gamma factor is 2.2, which transforms the incoming data as shown in 7-2.  
100  
90  
80  
Gamma = 2.2  
70  
60  
50  
40  
30  
20  
10  
0
0
10  
20  
30  
40  
50  
60  
Input Level (%)  
70  
80  
90 100  
D002  
7-2. Example of Gamma = 2.2  
From 7-2, if the gray scale value of a given input pixel is 40% (before gamma is applied), then gray scale  
value will be 13% after gamma is applied. Therefore, it can be seen that since gamma has a direct impact  
displayed gray scale level of a pixel, it also has a direct impact on the landed duty cycle of a pixel.  
Consideration must also be given to any image processing which occurs before the DLPC6540 controller.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
30  
Submit Document Feedback  
Product Folder Links: DLP471TP  
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
DMDs are spatial light modulators which reflect incoming light from an illumination source to one of two  
directions, with the primary direction being into a projection or collection optic. Each application is derived  
primarily from the optical architecture of the system and the format of the data coming into the DLPC6540  
controller. The high tilt pixel in the bottom-illuminated DMD increases brightness performance and enables a  
smaller system footprint for thickness constrained applications. Typical applications using the DLP471TP include  
mobile smart TV and digital signage.  
DMD power-up and power-down sequencing is strictly controlled by the DLPA3005. Refer to 9 for power-up  
and power-down specifications. To ensure reliable operation, the DLP471TP DMD must always be used with  
DLPC6540 controller and a DLPA3005 PMIC/LED driver.  
8.2 Typical Application  
The DLP471TP DMD combined with DLPC6540 digital controller and a power management device provides full  
4K UHD resolution for bright, colorful display applications. See Typical 4K UHD LED Application Diagram , which  
shows the system components needed along with the LED configuration of the DLP 0.474K UHD chipset. The  
components include the DLP471TP DMD, DLPC6540 display controller and the DLPA3005 PMIC and LED  
driver.  
Fan or  
programmable DC supply  
DC  
Supply  
SYSPWR (14.5 V to 20 V)  
DC  
Reg  
L5  
L4  
L3  
VSPI  
1.8 V  
1.8 V @ 3 A for  
DMD and DLPC6540  
GPIO (PROJ_ON)  
Flash (2)  
1.8  
Reg  
ADDR  
DATA  
1.1 V @ 3 A  
(23) (18)  
SYSPWR  
1.1  
Reg  
L2  
VLED  
PROJ_ON  
L1  
Front End  
Device  
I2C BUSY  
DLPA3005  
I2C  
LED_SEL (2)  
POSENSE  
Vx1  
Vx1:  
3840 × 2160  
@ 60Hz  
EEPROM  
I2C  
RESETZ  
INITZ  
3.3 V @ 2 A  
2.5 V  
LDO 1  
LDO 2  
DLPC6540  
Master  
3D L/R  
SPI (2)  
PWRGOOD  
(3)  
VBIAS, VOFFSET, VRESET  
RLIM current sense  
SPI BUS (Ctrl) (4)  
1.15 V  
1.21 V  
1.8 V  
3.3 V  
2-Port HSSI  
USB Mux  
GPIO  
DLPC471TP  
.47 4K UHD DMD  
LS Interface  
1.8 V  
USB 2.0  
TI DLP chipset  
Actuator  
Driver  
4-Position  
Actuator  
USB Camera  
Third party component  
8-1. Typical 4K UHD LED Application Diagram  
8.2.1 Design Requirements  
Other core components of the display system include an illumination source, an optical engine for the  
illumination and projection optics, other electrical and mechanical components, and software. The type of  
illumination used and desired brightness will have a major effect on the overall system design and size.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DLP471TP  
English Data Sheet: DLPS173  
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
The display system uses the DLP471TP as the core imaging device and contains a 0.47-inch array of  
micromirrors. The DLPC6540 controller is the digital interface between the DMD and the rest of the system,  
taking digital input from front end receiver and driving the DMD over a high-speed interface. The DLPA3005  
PMIC serves as a voltage regulator for the DMD, controller, and LED illumination functionality.  
8.2.2 Detailed Design Procedure  
For a complete DLP system, an optical module or light engine is required that contains the DLP471TP DMD,  
