DAC3171IRGCR [TI]

14 位、500MSPS 数模转换器 (DAC) | RGC | 64 | -40 to 85;
DAC3171IRGCR
型号: DAC3171IRGCR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

14 位、500MSPS 数模转换器 (DAC) | RGC | 64 | -40 to 85

转换器 数模转换器
文件: 总57页 (文件大小:1597K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
Single 14-/12-/10-Bit 500 MSPS Digital-to-Analog Converters  
Check for Samples: DAC3151, DAC3161, DAC3171  
1
FEATURES  
APPLICATIONS  
2
Single Channel  
Resolution  
Wireless Infrastructure  
PA Bias, Envelope Tracking, TX  
DAC3151: 10-Bit  
DAC3161: 12-Bit  
DAC3171: 14-Bit  
Radar  
Software-Defined Radio  
Signal/Waveform Generators  
Cable Head-End Equipment  
Maximum Sample Rate: 500 MSPS  
Pin-Compatible Family  
Input Interface:  
DESCRIPTION  
The DAC3151/DAC3161/DAC3171 is a family of  
single channel 500MSPS digital-to-analog converters  
with resolutions of 10-/12-/14-bits. The family uses a  
10-/12-/14-bit wide LVDS digital bus with an input  
FIFO. The 14-bit DAC3171 also supports a DDR 7-bit  
LVDS interface mode. FIFO input and output pointers  
can be synchronized across multiple devices for  
precise signal synchronization. The DAC outputs are  
current sourcing and terminate to GND with a  
Parallel LVDS Inputs  
Single or Dual DDR Data Clock  
Internal FIFO  
Chip to Chip Synchronization  
Power Dissipation: 375mW  
Spectral Performance at 20 MHz IF  
SNR: 76 dBFS for DAC3171; 72dBFS for  
DAC3161; 62 dBFS for DAC3151  
compliance  
range  
of  
-0.5  
to  
1V.  
DAC3151/DAC3161/DAC3171 is pin compatible with  
the dual-channel, 10-/12-/14-bit, 500MSPS digital-to-  
analog converter DAC3154/DAC3164/DAC3174.  
SFDR: 78 dBc for DAC3171; 77dBc for  
DAC3161; 76 dBc for DAC3151  
Current Sourcing DACs  
The device is available in a QFN-64 PowerPAD™  
package is specified over the full industrial  
temperature range (–40°C to 85°C).  
Compliance Range: -0.5V to 1V  
Package: 64 Pin QFN (9x9mm)  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
PowerPAD is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
 
