DAC70502 [TI]

双通道、1LSB INL、14 位、SPI 电压输出数模转换器 (DAC);
DAC70502
型号: DAC70502
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双通道、1LSB INL、14 位、SPI 电压输出数模转换器 (DAC)

转换器 数模转换器
文件: 总47页 (文件大小:2136K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
具有精密内部基准的 DACx0502 双通道 16 位、14 位和 12 1LSB INL  
电压输出 DAC  
1 特性  
3 说明  
1
16 位性能:1LSB INL DNL(最大值)  
16 DAC8050214 DAC70502 12 位  
DAC60502 (DACx0502) 数模转换器 (DAC) 均为具有  
电压输出的高精度、低功耗器件。  
低毛刺脉冲能量:4nV-s  
宽电源电压范围:2.7V 5.5V  
缓冲输出范围:5V2.5V 1.25V  
低功耗:1mA/通道 (5.5V)  
DACx0502 线性度小于 1LSB。凭借高精度和微型封装  
特性,DACx0502 非常适合以下 应用: 增益和失调电  
压校准、电流或电压设置点设定和电源控制。这些器件  
包括一个 2.5V5ppm/°C 内部基准,可提供 1.25V、  
2.5V 5V 的满量程输出电压范围。DACx0502 采用  
了上电复位电路,可确保 DAC 输出根据 RSTSEL 引  
脚的状态以零电平或中间电平上电,并在向器件写入有  
效代码之前一直保持该电平。  
集成 5ppm/˚C(最大值)、2.5V 精密基准  
引脚可选串行接口  
3 线制,兼容 SPI,高达 50MHz  
两线制,兼容 I2C  
上电复位:零电平或中间电平  
VDD = 5.5V 时的 VIH 1.62V  
温度范围:–40˚C +125˚C  
封装:微型 10 引脚 WSON  
DACx0502 的数字接口可通过 SPI2C 引脚配置为 SPI  
I2C 模式。在 SPI 模式下,DACx0502 使用一个在  
高达 50MHz 的时钟频率下运行的通用 3 线制串行接  
口。在 I2C 模式下,DACx0502 支持标准 (100kbps)、  
快速 (400kbps) 和快速+ (1.0Mbps) 工作模式。  
2 应用  
示波器 (DSO)  
电池测试  
半导体测试  
器件信息(1)  
数据采集 (DAQ)  
器件型号  
DAC80502  
封装  
封装尺寸(标称值)  
LCD 测试  
小型蜂窝基站  
DAC70502  
DAC60502  
WSON (10)  
2.50mm × 2.50mm  
模拟输出模块  
过程分析(pH、气体、浓度、力和湿度)  
直流电源、交流电源、电子负载  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
功能方框图  
VREFIO  
VDD  
Internal  
Reference  
SPI2C  
SCLK or SCL  
DAC  
Buffer  
DAC  
Register  
BUF  
VOUTA  
VOUTB  
DAC  
SDIN or SDA  
or A0  
Channel A  
Channel B  
SYNC  
RSTSEL  
Power Down Logic  
Resistive Network  
Power On Reset  
AGND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS793  
 
 
 
 
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
www.ti.com.cn  
目录  
8.5 Programming........................................................... 23  
8.6 Register Maps......................................................... 29  
Application and Implementation ........................ 34  
9.1 Application Information............................................ 34  
9.2 Typical Application .................................................. 34  
9.3 System Examples .................................................. 36  
9.4 What To Do and What Not To Do........................... 37  
9.5 Initialization Setup................................................... 37  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements : SPI Mode............................. 9  
7.7 Timing Requirements : I2C Standard Mode.............. 9  
7.8 Timing Requirements : I2C Fast Mode...................... 9  
7.9 Timing Requirements : I2C Fast-Mode Plus ........... 10  
7.10 Typical Characteristics.......................................... 11  
Detailed Description ............................................ 20  
8.1 Overview ................................................................. 20  
8.2 Functional Block Diagram ....................................... 20  
8.3 Feature Description................................................. 20  
8.4 Device Functional Modes........................................ 22  
9
10 Power Supply Recommendations ..................... 38  
11 Layout................................................................... 38  
11.1 Layout Guidelines ................................................. 38  
11.2 Layout Example .................................................... 38  
12 器件和文档支持 ..................................................... 39  
12.1 文档支持................................................................ 39  
12.2 相关链接................................................................ 39  
12.3 接收文档更新通知 ................................................. 39  
12.4 支持资源................................................................ 39  
12.5 ....................................................................... 39  
12.6 静电放电警告......................................................... 39  
12.7 Glossary................................................................ 39  
13 机械、封装和可订购信息....................................... 39  
8
4 修订历史记录  
Changes from Original (November 2019) to Revision A  
Page  
已更改 将器件从预告信息(预发布)更改为生产数据(正在供货)”.................................................................................. 1  
2
Copyright © 2019–2020, Texas Instruments Incorporated  
 
DAC80502, DAC70502, DAC60502  
www.ti.com.cn  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
5 Device Comparison Table  
DEVICE  
RESOLUTION  
16-bit  
REFERENCE  
DAC80502  
DAC70502  
DAC60502  
Internal (default) or external  
Internal (default) or external  
Internal (default) or external  
14-bit  
12-bit  
6 Pin Configuration and Functions  
DRX Package  
10-Pin WSON  
Top View  
VDD  
VOUTA  
RSTSEL  
AGND  
1
2
3
4
5
10  
VREFIO  
9
8
7
6
VOUTB  
SDIN/SDA  
SYNC/A0  
SCLK/SCL  
SPI2C  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
AGND  
4
Ground  
Ground reference point for all circuitry on the device  
Reset select pin.  
RSTSEL  
3
6
Input  
Input  
DACs power up to zero scale if RSTSEL = AGND.  
DACs power up to midscale if RSTSEL = VDD  
Serial interface clock. SPI or I2C mode.  
SCLK/SCL  
SDIN/SDA  
SPI mode: Serial interface data input. Data are clocked into the input shift register on each falling  
edge of the SCLK pin.  
8
Input/Output  
I2C mode: Data are clocked into or out of the input register. This pin is a bidirectional, SDA drain  
data line that must be connected to the supply voltage with an external pull-up resistor.  
Interface select pin. The SPI2C pin must be kept static after device powers up.  
If SPI2C = 0, the digital interface is in SPI mode  
SPI2C  
5
7
Input  
Input  
If SPI2C = 1, the digital interface is in I2C mode  
SPI mode: Active low serial data enable. This input is the frame-synchronization signal for the  
serial data. When the signal goes low, the serial interface input shift register is enabled.  
I2C mode: Four-state address input.  
SYNC/A0  
VDD  
1
2
9
Power  
Output  
Output  
Analog supply voltage (2.7 V to 5.5 V)  
Analog output voltage from DAC A  
Analog output voltage from DAC B  
VOUTA  
VOUTB  
When using the internal reference, this pin is the reference output voltage pin (default).  
When operating with an external reference, this pin is the reference input to the device.  
VREFIO  
10  
Input/Output  
Copyright © 2019–2020, Texas Instruments Incorporated  
3
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–10  
MAX  
6
UNIT  
VDD to AGND  
Input voltage  
VREFIO to AGND  
VDD + 0.3  
VDD + 0.3  
VDD + 0.3  
10  
V
Digital input(s) to AGND  
VOUTx to AGND  
Output voltage  
Input current  
V
Current into any pin  
Junction temperature (TJ)  
Storage temperature (Tstg  
mA  
–40  
150  
Temperature  
°C  
)
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-  
001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
MAX  
UNIT  
POWER SUPPLY  
VDD to AGND  
DIGITAL INPUTS  
VIH  
Positive supply voltage to ground  
5.5  
V
Input high voltage  
Input low voltage  
1.62  
V
V
VIL  
0.45  
REFERENCE INPUT  
2.7 V VDD < 3.3 V,  
reference divider disabled (REF-DIV bit = 0)  
VREFIO to AGND  
VREFIO to AGND  
VREFIO to AGND  
VREFIO to AGND  
1.2  
2.4  
1.2  
2.4  
0.5 × (VDD – 0.2)  
(VDD – 0.2)  
0.5 × VDD  
VDD  
V
V
V
V
2.7 V VDD < 3.3 V,  
reference divider enabled (REF-DIV bit = 1)  
3.3 V VDD 5.5 V,  
reference divider disabled (REF-DIV bit = 0)  
3.3 V VDD 5.5 V,  
reference divider enabled (REF-DIV bit = 1)  
TEMPERATURE  
TA  
Operating temperature  
–40  
125  
°C  
4
Copyright © 2019–2020, Texas Instruments Incorporated  
 
DAC80502, DAC70502, DAC60502  
www.ti.com.cn  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
7.4 Thermal Information  
DACx0502  
THERMAL METRIC(1)  
DRX (WSON)  
10 PINS  
99.7  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
49.9  
35.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.7  
ΨJB  
35.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
all minimum and maximum values at TA = –40°C to +125°C and all typcal values at TA = 25°C, 2.7 V VDD 5.5 V, external  
or internal VREFIO = 1.25 V to 5.5 V , RLOAD = 2 kΩ to AGND, CLOAD = 200 pF to AGND, and digital inputs at VDD or AGND  
(unless otherwise noted)  
PARAMETER  
STATIC PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DAC80502  
DAC70502  
DAC60502  
16  
14  
Resolution  
Bits  
12  
INL  
Integral nonlinearity(1)  
Differential nonlinearity(1)  
Total unadjusted error(1)  
Zero code error(1)  
–1  
1
1
LSB  
LSB  
DNL  
TUE  
–1  
–0.1  
–1.5  
0.04  
0.5  
0.1 %FSR  
DAC loaded with zero scale code  
1.5  
mV  
µV/°C  
mV  
Zero code error temperature  
coefficient(1)  
Offset error(1)  
±2  
0.5  
±2  
–1.5  
–0.1  
–0.1  
1.5  
Offset error temperature  
µV/°C  
(1)  
coefficient  
Gain error(1)  
0.04  
±1  
0.1 %FSR  
Gain error temperature  
coefficient(1)  
Full-scale error(1)  
ppm  
FSR/°C  
0.04  
±2  
0.1 %FSR  
Full-scale error temperature  
coefficient(1)  
ppm  
FSR/°C  
(1) End point fit between code 256 to code 64,511 for 16-bit, code 64 to code 16,127 for 14-bit, code 16 to code 4031 for 12-bit, DAC  
output unloaded, performance under resistive and capacitive load conditions are specified by design and characterization, DAC output  
range 2.5 V.  
Copyright © 2019–2020, Texas Instruments Incorporated  
5
 