associated illumination sources, optical elements, and necessary mechanical components.  
To ensure reliable operation, the DMD must always be used with DLPC6540 display controller and the  
DLPA3005 PMIC and LED driver . Refer to PCB Design Requirements for TI DLP Pico TRP Digital Micromirror  
Devices for the DMD board design and manufacturing handling of the DMD sub assemblies.  
8.2.3 Application Curves  
The typical LED-current-to-luminance relationship when LED illumination is utilized is shown in 8-2.  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
1
2
3
4
5
6
7
LED CURRENT (A)  
8
9
10 11 12  
D001  
8-2. Luminance vs. Current  
8.3 Temperature Sensor Diode  
The software application provides functions to configure the TMP411 to read the DLP471TP DMD temperature  
sensor diode. Customers can use this data to incorporate additional functionality in the overall system design,  
such as adjusting illumination, fan speeds, and so on. All communication between the TMP411 and the  
DLPC6540 controller is completed using the I2C interface. The TMP411 connects to the DMD through the pins  
outlined in 5.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
32  
Submit Document Feedback  
Product Folder Links: DLP471TP  
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
9 Power Supply Recommendations  
The following power supplies are all required to operate the DMD:  
VSS  
VBIAS  
VDD  
VDDA  
VOFFSET  
VRESET  
DMD power-up and power-down sequencing is strictly controlled by the DLP display controller.  
CAUTION  
For reliable operation of the DMD, the following power supply sequencing requirements must be  
followed. Failure to adhere to any of the prescribed power-up and power-down requirements may  
affect device reliability. See the DMD power supply sequencing requirements in 9-1.  
VBIAS, VDD, VDDA, VOFFSET, and VRESET power supplies must be coordinated during power-up and  
power-down operations. Failure to meet any of the below requirements will result in a significant  
reduction in the DMD reliability and lifetime. Common ground VSS must also be connected.  
9-1. Power Supply Sequence Requirements  
SYMBOL  
tDELAY  
PARAMETER  
Delay requirement  
DESCRIPTION  
MIN  
TYP  
MAX UNIT  
from VOFFSET power up to VBIAS power up  
at beginning of power-up sequence delay(1)  
at end of power-up sequence delay(1)  
2
ms  
VOFFSET  
VBIAS  
Supply voltage level  
Supply voltage level  
6
6
V
V
(1) See 9-1, Power-Up Sequence Delay Requirement.  
9.1 DMD Power Supply Power-Up Procedure  
During power-up, VDD and VDDA must always start and settle before VOFFSET plus Delay1 specified in 9-2,  
VBIAS, and VRESET voltages are applied to the DMD.  
During power-up, it is a strict requirement that the voltage difference between VBIAS and VOFFSET must be  
within the specified limit shown in 6.4.  
During power-up, there is no requirement for the relative timing of VRESET with respect to VBIAS  
.
Power supply slew rates during power-up are flexible, provided that the transient voltage levels follow the  
requirements specified in 6.1, in 6.4, and in 9-1.  
During power-up, LVCMOS input pins must not be driven high until after VDD have settled at operating  
voltages listed in 6.4.  
9.2 DMD Power Supply Power-Down Procedure  
During power-down, VDD and VDDA must be supplied until after VBIAS, VRESET, and VOFFSET are discharged to  
within the specified limit of ground. See 9-2.  
During power-down, it is a strict requirement that the voltage difference between VBIAS and VOFFSET must be  
within the specified limit shown in 6.4.  
During power-down, there is no requirement for the relative timing of VRESET with respect to VBIAS  
.
Power supply slew rates during power-down are flexible, provided that the transient voltage levels follow the  
requirements specified in 6.1, in 6.4, and in 9-1.  
During power-down, LVCMOS input pins must be less than specified in 6.4.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DLP471TP  
English Data Sheet: DLPS173  
 