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
BLOCK DIAGRAMS  
DACCLKP  
DACCLKN  
DATACLKP  
DATACLKN  
DATA9P  
EXTIO  
BIASJ  
LVPECL  
LVDS  
Clock Distribution  
1.2 V  
Reference  
Programmable  
Delay  
LVDS  
DATA9N  
DACA  
Gain  
10  
QMC  
A-offset  
IOUTAP  
IOUTAN  
10-b  
DACA  
10  
LVDS  
DATA0P  
DATA0N  
LVDS  
SYNCP  
SYNCN  
ALIGNP  
ALIGNN  
VDDA33  
Optional Input  
Used for multi-DAC sync  
LVPECL  
Control Interface  
Figure 1. DAC3151 Full Word Interface Mode  
2
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
DACCLKP  
DACCLKN  
DATACLKP  
DATACLKN  
DATA11P  
EXTIO  
LVPECL  
LVDS  
Clock Distribution  
1.2 V  
Reference  
BIASJ  
Programmable  
Delay  
LVDS  
DATA11N  
DACA  
Gain  
12  
QMC  
A-offset  
IOUTAP  
12-b  
DACA  
IOUTAN  
12  
LVDS  
DATA0P  
DATA0N  
LVDS  
SYNCP  
SYNCN  
ALIGNP  
ALIGNN  
VDDA33  
Optional Input  
Used for multi-DAC sync  
LVPECL  
Control Interface  
Figure 2. DAC3161 Full Word Interface Mode  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
DACCLKP  
EXTIO  
BIASJ  
LVPECL  
LVDS  
Clock Distribution  
1.2 V  
Reference  
DACCLKN  
DATACLKP  
DATACLKN  
DATA13P  
Programmable  
Delay  
LVDS  
DATA13N  
DACA  
Gain  
14  
QMC  
A-offset  
IOUTAP  
IOUTAN  
14-b  
DACA  
14  
LVDS  
DATA0P  
DATA0N  
LVDS  
SYNCP  
SYNCN  
ALIGNP  
ALIGNN  
VDDA33  
Optional Input  
Used for multi-DAC sync  
LVPECL  
Control Interface  
Figure 3. DAC3171 Full Word Interface Mode  
4
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
DACCLKP  
DACCLKN  
DA_CLKP  
DA_CLKN  
DA6P  
EXTIO  
LVPECL  
LVDS  
Clock Distribution  
1.2 V  
Reference  
BIASJ  
Programmable  
Delay  
LVDS  
DACA  
Gain  
QMC  
A-offset  
DA6N  
IOUTA1  
14-b  
DACA  
IOUTA2  
7
LVDS  
DA0P  
DA0N  
VDDA33  
Control Interface  
Figure 4. DAC3171 7-bit Interface Mode  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
PINOUT – DAC3151  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DACCLKP  
DACCLKN  
CLKVDD18  
ALIGNP  
ALIGNN  
SYNCP  
SYNCN  
VFUSE  
(MSB) D9P  
D9N  
TXENABLE  
ALARM  
SDO  
IOVDD  
SDIO  
SCLK  
SDENB  
RESETB  
NC  
3
4
5
6
7
8
DAC3151  
9
10  
11  
12  
13  
14  
15  
16  
NC  
D8P  
NC  
D8N  
NC  
D7P  
NC  
D7N  
NC  
GND PAD (backside)  
D6P  
NC  
D6N  
NC  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
PIN ASSIGNMENT TABLE – DAC3151  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
CONTROL/SERIAL  
SCLK  
43  
42  
44  
I
I
Serial interface clock. Internal pull-down.  
Serial interface clock. Internal pull-up.  
SDENB  
SDIO  
I/O Bi-directional serial data in 3 pin mode (default). In 4-pin interface mode (register sif4_ena (config 0, bit  
9)), the SDIO pin in an input only. Internal Pull-down.  
SDO  
46  
41  
O
Uni-directional serial interface data in 4 pin mode (register sif4_ena (config 0, bit 9)). The SDO pin is tri-  
stated in 3-pin interface mode (default). Internal Pulldown.  
RESETB  
I
Serial interface reset input. Active low. Initialized internal registers during high to low transition.  
Assynchronous. Internal pull-up.  
ALARM  
47  
48  
O
I
CMOS output for ALARM condition.  
TXENABLE  
Transmit enable active high input. TXENABLE must be high for the DATA to the DAC to be enabled.  
When TXENABLE is low, the digital logic section is forced to all 0, and any input data is ignored. Internal  
pull-down.  
SLEEP  
49  
I
Puts device in sleep, active high. Internal pull-down.  
6
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
NAME  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
PIN ASSIGNMENT TABLE – DAC3151 (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
DATA INTERFACE  
DATA[9:0]P/N  
9/10-  
19/20  
22/23  
26/27,  
29/30,  
31/32  
I
LVDS input data bits for both channels. Each positive/negative LVDS pair has an internal 100 Ω  
termination resistor. Data format relative to DATACLKP/N clock is Double Data Rate (DDR) with two data  
transfers per DATACKP/N clock cycle.  
The data format is interleaved with channel A (rising edge) and channel B falling edge.  
In the default mode (reverse bus not enabled):  
DATA13P/N is most significant data bit (MSB)  
DATA0P/N is most significant data bit (LSB)  
DATACLKP/N  
SYNCP/N  
24/25  
6/7  
I
I
I
DDR differential input data clock. Edge to center nominal timing. Ch A rising edge, Ch B falling edge in  
multiplexed output mode.  
Reset the FIFO or to be used as a syncing source. These two functions are captured with the rising edge  
of DATACLKP/N. The signal captured by the falling edge of DATACLKP/N.  
ALIGNP/N  
4/5  
LVPECL FIFO output syncrhonization. This positive/negative pair is captured with the rising edge of  
DACCLKP/N. It is used to reset the clock dividers and for multiple DAC synchronization. If unused it can  
be left unconnected.  
OUTPUT/CLOCK  
DACCLKP/N  
IOUTAP/N  
1/2  
I
LVPECL clock input for DAC core with a self-bias of approximately CLKVDD18/2.  
61/60  
O
A-Channel DAC current output. An offset binary data pattern of 0x0000 at the DAC input results in a full  
scale current source and the most positive voltage on the IOUTAP pin. Similarly, a 0xFFFF data input  
results in a 0 mA current source and the least positive voltage on the IOUTAP pin.  
REFERENCE  
EXTIO  
58  
57  
I/O Used as external reference input when internal reference is disabled. Requires a 0.1 µF decoupling  
capacitor to GND when used as reference output.  
BIASJ  
O
Full-scale output current bias. For 20 mA full-scale output current, connect a 960 Ω resistor to GND.  
POWER SUPPLY  
IOVDD  
45  
3
I
I
I
I
I
Supply voltage for CMOS IO’s. 1.8V – 3.3V.  
1.8V clock supply  
CLKVDD18  
DIGVDD18  
VDDA18  
21, 28  
50, 64  
1.8V digital supply. Also supplies LVDS receivers.  
Analog 1.8V supply  
VDDA33  
55, 56,  
59  
Analog 3.3V supply  
VFUSE  
NC  
8
I
Digital supply voltage. (1.8V) This supply pin is also used for factory fuse programming. Connect to  
DVDD pins for normal operation.  
33/34-  
39/40,  
51, 52,  
53, 54  
62, 63  
Not Used. These pins can be left open or tied to GROUND in actual application use. It is recommended  
to turn off pin 33-40 (register lvdsdata_ena) to save power.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
PINOUT – DAC3161  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DACCLKP  
DACCLKN  
CLKVDD18  
ALIGNP  
ALIGNN  
SYNCP  
SYNCN  
VFUSE  
(MSB) D11P  
D11N  
TXENABLE  
ALARM  
SDO  
3
4
IOVDD  
SDIO  
SCLK  
SDENB  
RESETB  
NC  
5
6
7
8
DAC3161  
9
10  
11  
12  
13  
14  
15  
16  
NC  
D10P  
NC  
D10N  
NC  
D9P  
D0N  
D9N  
D0P (LSB)  
D1N  
GND PAD (backside)  
D8P  
D8N  
D1P  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
PIN ASSIGNMENT TABLE – DAC3161  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
CONTROL/SERIAL  
SCLK  
43  
42  
44  
I
I
Serial interface clock. Internal pull-down.  
Serial interface clock. Internal pull-up.  
SDENB  
SDIO  
I/O Bi-directional serial data in 3 pin mode (default). In 4-pin interface mode (register sif4_ena (config 0, bit  
9)), the SDIO pin in an input only. Internal Pull-down.  
SDO  
46  
41  
O
Uni-directional serial interface data in 4 pin mode (register sif4_ena (config 0, bit 9)). The SDO pin is tri-  
stated in 3-pin interface mode (default). Internal Pulldown.  
RESETB  
I
Serial interface reset input. Active low. Initialized internal registers during high to low transition.  
Assynchronous. Internal pull-up.  
ALARM  
47  
48  
O
I
CMOS output for ALARM condition.  
TXENABLE  
Transmit enable active high input. TXENABLE must be high for the DATA to the DAC to be enabled.  
When TXENABLE is low, the digital logic section is forced to all 0, and any input data is ignored. Internal  
pull-down.  
SLEEP  
49  
I
Puts device in sleep, active high. Internal pull-down.  
8
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
NAME  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
PIN ASSIGNMENT TABLE – DAC3161 (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
DATA INTERFACE  
DATA[11:0]P/N  
9/10-  
19/20  
22/23  
26/27,  
29/30-  
35/36  
I
LVDS input data bits for both channels. Each positive/negative LVDS pair has an internal 100 Ω  
termination resistor. Data format relative to DATACLKP/N clock is Double Data Rate (DDR) with two data  
transfers per DATACKP/N clock cycle.  
The data format is interleaved with channel A (rising edge) and channel B falling edge.  
In the default mode (reverse bus not enabled):  
DATA13P/N is most significant data bit (MSB)  
DATA0P/N is most significant data bit (LSB)  
DATACLKP/N  
SYNCP/N  
24/25  
6/7  
I
I
I
DDR differential input data clock. Edge to center nominal timing. Ch A rising edge, Ch B falling edge in  
multiplexed output mode.  
Reset the FIFO or to be used as a syncing source. These two functions are captured with the rising edge  
of DATACLKP/N. The signal captured by the falling edge of DATACLKP/N.  
ALIGNP/N  
4/5  
LVPECL FIFO output syncrhonization. This positive/negative pair is captured with the rising edge of  
DACCLKP/N. It is used to reset the clock dividers and for multiple DAC synchronization. If unused it can  
be left unconnected.  
OUTPUT/CLOCK  
DACCLKP/N  
IOUTAP/N  
1/2  
I
LVPECL clock input for DAC core with a self-bias of approximately CLKVDD18/2.  
61/60  
O
A-Channel DAC current output. An offset binary data pattern of 0x0000 at the DAC input results in a full  
scale current source and the most positive voltage on the IOUTAP pin. Similarly, a 0xFFFF data input  
results in a 0 mA current source and the least positive voltage on the IOUTAP pin.  
REFERENCE  
EXTIO  
58  
57  
I/O Used as external reference input when internal reference is disabled. Requires a 0.1 µF decoupling  
capacitor to GND when used as reference output.  
BIASJ  
O
Full-scale output current bias. For 20 mA full-scale output current, connect a 960 Ω resistor to GND.  
POWER SUPPLY  
IOVDD  
45  
3
I
I
I
I
I
Supply voltage for CMOS IO’s. 1.8V – 3.3V.  
1.8V clock supply  
CLKVDD18  
DIGVDD18  
VDDA18  
21, 28  
50, 64  
1.8V digital supply. Also supplies LVDS receivers.  
Analog 1.8V supply  
VDDA33  
55, 56,  
59  
Analog 3.3V supply  
VFUSE  
NC  
8
I
Digital supply voltage. (1.8V) This supply pin is also used for factory fuse programming. Connect to  
DVDD pins for normal operation.  
37, 38,  
39, 40,  
51, 52,  
53, 54,  
62, 63  
Not Used. These pins can be left open or tied to GROUND in actual application use. It is recommended  
to turn off pin 37-40 (register lvdsdata_ena) to save power.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
PIN OUT – DAC3171 7-BIT INTERFACE MODE  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DACCLKP  
DACCLKN  
CLKVDD18  
NC  
TXENABLE  
ALARM  
SDO  
IOVDD  
SDIO  
SCLK  
SDENB  
RESETB  
NC  
3
4
5
NC  
6
DA_CLKP  
DA_CLKN  
VFUSE  
(MSB) DA6P  
DA6N  
7
8
DAC3171  
9
10  
11  
12  
13  
14  
15  
16  
NC  
DA5P  
NC  
DA5N  
NC  
DA4P  
NC  
DA4N  
NC  
GND PAD (backside)  
DA3P  
NC  
DA3N  
NC  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
PIN ASSIGNMENT TABLE – DAC3171 7-BIT INTERFACE MODE  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
CONTROL/SERIAL  
SCLK  
43  
42  
44  
I
I
