CDCEL824PWR [TI]

具有展频功能的可编程 2-PLL 时钟合成器 | PW | 16 | -40 to 85;
CDCEL824PWR
型号: CDCEL824PWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有展频功能的可编程 2-PLL 时钟合成器 | PW | 16 | -40 to 85

时钟
文件: 总33页 (文件大小:2205K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
CDCEL824  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
CDCEL824 可编程 2 PLL 时钟合成器  
1 特性  
2 应用  
激光测距应用  
1
灵活的时钟驱动器  
3 个用户定义的控制输入 [S0/S1/S2]:例如,开  
关频率、输出使能或断电  
3 说明  
CDCEL824 是一款基于锁相环 (PLL) 的模块化、低成  
本、高性能可编程时钟合成器/乘法器/除法器。 该器件  
最多可从单输入频率中生成四个输出时钟。 在系统内  
最多可使用两个独立可配置 PLL 在任何时钟频率下  
(最高可达 201MHz)对各输出进行编程。  
启用 0-PPM 时钟生成  
系统内可编程性和 EEPROM  
串行可编程易失性寄存器  
非易失性 EEPROM 以存储客户设置  
灵活的输入计时理念  
外部晶振:20MHz 30MHz  
CDCEL824 具备一个独立的输出电源引脚 VDDOUT,其  
电压为 1.8V。  
单端低电压互补金属氧化物半导体 (LVCMOS)  
高达 130MHz  
此输入接受一个外部晶振或 LVCMOS 时钟信号。 对  
于晶振输入,片上负载电容足以满足大多数应用的要  
求。 负载电容值可在 0pF 20pF 的范围内设定。  
高达 201MHz 的可选输出频率  
低噪声 PLL 内核  
集成了 PLL 环路滤波器组件  
低周期抖动(典型值为 80ps)  
器件信息(1)  
1.8V 器件电源  
部件号  
CDCEL824  
封装  
封装尺寸(标称值)  
TSSOP (16)  
5.00mm x 4.40mm  
温度范围:–40°C 85°C  
采用薄型小外形尺寸 (TSSOP) 封装  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
典型电路原理图  
Ethernet PHY  
CDCEL824  
WiFi  
25 MHz  
USB Controller  
FPGA  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SCAS945  
 
 
 
 
CDCEL824  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
目录  
9.2 Functional Block Diagram ......................................... 9  
9.3 Feature Description................................................. 10  
9.4 Device Functional Modes........................................ 12  
9.5 Programming........................................................... 13  
9.6 Register Maps......................................................... 15  
10 Application and Implementation........................ 22  
10.1 Application Information.......................................... 22  
10.2 Typical Application ............................................... 22  
11 Power Supply Recommendations ..................... 24  
12 Layout................................................................... 24  
12.1 Layout Guidelines ................................................. 24  
12.2 Layout Example .................................................... 25  
13 器件和文档支持 ..................................................... 26  
13.1 文档支持 ............................................................... 26  
13.2 社区资源................................................................ 26  
13.3 ....................................................................... 26  
13.4 静电放电警告......................................................... 26  
13.5 Glossary................................................................ 26  
14 机械、封装和可订购信息....................................... 26  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明(续............................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics .......................................... 6  
7.6 CLK_IN Timing Requirements .................................. 7  
7.7 SDA/SCL Timing Requirements .............................. 7  
7.8 EEPROM Specification ............................................. 7  
7.9 Typical Characteristics.............................................. 7  
Parameter Measurement Information .................. 8  
Detailed Description .............................................. 9  
9.1 Overview ................................................................... 9  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (June 2015) to Revision A  
Page  
已更改 产品定制产品目录数据表.................................................................................................................................... 1  
Changed order of pin function rows to be by number per format rules ................................................................................. 3  
Changed Thermal Information table format; move EEPROM Spec table per format rules ................................................... 5  
5 说明(续)  
例如,深 M/N 分频比可从 27MHz 基准输入频率中生成零 ppm 音频/视频、网络互联(无线局域网 (WLAN)、  
Bluetooth、以太网、全球定位系统 (GPS))或接口(通用串行总线 (USB)IEEE1394、记忆棒)时钟。  
该器件会根据 PLL 频率和分频器设置自动调整内部环路滤波器组件,从而使各 PLL 具备较高稳定性和优化的抖动  
传输特性。  
为了轻松实现器件自定义来满足应用需要,该器件支持使用非易失性 EEPROM 进行编程。 该器件预设为采用默认  
出厂配置,允许在安装于印刷电路板 (PCB) 前按照另一种应用配置重新编程,或者通过系统内部编程进行重新编  
程。 所有器件设置均可通过串行数据/串行时钟 (SDA/SCL) 总线(一种二线制串行接口)进行编程。  
三个可自由编程的控制输入(S0S1 S2)可用于选择不同频率或其他控制功能,包括将输出禁用为低电平、在  
高阻抗状态下输出、断电以及 PLL 旁路等。  
CDCx824 可在 1.8V 电压的作用下运行,其运行温度范围为 –40°C 85°C。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
 
