DAC8541 [TI]

16-BIT SINGLE CHANNEL, PARALLEL INPUT DIGITAL-TO-ANALOG CONVERTER WITH RAIL VOLTAGE OUTPUT; 16位单通道,并行输入数字 - 模拟与轨电压输出转换器
DAC8541
型号: DAC8541
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16-BIT SINGLE CHANNEL, PARALLEL INPUT DIGITAL-TO-ANALOG CONVERTER WITH RAIL VOLTAGE OUTPUT
16位单通道,并行输入数字 - 模拟与轨电压输出转换器

转换器 输出元件 输入元件
文件: 总21页 (文件大小:421K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SLAS353 − DECEMBER 2001  
ꢆ ꢇ ꢈꢉꢊ ꢋꢌ ꢍ ꢊ ꢎꢏ ꢐꢑ ꢂꢒ ꢁꢎ ꢎꢑꢐ ꢌ ꢓꢁꢔꢁ ꢐꢐ ꢑꢐ ꢊꢎ ꢓꢕꢋ ꢀꢊ ꢏꢊ ꢋꢁꢐ ꢈꢋꢖ ꢈꢁꢎꢁꢐ ꢖ ꢏ  
ꢂꢖ ꢎꢗ ꢑ ꢔꢋꢑ ꢔ ꢘ ꢊꢋ ꢒ ꢔꢁꢊ ꢐ ꢈꢋꢖ ꢈꢔꢁꢊ ꢐ ꢗꢖ ꢐꢋꢁꢏ ꢑ ꢖ ꢕꢋ ꢓꢕꢋ  
FEATURES  
DESCRIPTION  
D
D
D
D
D
D
D
D
D
D
D
Micropower Operation: 250 µA at 5 V AV  
Power-On Reset to Min-Scale  
16-Bit Monotonic  
DD  
The DAC8541 is a low-power, single channel, 16-bit,  
voltage output DAC. Its on-chip precision output  
amplifier allows rail-to-rail voltage swing to be achieved  
at the output. The DAC8541 utilizes a 16-bit parallel  
interface and features additional powerdown function  
pins as well as hardware-enabled, asynchronous DAC  
updating and reset capability.  
Settling Time: 10 µs to 0.003% FSR  
16-Bit Parallel Interface  
On-Chip Output Buffer Amplifier With  
Rail-to-Rail Operation  
The DAC8541 requires an external reference voltage to  
set the output range of the DAC. The device  
incorporates a power-on-reset circuit that ensures that  
the DAC output powers up at min-scale and remains  
there until a valid write takes place to the device. In  
addition, the DAC8541 contains a power-down feature,  
accessed via two hardware pins, that when enabled  
reduces the current consumption of the device to  
200 nA at 5 V.  
Hardware Reset to Min-Scale or Mid-Scale  
Double-Buffered Architecture  
Asynchronous LDAC Control  
Data Readback Support  
1.8 V Compatible Digital Interface:  
− DV  
= 1.8 V−5.5 V  
DD  
D
D
Wide Analog Supply Range:  
− AV = 2.7 V−5.5 V  
DD  
The low power consumption of this device in normal  
operation makes it ideally suited for use in portable  
battery operated equipment applications. The power  
32-Lead 5 mm × 5 mm TQFP Package  
APPLICATIONS  
consumption is 1.2 mW at AV = 5 V reducing to 1 µW  
DD  
in power-down mode.  
D
D
D
D
D
Process Control  
The DAC8541 is available in a 32-lead TQFP package  
with an operating temperature range of −40°C to 85°C.  
Data Acquisition Systems  
Closed-Loop Servo Control  
PC Peripherals  
Portable Instrumentation  
AV  
DD  
DV  
V H  
REF  
DD  
DAC8541  
V
V
Sense  
OUT  
OUT  
I/O  
Input  
Register  
DAC  
Register  
DAC  
Data I/O  
CS  
R/W  
BTC/USB  
Buffer  
16  
Power  
Down  
Control  
Logic  
Control  
Logic  
Resistor  
Network  
AGND DGND  
RSTSEL RST LDAC  
PD0 PD1  
V L  
REF  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢋꢤ  
Copyright 2001, Texas Instruments Incorporated  
ꢠ ꢤ ꢡ ꢠꢙ ꢚꢮ ꢜꢛ ꢟ ꢧꢧ ꢥꢟ ꢝ ꢟ ꢞ ꢤ ꢠ ꢤ ꢝ ꢡ ꢩ  
1
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ  
SLAS353 − DECEMBER 2001  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
AVAILABLE OPTIONS  
PACKAGE  
DRAWING NUMBER  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA  
PRODUCT  
PACKAGE  
T
A
DAC8541Y/250  
DAC8541Y/2K  
DAC8541  
32-TQFP  
PBS  
40°C to 85°C  
E41Y  
Tape and Reel  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
AV  
DV  
to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V  
to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V  
DD  
DD  
Digital input voltage to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to DV  
+ 0.3 V  
+ 0.3 V  
DD  
DD  
V
to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to AV  
OUT  
Operating temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Junction temperature, T max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
electrical characteristics, DV  
pF to AGND; all specifications –40°C to 85°C (unless otherwise noted)  
= 1.8 V to 5.5 V; AV  
= 2.7 V to 5.5 V; R = 2 kto AGND; C = 200  
DD  
DD L L  
PARAMETER  
STATIC PERFORMANCE (see Note 1)  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
16  
Bits  
Relative accuracy  
0.098 %FSR  
Differential nonlinearity  
Zero code error  
16-Bit monotonic  
1
LSB  
mV  
All zeroes loaded to DAC register  
All ones loaded to DAC register  
5
20  
Full-scale error  
–0.15  
–0.8 %FSR  
0.8 %FSR  
µV/°C  
Gain error  
Zero code error drift  
20  
5
ppm of  
FSR/°C  
Gain temperature coefficient  
OUTPUT CHARACTERISTICS (see Note 2)  
Output voltage range  
2×V L  
REF  
V H  
REF  
10  
V
µs  
R
= 2 k; 0 pF < C < 200 pF  
8
12  
L
L
L
Output voltage settling time (full scale)  
Slew rate  
R
= 2 k; C = 500 pF  
L
1
V/µs  
pF  
R
R
= ∞  
470  
1000  
20  
L
L
Capacitive load stability  
= 2 kΩ  
Digital-to-analog glitch impulse  
Digital feedthrough  
1 LSB change around major carry (see Note 3)  
nV−s  
nV−s  
0.5  
1
DC output impedance  
AV  
AV  
= 5 V  
= 3 V  
50  
DD  
DD  
Short circuit current  
Power-up time  
mA  
20  
Coming out of power-down mode, AV  
Coming out of power-down mode, AV  
= 5 V  
= 3 V  
2.5  
5
DD  
µs  
DD  
NOTES: 1. Linearity calculated using a reduced code range of 485 to 64714. Output unloaded.  
2. Assured by design and characterization, not production tested.  