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
all minimum and maximum values at TA = –40°C to +125°C and all typcal values at TA = 25°C, 2.7 V VDD 5.5 V, external  
or internal VREFIO = 1.25 V to 5.5 V , RLOAD = 2 kΩ to AGND, CLOAD = 200 pF to AGND, and digital inputs at VDD or AGND  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT CHARACTERISTICS  
2 ×  
VREFIO  
BUFF-GAIN bit set to 1, REF-DIV bit set to 0  
BUFF-GAIN bit set to 1, REF-DIV bit set to 1  
BUFF-GAIN bit set to 0, REF-DIV bit set to 1  
0
0
0
VO  
Output voltage  
VREFIO  
V
0.5 ×  
VREFIO  
VDD = 2.7 V  
0.25  
0.5  
RLOAD  
Resistive load(2)  
kΩ  
VDD = 5.5 V  
RLOAD = infinite  
2
CLOAD  
Capacitive load(2)  
Load regulation  
nF  
RLOAD = 2 kΩ  
10  
DAC at midscale, –10 mA IOUT 10 mA  
80  
30  
µV/mA  
Full scale output shorted to AGND (per  
channel)  
Short circuit current  
mA  
Zero output shorted to VDD (per channel)  
30  
to VDD, DAC at full code, IOUT = 10 mA  
(sourcing)  
Output voltage headroom  
Output voltage footroom  
0.3  
0.3  
0.1  
V
V
to AGND, DAC at zero code, IOUT = 10 mA  
(sinking)  
DAC at midscale  
0.1  
10  
ZO  
DC small signal output impedance DAC at code 256  
DAC at code 65279  
Ω
10  
Power supply rejection ratio (DC) DAC at midscale; VDD = 5 V ± 10%  
0.15  
mV/V  
ppm of  
FSR  
Output voltage drift vs time  
TA = 35°C, VOUT = midscale, 1900 hr  
20  
VOLTAGE REFERENCE INPUT  
Reference input impedance  
(VREFIO)  
ZVREFIO  
100  
5
kΩ  
Reference input capacitance  
(VREFIO)  
CVREFIO  
pF  
VOLTAGE REFERENCE OUTPUT  
Output (initial accuracy)  
TA = 25°C  
2.4975  
2.5025  
V
DAC80502  
5
Output drift  
ppm/  
DAC70502, DAC60502  
10  
Output impedance  
Output noise  
0.1  
14  
Ω
µVPP  
nV/Hz  
mA  
0.1 Hz to 10 Hz  
Output noise density  
Load current  
Measured at 10 kHz, reference load = 10 nF  
140  
±5  
Load regulation  
Sourcing and sinking  
90  
µV/mA  
µV/V  
µV  
Line regulation  
20  
Output voltage drift vs time  
TA = 35°C, 1900 hr  
1st cycle  
20  
480  
25  
ppm  
Thermal hysteresis  
Additional cycle  
ppm  
(2) Not production tested.  
6
Copyright © 2019–2020, Texas Instruments Incorporated  
DAC80502, DAC70502, DAC60502  
www.ti.com.cn  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
Electrical Characteristics (continued)  
all minimum and maximum values at TA = –40°C to +125°C and all typcal values at TA = 25°C, 2.7 V VDD 5.5 V, external  
or internal VREFIO = 1.25 V to 5.5 V , RLOAD = 2 kΩ to AGND, CLOAD = 200 pF to AGND, and digital inputs at VDD or AGND  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC PERFORMANCE  
¼ to ¾ scale and ¾ to ¼ scale settling to ±2  
LSB, VDD = 5.5 V, VREFIO = 2.5 V  
5
3
ts  
Output voltage settling time(3)  
µs  
10-mV settling to ±2 LSB, VDD = 5.5 V,  
VREFIO = 2.5 V  
Slew rate(3)  
VDD = 5.5 V, VREFIO = 2.5 V  
CLOAD = 50 pF  
2
V/µs  
mV  
Power on glitch magnitude  
200  
0.1 Hz to 10 Hz, DAC at midscale,  
VDD = 5.5 V, external VREFIO = 2.5 V  
14  
23  
µVPP  
Vn  
Output noise(3)  
100-kHz Bandwidth, DAC at midscale,  
VDD = 5.5 V, external VREFIO = 2.5 V  
µVrms  
Measured at 1 kHz, DAC at midscale,  
VDD = 5.5 V, external VREFIO = 2.5 V,  
gain = 2X (BUFF-GAIN bit = 1)  
78  
74  
55  
Measured at 10 kHz, DAC at midscale,  
VDD = 5.5 V, external VREFIO = 2.5 V,  
gain = 2X (BUFF-GAIN bit = 1)  
Vn  
Output noise density  
nV/Hz  
Measured at 1 kHz, DAC at full scale,  
VDD = 2.7 V, external VREFIO = 2.5 V,  
gain = 1X (BUFF-GAIN bit = 0)  
Measured at 10 kHz, DAC at full scale,  
VDD = 2.7 V, external VREFIO = 2.5 V,  
gain = 1X (BUFF-GAIN bit = 0)  
50  
70  
70  
1-kHz sinusiod at DAC output, DAC updated  
at 500 kHz, include up to 7th harmonics, no  
filter on DAC output  
SFDR  
THD  
Spurious free dynamic range  
Total harmonic distortion  
dB  
dB  
1-kHz sinusiod at DAC output, DAC updated  
at 500 kHz, include up to 7th harmonics, no  
filter on DAC output  
200-mV, 50-Hz to 60-Hz sine wave on VDD,  
DAC at midscale.  
Power supply rejection ratio (ac)  
Code change glitch impulse  
Code change glitch magnitude  
85  
4
dB  
nV-s  
mV  
Midcode ±1 LSB (including feedthrough)  
Midcode ±1 LSB (including feedthrough)  
gain = 1X (BUFF-GAIN bit = 0)  
7.5  
Full scale swing on adjacent channel,  
measured channel at midscale  
Channel to channel ac crosstalk  
4
nV-s  
Full scale swing on adjacent channel,  
measured channel at midscale  
Channel to channel dc crosstalk  
Digital feedthrough  
1
4
LSB  
nV-s  
At SCLK = 1 MHz, DAC output at midscale  
DIGITAL INPUTS  
Hysteresis voltage  
0.4  
10  
V
Input current  
–5  
5
µA  
pF  
Pin capacitance  
Per pin  
(3) Output buffer in gain = 2X setting (BUFF-GAIN bit = 1).  
Copyright © 2019–2020, Texas Instruments Incorporated  
7
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
all minimum and maximum values at TA = –40°C to +125°C and all typcal values at TA = 25°C, 2.7 V VDD 5.5 V, external  
or internal VREFIO = 1.25 V to 5.5 V , RLOAD = 2 kΩ to AGND, CLOAD = 200 pF to AGND, and digital inputs at VDD or AGND  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER  
IVDD  
Normal mode, internal reference enabled, all  
DACs at full scale, SPI static  
1.9  
1.5  
2.6  
1.9  
mA  
Current flowing into VDD  
Normal mode, external reference = 2.5 V, all  
DACs at full scale, SPI static  
All DACs and Internal reference power-down  
0-V to 5-V range, midscale code  
15  
25  
µA  
µA  
IVREFIO  
Current flowing into VREFIO  
8
Copyright © 2019–2020, Texas Instruments Incorporated  
DAC80502, DAC70502, DAC60502  
www.ti.com.cn  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
7.6 Timing Requirements : SPI Mode  
all input signals are specified with tR = tF = 1 ns/V and timed from a voltage level of (VIL + VIH) / 2. 2.7 V VDD 5.5 V,  
VIH = 1.62 V, VIL = 0.15 V, VREFIO = 1.25 V to 5.5 V, and TA = –40°C to +125°C (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
SCLK frequency  
50  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
SCLK high time  
9
9
SCLK low time  
ns  
SDIN setup  
5
ns  
tSDIH  
SDIN hold  
10  
13  
10  
160  
15  
1
ns  
tSYNCS  
SYNC falling edge to SCLK falling edge setup  
SCLK falling edge to SYNC rising edge  
SYNC high time  
ns  
tSYNCH  
ns  
tSYNCHIGH  
tSYNCIGNORE  
tDACWAIT  
ns  
SCLK falling edge to SYNC ignore  
Sequential DAC update wait time  
ns  
µs  
7.7 Timing Requirements : I2C Standard Mode  
all input signals are specified with tR = tF = 1 ns/V and timed from a voltage level of (VIL + VIH) / 2. 2.7 V VDD 5.5 V,  
VIH = 1.62 V, VIL = 0.45 V, VREFIO = 1.25 V to 5.5 V, and TA = – 40°C to +125°C (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
MHz  
µs  
fSCLK  
tBUF  
SCL frequency  
0.1  
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
Stop condition setup time  
Data hold time  
4.7  
4
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
µs  
4.7  
4
µs  
µs  
0
ns  
Data setup time  
250  
4700  
4000  
ns  
SCL clock low period  
ns  
tHIGH  
tR  
SCL clock high period  
ns  
Clock and data fall time  
Clock and data rise time  
Sequential DAC update wait time  
300  
ns  
tF  
1000  
ns  
tUPDATE  
1
µs  
7.8 Timing Requirements : I2C Fast Mode  
all input signals are specified with tR = tF = 1 ns/V and timed from a voltage level of (VIL + VIH) / 2. 2.7 V VDD 5.5 V,  
VIH = 1.62 V, VIL = 0.45 V, VREFIO = 1.25 V to 5.5 V, and TA = – 40°C to +125°C (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
MHz  
µs  
fSCLK  
tBUF  
SCL frequency  
0.4  
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
Stop condition setup time  
Data hold time  
1.3  
0.6  
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
µs  
0.6  
µs  
0.6  
µs  
0
ns  
Data setup time  
100  
1300  
600  
ns  
SCL clock low period  
ns  
tHIGH  
tR  
SCL clock high period  
ns  
Clock and data fall time  
Clock and data rise time  
Sequential DAC update wait time  
300  
300  
ns  
tF  
ns  
tUPDATE  
1
µs  
Copyright © 2019–2020, Texas Instruments Incorporated  
9
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
www.ti.com.cn  
7.9 Timing Requirements : I2C Fast-Mode Plus  
all input signals are specified with tR = tF = 1 ns/V and timed from a voltage level of (VIL + VIH) / 2. 2.7 V VDD 5.5 V,  
VIH = 1.62 V, VIL = 0.45 V, VREFIO = 1.25 V to 5.5 V, and TA = – 40°C to +125°C (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
MHz  
µs  
fSCLK  
tBUF  
SCL frequency  
1
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
Stop condition setup time  
Data hold time  
0.5  
0.26  
0.26  
0.26  
0
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
µs  
µs  
µs  
ns  
Data setup time  
50  
ns  
SCL clock low period  
500  
260  
ns  
tHIGH  
tR  
SCL clock high period  
ns  
Clock and data fall time  
Clock and data rise time  
Sequential DAC update wait time  
120  
120  
ns  
tF  
ns  
tUPDATE  
1
µs  
tSYNCHIGH  
tSYNCH  
tSYNCS  
SYNC  
tSYNCIGNORE  
tSCLKLOW  
SCLK  
tSCLKHIGH  
SDIN  
Bit 23  
Bit 1  
Bit 0  
tSDIS  
tSDIH  
1. SPI Mode Timing  
Low byte ACK cycle  
tR  
tLOW  
tF  
SCL  
tSUSTA  
tHDSTA  
tHIGH  
tSUSTO  
tHDDAT  
tSUDAT  
tHDSTA  
SDA  
tBUF  
S
P
S
P
2. I2C Mode Timing  
10  
版权 © 2019–2020, Texas Instruments Incorporated  
DAC80502, DAC70502, DAC60502  
www.ti.com.cn  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
7.10 Typical Characteristics  
at TA = 25°C, VDD = 5.5 V, internal reference = 2.5 V, REF-DIV = 0 and BUFF-GAIN = 1, channel A shown, and DAC outputs  
unloaded (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
DACA Unloaded  
DACA 5 kW || 200 pF  
DACB Unloaded  
DACA Unloaded  
DACA 5 kW || 200 pF  
DACB Unloaded  
DACB 5 kW || 200 pF  
DACB 5 kW || 200 pF  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
D001  
D002  
3. Integral Linearity Error vs Digital Input Code  
4. Differential Linearity Error vs Digital Input Code  
0.08  
0.06  
0.04  
0.02  
0
1
DACA Unloaded  
DACA 5 kW || 200 pF  
DACB Unloaded  
INL Max, Unloaded  
INL Min, Unloaded  
INL Max, 5 kW || 200 pF  
INL Min, 5 kW || 200 pF  
0.75  
DACB 5 kW || 200 pF  
0.5  
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-0.02  
-0.04  
-0.06  
-0.08  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
D004  
D003  
6. Integral Linearity Error vs Temperature  
5. Total Unadjusted Error vs Digital Input Code  
0.08  
0.06  
0.04  
0.02  
0
1
Unloaded  
5 kW || 200 pF  
DNL Max, Unloaded  
DNL Min, Unloaded  
DNL Max, 5 kW || 200 pF  
DNL Min, 5 kW || 200 pF  
0.75  
0.5  
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-0.02  
-0.04  
-0.06  
-0.08  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D005  
D006  
7. Differential Linearity Error vs Temperature  
8. Total Unadjusted Error vs Temperature  
版权 © 2019–2020, Texas Instruments Incorporated  
11  
 