Serial interface clock. Internal pull-down.  
Serial interface clock. Internal pull-up.  
SDENB  
SDIO  
I/O Bi-directional serial data in 3 pin mode (default). In 4-pin interface mode (register XYZ), the SDIO pin  
in an input only. Internal Pull-down.  
SDO  
46  
41  
O
Uni-directional serial interface data in 4 pin mode (register XYZ). The SDO pin is tri-stated in 3-pin  
interface mode (default). Internal Pulldown.  
RESETB  
I
Serial interface reset input. Active low. Initialized internal registers during high to low transition.  
Assynchronous. Internal pull-up.  
ALARM  
47  
48  
O
I
CMOS output for ALARM condition.  
TXENABLE  
Transmit enable active high input. TXENABLE must be high for the DATA to the DAC to be enabled.  
When TXENABLE is low, the digital logic section is forced to all 0, and any input data is ignored.  
Internal pull-down.  
SLEEP  
49  
I
Puts device in sleep, active high. Internal pull-down.  
10  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
NAME  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
PIN ASSIGNMENT TABLE – DAC3171 7-BIT INTERFACE MODE (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
DATA INTERFACE  
DA[6:0]P/N  
9/10-  
19/20  
22/23  
I
LVDS positive input data bits for channel A. Each positive/negative LVDS pair has an internal 100 Ω  
termination resistor. Data format relative to DA_CLKP/N clock is Double Data Rate (DDR) with two  
data transfers per DA_CLKP/N clock cycle.  
The data format is 7 MSBs (rising edge)/7 LSBs falling edge.  
In the default mode (reverse bus not enabled):  
D6P/N is most significant data bit (MSB)  
D0P/N is most significant data bit (LSB)  
DA_CLKP/N  
OUTPUT/CLOCK  
DACCLKP/N  
IOUTAP/N  
6/7  
I
DDR differential input data clock for channel A. Edge to center nominal timing.  
1/2  
I
LVPECL clock input for DAC core with a self-bias of approximately CLKVDD18/2.  
61/60  
O
A-Channel DAC current output. An offset binary data pattern of 0x0000 at the DAC input results in a  
full scale current source and the most positive voltage on the IOUTA1 pin. Similarly, a 0xFFFF data  
input results in a 0 mA current source and the least positive voltage on the IOUTA1 pin. The IOUTA2  
pin is the complement of IOUTA1.  
REFERENCE  
EXTIO  
58  
57  
I/O Used as external reference input when internal reference is disabled. Requires a 0.1 µF decoupling  
capacitor to GND when used as reference output.  
BIASJ  
O
Full-scale output current bias. For 20 mA full-scale output current, connect a 960 Ω resistor to GND.  
POWER SUPPLY  
IOVDD  
45  
3
Supply voltage for CMOS IO’s. 1.8V – 3.3V.  
1.8V clock supply  
CLKVDD18  
DIGVDD18  
VDDA18  
21, 28  
50, 64  
1.8V digital supply. Also supplies LVDS receivers.  
Analog 1.8V supply  
VDDA33  
55, 56,  
59  
Analog 3.3V supply  
VFUSE  
NC  
8
Digital supply voltage. (1.8V) This supply pin is also used for factory fuse programming. Connect to  
DVDD pins for normal operation.  
4,5,  
24/25,  
26/27  
Not used. Pin 4 can be left open or tied to DIGVDD18, and other pins can be left open or tied to  
GROUND in actual application use. It is recommended to turn off pin 24/25, 26/27, 29/30-39/40  
(register lvdsdataclk_ena, lvdsdata_ena) to save power.  
29/30-  
39/40,  
51, 52,  
53, 53,  
62, 63  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
PINOUT – DAC3171 14-BIT INTERFACE MODE  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DACCLKP  
DACCLKN  
CLKVDD18  
ALIGNP  
ALIGNN  
SYNCP  
SYNCN  
VFUSE  
(MSB) D13P  
D13N  
TXENABLE  
ALARM  
SDO  
3
4
IOVDD  
SDIO  
5
6
SCLK  
SDENB  
RESETB  
D0N  
7
8
DAC3171  
9
10  
11  
12  
13  
14  
15  
16  
D0P (LSB)  
D1N  
D12P  
D12N  
D1P  
D11P  
D2N  
D11N  
D2P  
GND PAD (backside)  
D10P  
D3N  
D10N  
D3P  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
PIN ASSIGNMENT TABLE – DAC3171 14-BIT INTERFACE MODE  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
CONTROL/SERIAL  
SCLK  
43  
42  
44  
I
I
Serial interface clock. Internal pull-down.  
Serial interface clock. Internal pull-up.  
SDENB  
SDIO  
I/O Bi-directional serial data in 3 pin mode (default). In 4-pin interface mode (register sif4_ena (config 0, bit  
9)), the SDIO pin in an input only. Internal Pull-down.  
SDO  
46  
41  
O
Uni-directional serial interface data in 4 pin mode (register sif4_ena (config 0, bit 9)). The SDO pin is tri-  
stated in 3-pin interface mode (default). Internal Pulldown.  
RESETB  
I
Serial interface reset input. Active low. Initialized internal registers during high to low transition.  
Assynchronous. Internal pull-up.  
ALARM  
47  
48  
O
I
CMOS output for ALARM condition.  
TXENABLE  
Transmit enable active high input. TXENABLE must be high for the DATA to the DAC to be enabled.  
When TXENABLE is low, the digital logic section is forced to all 0, and any input data is ignored. Internal  
pull-down.  
SLEEP  
49  
I
Puts device in sleep, active high. Internal pull-down.  
12  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
NAME  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
PIN ASSIGNMENT TABLE – DAC3171 14-BIT INTERFACE MODE (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
DATA INTERFACE  
DATA[13:0]P/N  
9/10-  
19/20  
22/23  
26/27,  
29/30-  
39/40  
I
LVDS input data bits for both channels. Each positive/negative LVDS pair has an internal 100 Ω  
termination resistor. Data format relative to DATACLKP/N clock is Double Data Rate (DDR) with two data  
transfers per DATACKP/N clock cycle.  
The data format is interleaved with channel A (rising edge) and channel B falling edge.  
In the default mode (reverse bus not enabled):  
DATA13P/N is most significant data bit (MSB)  
DATA0P/N is most significant data bit (LSB)  
DATACLKP/N  
SYNCP/N  
24/25  
6/7  
I
I
I
DDR differential input data clock. Edge to center nominal timing. Ch A rising edge, Ch B falling edge in  
multiplexed output mode.  
Reset the FIFO or to be used as a syncing source. These two functions are captured with the rising edge  
of DATACLKP/N. The signal captured by the falling edge of DATACLKP/N.  
ALIGNP/N  
4/5  
LVPECL FIFO output syncrhonization. This positive/negative pair is captured with the rising edge of  
DACCLKP/N. It is used to reset the clock dividers and for multiple DAC synchronization. If unused it can  
be left unconnected.  
OUTPUT/CLOCK  
DACCLKP/N  
IOUTAP/N  
1/2  
I
LVPECL clock input for DAC core with a self-bias of approximately CLKVDD18/2.  
61/60  
O
A-Channel DAC current output. An offset binary data pattern of 0x0000 at the DAC input results in a full  
scale current source and the most positive voltage on the IOUTAP pin. Similarly, a 0xFFFF data input  
results in a 0 mA current source and the least positive voltage on the IOUTAP pin.  
REFERENCE  
EXTIO  
58  
57  
I/O Used as external reference input when internal reference is disabled. Requires a 0.1 µF decoupling  
capacitor to GND when used as reference output.  
BIASJ  
O
Full-scale output current bias. For 20 mA full-scale output current, connect a 960 Ω resistor to GND.  
POWER SUPPLY  
IOVDD  
45  
3
I
I
I
I
I
Supply voltage for CMOS IO’s. 1.8V – 3.3V.  
1.8V clock supply  
CLKVDD18  
DIGVDD18  
VDDA18  
21, 28  
50, 64  
1.8V digital supply. Also supplies LVDS receivers.  
Analog 1.8V supply  
VDDA33  
55, 56,  
59  
Analog 3.3V supply  
VFUSE  
NC  
8
I
Digital supply voltage. (1.8V) This supply pin is also used for factory fuse programming. Connect to  
DVDD pins for normal operation.  
51, 52,  
53, 54  
62, 63  
Not Used. These pins can be left open or tied to GROUND in actual application use.  
PACKAGE/ORDERING INFORMATION(1)  
SPECIFIED  
TEMPERATUR  
E RANGE  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
LEAD/BALL  
FINISH  
ODERING  
NUMBER  
TRANSPORT  
MEDIA  
PRODUCT  
ECO PLAN  
QUANTITY  
DAC3151IRGCT  
DAC3151IRGCR  
DAC3161IRGCT  
DAC3161IRGCR  
DAC3171IRGCT  
DAC3171IRGCR  
250  
2000  
250  
DAC3151  
DAC3161  
DAC3171  
GREEN (RoHS  
and no Sb/Br)  
QFN-64  
RGC  
–40°C to 85°C  
NiPdAu  
Tape and Reel  
2000  
250  
2000  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
–0.5 to 4  
UNIT  
VDDA33 to GND  
VDDA18 to GND  
–0.5 to 2.3  
–0.5 to 2.3  
–0.5 to 4  
Supply voltage  
CLKVDD18 to GND  
IOVDD to GND  
V
DIGVDD18 to GND  
CLKVDD18 to DIGVDD18  
VDDA18 to DIGVDD18  
–0.5 to 2.3  
–0.5 to 0.5  
–0.5 to 0.5  
DA[6..0]P, DA[6..0]N, D[13..0]P, D[13..0]N, DATACLKP, DATACLKN,  
DA_CLKP, DA_CLKPN, SYNCP, SYNCN to GND  
–0.5 to DIGVDD18 + 0.5  
Terminal voltage  
range  
V
DACCLKP, DACCLKN, ALIGNP, ALIGNN  
TXENABLE, ALARM, SDO, SDIO, SCLK, SDENB, RESETB to GND  
IOUTAP, IOUTAN to GND  
–0.5 to CLKVDD18 + 0.5  
–0.5 to IOVDD + 0.5  
–0.7 to 1.4  
EXTIO, BIASJ to GND  
–0.5 to VDDA33 + 0.5  
–65 to 150  
Storage temperature range  
ESD, Human Body Model  
°C  
kV  
2
THERMAL INFORMATION  
DAC3151, DAC3161,  
DAC3171  
THERMAL METRIC(1)  
UNITS  
QFN (64 PIN)  
θJA  
Junction-to-ambient thermal resistance  
23.0  
7.6  
2.8  
0.1  
2.8  
0.2  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
θJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
14  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
ELECTRICAL CHARACTERISTICS – DC SPECIFICATIONS  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, DAC sample rate = 500MSPS, 50% clock  
duty cycle, VDDA33/IOVDD = 3.3V, VDDA18/CLKVDD18/DIGVDD18 = 1.8V, IOUTFS = 20mA (unless otherwise noted).  
DAC3151  
DAC3161  
DAC3171  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX MIN  
TYP  
MAX  
Resolution  
DC ACCURACY  
DNL Differential nonlinearity  
INL Integral nonlinearity  
ANALOG OUTPUTS  
10  
12  
14  
Bits  
±0.04  
±0.15  
±0.2  
±0.5  
±1  
±2  
1 LSB = IOUTFS/214  
LSB  
Coarse gain linearity  
Offset error  
±0.4  
0.01  
±2  
±0.4  
0.01  
±2  
±0.4  
0.01  
±2  
LSB  
Mid code offset  
%FSR  
With external reference  
With internal reference  
With internal reference  
Gain error  
%FSR  
%FSR  
±2  
±2  
±2  
Gain mismatch  
-2  
2
-2  
2
-2  
2
1
Minimum full scale output  
current  
2
2
2
Nominal full-scale current,  
IOUTFS = 16xIBAIS current  
mA  
Maximum full scale output  
current  
20  
20  
20  
Output compliance range  
Output resistance  
IOUTFS = 20 mA  
-0.5  
1
5
-0.5  
1
5
-0.5  
V
300  
300  
300  
5
kΩ  
pF  
Output capacitance  
REFERENCE OUTPUT  
VREF  
Reference output voltage  
Reference output current  
1.14  
0.1  
1.2  
1.26  
1.14  
0.1  
1.2  
1.26 1.14  
1.2  
1.26  
1.25  
V
100  
100  
100  
nA  
REFERENCE INPUT  
VEXTIO Input voltage range  
External reference mode  
1.2  
1
1.25  
1.2  
1
1.25  
0.1  
1.2  
1
V
Input resistance  
Small signal bandwidth  
MΩ  
kHz  
pF  
500  
100  
500  
100  
500  
100  
Input capacitance  
TEMPERATURE COEFFICIENTS  
ppm of  
FSR  
/°C  
Offset drift  
Gain drift  
±1  
±1  
±1  
With external reference  
With internal reference  
±15  
±30  
±8  
±15  
±30  
±8  
±15  
±30  
±8  
ppm /°C  
ppm /°C  
ppm /°C  
Reference voltage drift  
POWER SUPPLY  
DIGVDD18, VFUSE, VDDA18,  
CLKVDD18  
1.71  
3.15  
1.71  
1.8  
3.3  
1.89  
3.45  
3.45  
1.71  
3.15  
1.71  
1.8  
3.3  
1.89 1.71  
3.45 3.15  
3.45 1.71  
1.8  
3.3  
1.89  
3.45  
3.45  
V
V
V
VDDA33  
IOVDD  