3. Specification for code changes at each N x 4096 code boundary.  
2
www.ti.com  
SLAS353 − DECEMBER 2001  
electrical characteristics, DV  
= 1.8 V to 5.5 V; AV  
= 2.7 V to 5.5 V; R = 2 kto AGND;  
DD  
DD L  
C = 200 pF to AGND; all specifications –40°C to 85°C (unless otherwise noted) (continued)  
L
PARAMETER  
REFERENCE INPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AV  
AV  
= V  
= V  
H = 5 V,  
V
L = AGND  
50  
35  
75  
60  
DD  
REF  
REF  
Reference current  
µA  
H = 3.6 V,  
REF  
V
L = AGND  
REF  
DD  
V
V
H input range  
L input range  
V
H>V  
L
0
AV  
V
REF  
REF  
REF  
DD  
−100 AGND  
100  
100  
mV  
kΩ  
REF  
Reference input impedance  
LOGIC INPUTS (see Note 2)  
Input current  
1
µA  
V
V
V
L, input low voltage  
H, input high voltage  
DV  
DV  
= 1.8 V to 5.5 V  
= 1.8 V to 5.5 V  
0.3×DV  
IN  
DD  
DD  
DD  
0.7×DV  
V
IN  
DD  
1.8  
2.7  
Pin input capacitance  
3
pF  
POWER REQUIREMENTS  
DV  
5.5  
1.0  
5.5  
V
µA  
V
DD  
DAC active and excluding load current,  
= DV and V = DGND  
DI  
0.2  
DD  
V
IH  
DD IL  
AV  
DD  
AI  
(normal operation)  
DD  
DD  
DAC active and excluding load current,  
AV  
= 3.6 V to 5.5 V  
= 2.7 V to 3.6 V  
250  
240  
400  
390  
DD  
DD  
V
IH  
= DV  
and V = DGND  
DD  
IL  
µA  
µA  
AV  
AI  
(all power-down modes)  
AV  
AV  
= 3.6 V to 5.5 V  
= 2.7 V to 3.6 V  
0.2  
1
1
DD  
V
IH  
= DV  
and V = DGND  
IL  
DD  
0.05  
DD  
POWER EFFICIENCY  
/AI  
I
I
= 2 mA, AV  
DD  
= +5 V  
89%  
OUT DD  
(LOAD)  
NOTE 2; Assured by design and characterization, not production tested.  
3
www.ti.com  
SLAS353 − DECEMBER 2001  
PBS PACKAGE  
(TOP VIEW)  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
DB15  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
V
V
OUT  
OUT  
Sense  
AGND  
V
V
L
DAC8541  
REF  
REF  
H
AV  
DD  
DV  
DD  
DB8  
DGND  
9 10 11 12 13 14 15 16  
Terminal Functions  
TERMINAL  
I/O  
I/O Data input/output, (pin 1-MSB: pin 16-LSB)  
DESCRIPTION  
NAME  
DB15−DB0  
DGND  
NO.  
1−16  
17  
I
I
I
I
I
Digital ground  
DV  
18  
Digital supply input, 1.8 V to 5.5 V  
Analog power supply input, 2.7 V to 5.5 V  
DD  
AV  
19  
DD  
V
REF  
H
20  
Positive reference voltage input (referenced to AGND)  
V
REF  
L
21  
Negative reference voltage input (referenced to AGND), nominally V  
L = AGND  
REF  
AGND  
22  
23  
24  
25  
26  
27  
28  
I
I
Analog ground  
V
V
Sense  
Analog output sense. The feedback terminal of the output amplifier.  
OUT  
O
I
Analog output voltage from DAC. The output amplifier has rail-to-rail operation.  
Powerdown control bit 0  
OUT  
PD0  
PD1  
I
Powerdown control bit 1  
BTC/USB  
RSTSEL  
I
Data input format: binary twos complement or unipolar straight binary  
I
Reset V  
on active RST to min-scale (RSTSEL = 0) or mid-scale (RSTSEL = 1)  
reset to min-scale or mid-scale, rising edge (Does not reset input register data.)  
OUT  
RST  
LDAC  
R/W  
CS  
29  
30  
31  
32  
I
I
I
I
V
OUT  
Asynchronous load command, rising edge  
Read/Write control input  
Chip select, active low  
4
www.ti.com  
SLAS353 − DECEMBER 2001  
timing characteristics, DV  
= 1.8 V to 5.5 V; AV  
= 2.7 V to 5.5 V; R = 2 kto AGND;  
DD  
DD L  
C = 200 pF to AGND; all specifications –40°C to 85°C (unless otherwise noted)  
L
MIN  
TYP  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Pulse width: CS low for valid write  
Setup time: R/W low before CS falling (see Note 4)  
Setup time: data in valid before CS falling  
Hold time: R/W low after CS rising (see Note 4)  
Hold time: data in valid after CS rising  
Pulse width: CS low for valid read  
Setup time: R/W high before CS falling  
Delay time: data out valid after CS falling  
Hold time: R/W high after CS rising  
Hold time: data out valid after CS rising  
Setup time: LDAC rising after CS falling (see Note 4)  
Delay time: CS low after LDAC rising  
Pulse width: LDAC low  
20  
0
w1  
su1  
su2  
h1  
0
10  
15  
40  
30  
h2  
w2  
su3  
d1  
60  
80  
20  
10  
5
h3  
h4  
10  
50  
40  
40  
80  
0
su4  
d2  
w3  
w4  
w5  
su5  
h5  
Pulse width: LDAC high  
Pulse width: CS high (see Note 4)  
Setup time: RSTSEL valid before RST rising  
Hold time: RSTSEL valid after RST rising  
Pulse width: RST low  
20  
40  
40  
w6  
w7  
S
Pulse width: RST high  
V
OUT  
Settling time (settling time for a full scale code change)  
10  
NOTE 4: Simplified operation: CS and W/R can be tied low if the DAC8541 is the only device on the bus and Read operation is not needed. In  
this case, LDAC is still required to update the output of the DAC and t is from Data In Valid to LDAC Rising.  
su(4)  
t
t
t
w2  
w1  
w5  
CS  
t
t
t
t
t
t
su1  
su2  
h1  
su3  
h3  
h4  
R/W  
t
h2  
t
d1  
Data I/O  
DB0−DB15  
Data In Valid  
t
Data Out Valid  
t
su4  
d2  
LDAC  
t
t
w4  
w3  
V
OUT  
0.003% of FSR Error Bands  
t
s
Figure 1. Data Read/Write Timing  
5
www.ti.com  
SLAS353 − DECEMBER 2001  
t
su5  
RSTSEL  
t
h5  
t
w6  
RST  
t
w7  
t
s
+FS  
V
V
(RSTSEL = Low)  
OUT  
Min-Scale  
−FS  
+FS  
Mid-Scale  
(RSTSEL = High)  
−FS  
OUT  
Figure 2. Reset Timing  
TYPICAL CHARACTERISTICS  
This condition applies to all typical characteristics: V  