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 5.5 V, internal reference = 2.5 V, REF-DIV = 0 and BUFF-GAIN = 1, channel A shown, and DAC outputs  
unloaded (unless otherwise noted)  
1.5  
1.5  
1.25  
1
Unloaded  
5 kW || 200 pF  
1
0.5  
0
0.75  
0.5  
0.25  
0
-0.5  
-1  
-1.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D007  
D008  
9. Zero-Code Error vs Temperature  
10. Offset Error vs Temperature  
0.08  
0.06  
0.04  
0.02  
0
0.08  
0.06  
0.04  
0.02  
0
Unloaded  
5 kW || 200 pF  
Unloaded  
5 kW || 200 pF  
-0.02  
-0.04  
-0.06  
-0.08  
-0.02  
-0.04  
-0.06  
-0.08  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
DD0a0t9a  
D010  
11. Full-Scale Error vs Temperature  
12. Gain Error vs Temperature  
1
1
0.75  
0.5  
Max DNL  
Min DNL  
Max INL  
Min INL  
0.75  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-0.25  
-0.5  
-0.75  
-1  
2.7  
3.1  
3.5  
3.9  
Supply Voltage, VDD (V)  
4.3  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
Supply Voltage, VDD (V)  
4.3  
4.7  
5.1  
5.5  
D011  
D012  
REF-DIV = 0 and BUFF-GAIN = 0  
13. Integral Linearity Error vs Supply Voltage  
REF-DIV = 0 and BUFF-GAIN = 0  
14. Differential Linearity Error vs Supply Voltage  
12  
版权 © 2019–2020, Texas Instruments Incorporated  
DAC80502, DAC70502, DAC60502  
www.ti.com.cn  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 5.5 V, internal reference = 2.5 V, REF-DIV = 0 and BUFF-GAIN = 1, channel A shown, and DAC outputs  
unloaded (unless otherwise noted)  
0.08  
0.06  
0.04  
0.02  
0
1.5  
REF-DIV = 1, BUFF-GAIN = 1  
REF-DIV = 0, BUFF-GAIN = 0  
REF-DIV = 1, BUFF-GAIN = 1  
REF-DIV = 0, BUFF-GAIN = 0  
1
0.5  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.5  
-1  
-1.5  
2.7  
3.1  
3.5  
3.9  
4.3  
Supply Voltage, VDD (V)  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
4.3  
Supply Voltage, VDD (V)  
4.7  
5.1  
5.5  
D013  
D014  
15. Total Unadjusted Error vs Supply Voltage  
16. Zero-Code Error vs Supply Voltage  
0.08  
0.06  
0.04  
0.02  
0
1.5  
1
REF-DIV = 1, BUFF-GAIN = 1  
REF-DIV = 0, BUFF-GAIN = 0  
REF-DIV = 1, BUFF-GAIN = 1  
REF-DIV = 0, BUFF-GAIN = 0  
0.5  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.5  
-1  
-1.5  
2.7  
3.1  
3.5  
3.9  
Supply Voltage, VDD (V)  
4.3  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
Supply Voltage, VDD (V)  
4.3  
4.7  
5.1  
5.5  
D015  
D016  
17. Offset Error vs Supply Voltage  
18. Gain Error vs Supply Voltage  
0.08  
0.06  
0.04  
0.02  
0
1
0.75  
0.5  
REF-DIV = 1, BUFF-GAIN = 1  
REF-DIV = 0, BUFF-GAIN = 0  
Max, REFDIV = 0  
Max, REFDIV = 1  
Min, REFDIV = 0  
Min, REFDIV = 1  
0.25  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.25  
-0.5  
-0.75  
-1  
2.7  
3.1  
3.5  
3.9  
Supply Voltage, VDD (V)  
4.3  
4.7  
5.1  
5.5  
1.25  
2
2.75  
Supply Volltage, VREFIN (V)  
3.5  
4.25  
5
5.5  
D017  
D018  
19. Full-Scale Error vs Supply Voltage  
20. Integral Linearity Error vs Reference Voltage  
版权 © 2019–2020, Texas Instruments Incorporated  
13  
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 5.5 V, internal reference = 2.5 V, REF-DIV = 0 and BUFF-GAIN = 1, channel A shown, and DAC outputs  
unloaded (unless otherwise noted)  
1
0.75  
0.5  
0.08  
0.06  
0.04  
0.02  
0
Max, REFDIV = 0  
Max, REFDIV = 1  
Min, REFDIV = 0  
Min, REFDIV = 1  
REFDIV = 0  
REFDIV = 1  
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-0.02  
-0.04  
-0.06  
-0.08  
1.25  
2
2.75  
Supply Volltage, VREFIN (V)  
3.5  
4.25  
5
5.5  
1.25  
2
2.75  
Supply Volltage, VREFIN (V)  
3.5  
4.25  
5
5.5  
D019  
D020  
21. Differential Linearity Error vs Reference Voltage  
22. Total Unadjusted Error vs Reference Voltage  
1.5  
1.5  
1
REF-DIV = 0, BUFF-GAIN = 0  
REF-DIV = 1, BUFF-GAIN = 1  
REF-DIV = 0, BUFF-GAIN = 0  
REF-DIV = 1, BUFF-GAIN = 1  
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-1.5  
1.25  
2
2.75  
3.5  
Supply Volltage, VREFIN (V)  
4.25  
5
5.5  
1.25  
2
2.75  
3.5  
Supply Volltage, VREFIN (V)  
4.25  
5
5.5  
D021  
D022  
23. Zero-Code Error vs Reference Voltage  
24. Offset Error vs Reference Voltage  
0.08  
0.06  
0.04  
0.02  
0
0.08  
0.06  
0.04  
0.02  
0
REF-DIV = 0, BUFF-GAIN = 0  
REF-DIV = 1, BUFF-GAIN = 1  
REF-DIV = 0, BUFF-GAIN = 0  
REF-DIV = 1, BUFF-GAIN = 1  
-0.02  
-0.04  
-0.06  
-0.08  
-0.02  
-0.04  
-0.06  
-0.08  
1.25  
2
2.75  
Supply Volltage, VREFIN (V)  
3.5  
4.25  
5
5.5  
1.25  
2
2.75  
Supply Volltage, VREFIN (V)  
3.5  
4.25  
5
5.5  
D023  
D024  
25. Gain Error vs Reference Voltage  
26. Full-Scale Error vs Reference Voltage  
14  
版权 © 2019–2020, Texas Instruments Incorporated  
DAC80502, DAC70502, DAC60502  
www.ti.com.cn  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 5.5 V, internal reference = 2.5 V, REF-DIV = 0 and BUFF-GAIN = 1, channel A shown, and DAC outputs  
unloaded (unless otherwise noted)  
2
1.75  
1.5  
1.25  
1
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
0.75  
0.5  
0.25  
0
Internal Reference, BUFF-GAIN = 0  
Internal Reference, BUFF-GAIN = 1  
External Reference, BUFF-GAIN = 0  
External Reference, BUFF-GAIN = 1  
Internal Reference, BUFF-GAIN = 0  
Internal Reference, BUFF-GAIN = 1  
External Reference, BUFF-GAIN = 0  
External Reference, BUFF-GAIN = 1  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D025  
D026  
DAC code at midscale  
27. Supply Current vs Digital Input Code  
28. Supply Current vs Temperature  
3
2.5  
2
12  
10  
8
Internal Reference, BUFF-GAIN = 0  
Internal Reference, BUFF-GAIN = 1  
External Reference, BUFF-GAIN = 0  
External Reference, BUFF-GAIN = 1  
1.5  
1
6
4
0.5  
2
0
0
2.7  
3.1  
3.5  
3.9  
4.3  
Supply Voltage, VDD (V)  
4.7  
5.1  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D027  
D028  
DAC code at midscale  
REF-DIV = 0 and BUFF-GAIN = 0  
29. Supply Current vs Supply Voltage  
30. Power-Down Current vs Temperature  
15  
2.5  
2
Sourcing, VDD = 2.7, REF-DIV = 1, BUFF-GAIN = 1  
Sourcing, VDD = 5.5, REF-DIV = 0, BUFF-GAIN = 0  
Sinking VDD = 2.7,REF-DIV = 1, BUFF-GAIN = 1  
Sinking VDD = 5.5, REF-DIV = 0, BUFF-GAIN = 0  
12  
9
1.5  
1
6
3
0.5  
0
0
2.7  
3.1  
3.5  
3.9  
Supply Voltage, VDD (V)  
4.3  
4.7  
5.1  
5.5  
0
5
10 15  
Load Current (mA)  
20  
25  
D029  
D030  
External reference = 2.5 V, REF-DIV = 1 and BUFF-GAIN = 0  
External reference = 2.5 V  
31. Power Down Current vs Supply Voltage  
32. Headroom and Footroom vs Load Current  
版权 © 2019–2020, Texas Instruments Incorporated  
15  
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 5.5 V, internal reference = 2.5 V, REF-DIV = 0 and BUFF-GAIN = 1, channel A shown, and DAC outputs  
unloaded (unless otherwise noted)  
7
8
0xFFFF  
0xC000  
0x8000  
0x4000  
0x0  
0xFFFF  
0xC000  
0x8000  
0x4000  
0x0  
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
-1  
-1  
-50 -40 -30 -20 -10  
0
10  
Load Current (mA)  
20  
30  
40  
50  
-50 -40 -30 -20 -10  
0
10  
Load Current (mA)  
20  
30  
40  
50  
D031  
D032  
REF-DIV = 0 and BUFF-GAIN = 0  
REF-DIV = 0 and BUFF-GAIN = 1  
33. Source and Sink Capability  
34. Source and Sink Capability  
7
6
0xFFFF  
0xC000  
0x8000  
0x4000  
0x0  
5
4
3
3 nV-s  
2
1
VOUT (2.5 mV/div)  
CS (5 V/div)  
0
-1  
Time (0.5 ms/div)  
-50 -40 -30 -20 -10  
0
Load Current (mA)  
10  
20  
30  
40  
50  
D034  
D033  
DAC code transition from midscale – 1 to midscale LSB,  
REF-DIV = 0 and BUFF-GAIN = 0  
REF-DIV = 1 and BUFF-GAIN = 0  
36. Glitch Impulse, Rising Edge, 1-LSB Step  
35. Source and Sink Capability  
Small Singal VOUT (3 LSB/div)  
Large Singal VOUT (2 V/div)  
CS (5 V/div)  
2 nV-s  
VOUT (2.5mV/div)  
CS (5 V/div)  
Time (0.5 ms/div)  
Time (2 ms/div)  
D035  
D036  
DAC code transition from midscale to midscale – 1 LSB,  
REF-DIV = 0 and BUFF-GAIN = 0  
REF-DIV = 0 and BUFF-GAIN = 0  
37. Glitch Impulse, Falling Edge, 1-LSB Step  
38. Full-Scale Settling Time, Rising Edge  
版权 © 2019–2020, Texas Instruments Incorporated  
16  
DAC80502, DAC70502, DAC60502  
www.ti.com.cn  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 5.5 V, internal reference = 2.5 V, REF-DIV = 0 and BUFF-GAIN = 1, channel A shown, and DAC outputs  
unloaded (unless otherwise noted)  
Small Singal VOUT (3 LSB/div)  
Large Singal VOUT (2 V/div)  
CS (5 V/div)  
VDD (2 V/div)  
DAC Output (40 mV/div)  
Time (2 ms/div)  
Time (1 ms/div)  
D037  
D038  
REF-DIV = 0 and BUFF-GAIN = 0  
REF-DIV = 0 and BUFF-GAIN = 0  
39. Full-Scale Settling Time, Falling Edge  
40. Power-On Glitch  
0
-10  
VDD (2 V/div)  
DAC Output (40 mV/div)  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
1
10  
100 1000  
Frequency (Hz)  
10000  
100000  
Time (1 ms/div)  
D040  
D039  
DAC code at midscale, VDD = 5.0 V + 0.2 VPP  
,
REF-DIV = 0 and BUFF-GAIN = 0  
REF-DIV = 0 and BUFF-GAIN = 0  
42. DAC Output AC PSRR vs Frequency  
41. Power-Off Glitch  
20  
0
300  
250  
200  
150  
100  
50  
DAC Code = 0x0  
DAC Code = 0x8000  
DAC Code = 0xFFFF  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
0
0
4000  
8000 12000  
Frequency (Hz)  
16000  
20000  
10 2030 50 100 200 5001000  
Frequency (Hz)  
10000  
100000  
D041  
D042  
fo = 1 kHz, fs = 400 kHz, includes 7 harmonics,  
Gain = 1X (REF-DIV = 1 and BUFF-GAIN = 1),  
external reference = 2.5 V,  
measurement bandwidth = 20 kHz, external reference = 2.5 V,  
REF-DIV = 0 and BUFF-GAIN = 0  
REF-DIV = 0 and BUFF-GAIN = 0  
43. DAC Output THD+N vs Frequency  
44. DAC Output Noise Spectral Density  
版权 © 2019–2020, Texas Instruments Incorporated  
17  
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 5.5 V, internal reference = 2.5 V, REF-DIV = 0 and BUFF-GAIN = 1, channel A shown, and DAC outputs  
unloaded (unless otherwise noted)  
D043  
D044  
DAC code at midscale, external reference = 2.5 V,  
REF-DIV = 0 and BUFF-GAIN = 0  
DAC code at midscale, internal reference = 2.5 V,  
REF-DIV = 0 and BUFF-GAIN = 0  
45. DAC Output Noise: 0.1 Hz to 10 Hz  
46. DAC Output Noise: 0.1 Hz to 10 Hz  
2.505  
SCLK (5 V/div)  
2.5025  
2.5  
VOUT (1 mV/div)  
2.4975  
2.495  
Time (5 ms/div)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D045  
D046  
SCLK = 1 MHz, DAC code at midscale, external reference = 2.5 V,  
REF-DIV = 0 and BUFF-GAIN = 0  
30 units  
47. Clock Feedthrough  
48. Internal Reference Voltage vs Temperature  
100  
75  
2.505  
2.5025  
2.5  
50  
25  
0
-25  
-50  
-75  
-100  
2.4975  
2.495  
2.7  
3.1  
3.5  
3.9  
4.3  
Supply Voltage, VDD (V)  
4.7  
5.1  
5.5  
0
200  
400  
600  
Time (Hours)  
800  
1000  
1200  
D047  
D048  
49. Internal Reference Voltage vs Supply Voltage  
50. Internal Reference Voltage vs Time  
18  
版权 © 2019–2020, Texas Instruments Incorporated  
DAC80502, DAC70502, DAC60502  
www.ti.com.cn  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 5.5 V, internal reference = 2.5 V, REF-DIV = 0 and BUFF-GAIN = 1, channel A shown, and DAC outputs  
unloaded (unless otherwise noted)  
800  
700  
600  
500  
400  
300  
200  
100  
0
10 2030 50 100 200 5001000  
Frequency (Hz)  
10000  
100000  
D050  
D049  
52. Internal Reference Noise: 0.1 Hz to 10 Hz  
51. Internal Reference Noise Density vs Frequency  
55  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
Presolder Heat Reflow  
Postsolder Heat Reflow  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
1
2
3
4
5
2.4975 2.4980 2.4985 2.4990 2.4995 2.5000 2.5005 2.5010  
VREFOUT (V)  
D051  
D053  
Temperature Drift (ppm/èC)  
53. Internal Reference Temperature Drift Histogram  
54. Internal Reference Initial Accuracy  
(Pre- and Post-Solder) Histogram  
28%  
26%  
24%  
22%  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
6%  
4%  
2%  
0
-3 -2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
3
D054  
VREFOUT Drift Delta (ppm/èC)  
55. Internal Reference Temperature Drift (Pre-Solder and Post-Solder) Histogram  
版权 © 2019–2020, Texas Instruments Incorporated  
19  
 