 
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
Note A  
...  
...  
...  
VDD and VDDA  
VSS  
VSS  
Note I  
tDELAY3  
Note B  
ûV < Specification  
VOFFSET  
Note D  
tDELAY1  
VBIAS  
VSS  
VSS  
Note C  
ûV < Specification  
VRESET  
Note E  
...  
...  
Note G  
tDELAY2  
Note H  
DMD_EN_ARSTZ  
Note F  
VSS  
Time  
A. See 5 for the Pin Functions Table.  
B. To prevent excess current, the supply voltage difference |VOFFSET VBIAS| must be less than the specified limit in 6.4.  
C. To prevent excess current, the supply difference |VBIAS VRESET| must be less than the specified limit in 6.4.  
D. VBIAS should power up after VOFFSET has powered up, per the Delay1 specification in 9-2.  
E. DLP controller software initiates the global VBIAS command.  
F. After the DMD micromirror park sequence is complete, the DLP controller software initiates a hardware power-down that activates  
DMD_EN_ARSTZ and disables VBIAS, VRESET , and VOFFSET  
.
G. Under power-loss conditions where emergency DMD micromirror park procedures are being enacted by the DLP controller hardware  
DMD_EN_ARSTZ will go low.  
H. VDD must remain high until after VOFFSET, VBIAS, VRESET go low, per Delay2 specification in 9-2.  
I.  
To prevent excess current, the supply voltage delta |VDDA VDD| must be less than specified limit in 6.4.  
9-1. DMD Power Supply Requirements  
9-2. DMD Power-Supply Requirements  
PARAMETER  
Delay1(1)  
DESCRIPTION  
MIN  
NOM  
MAX  
UNIT  
Delay from VOFFSET settled at recommended operating voltage to  
VBIAS and VRESET power up  
1
2
ms  
Delay VDD must be held high from VOFFSET, VBIAS and VRESET  
powering down.  
Delay2(1)  
50  
us  
(1) See 9-1.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
34  
Submit Document Feedback  
Product Folder Links: DLP471TP  
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The DLP471TP DMD is part of a chipset that is controlled by DLPC6540 display controller in conjunction with the  
DLPA3005 PMIC and LED driver. These guidelines are targeted at designing a PCB board with the DLP471TP  
DMD. The DMD board is a high-speed multi-layer PCB, with primarily high-speed digital logic including double  
data rate 3.2 Gbps and 250 Mbps differential data buses run to the DMD. TI recommends that full or mini power  
planes are used for VOFFSET, VRESET, and VBIAS. Solid planes are required for ground (VSS). The target  
impedance for the PCB is 50 Ω ±10% with exceptions listed in 10-1. TI recommends a 10 layer stack-up as  
described in 10-2. TI recommends manufacturing the PCB with a high quality FR-4 material.  
10.2 Impedance Requirements  
TI recommends a target impedance for the PCB of 50 Ω ±10% for all signals. The exceptions are listed in 表  
10-1.  
10-1. Special Impedance Requirements  
Signal Type  
Signal Name  
Impedance (ohms)  
DMD_HSSI0_N_(07),  
DMD_HSSI0_P_(07),  
DMD_HSSI1_N_(07),  
DMD_HSSI1_P_(07),  
DMD_HSSI0_CLK_N,  
DMD_HSSI0_CLK_P,  
DMD_HSSI1_CLK_N,  
DMD_HSSI1_CLK_P  
100-differential (50-single  
DMD High Speed Data Signals  
ended)  
DMD_LS0_WDATA_N,  
DMD_LS0_WDATA_P,  
DMD_LS0_CLK_N,  
DMD_LS0_CLK_P  
DMD Low Speed Interface  
Signals  
100-differential (50-single  
ended)  
10.3 Layers  
The layer stack-up and copper weight for each layer is shown in 10-2.  
10-2. Layer Stack-Up  
LAYER  
NO.  
LAYER NAME  
COPPER WT. (oz.)  
COMMENTS  
DMD and escapes. Two data input connectors. Top components including  
power generation and two-data input connectors. Low frequency signals  
routing. Should have copper fill (GND) plated up to 1 oz.  
Side A DMD, primary  
components, power mini-  
planes  
0.5 oz. (before  
plating)  
1
2
3
Ground  
0.5  
0.5  
Solid ground plane (net GND) reference for signal layers #1, 3  
High-speed signal layer. High-speed differential data buses from input  
connector to DMD.  
Signal (high frequency)  
4
5
6
7
Ground  
Power  
Power  
Ground  
0.5  
0.5  
0.5  
0.5  
Solid ground plane (net GND) reference for signal layers #3, #5  
Primary split power planes for 1.8 V, 10 V, 14 V, 18 V  
Primary split power planes for 1.8 V, 10 V, 14 V, 18 V  
Solid ground plane (net GND) reference for signal layer #8  
High-speed signal layer. High-speed differential data buses from input  
connector to DMD  
8
9
Signal (high frequency)  
Ground  
0.5  
0.5  
Solid ground plane (net GND) reference for signal layers #8, 10  
Side B secondary  
components, power mini-  
planes  
0.5 oz. (before  
plating)  
Discrete components if necessary. Low-frequency signals routing. Should  
have copper fill plated up to 1 oz.  
10  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DLP471TP  
English Data Sheet: DLPS173  
 