Sets CMOS IO voltage levels. Nominal  
1.8V, 2.5V or 3.3V  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS – DC SPECIFICATIONS (continued)  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, DAC sample rate = 500MSPS, 50% clock  
duty cycle, VDDA33/IOVDD = 3.3V, VDDA18/CLKVDD18/DIGVDD18 = 1.8V, IOUTFS = 20mA (unless otherwise noted).  
DAC3151  
DAC3161  
DAC3171  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX MIN  
TYP  
MAX  
POWER CONSUMPTION  
IVDDA33  
3.3V Analog supply current  
28  
47  
28  
47  
28  
47  
35  
56  
mA  
mA  
ICLKVDD18  
1.8V Clock supply current  
MODE 1  
fDAC = 491.52 MSPS, QMC on,  
IF = 20 MHz, Input full word width  
1.8V Digital supply current  
(DIGVDD18 and VFUSE)  
IDIGVDD18  
110  
110  
110  
125  
mA  
IIOVDD  
1.8V IO Supply current  
Total power dissipation  
3.3V Analog supply current  
1.8V Clock supply current  
0.002  
375  
28  
0.002  
375  
28  
0.002  
375  
28  
0.015  
442  
mA  
mW  
mA  
mA  
Pdis  
IVDDA33  
ICLKVDD18  
37  
37  
37  
MODE 2  
fDAC = 320 MSPS, QMC on,  
IF = 20 MHz, Input full word width  
1.8V Digital supply current  
(DIGVDD18 and VFUSE)  
IDIGVDD18  
80  
80  
80  
mA  
IIOVDD  
1.8V IO Supply current  
Total power dissipation  
3.3V Analog supply current  
1.8V Clock supply current  
0.002  
303  
2.6  
0.002  
303  
2.6  
0.002  
303  
2.6  
mA  
mW  
mA  
mA  
Pdis  
IVDDA33  
ICLKVDD18  
43  
43  
43  
MODE 3  
Sleep mode, fDAC = 491.52 MSPS,  
DAC in sleep mode, Input full word width  
1.8V Digital supply current  
(DIGVDD18 and VFUSE)  
IDIGVDD18  
106  
106  
106  
mA  
IIOVDD  
1.8V IO Supply current  
Total power dissipation  
3.3V Analog supply current  
1.8V Clock supply current  
0.003  
277  
1.6  
0.003  
277  
1.6  
0.003  
277  
1.6  
mA  
mW  
mA  
mA  
Pdis  
IVDDA33  
ICLKVDD18  
4
4
4
4
4
4
1.8  
1.8  
1.8  
MODE 4  
Power-down mode, no clock,  
DAC in sleep mode, Input full word width  
1.8V Digital supply current  
(DIGVDD18 and VFUSE)  
IDIGVDD18  
0.7  
3
0.7  
3
0.7  
3
mA  
IIOVDD  
Pdis  
1.8V IO Supply current  
Total power dissipation  
0.003  
10  
0.015  
26  
0.003  
10  
0.015  
0.003  
10  
0.015  
26  
mA  
26  
mW  
–0.4  
–40  
0.4  
–0.4  
–40  
0.4 –0.4  
0.4 %/FSR  
/V  
PSRR  
T
Power supply rejection ratio  
Operating temperature  
DC tested  
85  
85  
–40  
85  
°C  
16  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
ELECTRICAL CHARACTERISTICS – AC SPECIFICATIONS  
Typical values at T A = 25°C, full temperature range is T MIN = –40°C to T  
= 85°C, DAC sample rate = 500MSPS, 50%  
MAX  
clock duty cycle, VDDA33/IOVDD = 3.3V, VDDA18/CLKVDD18/DIGVDD18 = 1.8V, IOUT FS = 20mA (unless otherwise  
noted).  
DAC3151  
DAC3161  
DAC3171  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN TYP  
MAX  
MIN  
TYP  
MAX  
MIN TYP MAX  
ANALOG OUTPUT  
fDAC  
Maximum sample rate  
500  
500  
500  
11  
MSPS  
ns  
ts(DAC)  
tPD  
tr(IOUT)  
tf(IOUT)  
Output settling time to 0.1%  
Output propagation delay  
Output rise time 10% to 90%  
Output fall time 90% to 10%  
Transition: Code 0x0000 to 0x3FFF  
Does not include digital latency  
11  
2
11  
2
2
ns  
200  
200  
200  
200  
200  
200  
ps  
ps  
Length of delay from DAC pin inputs to  
DATA at output pins. In normal operation  
mode including the latency of FIFO.  
Digital Latency  
26  
26  
26  
µs  
AC PERFORMANCE  
fDAC = 500 MSPS, fout = 10.1 MHz  
fDAC = 500 MSPS, fout = 20.1 MHz  
fDAC = 500 MSPS, fout = 70.1 MHz  
fDAC = 500 MSPS, fout = 10.1 ±0.5 MHz  
fDAC = 500 MSPS, fout = 20.1 ±0.5 MHz  
fDAC = 500 MSPS, fout = 70.1 ±0.5 MHz  
fDAC = 500 MSPS, fout = 150.1 ±0.5 MHz  
fDAC = 500 MSPS, fout = 10.1 MHz  
fDAC = 500 MSPS, fout = 20.1 MHz  
fDAC = 500 MSPS, fout = 70.1 MHz  
81  
76  
82  
77  
82  
78  
SFDR  
Spurious free dynamic range  
dBc  
dBc  
69  
70  
74  
82  
83  
84  
81  
82  
84  
IMD3  
Intermodulation distortion  
73.5  
61  
74  
75  
61  
63  
147  
146  
146  
158  
156  
153  
160  
157  
155  
NSD  
Noise spectral density  
dBc/Hz  
dBc  
fDAC = 491.52 MSPS, fout = 30.72 MHz,  
WCDMA TM1  
69  
68  
77  
73  
78  
74  
ACLR  
Adjacent channel leakage ratio  
f AC = 491.52 MSPS, fout = 153.6 MHz,  
WCDMA TM1  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS – DIGITAL SPECIFICATIONS  
Typical values at T A = 25°C, full temperature range is T MIN = –40°C to T  
= 85°C, DAC sample rate = 500MSPS, 50%  
MAX  
clock duty cycle, VDDA33/IOVDD = 3.3V, VDDA18/CLKVDD18/DIGVDD18 = 1.8V, IOUT FS = 20mA (unless otherwise  
noted).  
DAC3151  
DAC3161  
DAC3171  
TEST  
CONDITIONS  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN TYP  
MAX  
CMOS DIGITAL INPUTS (RESETB, SDENB, SCLK, SDIO, TXENABLE)  
0.6×  
IOVDD  
0.6×  
IOVDD  
0.6×  
IOVDD  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
V
V
0.25×  
IOVDD  
0.25×  
IOVDD  
0.25×  
IOVDD  
IOVDD = 3.3 V, 2.5 V or  
1.8 V  
IIH  
IIL  
High-level input current  
Low-level input current  
-40  
-40  
40  
40  
–40  
–40  
40  
40  
μA  
μA  
DIGITAL OUTPUTS – CMOS INTERFACE (SDOUT, SDIO)  
IOVDD = 3.3 V, 2.5 V,  
1.8 V  
0.85×  
IOVDD  
0.85×  
IOVDD  
0.85×  
IOVDD  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
V
V
0.125×  
IOVDD  
0.125×  
IOVDD  
0.125×  
IOVDD  
SERIAL PORT TIMING  
ts(SENDB)  
ts(SDIO)  
th(SDIO)  
t(SCLK)  
Setup time, SDENB to rising edge of SCLK  
20  
10  
5
20  
10  
5
20  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time, SDIO to rising edge of SCLK  
Hold time, SDIO from rising edge of SCLK  
Period of SCLK  
100  
40  
40  
100  
40  
40  
100  
40  
40  
t(SCLKH)  
t(SCLKL)  
td(DATA)  
TRESET  
High time of SCLK  
Low time of SCLK  
Data output delay after falling edge of SCLK  
Minimum RESTB pulsewidth  
10  
25  
10  
25  
10  
25  
LVDS INTERFACE (D[x..0]P/N, DA[x..0]P/N , DB[x..0]P/N , DA_CLKP/N, DB_CLKP/N, DATACLKP/N, SYNCP/N, ALIGNP/N)  
VA,B+  
VA,B–  
VCOM  
ZT  
Logic high differential input voltage threshold  
Logic low differential input voltage threshold  
Input Common Mode Range  
175  
175  
175  
mV  
mV  
V
–175  
2.0  
–175  
2.0  
–175  
2.0  
1.0  
85  
1.2  
110  
2
1.0  
85  
1.2  
110  
2
1.0  
85  
1.2  
110  
2
Internal termination  
135  
135  
135  
Ω
CL  
LVDS input capacitance  
pF  
18  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
ELECTRICAL CHARACTERISTICS – DIGITAL SPECIFICATIONS (continued)  
Typical values at T A = 25°C, full temperature range is T MIN = –40°C to T  
= 85°C, DAC sample rate = 500MSPS, 50%  
MAX  
clock duty cycle, VDDA33/IOVDD = 3.3V, VDDA18/CLKVDD18/DIGVDD18 = 1.8V, IOUT FS = 20mA (unless otherwise  
noted).  
DAC3151  
DAC3161  
DAC3171  
TEST  
CONDITIONS  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN TYP  
MAX  
LVDS INPUT TIMING  
config3 Setting  
datadly  
clkdly  
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
0
0
0
0
0
0
-20  
-120  
-220  
-310  
-390  
-480  
-560  
-630  
70  
-20  
-120  
-220  
-310  
-390  
-480  
-560  
-630  
70  
-20  
-120  
-220  
-310  
-390  
-480  
-560  
-630  
70  
D[x..0] valid to DATACLK  
rising or falling edge for  
single bus single clock  
mode ;  
_
DA/DB[x…0] valid to  
DB_CLK rising or falling edge  
for dual bus single clock  
mode;  
ts(DATA)  
Setup time  
ps  
_
DA[x..0] valid to DA_CLK  
rising or falling edge, and  
DB[x…0] valid for DB_CLK  
rising or falling edge for dual  
bus dual clock mode  
150  
230  
330  
430  
530  
620  
150  
230  
330  
430  
530  
620  
150  
230  
330  
430  
530  
620  
congfig3 Setting  
datadly clkdly  
0
0
310  
390  
480  
560  
650  
740  
850  
930  
200  
100  
20  
310  
390  
480  
560  
650  
740  
850  
930  
200  
100  
20  
310  
390  
480  
560  
650  
740  
850  
930  
200  
100  
20  
0
0
0
0
0
0
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
0
0
0
0
0
0
0
D[x..0] valid to DATACLK  
rising or falling edge for  
single bus single clock mode;  
_
DA/DB[x…0] valid to  
DB_CLK rising or falling edge  
for dual bus single clock  
mode;  
th(DATA)  
Hold time  
ps  
_
DA[x..0] valid to DA_CLK  
rising or falling edge, and  
DB[x…0] valid for DB_CLK  
rising or falling edge for dual  
bus dual clock mode.  
-60  
-60  
-60  
-140  
-220  
-290  
-140  
-220  
-290  
-140  
-220  
-290  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
TYPICAL CHARACTERISTICS  
All plots are at 25°C, nominal supply voltages, fDAC = 500MSPS, 50% clock duty cycle, 0-dBFS input signal and 20mA full-  
scale output current (unless otherwise noted).  
0.2  
0.15  
0.1  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.05  
0
−0.01  
−0.02  
−0.03  
−0.04  
−0.05  
−0.05  
−0.1  
−0.15  
−0.2  
0
200  
400  
600  
Code  
800  
1000  
0
200  
400  
600  
Code  
800  
1000  
G003  
G004  
Figure 5. DAC3151 Integral Nonlinearity  
Figure 6. DAC3151 Differential Nonlinearity  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0dBFS  
−6dBFS  
−12dBFS  
0dBFS  
−6dBFS  
−12dBFS  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Frequency (dB)  
Output Frequency (dB)  
G005  
G006  
Figure 7. DAC3151 SFDR vs Output Frequency Over Input  
Scale  
Figure 8. DAC3151 Second-Order Harmonic Distortion vs  
Output Frequency Over Input Scale  
100  
100  
fDAC = 200 MSPS  
0dBFS  
−6dBFS  
−12dBFS  
90  
90  
80  
70  
60  
50  
40  
30  
20  
fDAC = 300 MSPS  
fDAC = 400 MSPS  
fDAC = 500 MSPS  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Frequency (dB)  
Output Frequency (MHz)  
G007  
G008  
Figure 9. DAC3151 Third-Order Harmonic Distortion vs  
Output Frequency Over Input Scale  
Figure 10. DAC3151 SFDR vs Output Frequency Over fDAC  
20  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
TYPICAL CHARACTERISTICS (continued)  
All plots are at 25°C, nominal supply voltages, fDAC = 500MSPS, 50% clock duty cycle, 0-dBFS input signal and 20mA full-  
scale output current (unless otherwise noted).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
fDAC = 200 MSPS  
fDAC = 300 MSPS  
fDAC = 400 MSPS  
fDAC = 500 MSPS  
0dBFS  
−6dBFS  
−12dBFS  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Frequency (dB)  
Output Frequency (MHz)  
G009  
G010  
Figure 11. DAC3151 IMD3 vs Output Frequency Over Input  
Scale  
Figure 12. DAC3151 IMD3 vs Output Frequency Over fDAC  
170  
170  
fDAC = 200 MSPS  
0dBFS  
fDAC = 300 MSPS  
fDAC = 400 MSPS  
fDAC = 500 MSPS  
−6dBFS  
−12dBFS  
160  
150  
140  
130  
120  
110  
100  
160  
150  
140  
130  
120  
110  
100  
0
50  
100  
150  
200  
250  
0
100  
200  
250  
Output Frequency (dB)  
Output Frequency (MHz)  
G011  
G012  
Figure 13. DAC3151 NSD vs Output Frequency Over Input  
Scale  
Figure 14. DAC3151 NSD vs Output Frequency Over fDAC  
−50  
−50  
Adjacent channel  
Alternate channel  
−60  
−70  
−80  
−90  
−60  
−70  
−80  
−90  
fDAC = 500 MSPS  
−100  
fDAC = 500 MSPS  
−100  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Frequency (MHz)  
Output Frequency (MHz)  
G013  
G012  
Figure 15. DAC3151 ACLR (Adjacent Channel) vs Output  
Frequency  
Figure 16. DAC3151 ACLR (Alternate Channel) vs Output  
Frequency  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
All plots are at 25°C, nominal supply voltages, fDAC = 500MSPS, 50% clock duty cycle, 0-dBFS input signal and 20mA full-  