 
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The DAC80502, DAC70502, DAC60502 (DACx0502) family of devices are dual-channel, buffered voltage output,  
16-bit, 14-bit, or 12-bit digital-to-analog converters (DACs), respectively. These devices include a 2.5-V, 5-  
ppm/˚C internal reference, giving full-scale output voltage ranges of 1.25 V, 2.5 V, or 5 V. The DACx0502  
devices incorporate a power-on-reset circuit that makes sure that the DAC output powers up at zero scale or  
midscale, depending on status of the RSTSEL pin, and remains at that scale until a valid code is written to the  
device.  
The digital interface of the DACx0502 can be configured to SPI or I2C mode using the SPI2C pin. In SPI mode,  
the DACx0502 family uses a 3-wire serial interface that operates at clock rates up to 50 MHz. In I2C mode, the  
DACx0502 devices operate in standard (100 kbps), fast (400 kbps), and fast+ (1.0 Mbps) modes.  
8.2 Functional Block Diagram  
VREFIO  
VDD  
Internal  
Reference  
SPI2C  
SCLK or SCL  
DAC  
Buffer  
DAC  
Register  
BUF  
VOUTA  
VOUTB  
DAC  
SDIN or SDA  
Channel A  
Channel B  
or A0  
SYNC  
RSTSEL  
Power Down Logic  
Resistive Network  
Power On Reset  
AGND  
8.3 Feature Description  
8.3.1 Digital-to-Analog Converter (DAC) Architecture  
Each output channel in the DACx0502 family of devices consists of a rail-to-rail ladder architecture with an output  
buffer amplifier. The devices include an internal 2.5-V reference. 56 shows a block diagram of the DAC  
architecture.  
VREFIO  
2.5 V  
Reference  
REF divider  
(x1 or x0.5)  
REF-DIV  
bit  
Serial interface  
DAC data register  
BUFF-GAIN  
bit  
Gain  
(x1 or x2)  
DAC  
buffer register  
DAC  
active register  
R-2R  
VOUT  
DAC  
output  
AGND  
56. DACx0502 DAC Block Diagram  
20  
版权 © 2019–2020, Texas Instruments Incorporated  
 