 
 
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
10.4 Trace Width, Spacing  
Unless otherwise specified, TI recommends that all signals follow the 0.005/0.015(Trace-Width/Spacing)  
design rule. Actual trace widths and clearances should be determined and calculated based on an analysis of  
impedance and stack-up requirements.  
The width of all voltage signals shall be maximized as space permits. In particular, the following width and  
spacing requirements shall be observed for the specific signals listed in 10-3.  
10-3. Special Trace Widths, Spacing Requirements  
MINIMUM TRACE  
WIDTH (MIL)  
SIGNAL NAME  
MINIMUM TRACE SPACING (MIL)  
LAYOUT REQUIREMENT  
GND  
MAXIMIZE  
5
Maximize trace width to connecting pin as a minimum.  
Create mini planes on layers 1 and 10 as needed. Connect  
to devices on layers 1 and 10 as necessary with multiple  
vias.  
P1P8V  
100  
15  
Create mini planes on layers 1 and 10 as needed. Connect  
to devices on layers 1 and 10 as necessary.  
VOFFSET  
VRESET  
VBIAS  
40  
40  
40  
15  
15  
15  
Create mini planes on layers 1 and 10 as needed. Connect  
to devices on layers 1 and 10 as necessary.  
Create mini planes on layers 1 and 10 as needed. Connect  
to devices on layers 1 and 10 as necessary.  
10.5 Power  
TI strongly discourages signal routing on power planes or on planes adjacent to power planes. If signals must be  
routed on layers adjacent to power planes, they must not cross splits in power planes to prevent EMI and  
preserve signal integrity.  
Have all internal digital ground (GND) planes connected together in as many places as possible. If possible, all  
internal ground planes should be connected together with a minimum distance between connections of 0.5.  
Extra vias may not be required if there are sufficient ground vias due to normal ground connections of devices.  
The power and ground pins of each component should be connected to the power and ground planes with at  
least one via for each pin. Trace lengths for component power and ground pins should be minimized (ideally,  
less than 0.100).  
Ground plane slots are strongly discouraged.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
36  
Submit Document Feedback  
Product Folder Links: DLP471TP  
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
10.6 Trace Length Matching Recommendations  
Recommended signal trace length matching requirements can be found in 10-4 and 10-5. When length  
matching traces, the longer signals should be routed in a serpentine fashion, keeping the number of turns to a  
minimum and the turn angles no sharper than 45 degrees as opposed to running long traces over large areas of  
the PCB.  
Signals in 10-4 should be routed for data rate operation at up to 3.2 Gbps. Layer changes for these signals  
should be minimized, the number of vias should be minimized. Avoid sharp turns and layer switching while  
keeping lengths to a minimum. When layer changes are necessary, GND vias should be placed around the  
signal vias to provide a signal return path. The distance from one pair of differential signals to another shall be at  
least 2 times the distance within the pair.  
10-4. HSSI High Speed DMD Data Signals  
SIGNAL NAME  
DMD_HSSI0_N(0...7),  
REFERENCE SIGNAL  
Routing Spec  
Unit  
DMD_HSSI0_CLK_N,  
DMD_HSSI_CLK_P  
+/- 0.25  
inch  
DMD_HSSI0_P(0...7)  
DMD_HSSI1_N(0...7),  
DMD_HSSI1_P(0...7)  
DMD_HSSI0_CLK_N,  
DMD_HSSI_CLK_P  
+/- 0.25  
inch  
DMD_HSSI0_CLK_P  
Intra-pair P  
DMD_HSSI1_CLK_P  
Intra-pair N  
+/- 0.05  
+/- 0.01  
inch  
inch  
10-5. Other Timing Critical Signals  
SIGNAL NAME  
Constraints  
Routing Layers  
LS_CLK_P, LS_CLK_N  
LS_WDATA_P,  
LS_WDATA_N  
Intra-pair (P to N)  
Matched to 0.01 inches  
Signal-to-signal  
Layers 3, 8  
LS_RDATA_A  
Matched to +/- 0.25 inches  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DLP471TP  
English Data Sheet: DLPS173  
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.2 Device Support  
11.2.1 Device Nomenclature  
DLP471TP FQQ  
Package  
Device Descriptor  
11-1. Part Number Description  
11.2.2 Device Markings  
The device marking includes both human-readable information and a 2-dimensional matrix code. The human-  
readable information is described in 11-2 and includes the legible character string GHJJJJK DLP471TPFQQ.  
GHJJJJK is the lot trace code and DLP471TPFQQ is the device marking.  
Example: GHJJJJK DLP471TPFQQ  
Two-Dimensional Matrix Code  
(Part Number and Lot Trace Code)  
DMD Part Number  
Lot Trace Code  
11-2. DMD Marking Locations  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
38  
Submit Document Feedback  
Product Folder Links: DLP471TP  
 