otherwise noted)  
H = AV , V  
L = AGND, T = 25°C (unless  
REF  
DD REF A  
LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR  
vs  
DIGITAL INPUT CODE  
64  
48  
32  
16  
AV  
DD  
= 2.7 V, T = 85°C  
A
0
−16  
−32  
−48  
−64  
2
1.5  
1
0.5  
0
−0.5  
−1  
−1.5  
−2  
0
8192  
16384  
24576  
32768  
40960  
49152  
57344  
65535  
Digital Input Code  
Figure 3  
6
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS353 − DECEMBER 2001  
TYPICAL CHARACTERISTICS  
LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR  
vs  
DIGITAL INPUT CODE  
64  
48  
32  
AV  
DD  
= 2.7 V, T = 25°C  
A
16  
0
−16  
−32  
−48  
−64  
2
1.5  
1
0.5  
0
−0.5  
−1  
−1.5  
−2  
0
8192  
16384  
24576  
32768  
40960  
49152  
57344  
65535  
Digital Input Code  
Figure 4  
7
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ  
SLAS353 − DECEMBER 2001  
TYPICAL CHARACTERISTICS  
LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR  
vs  
DIGITAL INPUT CODE  
64  
48  
32  
16  
AV  
DD  
= 2.7 V, T = −40°C  
A
0
−16  
−32  
−48  
−64  
2
1.5  
1
0.5  
0
−0.5  
−1  
−1.5  
−2  
0
8192  
16384  
24576  
32768  
40960  
49152  
57344  
65535  
Digital Input Code  
Figure 5  
8
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS353 − DECEMBER 2001  
TYPICAL CHARACTERISTICS  
FULL-SCALE ERROR  
ZERO-SCALE ERROR  
vs  
FREE-AIR TEMPERATURE  
vs  
FREE-AIR TEMPERATURE  
20  
15  
20  
15  
10  
5
To Avoid Clipping of The Output Signal  
AV  
= V  
REF  
= 5 V  
DD  
During The Test, V  
REF  
= AV  
−10mV  
DD  
10  
5
AV = 2.7 V  
DD  
AV  
= V  
REF  
= 2.7 V  
DD  
0
−5  
AV  
= 5 V  
DD  
0
−5  
−10  
−10  
−15  
−20  
−15  
−20  
−40  
−15  
10  
35  
60  
85  
−40  
−15  
10  
35  
60  
85  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 6  
Figure 7  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
DRIVE CURRENT CAPABILITY  
DRIVE CURRENT CAPABILITY  
3
AV  
= V = 2.7 V  
REF  
DD  
5
2.5  
DAC Loaded With FFFFh  
DAC Loaded With FFFFh  
4
3
2
1
0
2
1.5  
AV  
= V = 5 V  
REF  
DD  
1
0.5  
0
DAC Loaded With 0000h  
5
DAC Loaded With 0000h  
0
5
10  
15  
10  
15  
0
I
− Drive Current Capability − mA  
I
(SOURCE/SINK)  
− Drive Current Capability − mA  
(SOURCE/SINK)  
Figure 8  
Figure 9  
ANALOG SUPPLY CURRENT  
vs  
ANALOG SUPPLY VOLTAGE  
AI  
DD  
HISTOGRAM  
2500  
2000  
1500  
1000  
300  
280  
260  
240  
220  
200  
AV  
T
A
= 5 V  
DD  
= 25°C  
500  
0
100  
150  
200  
AI  
250  
µA  
300  
350  
400  
2.7  
3.1  
AV  
3.5  
3.9  
4.3  
4.7  
5.1 5.5  
DD  
− Analog Supply Voltage − V  
DD  
Figure 10  
Figure 11  
9
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ  
SLAS353 − DECEMBER 2001  
TYPICAL CHARACTERISTICS  
ANALOG SUPPLY CURRENT  
vs  
DIGITAL INPUT CODE  
AI  
HISTOGRAM  
DD  
400  
2500  
2000  
1500  
1000  
AV  
T
A
= 2.7 V  
= 25°C  
Excluding Reference and Load Current.  
DD  
350  
300  
250  
AV  
= DV = 5 V  
DD  
DD  
200  
150  
AV  
= DV = 2.7 V  
DD  
DD  
100  
50  
500  
0
0
0
16384  
32768  
49152  
65535  
100  
150  
200  
AI  
250  
µA  
300  
350  
400  
Digital Input Code  
DD  
Figure 12  
Figure 13  
ANALOG SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
POWER-DOWN CURRENT  
vs  
SUPPLY VOLTAGE  
350  
50  
45  
40  
35  
30  
Excluding Reference and Load Current.  
300  
250  
AV  
= DV  
= 5 V  
DD  
DD  
T
A
= 85°C  
T
= −40°C  
= 25°C  
A
200  
150  
100  
50  
AV  
= DV = 2.7 V  
DD  
DD  
25  
20  
15  
T
A
10  
5
0
2.7  
0
−40  
−15  
10  
35  
60  
85  
3.4  
4.1  
4.8  
5.5  
T
A
− Free-Air Temperature − °C  
AV  
− Supply Voltage − V  
DD  
Figure 14  
Figure 15  
DIGITAL SUPPLY CURRENT  
vs  
LOGIC INPUT VOLTAGE  
POWER-ON RESET TO 0 V  
500  
400  
300  
200  
DI  
Values are Shown for Logic  
Loaded With 2 kto AGND  
DD  
Level Change on one Digital Input.  
AV  
(2 V/div)  
DD  
DV  
= 5 V  
DD  
V
(1 V/div)  
OUT  
100  
0
DV  
= 2.7 V  
DD  
0
1
2
3
4
5
0
100 200 300400 500 600 700 800 9001000  
V
− Logic Input Voltage − V  
LOGIC  
t − Time − µs  
Figure 16  
Figure 17  
10  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS353 − DECEMBER 2001  
TYPICAL CHARACTERISTICS  
EXITING POWER-DOWN  
MAJOR CARRY CODE CHANGE GLITCH  
AV = V  
DD REF  
= 2.7 V  
Digital Code = 8000h  
Scope Trigger (5 V/div)  
V
(2 V/div)  
OUT  
AV = DV = V  
DD DD REF  
= 2.7 V  
Code 8000 to 7FFF  
H
H
Glitch Occurs Every N × 4096 Code  
Boundary.  
0
2
4
6
8
10 12 14 16 18 20  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
t − Time − µs  
t − Time − µs  
Figure 18  
Figure 19  
FULL-SCALE SETTLING TIME  
MAJOR CARRY CODE CHANGE GLITCH  
AV = 2.7 V  
DD  
Large-Signal Output (1 V/div)  
Small-Signal Error (1 mV/div)  
Full-Scale Code Change:  
0000 to FFFF  
H
H
Output Loaded With  
2 kand 200 pF to AGND  
AV = DV = V  
DD DD REF  
= 5 V  
Code 8000 to 7FFF  
H
H
Glitch Occurs Every N × 4096 Code  
Boundary.  
Scope Trigger (5 V/div)  
0
2
4
6
8
10 12 14 16 18 20  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
t − Time − µs  
t − Time − µs  
Figure 20  
Figure 21  
FULL-SCALE SETTLING TIME  
HALF-SCALE SETTLING TIME  
AV = 2.7 V  
DD  
AV = 2.7 V  
DD  
Large-Signal Output (1 V/div)  
Full-Scale Code Change:  