DAC80502, DAC70502, DAC60502  
www.ti.com.cn  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
Feature Description (接下页)  
8.3.1.1 DAC Transfer Function  
The input data writes to the individual DAC data registers in straight binary format. After a power-on or a reset  
event, all DAC registers are set to zero code (RSTSEL = 0) or midscale code (RSTSEL = 1). The DAC transfer  
function is shown by 公式 1.  
DAC_DATA VREFIO  
ì
VOUT  
=
ì GAIN  
2N  
DIV  
where:  
N = resolution in bits = either 12 (DAC60502), 14 (DAC70502) or 16 (DAC80502).  
DAC_DATA = decimal equivalent of the binary code that is loaded to the DAC register (address 8h), DAC_DATA  
ranges from 0 to 2N – 1.  
VREFIO = DAC reference voltage. Either VREFIO from the internal 2.5-V reference or VREFIO from an external  
reference.  
DIV = 1 (default) or 2 as set by the REF-DIV bit in the GAIN register (address 4h).  
GAIN = 1 or 2 (default) as set by the BUFF-GAIN bit for that DAC channel in the GAIN register (address 4h).  
(1)  
8.3.1.2 DAC Register Structure  
Data written to the DAC data registers are initially stored in the DAC buffer registers. The update mode of the  
DAC output is determined by the status of the DAC_SYNC_EN bit (address 2h).  
In asynchronous mode (default, DAC_SYNC_EN = 0), a write to the DAC buffer register results in an immediate  
update of the DAC active register. In SPI mode, the DAC output (VOUTx pin) updates on the rising edge of  
SYNC. In I2C mode, the DAC output (VOUT pin) updates on the falling edge of SCL on the last acknowledge bit.  
In synchronous mode (DAC_SYNC_EN = 1), writing to the DAC buffer register does not automatically update the  
DAC active register. Instead, the update occurs only after a software LDAC trigger event. A software LDAC  
trigger generates through the LDAC bit in the TRIGGER register (address 5h). When the host reads from a DAC  
buffer register, the value held in the DAC buffer register is returned (not the value held in the DAC active  
register).  
8.3.1.3 Output Amplifier  
The output buffer amplifier generates rail-to-rail voltages on the output, giving a maximum output range of 0 V to  
VDD. 公式 1 shows that the full-scale output range of the DAC output is determined by the voltage on the  
VREFIO pin, the reference divider setting (DIV) as set by the REF-DIV bit (address 4h), and the gain  
configuration for that channel set by the corresponding BUFF-GAIN bit (address 4h).  
8.3.2 Internal Reference  
The DAx0502 family of devices includes a 2.5-V precision band-gap reference enabled by default. Operation  
from an external reference is supported by disabling the internal reference in the REF_PWDWN bit (address 3h).  
The internal reference is externally available at the VREFIO pin and sources up to 5 mA. For noise filtering, use  
a minimum 150-nF capacitor between the reference output and AGND.  
The reference voltage to the device, either from the internal reference or an external one, can be divided by a  
factor of two by setting the REF-DIV bit (address 4h) to 1. The REF-DIV bit provides additional flexibility in setting  
the full-scale output range of the DAC output. Make sure to configure REF-DIV so that there is sufficient  
headroom from VDD to the DAC operating reference voltage, VREFIO (see 公式 1). See the Recommended  
Operating Conditions for more information.  
Improper configuration of the reference divider triggers a reference alarm condition. In this case, the reference  
buffer is shut down, and all the DAC outputs go to 0 V. The DAC data registers are unaffected by the alarm  
condition, and thus enable the DAC output to return to normal operation after the reference divider is configured  
correctly.  
8.3.2.1 Solder Heat Reflow  
A known behavior of IC reference voltage circuits is the shift induced by the soldering process. 54 and 55  
show the effect of solder heat reflow for the DACx0502 internal reference.  
版权 © 2019–2020, Texas Instruments Incorporated  
21  
 
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
www.ti.com.cn  
Feature Description (接下页)  
8.3.3 Power-On Reset (POR)  
The DACx0502 family of devices includes a power-on reset function that controls the output voltage at power up.  
After the VDD supply has been established, a POR event is issued. The POR causes all registers to initialize to  
default values, and communication with the device is valid only after a 250-µs, power-on-reset delay. The default  
value for all DACs is zero code if RSTSEL = 0, and midscale code if RSTSEL = 1. Each DAC channel remains at  
the power-up voltage until a valid command is written to a channel.  
When the device powers up, a POR circuit sets the device to the default mode. The POR circuit requires specific  
VDD levels, as indicated in 57, in order to make sure that the internal capacitors discharge and reset the  
device on power up. In order to make sure that a POR occurs, VDD must be less than 0.7 V for at least 1 ms.  
When VDD drops to less than 2.2 V but remains greater than 0.7 V (shown as the undefined region), the device  
may or may not reset under all specified temperature and power-supply conditions. In this case, initiate a POR.  
When VDD remains greater than 2.2 V, a POR does not occur.  
VDD (V)  
5.50  
Specified supply  
voltage range  
No power-on reset  
2.70  
2.20  
Undefined  
0.70  
Power-on reset  
0.00  
57. Threshold Levels for the VDD POR Circuit  
8.3.4 Software Reset  
A device software reset event is initiated by writing the reserved code 0x1010 to the SOFT-RESET bit in the  
TRIGGER register (address 5h). A software reset initiates a POR event.  
8.4 Device Functional Modes  
The DACx0502 have two modes of operation: normal and power-down.  
8.4.1 Power-Down Mode  
The DACx0502 output amplifiers and internal reference can be independently powered down through the  
CONFIG register (3h). At power up, the DAC output and the internal reference are active by default. In power-  
down mode, the DACs output (VOUTx pin) is internally connected to AGND through a 1-kΩ resistor.  
22  
版权 © 2019–2020, Texas Instruments Incorporated  
 
DAC80502, DAC70502, DAC60502  
www.ti.com.cn  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
8.5 Programming  
8.5.1 Serial Interface  
The DACx0502 family of devices is controlled through either a 3-wire SPI or a 2-wire I2C interface.  
The type of interface is determined at device power up based on the logic level of the SPI2C pin. A logic 0 on the  
SPI2C pin puts the DACx0502 in SPI mode; whereas, logic 1 on SPI2C puts the DACx0502 in I2C mode. The  
SPI2C pin must be kept static after the device powers up.  
8.5.1.1 SPI Mode  
The DACx0502 digital interface is programmed to work in SPI mode when the logic level of the SPI2C pin is 0 at  
power up. 1 shows the frame format for SPI mode. In SPI mode, the DACx0502 have a 3-wire serial interface:  
SYNC, SCLK, and SDIN. The serial interface is compatible with SPI, QSPI, and Microwire interface standards,  
and most digital signal processors (DSPs). The serial interface operates at up to 50 MHz. The input shift register  
is 24-bits wide.  
1. SPI Mode Frame Format  
BIT  
23  
22 21 20 19 18 17 16 15 14 13 12 11 10  
16-Bit MSB-Aligned DAC Data:  
DAC80502 {15:0}, DAC70502 {13:0, x, x}, DAC60502 {11:0, x, x, x, x}  
9
8
7
6
5
4
3
2
1
0
DESC R/W Register Address - Command Byte  
Serial clock SCLK is a continuous or a gated clock. The first falling edge of SYNC starts the operation cycle.  
When SYNC is high, the SCLK and SDIN signals are blocked. The device internal registers are updated from the  
shift register on the rising edge of SYNC.  
8.5.1.1.1 SYNC Interrupt  
For SPI-mode operation, the SYNC line stays low for at least 24 falling edges of SCLK, and the addressed DAC  
register updates on the SYNC rising edge. However, if the SYNC line is brought high before the 24th SCLK  
falling edge, this event acts as an interrupt to the write sequence. The shift register resets and the write  
sequence is discarded. The data buffer contents and the DAC register contents do not update, and the the  
operating mode does not change, as shown in 58.  
SCLK  
1
2
24  
SYNC  
SDIN  
DB23  
DB0  
Invalid/Interrupted write sequence  
SCLK  
1
2
24  
SYNC  
SDIN  
DB23  
DB0  
Valid write sequence  
58. SYNC Interrupt  
版权 © 2019–2020, Texas Instruments Incorporated  
23  
 
 
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
www.ti.com.cn  
8.5.1.2 I2C Mode  
The DACx0502 digital interface is programmed to work in I2C mode when the logic level of the SPI2C pin is 1 at  
power up. In I2C mode, the DACx0502 have a 2-wire serial interface: SCL, SDA, and one address pin, A0. The  
I2C bus consists of a data line (SDA) and a clock line (SCL) with pull-up structures. When the bus is idle, both  
the SDA and SCL lines are pulled high. All the I2C-compatible devices connect to the I2C bus through open-drain  
I/O pins SDA and SCL.  
The I2C specification states that the device that controls communication is called a master, and the devices that  
are controlled by the master are called slaves. The master device generates the SCL signal. The master device  
also generates special timing conditions (start condition, repeated start condition, and stop condition) on the bus  
to indicate the start or stop of a data transfer. Device addressing is completed by the master. The master device  
on an I2C bus is typically a microcontroller or DSP. The DACx0502 operate as a slave device on the I2C bus. A  
slave device acknowledges master commands, and upon master control, receives or transmits data.  
Typically, the DACx0502 operate as a slave receiver. A master device writes to the DACx0502, a slave receiver.  
However, if a master device requires the DACx0502 internal register data, the DACx0502 operate as a slave  
transmitter. In this case, the master device reads from the DACx0502 According to I2C terminology, read and  
write refer to the master device.  
The DACx0502 are slave devices that support the following data transfer modes:  
1. Standard mode (100 kbps)  
2. Fast mode (400 kbps)  
3. Fast-mode plus (1.0 Mbps)  
The data transfer protocol for standard and fast modes is exactly the same; therefore, these modes are referred  
to as F/S-mode in this document. The fast-mode plus protocol is supported in terms of data transfer speed, but  
not output current. The low-level output current would be 3 mA, similar to the case of standard and fast modes.  
The DACx0502 support 7-bit addressing. The 10-bit addressing mode is not supported. These devices support  
the general call reset function. Sending the following sequence initiates a software reset within the device:  
start/repeated start, 0x00, 0x06, stop. The reset is asserted within the device on the falling edge of the ACK bit,  
following the second byte.  
Other than specific timing signals, the I2C interface works with serial bytes. At the end of each byte, a ninth clock  
cycle generates and detects an acknowledge signal. Acknowledge is when the SDA line is pulled low during the  
high period of the ninth clock cycle. A not-acknowledge is when the SDA line is left high during the high period of  
the ninth clock cycle as shown in 59.  
Data output  
by Transmitter  
Not acknowledge  
Data output  
by Receiver  
Acknowledge  
2
9
1
8
SCL from  
Master  
S
Clock pulse for  
acknowledgement  
Start  
condition  
59. Acknowledge and Not Acknowledge on the I2C Bus  
24  
版权 © 2019–2020, Texas Instruments Incorporated  
 
DAC80502, DAC70502, DAC60502  
www.ti.com.cn  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
8.5.1.2.1 F/S Mode Protocol  
1. The master initiates data transfer by generating a start condition. The start condition is when a high to-low  
transition occurs on the SDA line while SCL is high, as shown in 60. All I2C-compatible devices recognize  
a start condition.  
SDA  
SCL  
S
P
Start  
condition  
Stop  
condition  
60. Start and Stop Conditions  
SDA  
SCL  
Change of data  
allowed  
Data line stable  
Data valid  
61. Bit Transfer on the I2C Bus  
2. The master then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit  
(R/W) on the SDA line. During all transmissions, the master makes sure that data are valid. A valid data  
condition requires the SDA line to be stable during the entire high period of the clock pulse, as shown in 图  
61. All devices recognize the address sent by the master and compare it to their internal fixed addresses.  
Only the slave device with a matching address generates an acknowledge by pulling the SDA line low during  
the entire high period of the 9th SCL cycle, as shown in 59. Upon detecting this acknowledge, the master  
knows the communication link with a slave has been established.  
3. The master generates further SCL cycles to transmit (R/W bit 0) or receive (R/W bit 1) data to the slave. In  
either case, the receiver must acknowledge the data sent by the transmitter so that the acknowledge signal  
can be generated by the master or by the slave, depending on which one is the receiver. The 9-bit valid data  
sequences consists of eight data bits and one acknowledge-bit, and can continue for as long as necessary.  
4. To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from  
low-to-high while the SCL line is high (see 60). This action releases the bus and stops the communication  
link with the addressed slave. All I2C-compatible devices recognize the stop condition. Upon receipt of a stop  
condition, the bus is released, and all slave devices then wait for a start condition followed by a matching  
address.  
版权 © 2019–2020, Texas Instruments Incorporated  
25  
 