scale output current (unless otherwise noted).  
10  
10  
fDAC = 491. 52MSPS  
fout = 20 MHz  
fDAC = 491. 52MSPS  
fout = 70 MHz  
0
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
10  
50  
90  
130  
170  
210  
250  
10  
50  
90  
130  
170  
210  
250  
Frequency (MHz)  
Frequency (MHz)  
G011  
G016  
Figure 17. DAC3151 Single-Tone Spectral Plot (IF = 20MHz)  
Figure 18. DAC3151 Single-Tone Spectral Plot (IF = 70MHz)  
10  
10  
fDAC = 500 MSPS  
fout = 20 MHz  
fDAC = 500 MSPS  
fout = 70 MHz  
0
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
Tone spacing = 1 MHz  
Tone spacing = 1 MHz  
15  
17  
19  
21  
23  
25  
65  
67  
69  
71  
73  
75  
Frequency (MHz)  
Frequency (MHz)  
G017  
G018  
Figure 19. DAC3151 Two-Tone Spectral Plot (IF = 20MHz)  
Figure 20. DAC3151 Two-Tone Spectral Plot (IF = 70MHz)  
*
*
*
R B W 3 0 k H z  
*
*
*
R B W 3 0 k H z  
V B W 3 0 0 k H z  
V B W 3 0 0 k H z  
R e f - 2 0 d B m  
*
A t t  
5
d B  
S W T  
2
s
R e f - 1 0 d B m  
*
A t t  
5
d B  
S W T  
2 s  
- 2 0  
- 3 0  
- 4 0  
- 5 0  
- 6 0  
- 7 0  
- 8 0  
- 9 0  
- 1 0 0  
- 3 0  
- 4 0  
- 5 0  
- 6 0  
- 7 0  
- 8 0  
- 9 0  
- 1 0 0  
- 1 1 0  
A
A
1
R M  
*
1
R M  
*
C L R W R  
C L R W R  
N O R  
3 D B  
N O R  
3 D B  
C e n t e r 7 0 M H z  
1 . 5 5 M H z /  
S p a n 1 5 . 5 M H z  
W - C D M A 3 G P P F W D  
C e n t e r 7 0 M H z  
4 . 0 8 M H z /  
S p a n 4 0 . 8 M H z  
T x C h a n n e l  
S t a n d a r d : W - C D M A 3 G P P F W D  
T x C h a n n e l s  
A d j a c e n t C h a n n e l  
Lower  
B a n d w i d t h  
3 . 8 4 M H z  
3 . 8 4 M H z  
Power  
-10.64 dBm  
-61.24 dB  
-61.34 dB  
A d j a c e n t C h a n n e l  
B a n d w i d t h  
Upper  
Lower  
Upper  
-69.11 dB  
-69.15 dB  
( R e f )  
Ch1  
Ch2  
Ch3  
Ch4  
-18.62 dBm  
-18.64 dBm  
-18.72 dBm  
-18.70 dBm  
S p a c i n g  
5
M H z  
A l t e r n a t e C h a n n e l  
Lower  
Upper  
-61.11 dB  
-61.39 dB  
Total  
-12.65 dBm  
Figure 21. DAC3151 ACPR Four-Carrier  
WCDMA Test Mode 1  
Figure 22. DAC3151 ACPR Single-Carrier  
WCDMA Test Mode 1  
22  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
TYPICAL CHARACTERISTICS (continued)  
All plots are at 25°C, nominal supply voltages, fDAC = 500MSPS, 50% clock duty cycle, 0-dBFS input signal and 20mA full-  
scale output current (unless otherwise noted).  
*
*
*
R B W 3 0 k H z  
*
*
*
R B W 3 0 k H z  
V B W 3 0 0 k H z  
V B W 3 0 0 k H z  
R e f - 1 0 d B m  
*
A t t  
5
d B  
S W T  
2 s  
R e f - 1 0 d B m  
*
A t t  
5
d B  
S W T  
2 s  
- 2 0  
- 3 0  
- 4 0  
- 5 0  
- 6 0  
- 7 0  
- 8 0  
- 9 0  
- 1 0 0  
- 2 0  
- 3 0  
- 4 0  
- 5 0  
- 6 0  
- 7 0  
- 8 0  
- 9 0  
- 1 0 0  
A
A
1
R M *  
1
R M  
*
C L R W R  
C L R W R  
N O R  
3 D B  
N O R  
3 D B  
C e n t e r 7 0 M H z  
5 . 8 5 5 0 3 4 5 3 8 M H z /  
S p a n 5 8 . 5 5 0 3 4 5 3 8 M H z  
E - U T R A / L T E S q u a r e  
C e n t e r 7 0 M H z  
2 . 9 2 8 2 7 4 1 9 M H z /  
S p a n 2 9 . 2 8 2 7 4 1 9 M H z  
E - U T R A / L T E S q u a r e  
T x C h a n n e l  
T x C h a n n e l  
B a n d w i d t h  
1 8 . 0 1 5 M H z  
B a n d w i d t h  
9 . 0 1 5 M H z  
Power  
-11.14 dBm  
Power  
-12.33 dBm  
A d j a c e n t C h a n n e l  
B a n d w i d t h  
A d j a c e n t C h a n n e l  
B a n d w i d t h  
Lower  
Upper  
-61.93 dB  
-62.21 dB  
Lower  
Upper  
-64.00 dB  
-64.09 dB  
1 8 . 0 1 5 M H z  
2 0 M H z  
9 . 0 1 5 M H z  
1 0 M H z  
S p a c i n g  
S p a c i n g  
Figure 23. DAC3151 ACPR LTE 10-MHz FDD E-TM 1.1  
Figure 24. DAC3151 ACPR LTE 20-MHz FDD E-TM 1.1  
0.4  
0.3  
0.2  
0.1  
0
0.2  
0.15  
0.1  
0.05  
0
−0.1  
−0.2  
−0.3  
−0.4  
−0.5  
−0.6  
−0.05  
−0.1  
−0.15  
−0.2  
0
500 1000 1500 2000 2500 3000 3500 4000  
Code  
0
500 1000 1500 2000 2500 3000 3500 4000  
Code  
G024  
G025  
Figure 25. DAC3161 Integral Nonlinearity  
Figure 26. DAC3161 Differential Nonlinearity  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0dBFS  
−6dBFS  
−12dBFS  
0dBFS  
−6dBFS  
−12dBFS  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Frequency (dB)  
Output Frequency (dB)  
G026  
G027  
Figure 27. DAC3161 SFDR vs Output Frequency Over Input  
Scale  
Figure 28. DAC3161 Second-Order Harmonic Distortion vs  
Output Frequency Over Input Scale  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
All plots are at 25°C, nominal supply voltages, fDAC = 500MSPS, 50% clock duty cycle, 0-dBFS input signal and 20mA full-  
scale output current (unless otherwise noted).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
fDAC = 200 MSPS  
fDAC = 300 MSPS  
fDAC = 400 MSPS  
fDAC = 500 MSPS  
0dBFS  
−6dBFS  
−12dBFS  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Frequency (dB)  
Output Frequency (MHz)  
G028  
G029  
Figure 29. DAC3161 Third-Order Harmonic Distortion vs  
Output Frequency Over Input Scale  
Figure 30. DAC3161 SFDR vs Output Frequency Over fDAC  
100  
100  
fDAC = 200 MSPS  
0dBFS  
−6dBFS  
−12dBFS  
90  
90  
80  
70  
60  
50  
40  
30  
20  
fDAC = 300 MSPS  
fDAC = 400 MSPS  
fDAC = 500 MSPS  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Frequency (dB)  
Output Frequency (MHz)  
G030  
G031  
Figure 31. DAC3161 IMD3 vs Output Frequency Over Input  
Scale  
Figure 32. DAC3161 IMD3 vs Output Frequency Over fDAC  
180  
180  
fDAC = 200 MSPS  
0dBFS  
fDAC = 300 MSPS  
fDAC = 400 MSPS  
fDAC = 500 MSPS  
−6dBFS  
−12dBFS  
170  
160  
150  
140  
130  
120  
110  
170  
160  
150  
140  
130  
120  
110  
0
50  
100  
150  
200  
250  
0
100  
200  
250  
Output Frequency (dB)  
Output Frequency (MHz)  
G032  
G033  
Figure 33. DAC3161 NSD vs Output Frequency Over Input  
Scale  
Figure 34. DAC3161 NSD vs Output Frequency Over fDAC  
24  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
TYPICAL CHARACTERISTICS (continued)  
All plots are at 25°C, nominal supply voltages, fDAC = 500MSPS, 50% clock duty cycle, 0-dBFS input signal and 20mA full-  
scale output current (unless otherwise noted).  
−50  
−50  
Adjacent channel  
Alternate channel  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
fDAC = 500 MSPS  
50  
fDAC = 500 MSPS  
50  
−100  
−100  
0
100  
150  
200  
250  
0
100  
150  
200  
250  
Output Frequency (MHz)  
Output Frequency (MHz)  
G034  
G035  
Figure 35. DAC3161 ACLR (Adjacent Channel) vs Output  
Frequency  
Figure 36. DAC3161 ACLR (Alternate Channel) vs Output  
Frequency  
10  
10  
fDAC = 491. 52MSPS  
fout = 20 MHz  
fDAC = 491. 52MSPS  
fout = 70 MHz  
0
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
10  
50  
90  
130  
170  
210  
250  
10  
50  
90  
130  
170  
210  
250  
Frequency (MHz)  
Frequency (MHz)  
G036  
G037  
Figure 37. DAC3161 Single-Tone Spectral Plot (IF = 20MHz)  
Figure 38. DAC3161 Single-Tone Spectral Plot (IF = 70MHz)  
10  
10  
fDAC = 500 MSPS  
fout = 20 MHz  
fDAC = 500 MSPS  
fout = 70 MHz  
0
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
Tone spacing = 1 MHz  
Tone spacing = 1 MHz  
15  
17  
19  
21  
23  
25  
65  
67  
69  
71  
73  
75  
Frequency (MHz)  
Frequency (MHz)  
G038  
G039  
Figure 39. DAC3161 Two-Tone Spectral Plot (IF = 20MHz)  
Figure 40. DAC3161 Two-Tone Spectral Plot (IF = 70MHz)  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
All plots are at 25°C, nominal supply voltages, fDAC = 500MSPS, 50% clock duty cycle, 0-dBFS input signal and 20mA full-  
scale output current (unless otherwise noted).  
*
*
*
R B W 3 0 k H z  
*
*
*
R B W 3 0 k H z  
V B W 3 0 0 k H z  
V B W 3 0 0 k H z  
R e f - 1 0 d B m  
*
A t t  
5
d B  
S W T  
2
s
R e f - 1 0 d B m  
*
A t t  
5
d B  
S W T  
2 s  
- 2 0  
- 3 0  
- 4 0  
- 5 0  
- 6 0  
- 7 0  
- 8 0  
- 9 0  
- 1 0 0  
- 2 0  
- 3 0  
- 4 0  
- 5 0  
- 6 0  
- 7 0  
- 8 0  
- 9 0  
- 1 0 0  
A
A
1
R M  
*
1
R M  
*
C L R W R  
C L R W R  
N O R  
3 D B  
N O R  
3 D B  
C e n t e r 7 0 M H z  
4 . 0 8 M H z /  
S p a n 4 0 . 8 M H z  
C e n t e r 7 0 M H z  
1 . 5 5 M H z /  
S p a n 1 5 . 5 M H z  
W - C D M A 3 G P P F W D  
S t a n d a r d : W - C D M A 3 G P P F W D  
T x C h a n n e l s  
A d j a c e n t C h a n n e l  
Lower  
T x C h a n n e l  
B a n d w i d t h  
3 . 8 4 M H z  
3 . 8 4 M H z  
Power  
-10.70 dBm  
-70.74 dB  
-70.87 dB  
A d j a c e n t C h a n n e l  
B a n d w i d t h  
Upper  
Lower  
Upper  
-77.84 dB  
-77.14 dB  
( R e f )  
Ch1  
Ch2  
Ch3  
Ch4  
-18.70 dBm  
-18.69 dBm  
-18.77 dBm  
-18.75 dBm  
A l t e r n a t e C h a n n e l  
S p a c i n g  
5 M H z  
Lower  
Upper  
-70.86 dB  
-70.84 dB  
Total  
-12.71 dBm  
Figure 41. DAC3161 ACPR Four-Carrier  
WCDMA Test Mode 1  
Figure 42. DAC3161 ACPR Single-Carrier  
WCDMA Test Mode 1  
*
*
*
R B W 3 0 k H z  
*
*
*
R B W 3 0 k H z  
V B W 3 0 0 k H z  
V B W 3 0 0 k H z  
R e f - 2 0 d B m  
*
A t t  
5
d B  
S W T  
2 s  
R e f - 2 0 d B m  
*
A t t  
5
d B  
S W T  
2 s  
- 3 0  
- 4 0  
- 5 0  
- 6 0  
- 7 0  
- 8 0  
- 9 0  
- 1 0 0  
- 1 1 0  
- 3 0  
- 4 0  
- 5 0  
- 6 0  
- 7 0  
- 8 0  
- 9 0  
- 1 0 0  
- 1 1 0  
A
A
1
R M  
*
1
R M *  
C L R W R  
C L R W R  
N O R  
3 D B  
N O R  
3 D B  
C e n t e r 7 0 M H z  
5 . 8 5 5 0 3 4 5 3 8 M H z /  
S p a n 5 8 . 5 5 0 3 4 5 3 8 M H z  
E - U T R A / L T E S q u a r e  
C e n t e r 7 0 M H z  
2 . 9 2 8 2 7 4 1 9 M H z /  
S p a n 2 9 . 2 8 2 7 4 1 9 M H z  
E - U T R A / L T E S q u a r e  
T x C h a n n e l  
T x C h a n n e l  
B a n d w i d t h  
1 8 . 0 1 5 M H z  
B a n d w i d t h  
9 . 0 1 5 M H z  
Power  
-11.20 dBm  
Power  
-12.37 dBm  
A d j a c e n t C h a n n e l  
B a n d w i d t h  
A d j a c e n t C h a n n e l  
B a n d w i d t h  
Lower  
Upper  
-70.91 dB  
-70.66 dB  
Lower  
Upper  
-73.67 dB  
-73.46 dB  
1 8 . 0 1 5 M H z  
2 0 M H z  
9 . 0 1 5 M H z  
1 0 M H z  
S p a c i n g  
S p a c i n g  
Figure 43. DAC3161 ACPR LTE 10-MHz FDD E-TM 1.1  
Figure 44. DAC3161 ACPR LTE 20-MHz FDD E-TM 1.1  
2
1.5  
1
2
1.5  
1
0.5  
0
0.5  
0
−0.5  
−0.5  
−1  
−1.5  
−2  
−1  
−1.5  
−2  
5000  
10000  
15000  
5000  
10000  
15000  
Code  
Code  
G019  
G020  
Figure 45. DAC3171 Integral Nonlinearity  
Figure 46. DAC3171 Differential Nonlinearity  
26  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
TYPICAL CHARACTERISTICS (continued)  
All plots are at 25°C, nominal supply voltages, fDAC = 500MSPS, 50% clock duty cycle, 0-dBFS input signal and 20mA full-  
scale output current (unless otherwise noted).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0dBFS  
−6dBFS  
−12dBFS  
0dBFS  
−6dBFS  
−12dBFS  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Frequency (dB)  
Output Frequency (dB)  
G001  
G002  
Figure 47. DAC3171 SFDR vs Output Frequency Over Input  
Scale  
Figure 48. DAC3171 Second-Order Harmonic Distortion vs  
Output Frequency Over Input Scale  
100  
100  
fDAC = 200 MSPS  
0dBFS  
−6dBFS  
−12dBFS  
90  
90  
80  
70  
60  
50  
40  
30  
20  
fDAC = 300 MSPS  
fDAC = 400 MSPS  
fDAC = 500 MSPS  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Frequency (dB)  
Output Frequency (MHz)  
G003  
G004  
Figure 49. DAC3171 Third-Order Harmonic Distortion vs  
Output Frequency Over Input Scale  
Figure 50. DAC3171 SFDR vs Output Frequency Over fDAC  
100  
100  