Half-Scale Code Change:  
4000 to C000  
H
H
Output Loaded With  
FFFF to 0000  
H
H
2 kand 200 pF to AGND  
Output Loaded With  
2 kand 200 pF to AGND  
Large-Signal Output (1 V/div)  
Small-Signal Error (1 mV/div)  
Small-Signal Error (1 mV/div)  
Scope Trigger (5 V/div)  
Scope Trigger (5 V/div)  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
t − Time − µs  
t − Time − µs  
Figure 22  
Figure 23  
11  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ  
SLAS353 − DECEMBER 2001  
TYPICAL CHARACTERISTICS  
FULL-SCALE SETTLING TIME  
HALF-SCALE SETTLING TIME  
AV = 5 V  
DD  
AV = 2.7 V  
DD  
Large-Signal Output (2 V/div)  
Half-Scale Code Change:  
C000 to 4000  
H
H
Output Loaded With  
2 kand 200 pF to AGND  
Small-Signal Error (1 mV/div)  
Large-Signal Output (1 V/div)  
Small-Signal Error (1 mV/div)  
Full-Scale Code Change:  
0000 to FFFF  
H
H
Output Loaded With  
2 kand 200 pF to AGND  
Scope Trigger (5 V/div)  
Scope Trigger (5 V/div)  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
t − Time − µs  
t − Time − µs  
Figure 24  
Figure 25  
FULL-SCALE SETTLING TIME  
HALF-SCALE SETTLING TIME  
AV = 5 V  
DD  
AV = 5 V  
DD  
Large-Signal Output (2 V/div)  
Half-Scale Code Change:  
Full-Scale Code Change:  
FFFF to 0000  
4000 to C000  
H
H
Output Loaded With  
H
H
Output Loaded With  
2 kand 200 pF to AGND  
2 kand 200 pF to AGND  
Large-Signal Output (1 V/div)  
Small-Signal Error (1 mV/div)  
Small-Signal Error (1 mV/div)  
Scope Trigger (5 V/div)  
Scope Trigger (5 V/div)  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
t − Time − µs  
t − Time − µs  
Figure 26  
Figure 27  
HALF-SCALE SETTLING TIME  
AV = 5 V  
DD  
Half-Scale Code Change:  
C000 to 4000  
H
H
Output Loaded With  
2 kand 200 pF to AGND  
Small-Signal Error (1 mV/div)  
Large-Signal Output (1 V/div)  
Scope Trigger (5 V/div)  
0
2
4
6
8
10 12 14 16 18 20  
t − Time − µs  
Figure 28  
12  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS353 − DECEMBER 2001  
THEORY OF OPERATION  
D/A section  
The architecture of the DAC8541 consists of a string DAC followed by an output buffer amplifier. Figure 29  
shows a generalized block diagram of the DAC architecture.  
V H = External Reference Voltage  
REF  
V
V
Sense  
OUT  
REF+  
Resistor  
String  
OUT  
+
DAC Register  
REF−  
V L = AGND  
REF  
Figure 29. Generalized DAC Architecture  
The input coding to the DAC8541 is set by the BTC/USB input to the device. When this input is high, the input  
code is binary 2s complement. If the input is low, the format is unipolar straight binary, in which case the ideal  
output voltage is given by:  
D
65536  
V
+ V  
H   
OUT  
REF  
Where D = the decimal equivalent of the binary code that is loaded to the DAC register, which can range from  
0 to 65535 and V L = AGND.  
REF  
V H  
REF  
R
DIVIDE  
V H  
REF  
2
R
To Output Amplifier  
(2x Gain)  
R
R
R
V
REF  
L
Figure 30. Typical Resistor String  
13  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ  
SLAS353 − DECEMBER 2001  
THEORY OF OPERATION  
resistor string  
The resistor string section is shown in Figure 30. It is simply a string of resistors, each of which has a value of  
R. The code loaded into the DAC register determines at which node on the string the voltage is tapped off. This  
voltage is then presented to the output amplifier by closing one of the switches connecting the string to the  
amplifier. The negative tap of the resistor string, V  
in order to make minor adjustments to the offset seen at the V  
voltage reference inputs section.)  
L, can be tied to AGND or a small voltage can be applied  
REF  
pin. (This is discussed in more detail in the  
OUT  
output amplifier  
The output buffer amplifier is capable of generating near rail-to-rail voltages on its output, which gives an output  
range of 0 V to AV (offset and gain errors affect the absolute V range). It is also capable of driving a load  
DD  
OUT  
of 2 kin parallel with 1000 pF to AGND while remaining stable. The source and sink capabilities of the output  
amplifier can be seen in the typical curves. The slew rate of the DAC8541 is typically 1 V/µs with a typical  
full-scale settling time of 8 µs.  
For additional functionality, the inverting input of the output amplifier is brought out via the V  
Sense pin. This  
OUT  
allows for better accuracy in critical applications by tying the V  
Sense and V  
together directly at the load.  
OUT  
OUT  
Other signal conditioning circuitry may also be connected between these points for specific applications.  
parallel interface  
The DAC8541 provides a 16-bit parallel interface and supports both writing to and reading from the DAC input  
register. (See the timing characteristics section for detailed information for a typical write or read command.)  
In addition to the data, CS, and R/W inputs, the DAC8541’s interface also provides powerdown, LDAC, data  
format, and reset/reset-select control. Tables 1 and 2 show the control signal actions and data format,  
respectively. These features are discussed in more detail in the remaining sections.  
Table 1. DAC8541 CONTROL SIGNAL SUMMARY  
CS  
H
R/W  
X
BTC/USB LDAC RST RSTSEL PD1 PD0  