 
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
www.ti.com.cn  
8.5.1.2.2 DACx0502 I2C Update Sequence  
For a single update, the DACx0502 requires a start condition, a valid I2C address byte, a command byte, and two  
data bytes (the most significant data byte, MSDB, and least significant data byte, LSDB), as listed in 2.  
2. Update Sequence  
MSB  
....  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
Address (A) byte  
DB [31:24]  
Command byte  
DB [23:16]  
MSDB  
LSDB  
DB [7:0]  
DB [15:8]  
After each byte is received, the DACx0502 acknowledges the byte by pulling the SDA line low during the high  
period of a single clock pulse, as shown in 62. These four bytes and acknowledge cycles make up the 36  
clock cycles required for a single update to occur. A valid I2C™ address byte selects the DACx0502 devices.  
Recognize  
START or  
REPEATED  
Recognize  
STOP or  
REPEATED  
Generate ACKNOWLEDGE  
START  
START  
signal  
condition  
condition  
P
SDA  
Sr  
MSB  
Acknowledgement  
signal from Slave  
Address  
R/W  
1
SCL  
1
7
8
9
2 - 8  
9
Sr  
S
or  
Sr  
or  
P
ACK  
ACK  
START or  
REPEATED  
START or  
STOP  
REPEATED  
START  
condition  
Clock line held low while  
interrupts are serviced  
condition  
62. I2C Bus Protocol  
The command byte sets the operating mode of the selected DACx0502 device. When the operating mode is  
selected by this byte, the DACx0502 series must receive two data bytes, the most significant data byte (MSDB)  
and least significant data byte (LSDB), for a data update to occur. The DACx0502 devices perform an update on  
the falling edge of the acknowledge signal that follows the LSDB.  
When using fast mode (clock = 400 kHz), the maximum DAC update rate is limited to 22.22 kSPS. Using the  
fast-mode plus (clock = 1 MHz), the maximum DAC update rate is limited to 55.55 kSPS. When a stop condition  
is received, the DACx0502 family releases the I2C bus and awaits a new start condition.  
26  
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
DAC80502, DAC70502, DAC60502  
www.ti.com.cn  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
8.5.1.2.2.1 DACx0502 Address Byte  
The address byte, as shown in 3, is the first byte received following the start condition from the master device.  
The first four bits (MSBs) of the address are factory preset to 1001. The next three bits of the address are  
controlled by the A0 pin. The A0 pin input can be connected to VDD, AGND, SCL, or SDA. The A0 pin is  
sampled during the first byte of each data frame to determine the address. The device latches the value of the  
address pin and consequently responds to that particular address according to 4.  
3. DACx0502 Address Byte  
B31  
AD6  
1
B30  
AD5  
0
B29  
AD4  
0
B28  
AD3  
1
B27  
B26  
B25  
B24  
R/W  
COMMENT  
AD2  
AD1  
AD0  
See 4 (slave address column)  
0 or 1  
General address  
4. Address Format  
SLAVE ADDRESS  
1001 000  
A0 PIN  
AGND  
VDD  
1001 001  
1001 010  
SDA  
1001 011  
SCL  
8.5.1.2.2.2 DACx0502 Command Byte  
The DACx0502 command byte (shown in 5) controls which command is executed and which register is being  
accessed when writing to or reading from the DACx0502 series.  
5. DACx0502 Command Byte  
B23  
0
B22  
0
B21  
0
B20  
0
B19  
0
B18  
0
B17  
0
B16  
0
REGISTER  
NOOP  
0
0
0
0
0
0
0
1
DEVID  
0
0
0
0
0
0
1
0
SYNC  
0
0
0
0
0
0
1
1
CONFIG  
GAIN  
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
1
TRIGGER  
BRDCAST  
STATUS  
DAC-A DATA  
DAC-B DATA  
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
1
版权 © 2019–2020, Texas Instruments Incorporated  
27  
 
 
 
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
www.ti.com.cn  
8.5.1.2.2.3 DACx0502 Data Byte (MSDB and LSDB)  
The MSDB and LSDB contain the data that are passed to the register(s) specified by the command byte, as  
shown in 6. The DACx0502 updates at the falling edge of the acknowledge signal that follows the LSDB[0] bit.  
6. DACx0502 Data Byte  
REGISTER  
NAME  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
MSDB  
LSDB  
NOOP  
NOOP - No operation  
DEVID  
0
RESOLUTION  
RESERVED  
0
0
1
0
0
0
0
1
0
1
0
1
DAC-B-  
BRDCST BRDCST  
-EN  
DAC-A-  
DAC-B-  
SYNC-  
EN  
DAC-A-  
SYNC-  
EN  
SYNC  
RESERVED  
RESERVED  
-EN  
REF-  
PWDWN  
DAC-B-  
PWDWN PWDWN  
DAC-A-  
CONFIG  
GAIN  
RESERVED  
RESERVED  
BUF-B-  
GAIN  
BUF-A-  
GAIN  
REF-DIV  
RESERVED  
LDAC  
TRIGGER  
BRDCAST  
SOFT-RESET [3:0]  
BROADCAST-DAC-DATA [15:0] / BROADCAST-DAC-DATA [13:0] / BROADCAST-DAC-DATA [11:0] -- left Aligned  
RESERVED  
REF-  
ALARM  
STATUS  
DAC-A  
DAC-B  
DAC-A-DATA [15:0] for 16-bit / DAC-A-DATA [13:0] for 14-bit / DAC-A-DATA [11:0] for 12-bit -- left Aligned  
DAC-B-DATA [15:0] for 16-bit / DAC-B-DATA [13:0] for 14-bit / DAC-B-DATA [11:0] for 12-bit -- left Aligned  
8.5.1.2.3 DACx0502 I2C Read Sequence  
To read any register the following command sequence must be used:  
1. Send a start or repeated start command with a slave address and the R/W bit set to 0 for writing. The device  
acknowledges this event.  
2. Send a command byte for the register to be read. The device acknowledges this event again.  
3. Send a repeated start with the slave address and the R/W bit set to 1 for reading. The device acknowledges  
this event.  
4. The device writes the MSDB byte of the addressed register. The master must acknowledge this byte.  
5. Finally, the device writes out the LSDB of the register  
An alternative reading method allows for reading back the value of the last register written. The sequence is a  
start or repeated start with the slave address and the R/W bit set to 1, and the two bytes of the last register are  
read out. All the registers in DACx0502 family can be read out with the exception of SOFT-RESET register. 6  
shows the read command set.  
7. Read Sequence  
S
MSB  
...  
R/W(0) ACK  
MSB  
...  
LSB  
ACK  
Sr  
MSB  
...  
R/W(1) ACK  
MSB  
...  
LSB  
ACK  
MSB  
...  
LSB  
NACK  
ADDRESS BYTE  
From Master  
COMMAND BYTE  
From Master  
Sr  
ADDRESS BYTE  
From Master  
MSDB  
LSDB  
Mast  
er  
Slave  
Slave  
Slave  
From Slave  
From Slave  
Master  
28  
版权 © 2019–2020, Texas Instruments Incorporated  
 
DAC80502, DAC70502, DAC60502  
www.ti.com.cn  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
8.6 Register Maps  
8.6.1 Registers  
Table 8. DACx0502 Register Map  
Offset  
0h  
Register Name  
Section  
No Operation  
Device Identification  
Synchronization  
Configuration  
Gain  
NOOP Register  
DEVID Register  
SYNC Register  
CONFIG Register  
GAIN Register  
1h  
2h  
3h  
4h  
5h  
Trigger  
TRIGGER Register  
BRDCAST Register  
STATUS Register  
DAC-A Register  
DAC-B Register  
6h  
Broadcast  
7h  
Device Status  
DAC-A  
8h  
9h  
DAC-B  
8.6.1.1 NOOP Register (offset = 0h) [reset = 0000h]  
Figure 63. NOOP Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NOOP  
W-0h  
Table 9. NOOP Register Field Descriptions  
Bit  
15-0  
Field  
No operation  
Type  
Reset  
Description  
W
0h  
No Operation command  
8.6.1.2 DEVID Register (offset = 1h) [reset = 0214h for DAC80502, 1214h for DAC70502, 2214h for  
DAC60502]  
Figure 64. DEVID Register  
15  
0
14  
13  
12  
11  
0
10  
0
9
1
8
0
7
0
6
0
5
0
4
1
3
0
2
1
1
0
0
1
RESOLUTION  
R-0h R/W-0000h (DAC80502) R-0h  
or 0001h (DAC70502) or  
R-0h  
R-1h  
R-0h  
R-0h  
R-0h  
R-0h  
R-1h  
R-0h  
R-1h  
R-0h  
R-1h  
0020h (DAC60502)  
Table 10. DEVID Register Field Descriptions  
Bit  
15  
Field  
Type  
R
Reset  
Description  
RESERVED  
RESOLUTION  
0h  
RESERVED  
14-12  
R
0000h  
DAC Resolution:  
(DAC80502)  
0001h  
(DAC70502)  
0020h  
0000h (DAC80502 16-bit)  
0001h (DAC70502 14-bit)  
0020h (DAC60502 12-bit)  
(DAC60502)  
11-0  
RESERVED  
R
0215h  
RESERVED  
Copyright © 2019–2020, Texas Instruments Incorporated  
29  
 