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
11.3 Documentation Support  
11.3.1 Related Documentation  
The following documents contain additional information related to the chipset components used with the DMD.  
DLPC6540 Display Controller Data Sheet  
DLPA3005 PMIC/LED Driver Data Sheet  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
DLP® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DLP471TP  
English Data Sheet: DLPS173  
 
 
 
 
 
DLP471TP  
ZHCSNH4B AUGUST 2020 REVISED JULY 2023  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: DLPS173  
40  
Submit Document Feedback  
Product Folder Links: DLP471TP  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLP471TPFQQ  
ACTIVE  
CLGA  
FQQ  
270  
54  
RoHS & Green  
NI/AU  
N / A for Pkg Type  
0 to 70  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jul-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
DLP471TPFQQ  
FQQ  
CLGA  
270  
54  
6 x 9  
150  
315 135.9 12190 31.5  
31.5  
16.2  
Pack Materials-Page 1  
DWG NO.  
SH  
5
8
3
6
1
7
4
1
2516402  
REVISIONS  
COPYRIGHT 2018 TEXAS INSTRUMENTS  
UN-PUBLISHED, ALL RIGHTS RESERVED.  
C
NOTES UNLESS OTHERWISE SPECIFIED:  
REV  
A
DESCRIPTION  
ECO 2178176: INITIAL RELEASE  
ECO: 2187413: CHANGE SHORT APERTURE SLOTS TO  
ALL-AROUND  
DATE  
BY  
BMH  
12/11/2018  
1
DIE PARALLELISM TOLERANCES APPLY TO DMD ACTIVE ARRAY ONLY.  
4/29/2020  
B
PPC  
2 ROTATION ANGLE OF DMD ACTIVE ARRAY IS A REFINEMENT OF THE LOCATION  
TOLERANCE AND HAS A MAXIMUM ALLOWED VALUE OF 0.6 DEGREES.  
4
(1.3)  
24.454B0.1  
3
4
BOUNDARY MIRRORS SURROUNDING THE DMD ACTIVE ARRAY.  
+
-
0.1  
0.2  
(OFF-STATE  
DIRECTION)  
0.104  
NOTCH DIMENSIONS ARE DEFINED BY UPPERMOST LAYERS OF CERAMIC,  
AS SHOWN IN SECTION A-A.  
D
C
B
A
4X (R0.2)  
D
C
B
A
4
5
ENCAPSULANT TO BE CONTAINED WITHIN DIMENSIONS SHOWN IN VIEW D  
(SHEET 3). NO ENCAPSULANT IS ALLOWED ON TOP OF THE WINDOW.  
6
7
8
ENCAPSULANT NOT TO EXCEED THE HEIGHT OF THE WINDOW.  
SEE DETAIL B FOR "V-NOTCH" DIMENSIONS.  
WHILE ONLY THE THREE DATUM A TARGET AREAS A1, A2, AND A3 ARE USED  
FOR MEASUREMENT, ALL 4 CORNERS SHOULD BE CONTACTED, INCLUDING E1,  
TO SUPPORT MECHANICAL LOADS.  
FRONT SIDE  
INDEX MARK  
7
B
4
P2.5  
4
2X R0.4B0.1  
4
(1.25)  
+
-
0.3  
0.1  
2X 3B0.075  
16.9  
C
1.5  
4
A
A
45ƒ B1ƒ  
4
R1B0.1  
+
-
0.2  
0.1  
4
8.45  
(3)  
+
-
0.2  
0.1  
6.95  
4
45ƒ B1ƒ  
2X ENCAPSULANT  
(ILLUMINATION  
DIRECTION)  
5
6
DETAIL B  
+
-
0.3  
0.1  
25.65  
V-NOTCH  
SCALE 30 : 1  
D
1.403B0.077  
1.1B0.05  
(2.183)  
3 SURFACES INDICATED  
IN VIEW B (SHEET 2)  
1 8  
0.042A  
A
4
H
8
0.02D  
ACTIVE ARRAY  
(3)  
0.78B0.063  
1.925B0.1  
H
H
0.35 MIN TYP  
0 MIN TYP  
(SHEET 3)  
(SHEET 3)  
DATE  
DRAWN  
UNLESS OTHERWISE SPECIFIED  
TEXAS  
12/11/2018  
B. HASKETT  
ENGINEER  
DIMENSIONS ARE IN MILLIMETERS  
TOLERANCES:  
INSTRUMENTS  
Dallas Texas  
SECTION A-A  
12/11/2018 TITLE  
12/12/2018  