ACTION  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
X
L
L
L
L
Device data I/O is disabled on the bus.  
L
H,L  
H,L  
H,L  
H,L  
Write initiated, present input data to the bus.  
H
Read initiated, data from input register is presented to data bus.  
Input data is latched when writing to the device.  
X
X
X
Data from input register is transferred to DAC register and V  
updated.  
OUT is  
X
X
X
X
X
X
L
H
X
X
X
X
X
X
X
X
L
X
X
L
X
X
L
Input/output data format is unipolar straight binary.  
Input/output data format is binary 2s complement.  
DAC register and V  
OUT  
reset to min-scale. (If DAC is powered down  
during reset, DAC register resets and V  
upon power up.)  
will settle to min-scale  
OUT  
X
X
X
X
H
L
L
DAC register and V reset to mid-scale. (If DAC is powered down  
OUT  
during reset, DAC register resets and V  
upon power up.)  
will settle to mid-scale  
OUT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
H
H
H
L
Powerdown device, V  
Powerdown device, V  
Powerdown device, V  
impedance equals 1 kto AGND  
impedance equals 100 kto AGND  
impedance equals high impedance  
OUT  
OUT  
OUT  
H
Only disables 16-bit data I/O interface. Other control lines remain active.  
14  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS353 − DECEMBER 2001  
THEORY OF OPERATION  
data format  
Table 2 details the input data format of the DAC8541. Two data I/O formats are available to the host interface.  
These two formats are binary 2s complement (BTC) and unipolar straight binary (USB). The BTC/USB input  
pin controls the format used by the DAC. The data format selected by the BTC/USB input is used for data written  
into the device as well as data that is read back from the DAC8541. (Refer to Table 1 and Figure 1 for additional  
information for performing read and write operations.)  
Table 2. DAC8541 Data Format  
BTC/USB = 0  
BTC/USB = 1  
UNIPOLAR STRAIGHT BINARY  
BINARY 2s COMPLEMENT  
DIGITAL INPUT  
0x0000h  
ANALOG OUTPUT  
Min-scale  
DIGITAL INPUT  
ANALOG OUTPUT  
Min-scale  
0x8000h  
0x8001h  
0x0001h  
Min-scale + 1 LSB  
Min-scale + 1 LSB  
S
S
S
S
S
S
S
S
0x8000h  
0x8001h  
Mid-scale  
0x0000h  
0x0001h  
Mid-scale  
Mid-scale + 1 LSB  
Mid-scale + 1 LSB  
S
S
S
S
S
S
S
S
0xFFFFh  
Full Scale  
0x7FFFh  
Full Scale  
LDAC function  
The DAC8541 is designed using a double-buffered architecture. A write command transfers data from the data  
input pins into the input register. The data is held in the input register until a rising edge is detected on the LDAC  
input. This rising edge signal transfers the data from the input register to the DAC register. Upon issuance of  
the rising LDAC edge, the output of the DAC8541 begins settling to the newly written data value presented to  
the DAC register.(Data in the input register is not changed when an LDAC command is given.)  
RST and RSTSEL  
The RST and RSTSEL inputs control the reset of the DAC register and consequently, the DAC output. The reset  
command is edge triggered by a low-to-high transition on the RST pin. Once a rising edge on RST is detected,  
the DAC output may settle to the mid-scale or min-scale code depending on the state of the RSTSEL input. A  
logic high value on RSTSEL causes the DAC output to reset to mid-scale and a logic low value resets the DAC  
to min-scale. Application of a valid reset signal to the DAC does not overwrite existing data in the input register.  
power-on reset  
The DAC8541 contains a power-on reset circuit that controls the output voltage during power up. On power up,  
the DAC register (and DAC output) is set to min-scale (plus a small offset error produced by the output buffer).  
It remains at min-scale until a valid write sequence is made to the DAC changing the DAC register data. This  
is useful in applications where it is important to know the state of the output of the DAC while the system is in  
the process of powering up. DGND must be applied to all digital inputs until the digital and analog supplies are  
applied to the DAC8541. Logic voltages applied to the input pins when power is not applied to DV  
may power the device through the ESD input structures causing undesired operation.  
and AV  
,
DD  
DD  
15  
www.ti.com  
SLAS353 − DECEMBER 2001  
THEORY OF OPERATION  
power-down modes  
The DAC8541 utilizes four modes of operation. These modes are programmable via two inputs (PD1 and PD0)  
to the device. Table 3 shows how the state of these pins correspond to the mode of operation of the DAC8541.  
Table 3. Modes of Operation for the DAC8541  
PD1  
PD0  
OPERATING MODE  
0
0
Normal operation  
POWER-DOWN MODES  
0
1
1
1
0
1
1 kto AGND  
100 kto AGND  
High impedance  
When both pins are set to 0, the device works normally with its typical power consumption of 250 µA at  
AV = 5 V. However, for the three power-down modes, the supply current falls to 200 nA at AV = 5 V (50 nA  
DD  
DD  
at AV  
= 3 V). Not only does the supply current fall, but the V  
terminal is internally switched from the output  
DD  
OUT  
of the amplifier to a resistor network of known values. This has the advantage that the output impedance of the  