 
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
www.ti.com.cn  
8.6.1.3 SYNC Register (offset = 2h) [reset = 0300h]  
Figure 65. SYNC Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
DAC-B-  
DAC-A-  
RESERVED  
DAC-B-  
DAC-A-  
BRDCAST- BRDCAST-  
SYNC-EN  
SYNC-EN  
EN  
EN  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 11. SYNC Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
RW  
Reset  
0h  
Description  
15-10  
9
RESERVED  
DAC-B-BRDCAST-EN  
RW  
1h  
When set to 1 the corresponding DAC is set to update its output  
after a serial interface write to the BRDCAST register.  
When cleared to 0 the corresponding DAC output remains  
unaffected after  
register.  
a serial interface write to the BRDCAST  
8
DAC-A-BRDCAST-EN  
RW  
1h  
When set to 1 the corresponding DAC is set to update its output  
after a serial interface write to the BRDCAST register.  
When cleared to 0 the corresponding DAC output remains  
unaffected after  
register.  
a serial interface write to the BRDCAST  
7-2  
1
RESERVED  
RW  
RW  
0h  
0h  
RESERVED  
DAC-B-SYNC-EN  
When set to 1, the DAC output is set to update in response to  
an LDAC trigger (synchronous mode).  
When cleared to 0 ,the DAC output is set to update immediately  
(asynchronous mode), default.  
0
DAC-A-SYNC-EN  
RW  
0h  
When set to 1, the DAC output is set to update in response to  
an LDAC trigger (synchronous mode).  
When cleared to 0 ,the DAC output is set to update immediately  
(asynchronous mode), default.  
8.6.1.4 CONFIG Register (offset = 3h) [reset = 0000h]  
Figure 66. CONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
REF-PWDWN  
RESERVED  
DAC-B-  
DAC-A-  
PWDWN  
PWDWN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 12. CONFIG Register Field Descriptions  
Bit  
Field  
Type  
RW  
RW  
RW  
RW  
Reset  
0h  
Description  
15-9  
8
RESERVED  
RESERVED  
REF-PWDWN  
RESERVED  
0h  
When set to 1 disables the device internal reference  
RESERVED  
7-2  
1
0h  
DAC-B-PWDWN  
0h  
When set to 1, the corresponding DAC in power-down mode and  
output is connected to GND through a 1-kinternal resistor.  
0
DAC-A-PWDWN  
RW  
0h  
When set to 1, the corresponding DAC in power-down mode and  
output is connected to GND through a 1-kinternal resistor.  
30  
Copyright © 2019–2020, Texas Instruments Incorporated  
DAC80502, DAC70502, DAC60502  
www.ti.com.cn  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
8.6.1.5 GAIN Register (offset = 4h) [reset = 0003h]  
Figure 67. GAIN Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
REF-DIV  
RESERVED  
BUFF-B-  
GAIN  
BUFF-A-  
GAIN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
Table 13. GAIN Register Field Descriptions  
Bit  
Field  
Type  
RW  
Reset  
0h  
Description  
15-9  
8
RESERVED  
REF-DIV  
RESERVED  
RW  
0h  
The reference voltage to the device (either from the internal or  
external reference) can be divided by a factor of two by setting  
the REF-DIV bit to 1. Make sure to configure REF-DIV so that  
there is sufficient headroom from VDD to the DAC operating  
reference voltage. Improper configuration of the reference  
divider triggers a reference alarm condition. In the case of an  
alarm condition, the reference buffer is shut down, and all the  
DAC outputs go to 0 V. The DAC data registers are unaffected  
by the alarm condition, and thus enable the DAC output to return  
to normal operation after the reference divider is configured  
correctly.  
When set to 1 the reference voltage is internally divided by a  
factor of 2.  
When cleared to 0 the reference voltage is unaffected.  
RESERVED  
7-2  
1
RESERVED  
RW  
RW  
0h  
1h  
BUFF-B-GAIN  
When set to 1 the buffer amplifier for corresponding DAC has a  
gain of 2.  
When cleared to 0 the buffer amplifier for corresponding DAC  
has a gain of 1.  
0
BUFF-A-GAIN  
RW  
1h  
When set to 1 the buffer amplifier for corresponding DAC has a  
gain of 2.  
When cleared to 0 the buffer amplifier for corresponding DAC  
has a gain of 1.  
8.6.1.6 TRIGGER Register (offset = 5h) [reset = 0000h]  
Figure 68. TRIGGER Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
LDAC  
W-0h  
SOFT-RESET [3:0]  
W-0h  
Table 14. TRIGGER Register Field Descriptions  
Bit  
Field  
Type  
RW  
W
Reset  
0h  
Description  
15-5  
4
RESERVED  
LDAC  
RESERVED  
0h  
Set this bit to 1 to synchronously load those DACs who have  
been set in synchronous mode in the SYNC register. This is a  
self resetting bit.  
3-0  
SOFT-RESET [3:0]  
W
0h  
When set to the reserved code 1010 resets the device to its  
default state. This is a self resetting bit.  
Copyright © 2019–2020, Texas Instruments Incorporated  
31  
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
www.ti.com.cn  
8.6.1.7 BRDCAST Register (offset = 6h) [reset = 0000h for RSTSEL = 0, or reset = 8000h for RSTSEL = 1]  
Figure 69. BRDCAST Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DAC-DATA [15:0]  
W-0000h when RSTSEL = 0 or reset = 8000h when RSTSEL = 1  
Table 15. BRDCAST Register Field Descriptions  
Bit  
15-0  
Field  
BRDCAST-DATA [15:0]  
Type  
Reset  
Description  
W
0000h when  
RSTSEL = 0  
or  
8000h when  
RSTSEL = 1  
Writing to the BRDCAST register forces those DAC channels  
who have been set to broadcast in the SYNC register to update  
its active register data to the BRDCAST-DATA one.  
Data is MSB aligned in straight binary format and follows the  
format below:  
DAC80502: { DATA[15:0] }  
DAC70502: { DATA[13:0], x, x }  
DAC60502: { DATA[11:0], x, x, x, x}  
x – Don’t care bits  
8.6.1.8 STATUS Register (offset = 7h) [reset = 0000h]  
Figure 70. STATUS Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
REF-ALARM  
R-0h  
Table 16. STATUS Register Field Descriptions  
Bit  
Field  
Type  
RW  
R
Reset  
0h  
Description  
15-1  
0
RESERVED  
REF-ALARM  
RESERVED  
0
REF-ALARM bit. Reads 1 when the difference between the  
reference and supply pins is below a minimum analog threshold.  
Reads 0 otherwise. When 1, the reference buffer is shut down,  
and the DAC outputs are all 0 V. The DAC codes are  
unaffected, and the DAC output returns to normal when the  
difference is above the analog threshold.  
32  
Copyright © 2019–2020, Texas Instruments Incorporated  
DAC80502, DAC70502, DAC60502  
www.ti.com.cn  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
8.6.1.9 DAC-n Register (offset = 8h–9h) [reset = 0000h for RSTSEL = 0, or reset = 8000h for RSTSEL = 1]  
Figure 71. DAC-n Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DAC-n-DATA [15:0]  
R/W-0000h when RSTSEL = 0 or reset = 8000h when RSTSEL = 1  
Table 17. DAC-A Data Register Field Descriptions (8h)  
Bit  
Field  
Type  
Reset  
Description  
15-0  
DAC-A-DATA [15:0]  
RW  
0000h when  
RSTSEL = 0  
or  
8000h when  
RSTSEL = 1  
Data is MSB aligned in straight binary format and follows the  
format below:  
DAC80502: { DATA[15:0] }  
DAC70502: { DATA[13:0], x, x }  
DAC60502: { DATA[11:0], x, x, x, x}  
x – Don’t care bits  
Table 18. DAC-B Data Register Field Descriptions (9h)  
Bit  
Field  
Type  
Reset  
Description  
15-0  
DAC-B-DATA [15:0]  
RW  
0000h when  
RSTSEL = 0  
or  
8000h when  
RSTSEL = 1  
Data is MSB aligned in straight binary format and follows the  
format below:  
DAC80502: { DATA[15:0] }  
DAC70502: { DATA[13:0], x, x }  
DAC60502: { DATA[11:0], x, x, x, x}  
x – Don’t care bits  
版权 © 2019–2020, Texas Instruments Incorporated  
33  
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
Generating accurate, stable programmable dc voltages is a key requirement in most precision end equipment.  
The DACx0502 family of precision DACs are an excellent choice for such applications. The DACx0502 tiny  
package, high resolution, and simple interface makes these devices a great choice for applications such as offset  
and gain control, VCO tuning, programmable reference, and more. With the aforementioned features, this family  
of DACs caters to a wide range of end equipment, such as battery testers, communications equipment, factory  
automation and control, test and measurement, and more.  
9.2 Typical Application  
Battery test equipment requires a two-channel DAC for every channel of battery test output. A battery tester  
operates in constant-current (CC) and constant-voltage (CV) modes. The two DAC channels are used to set the  
voltage and current for battery charge and discharge control. The low INL of the DACx0502 makes system  
calibration simple. The integrated reference and the small package make the design very compact.  
VDD  
Battery  
Charge/  
Discharge  
Circuit  
VSET  
ISET  
DACx0502  
RSENSE  
72. Battery Test Equipment  
9.2.1 Design Requirements  
DAC output range: 0 V to 2.5 V  
DAC output accuracy after calibration: 0.05%FSR  
Operating temperature: 0°C to 100°C  
9.2.2 Detailed Design Procedure  
72 shows a simplified circuit diagram of a battery test system. Use the internal reference (2.5 V) and gain of 1  
for an output range of 2.5 V. The reference divider is 1. Select the 16-bit DAC80502 for the best accuracy. The  
typical value of the TUE is 0.02%FSR, as specified in the Typical Characteristics table. The absolute error at the  
DAC output includes the error from the reference, the error from the DAC, and the temperatures drifts of offset  
error, gain error, and reference. Ignore the load regulation, line regulation, and long-term drift of the reference as  
compared to the initial accuracy and temperature drift. Write the total TUE at the DAC output, as given in 公式 2.  
34  
版权 © 2019–2020, Texas Instruments Incorporated  
 
DAC80502, DAC70502, DAC60502  
www.ti.com.cn  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
Typical Application (接下页)  
TUETOTAL  
=
TUE 2 + (TCOE )2 + (TCGE)2 + (EREF ìGAIN)2 + (TCREF ìGAIN)2  
(
)
where  
TCOE is the temperature drift of the offset error.  
TCGE is the temperature drift of the gain error.  
EREF is the initial accuracy of the reference.  
TCREF is the temperature drift of the reference.  
GAIN is the gain setting of the DAC in combination with the reference divider.  
(2)  
(3)  
Convert the INL value in LSB to %FSR using 公式 3.  
LSB  
%FSR=  
ì100  
2N  
Convert the temperature drift values in ppm/°C to %FSR using 公式 4.  
PPM / èC ì DT  
(
)
%FSR =  
104  
where  
T is the temperature range.  
(4)  
(5)  
Calculate the total error after the offset and gain of DAC are calibrated using 公式 5  
2
TUETOTAL  
=
INL + (TCOE )2 + (TCGE )2 + (TCREF ìGAIN)2  
(
)
The total error at the DAC output calculated using the previous equations is 0.112%FSR before calibration, and  
0.05%FSR after calibration. For better accuracy, perform a temperature calibration. 73 and 74 show the  
drift in the internal reference voltage and TUE, respectively over 0°C to 100°C.  
9.2.3 Application Curves  
73. Internal Reference vs Temperature  
74. TUE vs Temperature  
版权 © 2019–2020, Texas Instruments Incorporated  
35  
 
 
 