fDAC = 200 MSPS  
0dBFS  
−6dBFS  
−12dBFS  
90  
90  
80  
70  
60  
50  
40  
30  
20  
fDAC = 300 MSPS  
fDAC = 400 MSPS  
fDAC = 500 MSPS  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Frequency (dB)  
Output Frequency (MHz)  
G005  
G006  
Figure 51. DAC3171 IMD3 vs Output Frequency Over Input  
Scale  
Figure 52. DAC3171 IMD3 vs Output Frequency Over fDAC  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
All plots are at 25°C, nominal supply voltages, fDAC = 500MSPS, 50% clock duty cycle, 0-dBFS input signal and 20mA full-  
scale output current (unless otherwise noted).  
180  
170  
160  
150  
140  
130  
120  
110  
180  
170  
160  
150  
140  
130  
120  
110  
fDAC = 200 MSPS  
fDAC = 300 MSPS  
fDAC = 400 MSPS  
fDAC = 500 MSPS  
0dBFS  
−6dBFS  
−12dBFS  
0
50  
100  
150  
200  
250  
0
100  
200  
250  
Output Frequency (dB)  
Output Frequency (MHz)  
G007  
G008  
Figure 53. DAC3171 NSD vs Output Frequency Over Input  
Scale  
Figure 54. DAC3171 NSD vs Output Frequency Over fDAC  
−50  
−50  
Adjacent channel  
Altenate channel  
−60  
−70  
−80  
−90  
−60  
−70  
−80  
−90  
fDAC = 500 MSPS  
−100  
fDAC = 500 MSPS  
−100  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Output Frequency (MHz)  
Output Frequency (MHz)  
G009  
G010  
Figure 55. DAC3171 ACLR (Adjacent Channel) vs Output  
Frequency  
Figure 56. DAC3171 ACLR (Alternate Channel) vs Output  
Frequency  
10  
10  
fDAC= 491.52 MSPS  
f
fDAC= 491.52 MSPS  
f
OUT = 20 MHz  
0
0
OUT = 20 MHz  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
10  
50  
90  
130  
170  
210  
250  
10  
50  
90  
130  
170  
210  
250  
Frequency (MHz)  
Frequency (MHz)  
G011  
G012  
Figure 57. DAC3171 Single-Tone Spectral Plot (IF = 20MHz)  
Figure 58. DAC3171 Single-Tone Spectral Plot (IF = 70MHz)  
28  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
TYPICAL CHARACTERISTICS (continued)  
All plots are at 25°C, nominal supply voltages, fDAC = 500MSPS, 50% clock duty cycle, 0-dBFS input signal and 20mA full-  
scale output current (unless otherwise noted).  
10  
10  
fDAC = 500 MSPS  
fout = 20 MHz  
fDAC = 500 MSPS  
fout = 70 MHz  
0
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
Tone spacing = 1 MHz  
Tone spacing = 1 MHz  
15  
17  
19  
21  
23  
25  
65  
67  
69  
71  
73  
75  
Frequency (MHz)  
Frequency (MHz)  
G013  
G014  
Figure 59. DAC3171 Two-Tone Spectral Plot (IF = 20MHz)  
Figure 60. DAC3171 Two-Tone Spectral Plot (IF = 70MHz)  
0dBFs,  
0dBFs,  
f
= 491.52MSPS,  
DAC  
OUT  
f
= 491.52MSPS,  
DAC  
OUT  
f
= 70MHz  
f
= 70MHz  
Figure 61. DAC3171 Four-Carrier WCDMA Test Mode 1  
Figure 62. DAC3171 Single-Carrier WCDMA Test Mode 1  
0dBFs,  
0dBFs,  
f
= 491.52MSPS,  
f
= 491.52MSPS,  
DAC  
OUT  
DAC  
OUT  
f
= 70MHz  
f
= 70MHz  
Figure 63. DAC3171 10-MHz Single Carrier LTE Test Mode  
3.1  
Figure 64. DAC3171 20-MHz Single Carrier LTE Test Mode  
3.1  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
All plots are at 25°C, nominal supply voltages, fDAC = 500MSPS, 50% clock duty cycle, 0-dBFS input signal and 20mA full-  
scale output current (unless otherwise noted).  
Figure 65. Power Consumption vs fDAC  
30  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
DEFINITION OF SPECIFICATIONS  
Adjacent Carrier Leakage Ratio (ACLR): Defined as the ratio in decibles relative to the carrier (dBc) between  
the measured power within a channel and that of an adjacent channel.  
Analog and Digital Power Supply Rejection Ratio (APSSR, DPSSR): Defined as the percentage error in the  
ratio of the delta IOUT and delta supply voltage normalized with respect to the ideal IOUT current.  
Differential Nonlinearity (DNL): Defined as the variation in analog output associated with an ideal 1 LSB  
change in the digital input code.  
Gain Drift: Defined as the maximum change in gain, in terms of ppm of full-scale range (FSR) per °C, from the  
value at ambient (25°C) to values over the full operating temperature range.  
Gain Error: Defined as the percentage error (in FSR%) for the ratio between the measured full-scale output  
current and the ideal full-scale output current.  
Integral Nonlinearity (INL): Defined as the maximum deviation of the actual analog output from the ideal output,  
determined by a straight line drawn from zero scale to full scale.  
Intermodulation Distortion (IMD3): The two-tone IMD3 is defined as the ratio (in dBc) of the 3rd-order  
intermodulation distortion product to either fundamental output tone.  
Offset Drift: Defined as the maximum change in DC offset, in terms of ppm of full-scale range (FSR) per °C,  
from the value at ambient (25°C) to values over the full operating temperature range.  
Offset Error: Defined as the percentage error (in FSR%) for the ratio between the measured mid-scale output  
current and the ideal mid-scale output current.  
Output Compliance Range: Defined as the minimum and maximum allowable voltage at the output of the  
current-output DAC. Exceeding this limit may result reduced reliability of the device or adversely affecting  
distortion performance.  
Reference Voltage Drift: Defined as the maximum change of the reference voltage in ppm per degree Celsius  
from value at ambient (25°C) to values over the full operating temperature range.  
Spurious Free Dynamic Range (SFDR): Defined as the difference (in dBc) between the peak amplitude of the  
output signal and the peak spurious signal.  
Signal to Noise Ratio (SNR): Defined as the ratio of the RMS value of the fundamental output signal to the  
RMS sum of all other spectral components below the Nyquist frequency, including noise, but excluding the first  
six harmonics and dc.  
TIMING DIAGRAMS  
D[9:0]P/N  
A3[9:0]  
A4[9:0]  
A5[9:0]  
A6[9:0]  
A7[9:0]  
A8[9:0]  
A9[9:0] A10[9:0] A11[9:0]  
ts(DATA)  
th(DATA)  
DATACLKP/N  
(SDR)  
ts(DATA)  
th(DATA)  
SYNCP/N  
Resets write pointer to position 0  
Figure 66. DAC3151 Input Data Timing Diagram  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
D[11:0]P/N  
A3[11:0] A4[11:0] A5[11:0] A6[11:0] A7[11:0] A8[11:0] A9[11:0] A10[11:0] A11[11:0]  
ts(DATA)  
th(DATA)  
DATACLKP/N  
(SDR)  
ts(DATA)  
th(DATA)  
SYNCP/N  
Resets write pointer to position 0  
Figure 67. DAC3161 Input Data Timing Diagram  
DA[6:0]P/N  
A3[13:7] A3[6:0] A4[13:7] A4[6:0] A5[13:7] A5[6:0] A6[13:7] A6[6:0] A7[13:7] A7[6:0]  
ts(DATA)  
th(DATA)  
ts(DATA)  
th(DATA)  
DA_CLKP/N  
Figure 68. DAC3171 Input Data Timing Diagram for 7-Bit Interface Mode  
D[13:0]P/N  
A3[13:0] A4[13:0] A5[13:0] A6[13:0] A7[13:0] A8[13:0] A9[13:0] A10[13:0] A11[13:0]  
ts(DATA)  
th(DATA)  
DATACLKP/N  
(SDR)  
ts(DATA)  
th(DATA)  
SYNCP/N  
Resets write pointer to position 0  
Figure 69. DAC3171 Input Data Timing for 14-Bit Interface Mode  
32  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
DATA INPUT FORMATS  
Table 1. DAC3151: 10-Bit Interface Mode  
BITS  
DIFFERENTIAL PAIR (P/N)  
DATACLK RISING EDGE  
DATACLK FALLING EDGE  
D9  
D8  
A9  
A8  
D7  
A7  
D6  
A6  
D5  
A5  
D4  
A4  
D3  
A3  
D2  
A2  
D1  
A1  
A0  
D0  
SYNC  
FIFO Write Reset  
Table 2. DAC3161: 12-Bit Interface Mode  
BITS  
DIFFERENTIAL PAIR (P/N)  
DATACLK RISING EDGE  
DATACLK FALLING EDGE  
D11  
D10  
D9  
A11  
A10  
A9  
D8  
A8  
D7  
A7  
D6  
A6  
D5  
A5  
D4  
A4  
D3  
A3  
A2  
D2  
SYNC  
FIFO Write Reset  
Table 3. DAC3171: 7-Bit Interface Mode  
DIFFERENTIAL PAIR (P/N)  
DA_CLK RISING EDGE  
DA_CLK FALLING EDGE  
DA6  
DA5  
DA4  
DA3  
DA2  
DA1  
DA0  
A13  
A12  
A11  
A10  
A9  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
A8  
A7  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
Table 4. DAC3171: 14-Bit Interface Mode  
BITS  
DIFFERENTIAL PAIR (P/N)  
DATACLK RISING EDGE  
DATACLK FALLING EDGE  
D13  
D12  
D11  
D10  
D9  
A13  
A12  
A11  
A10  
A9  
D8  
A8  
D7  
A7  
D6  
A6  
D5  
A5  
D4  
A4  
D3  
A3  
D2  
A2  
D1  
A1  
A0  
D0  
SYNC  
FIFO Write Reset  
34  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
SERIAL INTERFACE DESCRIPTION  
The serial port of the DAC3151/DAC3161/DAC3171 is a flexible serial interface which communicates with  
industry standard microprocessors and microcontrollers. The interface provides read/write access to all registers  
used to define the operating modes of DAC3151/DAC3161/DAC3171. It is compatible with most synchronous  
transfer formats and can be configured as a 3 or 4 pin interface by sif4_ena in register XYZ. In both  
configurations, SCLK is the serial interface input clock and SDENB is serial interface enable. For 3 pin  
configuration, SDIO is a bidirectional pin for both data in and data out. For 4 pin configuration, SDIO is data in  
only and SDO is data out only. Data is input into the device with the rising edge of SCLK. Data is output from the  
device on the falling edge of SCLK.  
Each read/write operation is framed by signal SDENB (Serial Data Enable Bar) asserted low. The first frame byte  
is the instruction cycle which identifies the following data transfer cycle as read or write as well as the 7-bit  
address to be accessed. Table 5 indicates the function of each bit in the instruction cycle and is followed by a  
detailed description of each bit. The data transfer cycle consists of two bytes.  
Table 5. Instruction Byte of the Serial interface  
MSB  
7
LSB  
0
Bit  
6
5
4
3
2
1
Description  
R/W  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
Identifies the following data transfer cycle as a read or write operation. A high indicates a read  
operation from DAC3151/DAC3161/DAC3171 and a low indicates a write operation to  
DAC3151/DAC3161/DAC3171.  
[A6 : A0]  
Identifies the address of the register to be accessed during the read or write operation.  
Figure 70 shows the serial interface timing diagram for a DAC3151/DAC3161/DAC3171 write operation. SCLK is  
the serial interface clock input to DAC3151/DAC3161/DAC3171. Serial data enable SDENB is an active low input  
to DAC3151/DAC3161/DAC3171. SDIO is serial data in. Input data to DAC3151/DAC3161/DAC3171 is clocked  
on the rising edges of SCLK.  
Instruction Cycle  
Data Transfer Cycle  
SDENB  
SCLK  
SDIO  
rwb  
A6  
A5  
A4  
A3  
A2  
A1  
t
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
t
(SDENB)  
S
SCLK  
SDENB  
SCLK  
SDIO  
t
(SDIO)  
t
(SDIO)  
H
S
Figure 70. Serial Interface Write Timing Diagram  
Figure 71 shows the serial interface timing diagram for a DAC3151/DAC3161/DAC3171 read operation. SCLK is  
the serial interface clock input to DAC3151/DAC3161/DAC3171. Serial data enable SDENB is an active low input  
to DAC3151/DAC3161/DAC3171. SDIO is serial data in during the instruction cycle. In 3 pin configuration, SDIO  
is data out from the DAC3151/DAC3161/DAC3171 during the data transfer cycle, while SDO is in a high-  
impedance state. In  
4
pin configuration, both SDIO and SDO are data out from the  
DAC3151/DAC3161/DAC3171 during the data transfer cycle. At the end of the data transfer, SDIO and SDO will  
output low on the final falling edge of SCLK until the rising edge of SDENB when they will 3-state.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: DAC3151 DAC3161 DAC3171  
 