device is known while in power-down mode. There are three different options: The output is connected internally  
to AGND through a 1-kresistor, it is connected to AGND through a 100-kresistor, or it is left open-circuited  
(high impedance). The output stage is illustrated in Figure 31.  
V Sense  
OUT  
Amplifier  
_
V
OUT  
+
DAC  
Powerdown  
Circuitry  
Resistor  
Network  
Figure 31. Output Stage During Power Down (High-Impedance)  
All analog circuitry is shut down when a power-down mode is activated. However, the contents of the DAC  
register are unaffected when in power-down. This allows the DAC’s output voltage to return to the previous level  
when power-up resumes. The delay time required to exit power-down is typically 2.5 µs for AV  
= 5 V and 5  
DD  
µs for AV  
= 3 V. (See the typical curves section for additional information.)  
DD  
voltage reference inputs  
Two voltage inputs provide the reference set points for the DAC architecture. These are V  
Hand V  
L. For  
REF  
REF  
typical rail-to-rail operation, V  
is given by:  
H should be equivalent to AV and V  
L tied to AGND. The output voltage  
REF  
DD  
REF  
V
+ V  
H * 2   V  
L
OUT  
REF  
REF  
The use of the V  
a small voltage to the V  
L input allows minor adjustments to be made to the offset of the DAC output by applying  
REF  
L input. The acceptable range is between −100 mV and 100 mV with respect to  
REF  
AGND. A low output impedance source is needed, so that the accuracy of the DAC over its operating range is  
not affected.  
16  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS353 − DECEMBER 2001  
THEORY OF OPERATION  
analog and digital supplies  
The DAC8541 utilizes two separate supplies for operation. The analog supply (AV ) powers the output buffer  
DD  
and DAC while the digital supply (DV ) sets the I/O voltage thresholds. Refer to the device specification table  
DD  
for additional information. AV  
can operate from 2.7 V to 5.5 V while DV  
can independently function from  
DD  
DD  
1.8 V to 5.5 V. The control and data I/O thresholds are determined by DV  
and are given in the electrical  
DD  
characteristics section.  
APPLICATION INFORMATION  
host processor interfacing  
DAC8541 to MSP430 microcontroller  
Figure 32 shows a typical parallel interface connection between the DAC8541 and a MSP430 microcontroller.  
The setup for the interface shown uses ports 4 and 5 of the MSP430 to send or receive the 16-bit data while  
bits 0−7 of port 2 provides the control signals for the DAC. When data is to be transmitted to the DAC8541, the  
data is made available to the DAC via P4 and P5 and P2.1 is taken low. The MSP430 then toggles P2.0 from  
high-to-low and back to high, transferring the 16-bit data to the DAC. This data is loaded into the DAC register  
by applying a rising edge to P2.4. The remaining five I/O signals of P2 shown in the figure control the reset,  
power-down, and data format functions of the DAC. Depending on the specific requirements of a given  
application, these pins may be tied to DGND or DV , enabling the desired mode of operation.  
DD  
DAC8541  
MSP430F149  
P4[0:7]  
8 Bits  
8 Bits  
16 Bits  
D[15:0]  
AV  
AV  
DD  
DD  
DD  
0.1 µF  
0.1 µF  
10 µF  
10 µF  
P5[0:7]  
P2:0  
CS  
R/W  
P2:1  
P2:2  
P2:3  
DV  
DV  
DD  
RST  
RSTSEL  
LDAC  
PD0  
P2:4  
P2:5  
V SENSE  
OUT  
V
V
OUT  
OUT  
PD1  
P2:6  
P2:7  
BTC/USB  
V
REF  
H
V
REF  
V
L
REF  
DGND  
0.1 µF  
1 to 10 µF  
AGND  
(Other Connections Omitted for Clarity)  
Figure 32. DAC8541 to MSP430 Microcontroller  
DAC8541 to TMS320C5402 DSP  
Figure 33 shows the connections between the DAC8541 and the TMS320C5402 digital signal processor. Data  
is provided via the parallel data bus of the DSP while the DAC’s CS control input is derived from the decoded  
I/O strobe signal. The IOSTRB in addition to the R/W and XF(I/O) signals control the data transmission to and  
from the DAC as well as the LDAC control. With additional decoding, multiple DAC8541’s can be connected  
to the same parallel data bus of the DSP.  
17  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ  
SLAS353 − DECEMBER 2001  
APPLICATION INFORMATION  
DAC8541  
TMS320C5402  
16 Bits  
D[15:0]  
A[23:0]  
D[15:0]  
CS  
AV  
AV  
DD  
DD  
DD  
0.1 µF  
0.1 µF  
10 µF  
10 µF  
Address  
Decoder  
IOSTRB  
EN  
DV  
DV  
DD  
R/W  
R/W  
LDAC  
XF(I/O)  
V SENSE  
OUT  
V
OUT  
V
OUT  
V H  
REF  
V
REF  
V
L
REF  
DGND  
0.1 µF  
1 to 10 µF  
AGND  
(Other Connections Omitted for Clarity)  
Figure 33. DAC8541 to TMS320 DSP  
bipolar operation using the DAC8541  
The DAC8541 has been designed for single-supply operation but a bipolar output range is also possible using  
the circuit shown in Figure 34. The circuit allows the DAC8541 to achieve an analog output range of 5 V.  
Rail-to-rail operation at the amplifier output is achievable using an OPA703 as the output amplifier.  
Setting BTC/USB = 1, sets the DAC into binary 2s complement I/O format for the bipolar V  
When operated with BTC/USB set high, the output voltage for any input code can be calculated as follows:  
configuration.  
OUT  
D
R1 ) R2  
R2  
R1  
ǒ Ǔ ǒ  
Ǔ* V  
ǒ Ǔ  
+ ƪVREF  
ƫ
V
H   
 