 
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
www.ti.com.cn  
9.3 System Examples  
The DACx0502 come with a pin-selectable SPI or I2C interface. This configuration makes the system design  
generic. Pull the SPI2C pin low for SPI or high for I2C. The RSTSEL pin provides a known output at the DAC  
channels at power up, which helps the system achieve a predictable behavior during start up. When using a  
processor with multiple power-supply domains, make sure the input/output power (IOVDD) never exceeds the  
VDD voltage of the DAC. Switching on the IOVDD before VDD can violate the absolute maximum ratings. When  
there is no power-supply sequencing implemented on the system between the processor and the DAC, use a  
series resistor on the digital lines so that the current flow on the digital lines is limited to ±10 mA on any pin.  
9.3.1 SPI Connection to a Processor  
The DACx0502 provides a 3-wire serial peripheral interface (SPI). The connections can be made to a processor,  
as shown in 75. Connect the SPI2C pin to ground either directly or through a pulldown resistor. Pull the  
RSTSEL pin low or high based on the desired output state at power-up. Use a pullup resistor on the SYNC  
signal so that the signal is high by default. Use termination resistors at the digital source so that the transmission  
line reflections are minimized. The source termination resistors also help in slowing down the rise and fall times  
of the digital signals, and in turn, help in minimizing the digital feedthrough of the DAC.  
IOVDD  
RPULLUP  
IOVDD  
VDD  
RS  
RS  
RS  
SCLK  
MOSI  
CS  
SCLK  
SDIN  
PROCESSOR  
DACx0502  
SYNC  
RSTSEL  
SPI2C  
75. SPI Connection to a Processor  
9.3.2 I2C Interface Connection to a Processor  
The I2C interface on DACx0502 provides a slave address selection pin A0 in addition to the standard SCL and  
SDA signals. The A0 can be configured to provide four slave addresses, as specified in 3. Pull up the SCL  
and SDA pins, as shown in 76. The pullup resistor must be selected considering the parasitic capacitance of  
the I2C bus on the printed circuit board (PCB). A small resistance provides better speed, but at the cost of  
increased power consumption.  
IOVDD  
RPULLUP  
IOVDD  
VDD  
SCL  
SDA  
SCL  
SDA  
PROCESSOR  
DACx0502  
A0  
IOVDD  
RSTSEL  
SPI2C  
76. I2C Interface Connection to a Processor  
36  
版权 © 2019–2020, Texas Instruments Incorporated  
 
 
DAC80502, DAC70502, DAC60502  
www.ti.com.cn  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
9.4 What To Do and What Not To Do  
9.4.1 What To Do  
When using an external reference, disable the internal reference. This step must be the first step after power  
on, especially when the external reference is greater than the 2.5-V internal reference.  
Maintain the required headroom between the reference voltage and VDD.  
Use the reference divider when the headroom exceeds the limit.  
9.4.2 What Not To Do  
Do not use an external reference when the internal reference is on. There is no current limit on the internal  
reference.  
9.5 Initialization Setup  
The DACx0502 requires a simple software initialization process based on the interface, power supply, and  
reference selection. The initialization steps are as follows:  
1. When using an external reference, disable the internal reference.  
2. Divide the reference by two when the reference voltage exceeds the headroom required from VDD. For  
example, when using 3.3-V VDD and the internal reference of 2.5 V, the DAC outputs are disabled unless  
the reference is divided by two.  
3. Set the output gain.  
4. Write to the DAC register.  
The following text shows the pseudocode to get started with the DACx0502:  
//SPI Settings  
//Mode: Mode-1 (CPOL: 0, CPHA: 1)  
//CS Type: Active Low, Per Packet  
//Frame length: 24  
//SYNTAX: <WRITE REGISTER (HEX ADDRESS)>, <HEX DATA>  
//Disable internal reference (only in case of external reference)  
WRITE CONFIG (0x03), 0x0100  
//Select REFDIV=1 (reference divided by 2) and GAIN=1 (gain at both the DAC outputs is 2)  
WRITE GAIN (0x04), 0x0103  
//Write mid-code to DACA  
WRITE DAC-A (0x08), 0x7FFF  
//Write Full-code to DACB  
WRITE DAC-B (0x09), 0xFFFF  
版权 © 2019–2020, Texas Instruments Incorporated  
37  
DAC80502, DAC70502, DAC60502  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
The DACx0502 operate within the specified VDD supply range of 2.7 V to 5.5 V. The DACx0502 do not require  
specific supply sequencing. The VDD supply must be well regulated and low noise. Switching power supplies  
and DC/DC converters often have high-frequency glitches or spikes riding on the output voltage. In addition,  
digital components create similar high-frequency spikes. This noise can easily couple into the DAC output  
voltage through various paths between the power connections and analog output. To further minimize noise from  
the power supply, include a 1-μF to 10- μF capacitor and 0.1-μF bypass capacitor. The current consumption on  
the VDD pin, the short-circuit current limit, and the load current for the device is listed in the Electrical  
Characteristics section. The power supply must meet the aforementioned current requirements.  
11 Layout  
11.1 Layout Guidelines  
A precision analog component requires careful layout. The following list provides some insight into good layout  
practices.  
Bypass the VDD to ground with a low ESR ceramic bypass capacitor. The typical recommended bypass  
capacitance is 0.1-µF to 0.22-µF ceramic capacitor, with a X7R or NP0 dielectric.  
Place power supplies and REF bypass capacitors close to the pins to minimize inductance and optimize  
performance.  
Use a high-quality, ceramic-type NP0 or X7R for optimal performance across temperature, and a very low  
dissipation factor.  
The digital and analog sections must have proper placement with respect to the digital pins and analog pins  
of the DACx0502 devices. The separation of analog and digital blocks minimizes coupling into neighboring  
blocks, as well as interaction between analog and digital return currents.  
11.2 Layout Example  
GND  
Decoupling  
GND  
Reference  
Bypass  
Capacitor  
Capacitor  
VDD  
VOUTA  
Optional  
REFIN or  
REFOUT  
DACx0502  
1
2
3
4
5
10  
9
VOUTB  
8
SDIN/SDA  
Pull-up  
7
VDD  
6
GND  
GND  
SYNC/A0  
SCLK/SCL  
Pull-down for  
SPI Mode  
(Note: Ground and Power planes omitted for clarity)  
77. Layout Example  
38  
版权 © 2019–2020, Texas Instruments Incorporated  
DAC80502, DAC70502, DAC60502  
www.ti.com.cn  
ZHCSKJ2A NOVEMBER 2019REVISED APRIL 2020  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:DAC80502EVM 用户指南  
12.2 相关链接  
19 列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速  
链接。  
19. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
单击此处  
工具和软件  
单击此处  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
单击此处  
DAC80502  
DAC70502  
DAC60502  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019–2020, Texas Instruments Incorporated  
39  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC60502DRXR  
DAC60502DRXT  
DAC70502DRXR  
DAC70502DRXT  
DAC80502DRXR  
DAC80502DRXT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DRX  
DRX  
DRX  
DRX  
DRX  
DRX  
10  
10  
10  
10  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
D652  
D652  
D752  
D752  
D852  
D852  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC60502DRXR  
DAC60502DRXT  
DAC70502DRXR  
DAC70502DRXT  
DAC80502DRXR  
DAC80502DRXT  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DRX  
DRX  
DRX  
DRX  
DRX  
DRX  
10  
10  
10  
10  
10  
10  
3000  
250  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
2.75  
2.75  
2.75  
2.75  
2.75  
2.75  
2.75  
2.75  
2.75  
2.75  
2.75  
2.75  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC60502DRXR  
DAC60502DRXT  
DAC70502DRXR  
DAC70502DRXT  
DAC80502DRXR  
DAC80502DRXT  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DRX  
DRX  
DRX  
DRX  
DRX  
DRX  
10  
10  
10  
10  
10  
10  
3000  
250  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DRX0010A  
WSON - 0.8 mm max height  
SCALE 5.000  
PLASTIC SMALL OUTLINE - NO LEAD  
2.6  
2.4  
B
A
PIN 1 INDEX AREA  
2.6  
2.4  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
SYMM  
(0.2) TYP  
1.1  
0.9  
10X  
0.05  
0.00  
5
6
2X  
2
SYMM  
8X  
0.5  
10  
1
0.30  
0.18  
10X  
PIN 1 ID  
(45 X0.15)  
0.1  
C A B  
C
0.05  
4223856/B 01/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRX0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (1.2)  
1
10  
10X (0.24)  
8X (0.5)  
SYMM  
6
5
SYMM  
(1.7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:30X  
EXPOSED METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223856/B 01/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRX0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (1.2)  
1
10  
10X (0.24)  
8X (0.5)  
SYMM  
5
6
SYMM  
(1.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4223856/B 01/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DAC70502DRXR

双通道、1LSB INL、14 位、SPI 电压输出数模转换器 (DAC) | DRX | 10 | -40 to 125
TI

DAC70502DRXT

双通道、1LSB INL、14 位、SPI 电压输出数模转换器 (DAC) | DRX | 10 | -40 to 125
TI

DAC70504

采用微型 QFN 封装、具有精密内部基准电压的真正 14 位、4 通道、SPI、电压输出 DAC
TI

DAC70504RTER

采用微型 QFN 封装、具有精密内部基准电压的真正 14 位、4 通道、SPI、电压输出 DAC | RTE | 16 | -40 to 125
TI

DAC70504RTET

采用微型 QFN 封装、具有精密内部基准电压的真正 14 位、4 通道、SPI、电压输出 DAC | RTE | 16 | -40 to 125
TI

DAC70508

具有精密内部基准电压的真正 14 位、8 通道、SPI、电压输出 DAC,采用微型 WCSP 封装
TI

DAC70508MRTER

具有精密内部基准电压的真正 14 位、8 通道、SPI、电压输出 DAC,采用微型 WCSP 封装 | RTE | 16 | -40 to 125
TI

DAC70508MRTET

具有精密内部基准电压的真正 14 位、8 通道、SPI、电压输出 DAC,采用微型 WCSP 封装 | RTE | 16 | -40 to 125
TI

DAC70508MYZFR

具有精密内部基准电压的真正 14 位、8 通道、SPI、电压输出 DAC,采用微型 WCSP 封装 | YZF | 16 | -40 to 125
TI

DAC70508MYZFT

具有精密内部基准电压的真正 14 位、8 通道、SPI、电压输出 DAC,采用微型 WCSP 封装 | YZF | 16 | -40 to 125
TI

DAC70508ZRTER

具有精密内部基准电压的真正 14 位、8 通道、SPI、电压输出 DAC,采用微型 WCSP 封装 | RTE | 16 | -40 to 125
TI

DAC70508ZRTET

具有精密内部基准电压的真正 14 位、8 通道、SPI、电压输出 DAC,采用微型 WCSP 封装 | RTE | 16 | -40 to 125
TI