B. HASKETT  
QA/CE  
ANGLES B1`  
(ROTATED 90ƒ)  
ICD, MECHANICAL, DMD,  
.47 4K HSSI SERIES 317  
(FQQ PACKAGE)  
2 PLACE DECIMALS B0.25  
1 PLACE DECIMALS B0.50  
K. DICKERSON  
CM  
DIMENSIONAL LIMITS APPLY BEFORE PROCESSES  
INTERPRET DIMENSIONS IN ACCORDANCE WITH ASME  
Y14.5M-1994  
REMOVE ALL BURRS AND SHARP EDGES  
PARENTHETICAL INFORMATION FOR REFERENCE ONLY  
12/19/2018  
B. HASKETT  
REV  
THIRD ANGLE  
PROJECTION  
DWG NO  
SDIZE  
0314DA  
USED ON  
12/18/2018  
J. MCKINLEY  
APPROVED  
2516402  
B
NEXT ASSY  
12/18/2018  
SHEET  
OF  
SCALE  
APPLICATION  
HERMOSILLO  
15:1  
1
5
INV11-2006a  
5
3
6
1
2
7
8
4
DWG NO.  
SH  
5
8
3
6
1
7
4
2
2516402  
D
C
B
A
D
C
B
A
4X (1.5)  
2X 1.604  
2X 22.65  
A3  
4X (5)  
A2  
2X 3.45  
P2.5  
C
1.5  
2X 3.45  
B
8
E1  
A1  
VIEW C  
DATUMS A AND E  
(FROM SHEET 1)  
REV  
DWG NO  
SIZE  
DATE  
DRAWN  
TEXAS  
2516402  
12/11/2018 D  
B. HASKETT  
B
5
INSTRUMENTS  
Dallas Texas  
SCALE  
SHEET  
OF  
2
INV11-2006a  
5
3
6
1
2
7
8
4
DWG NO.  
SH  
5
8
3
6
1
7
4
3
2516402  
D
C
B
A
D
C
B
A
2X 2.374  
2X 21.11  
C
1.5  
P2.5  
B
6
2X 0 MIN  
VIEW D  
VIEW E  
MAXIMUM ENCAPSULANT HEIGHT  
ENCAPSULANT MAXIMUM X/Y DIMENSIONS  
5
(FROM SHEET 1)  
6
REV  
DWG NO  
SIZE  
DATE  
DRAWN  
TEXAS  
2516402  
12/11/2018 D  
B. HASKETT  
B
5
INSTRUMENTS  
Dallas Texas  
SCALE  
SHEET  
OF  
3
INV11-2006a  
5
3
6
1
2
7
8
4
DWG NO.  
SH  
5
8
3
6
1
7
4
4
2516402  
(0.075) TYP.  
D
C
B
A
D
C
B
A
(0.068) TYP.  
(42ƒ) TYP.  
S
2
(OFF-STATE  
DIRECTION)  
(10.368)  
ACTIVE ARRAY  
4X (0.108)  
7.29B0.075  
3
DETAIL F  
APERTURE TOP EDGE  
(GLASS OMITTED FOR CLARITY)  
SCALE 60 : 1  
0.754B0.0635  
2.633B0.05  
F
S
2
2.91B0.075  
7.155B0.0635  
(11.085)  
WINDOW  
(5.832)  
ACTIVE ARRAY  
(7.909)  
C
APERTURE  
1.5  
P2.5  
(0.15) TYP.  
8.452B0.05  
B
(42ƒ) TYP.  
(42ƒ) TYP.  
S
S
G
(0.068) TYP.  
DETAIL G  
APERTURE BOTTOM EDGE  
(ILLUMINATION  
DIRECTION)  
(GLASS OMITTED FOR CLARITY)  
SCALE 60 : 1  
1.127  
“0.0635  
11.574B0.0635  
(12.701) APERTURE  
14.63B0.05  
3.34B0.05  
(17.97) WINDOW  
VIEW E  
WINDOW AND ACTIVE ARRAY  
(FROM SHEET 1)  
REV  
DWG NO  
SIZE  
DATE  
DRAWN  
TEXAS  
2516402  
12/11/2018 D  
B. HASKETT  
B
5
INSTRUMENTS  
Dallas Texas  
SCALE  
SHEET  
OF  
4
INV11-2006a  
5
3
6
1
2
7
8
4
DWG NO.  
SH  
5
8
3
6
1
7
4
5
2516402  
D
C
B
A
D
C
B
A
0.929  
24 X 1 = 24  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
T
R
P
N
M
L
7.5  
K
J
1.5  
C
15 X 1  
= 15  
H
G
F
P2.5  
32X CIRCULAR TEST PADS  
(P0.75)  
B
BACK SIDE  
INDEX MARK  
E
D
C
B
A
SYMBOLIZATION PAD  
(7 X 3)  
238X SQUARE LGA PADS  
0.75“0.05 X 0.75“0.05  
0.2ABC  
0.1A  
VIEW H-H  
L
BACK SIDE METALIZATION  
(FROM SHEET 1)  
REV  
DWG NO  
SIZE  
DATE  
DRAWN  
TEXAS  
2516402  
12/11/2018 D  
B. HASKETT  
B
5
INSTRUMENTS  
Dallas Texas  
SCALE  
SHEET  
OF  
5
INV11-2006a  
5
3
6
1
2
7
8
4
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DLP471TPFQQ