H   
OUT  
REF  
65536  
R1  
where D represents the input code in decimal, unipolar straight binary (0–65535) and V  
L = AGND.  
REF  
With V  
H = 5 V, R = R = 10 k:  
1 2  
REF  
10   D  
+ ǒ  
Ǔ* 5 V  
V
OUT  
65536  
This is an output voltage range of 5 V with 8000h corresponding to a –5 V output and 7FFFh corresponding  
to a 5 V output. Bipolar zero is given by 0000h applied to the DAC.  
R2 = 10 kΩ  
5 V  
R1 = 10 kΩ  
5 V  
5 V  
+
V
V
H
L
V
REF  
OUT  
OPA703  
DAC8541  
V
Sense  
−5 V  
OUT  
0.1 µF  
10 µF  
REF  
(Other Pins Omitted for Clarity)  
Figure 34. Bipolar Operation With the DAC8541  
18  
www.ti.com  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ  
SLAS353 − DECEMBER 2001  
APPLICATION INFORMATION  
layout  
A precision analog component requires careful layout, adequate bypassing, and clean, well-regulated power  
supplies. The following measures should be taken to assure optimum performance of the DAC8541.  
The DAC8541 offers dual-supply operation, as it can often be used in close proximity with digital logic,  
microcontrollers, microprocessors, and digital signal processors. The more digital logic present in the design  
and the higher the switching speed, the more important it becomes to separate the analog and digital ground  
and supply planes at the DAC.  
Because the DAC8541 has both analog and digital ground pins, return currents can be better controlled and  
have less effect on the DAC’s output error. Ideally, AGND would be connected directly to an analog ground plane  
and DGND to the digital ground plane. The analog ground plane would be separate from the ground connection  
for the digital components until they were connected at the power entry point of the system.  
The power applied to AV  
and V  
H (this also applies to V  
L if not tied to AGND) should be well-regulated  
DD  
REF  
REF  
and low-noise. Switching power supplies and dc/dc converters often have high-frequency glitches or spikes  
riding on the output voltage. In addition, digital components can create similar high-frequency spikes as their  
internal logic switches states. This noise can easily couple into the DAC output voltage through various paths  
between the power connections and analog output.  
As with the AGND connection, AV should be connected to a 5-V power supply plane or trace that is separate  
DD  
from the connection for digital logic until they are connected at the power entry point. In addition, the 1-µF to  
10-µF and 0.1-µF bypass capacitors are strongly recommended. In some situations, additional bypassing may  
be required, such as a 100-µF electrolytic capacitor or even a Pi filter made up of inductors and capacitors—all  
designed to essentially lowpass filter the AV  
supply, removing the high frequency noise.  
DD  
19  
www.ti.com  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢆ  
SLAS353 − DECEMBER 2001  
MECHANICAL DATA  
PBS (S-PQFP-G32)  
PLASTIC QUAD FLATPACK  
0,23  
M
0,50  
0,08  
0,17  
17  
24  
25  
32  
16  
9
0,13 NOM  
1
8
3,50 TYP  
Gage Plane  
5,05  
SQ  
4,95  
0,25  
7,10  
SQ  
0,10 MIN  
6,90  
0°ā7°  
0,70  
0,40  
1,05  
0,95  
Seating Plane  
0,08  
1,20 MAX  
4087735/A 11/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
20  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