 
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
Instruction Cycle  
Data Transfer Cycle  
SDENB  
SCLK  
rwb  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15  
D15  
D14  
D14  
D13  
D13  
D12  
D12  
D11  
D11  
D10  
D10  
D9  
D9  
D8  
D8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
SDIO  
SDO  
D0  
SDENB  
SCLK  
SDIO  
SDO  
Data n  
Data n-1  
t
(Data)  
d
Figure 71. Serial Interface Read Timing Diagram  
REGISTER DESCRIPTIONS  
In the SIF interface there are four types of registers:  
NORMAL: The NORMAL register type allows data to be written and read from. All 16-bits of the data are  
registered at the same time. There is no synchronizing with an internal clock thus all register  
writes are asynchronous with respect to internal clocks. There are three subtypes of NORMAL:  
AUTOSYNC:  
A NORMAL register that causes a sync to be generated after the write is  
finished. These are most commonly used in things like offsets and phaseadd  
where there is a word or block setup that extends across multiple registers  
and all of the registers need to be programmed before any take effect on the  
circuit. For example, the phaseadd is two registers long. It wouldn’t serve the  
user to have the first write 16 of the 32 bits cause a change in the frequency,  
so the design allows all the registers to be written and then when that last  
one for this block is finished, an autosync is generated for the mixer telling it  
to grab all the new SIF values. This will occur on a mixer clock cycle so that  
no meta-stability errors occur.  
No RESET Value: These are NORMAL registers, but for one reason or another reset value can  
not be guaranteed. This could be because the register has some read_only  
bits or some internal logic partially controls the bit values. An example is the  
SIF_CONFIG6 register. The bits come from the temperature sensor and the  
fuses. Depending on which fuses are blown and what the die temp is the  
reset value will be different.  
FUSE controlled: While this isn’t a type of register, you may see this description in the area  
describing the default value for the register. What is means is that fuses will  
change the default value and the value shown in the document is for when  
no fuses are blown.  
READ_ONLY:  
Registers that are internal wires ANDed with the address bus then connected to the SIF  
output data bus.  
WRITE_TO_CLEAR: These registers are just like NORMAL registers with one exception. They can be written  
and read, however, when the internal logic asynchronously sets a bit high in one of  
these registers, that bit stays high until it is written to ‘0’. This way interrupts will be  
captured and stay constant until cleared by the user.  
36  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
Table 6. Register Map  
(MSB)  
Bit 15  
(LSB)  
Bit 0  
Name  
Address  
Default  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
config0  
0x00  
0x44FC  
qmc  
_offset  
_ena  
dual_ena  
chipwidth (1:0)  
rev  
twos  
sif4_ena  
reserved  
fifo_ena  
alarm_out alarm_out  
alignrx  
_ena  
lvdssyncrx  
_ena  
lvdsdataclk  
_ena  
reserved  
synconly  
_ena  
_ena  
_pol  
config1  
0x01  
0x600E  
iotest_ena reserved  
fullword  
_interface  
_ena  
64cnt  
_ena  
dacclkgone  
_ena  
dataclkgone  
_end  
collision  
_ena  
reserved  
reserved  
daca  
_compliment  
reserved  
sif_sync  
sif_  
sync_ena  
alarm_  
2away  
_ena  
alarm  
_1away  
_ena  
alarm  
_collision  
_ena  
reserved  
config2  
config3  
config4  
config5  
0x02  
0x03  
0x04  
0x05  
0x3FFF  
0x0000  
0x0000  
0x0000  
reserved  
reserved  
lvdsdata_ena (13:0)  
datadlya (2:0)  
clkdlya (2:0)  
reserved  
extref _ena  
reserved  
reserved  
reserved  
reserved  
iotest_results (13:0)  
alarm  
_from  
reserved  
alarms_from_fifoa (2:0)  
reserved  
alarm  
_dacclk  
_gone  
alarm  
_dataclk  
_ gone  
clock  
_gone  
alarm  
_from  
_ iotesta  
reserved  
_zerochka  
config6  
config7  
config8  
config9  
config10  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0000  
0xFFFF  
0x4000  
0x8000  
0xF080  
tempdata (7:0)  
fuse_cntl (5:0)  
reserved  
alarms_mask (15:0)  
reserved  
qmc_offseta (12:0)  
reserved  
fifo_offset (2:0)  
coarse_dac (3:0)  
fuse_ sleep  
reserved  
reserved  
tsense  
_sleep  
clkrecv  
_ena  
sleepa  
sleepb  
reserved  
reservedspares_west (3:0)  
reserved  
config11  
config12  
config13  
config14  
config15  
config16  
config17  
config18  
config19  
config20  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x1111  
0x3A7A  
0x36B6  
0x2AEA  
0x0545  
0x1A1A  
0x1616  
0x2AAA  
0x06C6  
0x0000  
reserved  
reserved  
reserved  
reserved  
iotest_pattern0 (13:0)  
iotest_pattern1 (13:0)  
iotest_pattern2 (13:0)  
iotest_pattern3 (13:0)  
iotest_pattern4 (13:0)  
iotest_pattern5 (13:0)  
iotest_pattern6 (13:0)  
iotest_pattern7 (13:0)  
sifdac (13:0)  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
sifdac  
_ena  
reserved  
config21  
config22  
config23  
config24  
config25  
config127  
0x15  
0x16  
0x17  
0x18  
0x19  
0x7F  
0xFFFF  
0x0000  
0x0000  
0x0000  
0x0000  
0x0044  
sleepcntl (15:0)  
fa002_data(15:0)  
fa002_data(31:16)  
fa002_data(47:32)  
fa002_data(63:48)  
reserved  
reserved  
reserved  
reserved  
reserved  
titest_voh  
titest_vol  
vendorid (1:0)  
versionid (2:0)  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
Register name: config0 – Address: 0x00, Default: 0x4FC  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config0  
0x00  
15  
14  
qmc_offset_ena  
dual_ena  
Enable the offset function when asserted.  
Utilizes both DACs when asserted.  
0
0
FUSE  
controlled  
13:12 chipwidth  
Programmable bits for setting the input interface width.  
00: all 14 bits are used.  
00  
01: upper 12 bits are used10: upper 10 bits are used  
11: upper 10 bits are used  
11  
10  
9
rev  
Reverses the input bits. When using the 7bit interface, this  
reverse each 7-bit input, however when using the 14-bit  
interface, all 14-bits are reversed as one word.  
0
1
0
twos  
When asserted, this bit tells the chip to presume 2’s  
complement data is arriving at the input. Otherwise offset  
binary is presumed.  
sif4_ena  
When asserted the SIF interface becomes a 4 pin interface.  
This bit has a lower priority than the dieid_ena bit.  
8
7
reserved  
fifo_ena  
reserved  
0
1
When asserted, the FIFO is absorbing the difference between  
INPUT clock and DAC clock. If it is not asserted then the  
FIFO buffering is bypassed but the reversing of bits and  
handling of offset binary input is still available. NOTE: When  
the FIFO is bypassed the DACCCLK and DATACLK must  
be aligned or there may be timing errors; and, it is not  
recommended for actual application use.  
6
5
4
alarm_out_ena  
alarm_out_pol  
alignrx_ena  
When asserted the pin alarm becomes an output instead of a  
tri-stated pin.  
1
1
1
This bit changes the polarity of the ALARM signal.  
(0=negative logic, 1=positive logic)  
When asserted the ALIGN pin receiver is powered up. NOTE:  
It is recommended to clear this bit when ALIGNP/N are  
not used (dual bus mode, and SYNC ONLY and  
SIF_SYNC modes in single bus mode).  
3
lvdssyncrx_ena  
When asserted the SYNC pin receiver is powered up. NOTE:  
1 It is recommended to clear this bit when SYNCP/N are  
not used (dual bus mode, and SIF_SYNC mode in single  
bus mode.)  
1
2
1
0
lvdsdataclk_ena  
reserved  
When asserted the DATACLK pin receiver is powered up.  
reserved  
1
0
0
synconly_ena  
When asserted the chip is put into the SYNC ONLY mode  
where the SYNC pin is used as the sync input for both the  
front and back of the FIFO.  
38  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
Register name: config1 – Address: 0x01, Default: 0x600E  
Register Addr  
Default  
Value  
Bit  
Name  
Function  
Name  
(Hex)  
config1  
0x01 15  
iotest_ena  
Turns on the io-testing circuitry when asserted. This is the circuitry  
that will compare a 8 sample input pattern to SIF programmed  
registers to make sure the data coming into the chip meets  
setup/hold requirements. If this bit is a ‘0’ then the clock to this  
circuitry is turned off for power savings. NOTE: Sample 0 should  
be aligned with the rising edge of SYNC.  
0
14  
13  
reserved  
reserved  
1
1
fullwordinterface_ena  
When asserted the input interface is changed to use the full 14-bits  
for each word, instead of dual 8-bit buses for two half words. Note:  
fixed to "1" for DAC3151/DAC3161.  
12  
64cnt_ena  
This enables the resetting of the alarms after 64 good samples with  
the goal of removing unnecessary errors. For instance on a lab  
board, when checking the setup/hold through IO TEST, there may  
initially be errors, but once the test is up and running everything  
works. Setting this bit removes the need for a SIF write to clear the  
alarm register.  
0
11  
10  
dacclkgone_ena  
dataclkgone_ena  
This allows the DACCLK gone signal from the clock monitor to be  
used to shut the output off.  
0
0
This allows the DATACLK gone signal from the clock monitor to be  
used to shut the output off.  
9
8
7
collision_ena  
reserved  
This allows the collision alarm from the FIFO to shut the output off  
reserved.  
0
0
0
daca_compliment  
When asserted the output to the DACA is complimented. This  
allows the user of the chip to effectively change the + and –  
designations of the DAC output pins.  
6
5
reserved  
sif_sync  
reserved  
0
0
This is the SIF_SYNC signal. Whatever is programmed into this  
bitwill be used as the chip sync when SIF_SYNC mode is  
enabled.Design is sensitive to rising edges so programming from 0-  
>1 is when the sync pulse is generated. 1->0 has no effect.  
4
3
sif_sync_ena  
When asserted enable SIF_SYNC mode.  
0
1
alarm_2away_ena  
When asserted alarms from the FIFO that represent the pointers  
being 2 away are enabled  
2
1
0
alarm_1away_ena  
alarm_collision_ena  
reserved  
When asserted alarms from the FIFO that represent the pointers  
being 1 away are enabled  
1
1
0
When asserted the collision of FIFO pointers causes an alarm to be  
generated  
reserved  
Register name: config2 – Address: 0x02, Default: 0x3FFF  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config2  
0x02  
15  
reserved  
reserved.  
reserved.  
0
14  
reserved  
0
13:0  
lvdsdata_ena  
These 14 bits are individual enables for the 14 input pin receivers.  
Note: for DAC3171 7-bit input interface mode, it is  
recommended to turn off bits(6:0).  
0x3FFF  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
Register name: config3 – Address: 0x03, Default: 0x0000  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config3  
0x03  
15:13 datadlya  
12:10 clkdlya  
Controls the delay of the A data inputs through the LVDS receivers. 000  
0= no additional delay and each LSB adds a nominal 80ps.  
Controls the delay of the A data clock input through the LVDS  
receivers. 0= no additional delay and each LSB adds a nominal  
80ps.  
000  
9:7  
6:4  
3
reserved  
reserved  
extref_ ena  
reserved  
reserved  
reserved.  
000  
000  
0
reserved  
Enable external reference for the DAC when set.  
2:1  
0
reserved  
reserved  
00  
0
Register name: config4 – Address: 0x04, Default: 0x0000  
Register  
Name  
Addr  
(Hex)  
Default  
Value  
Bit  
Name  
Function  
config4  
0x04  
15:14 reserved  
13:0 iotest_ results  
reserved  
00  
WRITE TO  
CLEAR/  
No RESET  
value  
The values of these bits tell which bit in the input word failed during the 0x0000  
io-test pattern comparison.  
Register name: config5 – Address: 0x05, Default: 0x0000  
Register  
Name  
Addr  
(Hex)  
Default  
Value  
Bit  
Name  
Function  
config5  
WRITE TO  
CLEAR  
0x05  
15  
alarm_from_ zerochka  
When this bit is asserted the FIFOA write pointer has an all zeros  
pattern in it. Since this pointer is a shift register, all zeros will cause  
the input point to be stuck until the next sync. The result could be a  
repeated 8T pattern at the output if the mixer is off and no syncs  
occur. Check for this error will tell the user that another sync is  
necessary to restart the FIFO write pointer.  
0
14  
reserved  
reserved.  
0
13:11 alarms_from_ fifoa  
These bits report the FIFO A pointer status.  
000: All fine  
000  
001: Pointers are 2 away  
01X: Pointers are 1 away  
1XX: FIFO Pointer collision  
10:8  
7
reserved  
reserved  
0
0
alarm_dacclk_ gone  
Bit gets asserted when the DACCLK has been stopped long for  
enough cycles to be caught. The number of cycles varies with  
interpolation.  
6
5
alarm_dataclk_ gone  
clock_gone  
Bit gets asserted when the DATACLK has been stopped long for  
enough cycles to be caught. The number of cycles varies with  
interpolation.  
0
0
This bit gets set when either alarm_dacclk_gone or  
alarm_dataclk_gone are asserted. It controls the output of the  
CDRV_SER block. When high, the CDRV_SER block will output  
“0x8000” for each output connected to a DAC. The bit must be  
written to ‘0’ for CDRV_SER outputs to resume normal operation.  
4
alarm_from_ iotesta  
This is asserted when the input data pattern does not match the  
pattern in the iotest_pattern registers.  
0
3
2
1
0
reserved  
reserved  
reserved  
reserved  
reserved.  
reserved  
reserved  
reserved  
0
0
0
0
40  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
Register name: config6 – Address: 0x06, Default: 0x0010(DAC3171); 0x0094(DAC3161); 0x0098(DAC3151)  
Register  
Name  
Addr  
(Hex)  
Default  
Value  
Bit  
Name  
Function  
config6  
0x06  
15:8  
tempdata  
This the output from the chip temperature sensor.  
0x00  
No RESET  
Value  
NOTE: when reading these bits the SIF interface must be exteremly  
slow, 1MHz range.  
7:2  
fuse_cntl  
These are the values of the blown fuses and are used to determine the  
available functionality in the chip.  
(*** NOTE ***) These bits are READ_ONLY and allow the user to check  
what features have been disabled in the device.  
bit5 = 1: Forces Full Word interface  
bit4 = 0: reserved  
bit3 = 0: reserved  
0x10 for  
DAC3171;  
0x94 for  
DAC3161;  
0x98 for  
DAC3151;  
FUSE  
controlled  
bit2 = 1: Forces Single DAC Mode. Note: This does not force the  
channel B in sleep mode. In order to do so, user needs to program  
the sleepb SPI bit (config10, bit 5) to "1".  
bit1:0 : Forces a different bits size.  
“00” 14bit  
“01” 12bit  
“10” 10bit  
“11” 10bit  
1
0
reserved  
reserved  
reserved  
reserved  
0
0
Register name: config7 – Address: 0x07, Default: 0xFFFF  
Register  
Name  
Addr  
(Hex)  
Default  
Value  
Bit  
Name  
Function  
config7  
0x07  
15:0  
alarms_ mask  
Each bit is used to mask an alarm. Assertion masks the alarm: bit15 =  
alarm_mask_zerochka  
0xFFFF  
bit14 = alarm_mask_zerochkb  
bit13 = alarm_mask_fifoa_collision  
bit12 = alarm_mask_fifoa_1away  
bit11 = alarm_mask_fifoa_2away  
bit10 = alarm_mask_fifob_collision  
bit9 = alarm_mask_fifob_1away  
bit8 = alarm_mask_fifob_2away  
bit7 = alarm_mask_dacclk_gone  
bit6 = alarm_mask_dataclk_gone  
bit5 = Masks the signal which turns off the DAC output when a clock or  
collision occurs. This bit has no effect on the PAD_ALARM output.  
bit4 = alarm_mask_iotesta  
bit3 = alarm_mask_iotestb  
bit2 =  
bit1 =  
bit0 =  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
Register name: config8 – Address: 0x08, Default: 0x4000  
Register  
Name  
Addr  
(Hex)  
Default  
Value  
Bit  
Name  
Function  
config8  
0x08  
15:13 reserved  
12:0 qmc_ offseta  
reserved  
010  
The DAC A offset correction. The offset is measured in DAC LSBs.  
0x0000  
Register name: config9 – Address: 0x09, Default: 0x8000  
Register  
Name  
Addr  
(Hex)  
Default  
Value  
Bit  
Name  
Function  
config9  
AUTO  
SYNC  
0x09  
15:13 fifo_ offset  
This is the starting point for the READ_POINTER in the FIFO block.  
The READ_POINTER is set to this location when a sync occurs on the  
DACCLK side of the FIFO.  
100  
12:0  
reserved  
reserved  
0x0000  
42  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
Register name: config10 – Address: 0x0A, Default: 0xF080  
Register  
Name  
Addr  
(Hex)  
Default  
Value  
Bit  
Name  
Function  
Config10  
0x0A 15:12 coarse_ dac  
Scales the output current is 16 equal steps.  
1111  
VrefIO  
´ mem_coarse_daca + 1  
(
)
Rbias  
11  
10  
9
fuse_ sleep  
reserved  
Put the fuses to sleep when set high.  
0
0
0
0
1
0
0
reserved  
reserved  
reserved  
8
tsense_ sleep  
clkrecv_ ena  
sleepa  
When asserted the temperature sensor is put to sleep.  
Turn on the DAC CLOCK receiver block when asserted.  
When asserted DACA is put to sleep.  
7
6
5
sleepb  
When asserted DACB is put to sleep. Note: This bit needs to be  
programmed to "1" to save additional power.  
4:0  
reserved  
reserved  
00000  
Register name: config11 – Address: 0x0B, Default: 0x1111  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config11  
0x0B 15:12 reserved  
reserved.  
reserved.  
reserved.  
reserved.  
0001  
0001  
0001  
0001  
11:8  
7:4  
reserved  
reserved  
reserved  
3:0  
Register name: config12 – Address: 0x0C, Default: 0x3A7A  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config12  
0x0C 15:14 reserved  
13:0 iotest_ pattern0  
reserved.  
00  
This is dataword0 in the IO test pattern. It is used with the seven  
other words to test the input data. (*** NOTE ***) This word should  
be aligned with the rising edge of SYNC when testing the IO  
interface.  
0x3A7A  
Register name: config13 – Address: 0x0D, Default: 0x36B6  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config13  
0x0D 15:14 reserved  
13:0 iotest_ pattern1  
reserved.  
00  
This is dataword1 in the IO test pattern. It is used with the seven  
other words to test the input data.  
0x36B6  
Register name: config14 – Address: 0x0E, Default: 0x2AEA  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config14  
0x0E 15:14 reserved  
13:0 iotest_ pattern2  
reserved  
00  
This is dataword2 in the IO test pattern. It is used with the seven  
other words to test the input data.  
0x2AEA  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
Register name: config15 – Address: 0x0F, Default: 0x0545  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config15  
0x0F 15:14 reserved  
13:0 iotest_ pattern3  
reserved  
00  
This is dataword3 in the IO test pattern. It is used with the seven  
other words to test the input data.  
0x0545  
Register name: config16 – Address: 0x10, Default: 0x1A1A  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config16  
0x10  
15:14 reserved  
13:0 iotest_ pattern4  
reserved  
00  
This is dataword4 in the IO test pattern. It is used with the seven  
other words to test the input data.  
0x1A1A  
Register name: config17 – Address: 0x11, Default: 0x1616  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config17  
0x11  
15:14 reserved  
13:0 iotest_ pattern5  
reserved  
00  
This is dataword5 in the IO test pattern. It is used with the seven  
other words to test the input data.  
0x1616  
Register name: config18 – Address: 0x12, Default: 0x2AAA  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config18  
0x12  
15:14 reserved  
13:0 iotest_ pattern5  
reserved  
00  
This is datawor6 in the IO test pattern. It is used with the seven  
other words to test the input data.  
0x2AAA  
Register name: config19 – Address: 0x13, Default: 0x06C6  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config19  
0x13  
15:14 reserved  
13:0 iotest_ pattern7  
reserved  
00  
This is dataword7 in the IO test pattern. It is used with the seven  
other words to test the input data.  
0x06C6  
Register name: config20– Address: 0x14, Default: 0x0000  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config20  
0x14  
15  
sifdac_ ena  
When asserted the DAC output is set to the value in sifdac. This  
can be used for trim setting and other static tests.  
0
14  
reserved  
sifdac  
reserved  
0
13:0  
This is the value that is sent to the DACs when sifdac_ena is  
asserted.  
0x0000  
44  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
Register name: config21– Address: 0x15, Default: 0xFFFF  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
config21  
0x15  
15:0  
sleepcntl  
This controls what blocks get sent a SLEEP signal when the  
PAD_SLEEP pin is asserted. Programming a ‘1’ in a bit will pass  
the SLEEP signal to the appropriate block.  
0xFFFF  
bit15 = DAC A  
bit14 = DAC B  
bit13 = FUSE Sleep  
bit12 = Temperature Sensor  
bit11 = Clock Receiver  
bit10 = LVDS DATA Receivers  
bit9 = LVDS SYNC Receiver  
bit8 = PECL ALIGN Receiver  
bit7 = LVDS DATACLK Receiver  
bit6 = reserved  
bit5 = reserved  
bit4 = reserved  
bit3 = reserved  
bit2 = reserved  
bit1 = reserved  
bit0 = reserved  
Register name: config22– Address: 0x16, Default: 0x0000  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
Default Value  
Default Value  
Default Value  
Default Value  
config22  
READ  
ONLY  
0x16  
15:0  
fa002_ data(15:0)  
Lower 16bits of the DIE ID word  
Register name: config23– Address: 0x17, Default: 0x0000  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
config23  
READ  
ONLY  
0x17  
15:0  
fa002_ data(31:16)  
Lower middle 16bits of the DIE ID word  
Register name: config24– Address: 0x18, Default: 0x0000  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
config24  
READ  
ONLY  
0x18  
15:0  
fa002_ data(47:32)  
Upper middle 16bits of the DIE ID word  
Register name: config25– Address: 0x19, Default: 0x0000  
Register  
Name  
Addr  
(Hex)  
Bit  
Name  
Function  
config25  
READ  
0x19  
15:0  
fa002_ data(63:48)  
Upper 16bits of the DIE ID word  
ONLY  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
Register name: config127– Address: 0x7F, Default: 0x0045  
Register  
Name  
Addr  
(Hex)  
Default  
Value  
Bit  
Name  
Function  
config127  
READ  
ONLY/No  
RESET  
Value  
0x7F 15:14 reserved  
13:12 reserved  
reserved  
00  
00  
00  
00  
0
reserved  
11:10 reserved  
reserved  
9:8  
7
reserved  
reserved  
titest_voh  
titest_vol  
vendorid  
versionid  
reserved  
reserved  
6
A fixed ‘1’ that can be used to test the Voh at the SIF output.  
A fixed ‘0’ that can be used to test the Vol at the SIF output.  
Fixed at "01".  
1
5
0
4:3  
2:0  
01  
001  
Chip version  
Synchronization Modes  
There are three modes of syncing included in the DAC3151/DAC3161/DAC3171.  
NORMAL Dual Sync – The SYNC pin is used to align the input side of the FIFO (write pointers) with the A(0)  
sample. The ALIGN pin is used to reset the output side of the FIFO (read pointers) to the offset value.  
Multiple chip alignment can be accomplished with this kind of syncing.  
SYNC ONLY – In this mode only the SYNC pin is used to sync both the read and write pointers of the FIFO.  
There is an asynchronized handoff between the DATACLK and DACCLK when using this mode, therefore it is  
impossible to accurately align multiple chips closer than 2 or 3T.  
SIF_SYNC – When neither SYNC nor ALIGN are used, a programmable SYNC pulse can be used to sync  
the design. However, the same issues as ISTROBE ONLY apply. There is an asynchronized handoff between  
the serial clock domain and the two sides of the FIFO. Because of the asynchronous nature of the SIF_SYNC  
it is impossible to align the sync up with any sample at the input. Note: SIF_SYNC mode is the only  
synchronisation mode supported in the 7-bit interface mode.  
Note: When ALIGNP/N are not used, it is recommended to clear the alignrx_ena register (config1, bit 4),  
and tie ALIGNP to DIGVDD18 and ALIGNN to GROUND. When SYNCP/N are not used, it is recommended  
to clear register lvdssyncrx_ena (config0, bit3), and the unused SYNCP/N pins can be left open or tied to  
GROUND.  
Alarm Monitoring  
DAC3151/DAC3161/DAC3171 includes flexible alarm monitoring that can be used to alert a possible malfunction  
scenario. All alarm events can be accessed either through the SIP registers and/or through the ALARM pin.  
Once an alarm is set, the corresponding alarm bit in register config5 must be reset through the serial interface to  
allow further testing. The set of alarms includes the following conditions:  
Zero check alarm  
Alarm_from_zerochk. Occurs when the FIFO write pointer has an all zeros pattern. Since the write pointer is a  
shift register, all zeros will cause the input point to be stuck until the next sync event. When this happens a  
sync to the FIFO block is required.  
FIFO alarms  
alarm_from_fifo. Occurs when there is a collision in the FIFO pointers or a collision event is close.  
alarm_fifo_2away. Pointers are within two addresses of each other.  
alarm_fifo_1away. Pointers are within one address of each other.  
alarm_fifo_collision. Pointers are equal to each other.  
Clock alarms  
clock_gone. Occurs when either the DACCLK or DATACLOCK have been stopped.  
alarm_dacclk_gone. Occurs when the DACCLK has been stopped.  
alarm_dataclk_gone. Occurs when the DATACLK has been stopped.  
Pattern checker alarm  
46  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
www.ti.com  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
alarm_from_iotest. Occurs when the input data pattern does not match the pattern key.  
To prevent unexpected DAC outputs from propagating into the transmit channel chain,  
DAC3151/DAC3161/DAC3171 includes a feature that disables the outputs when a catastrophic alarm occurs.  
The catastrophic alarms include FIFO pointer collision, the loss DACCLK or the loss of DATACLK. When any of  
these alarms occur the internal TXenable signal is driven low, causing a zeroing of the data going to the DAC in  
<10T. One caveat is if both clocks stop, the circuit cannot determine clock loss so no alarms are generated;  
therefore, no zeroing of output data occurs.  
Copyright © 2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: DAC3151 DAC3161 DAC3171  
DAC3151  
DAC3161  
DAC3171  
SLAS959A AUGUST 2013REVISED AUGUST 2013  
www.ti.com  
REVISION HISTORY  
Changes from Original (August 2013) to Revision A  
Page  
Changed from Product Preview to Production Data ............................................................................................................. 1  
48  
Submit Documentation Feedback  
Copyright © 2013, Texas Instruments Incorporated  
Product Folder Links: DAC3151 DAC3161 DAC3171  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2013  
PACKAGING INFORMATION  
Orderable Device  
DAC3151IRGCR  
DAC3151IRGCT  
DAC3161IRGC25  
DAC3161IRGCR  
DAC3161IRGCT  
DAC3171IRGC25  
DAC3171IRGCR  
DAC3171IRGCT  
DAC3171IRHBR  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGC  
64  
64  
64  
64  
64  
64  
64  
64  
32  
2000  
Green (RoHS  
& no Sb/Br)  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Call TI  
DAC3151I  
ACTIVE  
PREVIEW  
ACTIVE  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
RHB  
250  
25  
Green (RoHS  
& no Sb/Br)  
DAC3151I  
DAC3161I  
DAC3161I  
DAC3161I  
DAC3171I  
DAC3171I  
DAC3171I  
Green (RoHS  
& no Sb/Br)  
2000  
250  
25  
Green (RoHS  
& no Sb/Br)  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
PREVIEW  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
2000  
250  
Green (RoHS  
& no Sb/Br)  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
PREVIEW  
TBD  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2013  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Aug-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC3151IRGCR  
DAC3151IRGCT  
DAC3161IRGCR  
DAC3161IRGCT  
DAC3171IRGCR  
DAC3171IRGCT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
64  
64  
64  
64  
64  
64  
2000  
250  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
2000  
250  
2000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Aug-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC3151IRGCR  
DAC3151IRGCT  
DAC3161IRGCR  
DAC3161IRGCT  
DAC3171IRGCR  
DAC3171IRGCT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
64  
64  
64  
64  
64  
64  
2000  
250  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
28.6  
28.6  
28.6  
28.6  
28.6  
28.6  
2000  
250  
2000  
250  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