0.47-inch 4K UHD DLP® digital micromirror device (DMD) | FQQ | 270 | 0 to 70
TI

DLP480RE

0.48 英寸 WUXGA DLP® 数字微镜器件 (DMD)
TI

DLP480REAAFXG

0.48-inch, WUXGA DLP® digital micromirror device (DMD) | FXG | 257 | 0 to 70
TI

DLP500YX

DLP® 0.50 英寸、2048x1200 阵列、S410 数字微镜器件 (DMD)  
TI

DLP500YXFXK

DLP® 0.50 英寸、2048x1200 阵列、S410 数字微镜器件 (DMD)   | FXK | 257 | 0 to 70
TI

DLP5500

DLP® 0.55 XGA Series 450 DMD
TI

DLP5500AFYA

DLP&reg; 0.55 XGA DMD 149-CPGA
TI

DLP5500BFYA

0.55 XGA Series
TI

DLP5500FYA

DLP® 0.55 XGA Series 450 DMD
TI

DLP5500FYAT

DLP® 0.55 XGA Series 450 DMD
TI

DLP550HE

0.55 英寸 SVGA DLP® 数字微镜器件 (DMD)
TI

DLP550HEA0FYA

0.55 英寸 SVGA DLP® 数字微镜器件 (DMD) | FYA | 149 | 0 to 70
TI