DAC8541Y/250

16-BIT SINGLE CHANNEL, PARALLEL INPUT DIGITAL-TO-ANALOG CONVERTER WITH RAIL VOLTAGE OUTPUT
TI

DAC8541Y/250G4

16-BIT,SINGLE CHANNEL,PARALLEL INPUT DIGITAL-TO-ANALOG CONVERTER WITH RAIL-TO-RAIL VOLTAGE OUTPUT
TI

DAC8541Y/2K

16-BIT SINGLE CHANNEL, PARALLEL INPUT DIGITAL-TO-ANALOG CONVERTER WITH RAIL VOLTAGE OUTPUT
TI

DAC8541_15

16-BIT,SINGLE CHANNEL,PARALLEL INPUT DIGITAL-TO-ANALOG CONVERTER WITH RAIL-TO-RAIL VOLTAGE OUTPUT
TI

DAC8544

QUAD, 16-BIT, RAIL-TO-RAIL VOLTAGE OUTPUT, PARALLEL INTERFACE, DIGITAL-TO-ANALOG CONVERTER
TI

DAC8544I

QUAD, 16-BIT, RAIL-TO-RAIL VOLTAGE OUTPUT, PARALLEL INTERFACE, DIGITAL-TO-ANALOG CONVERTER
TI

DAC8544IPFB

QUAD, 16-BIT, RAIL-TO-RAIL VOLTAGE OUTPUT, PARALLEL INTERFACE, DIGITAL-TO-ANALOG CONVERTER
TI

DAC8544IPFBR

QUAD, 16-BIT, RAIL-TO-RAIL VOLTAGE OUTPUT, PARALLEL INTERFACE, DIGITAL-TO-ANALOG CONVERTER
TI

DAC8544IPFBRG4

PARALLEL, WORD INPUT LOADING, 12us SETTLING TIME, 16-BIT DAC, PQFP48, PLASTIC, TQFP-48
TI

DAC8550

16-BIT, ULTRA-LOW GLITCH, VOLTAGE OUTPUT DIGITAL-TO-ANALOG CONVERTER
BB

DAC8550

16-bit, Ultra-Low Glitch, Voltage Output Digital-To-Analog Converter
TI

DAC8550B

16-BIT, ULTRA-LOW GLITCH, VOLTAGE OUTPUT DIGITAL-TO-ANALOG CONVERTER
BB