DAC3171IRGCT

14 位、500MSPS 数模转换器 (DAC) | RGC | 64 | -40 to 85
TI

DAC3174

Dual 14-bit 500 MSPS Digital to Analog Converter
TI

DAC3174IRGC25

Dual 14-bit 500 MSPS Digital to Analog Converter
TI

DAC3174IRGCR

Dual 14-bit 500 MSPS Digital to Analog Converter
TI

DAC3174IRGCT

Dual 14-bit 500 MSPS Digital to Analog Converter
TI

DAC31X2EVM

SBOU096A–November 2010–Revised January 2011
TI

DAC3282

16-Bit, 625 MSPS, 2x Interpolating, Dual-Channel Digital-to-Analog Converter (DAC)
TI

DAC3282IRGZR

16-Bit, 625 MSPS, 2x Interpolating, Dual-Channel Digital-to-Analog Converter (DAC)
TI

DAC3282IRGZT

16-Bit, 625 MSPS, 2x Interpolating, Dual-Channel Digital-to-Analog Converter (DAC)
TI

DAC3282_10

16-Bit, 625 MSPS, 2x Interpolating, Dual-Channel Digital-to-Analog Converter (DAC)
TI

DAC3282_101

16-Bit, 625 MSPS, 2x Interpolating, Dual-Channel Digital-to-Analog Converter (DAC)
TI

DAC3283

Dual-Channel, 16-Bit, 800 MSPS, Digital-to-Analog Converter (DAC)
TI