CDCEL824  
www.ti.com.cn  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
6 Pin Configuration and Functions  
PW Package  
20-Pin TSSOP  
Top View  
Xin/Clk 1  
S0 2  
16 Xout  
15 S1/SDA  
14 S2/SCL  
13 DNC  
12 GND  
11 Y1  
Vdd 3  
Vctr 4  
GND 5  
Vddout 6  
Y3 7  
10 Y2  
Y4 8  
9 Vddout  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NUMBER  
NAME  
Xin/CLK  
S0  
1
I
Crystal oscillator input or LVCMOS clock Input (selectable via SDA/SCL bus).  
2
I
User-programmable control input S0; LVCMOS inputs; internal pullup.  
1.8-V power supply for the device  
VCXO control voltage (leave open or pull up when not used).  
Ground  
3
VDD  
Power  
4
VCtrl  
I
5, 12  
6, 9  
7
GND  
VDDOUT  
Y3  
Ground  
Power  
1.8-V supply for all outputs  
O
O
O
O
O
LVCMOS outputs  
8
Y4  
LVCMOS outputs  
10  
11  
13  
Y2  
LVCMOS outputs  
Y1  
LVCMOS outputs  
DNC  
Reserved pin, do not connect  
SCL: Serial clock input (default configuration), LVCMOS; internal pullup.  
S2: User-programmable control input; LVCMOS inputs; internal pullup.  
14  
SCL/S2  
I
SDA: Bidirectional serial data input/output (default configuration), LVCMOS; internal pullup  
S1: User-programmable control input; LVCMOS inputs; internal pullup.  
15  
16  
SDA/S1  
Xout  
I/O or I  
O
Crystal oscillator output (leave open or pull up when not used).  
Copyright © 2015, Texas Instruments Incorporated  
3
CDCEL824  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
2.5  
UNIT  
V
VDD  
VI  
Supply voltage range  
Input voltage range(2) (3)  
Output voltage range(2)  
Input current (VI < 0, VI > VDD  
Continuous output current  
VDD + 0.5  
VDD + 0.5  
20  
V
VO  
II  
V
)
mA  
mA  
°C  
°C  
IO  
50  
TJ  
Maximum junction temperature  
Storage temperature range  
125  
Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
(3) SDA and SCL can go up to 3.6V as stated in the Recommended Operating Conditions table.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
1.7  
NOM  
MAX  
1.9  
UNIT  
VDD  
Device supply voltage  
1.8  
V
V
V
V
V
VDDOUT  
VIL  
Output Yx supply voltage for CDCEL824  
Low-level input voltage LVCMOS  
High-level input voltage LVCMOS  
Input voltage threshold LVCMOS  
Input voltage range S0  
1.7  
1.9  
0.3 VDD  
VIH  
0.7 VDD  
VI(thresh)  
0.5 VDD  
0
0
0
1.9  
3.6  
1.9  
±8  
VI(S)  
V
Input voltage range S1, S2, SDA, SCL; V(Ithresh) = 0.5 VDD  
Input voltage range CLK  
VI(CLK)  
IOH /IOL  
CL  
V
Output current (VDDOUT = 1.8 V)  
Output load LVCMOS  
mA  
pF  
°C  
15  
TA  
Operating free-air temperature  
–40  
10  
85  
RECOMMENDED CRYSTAL/VCXO SPECIFICATIONS(1)  
fXtal  
Crystal input frequency range (fundamental mode)  
Effective series resistance  
Pulling range (0 V VCtrl 1.8 V)(2)  
30  
MHz  
ESR  
fPR  
100  
±120  
0
±150  
ppm  
V
VCtrl  
C0/C1  
CL  
Frequency control voltage  
VDD  
220  
20  
Pullability ratio  
On-chip load capacitance at Xin and Xout  
0
pF  
(1) For more information about VCXO configuration, and crystal recommendation, see application report (SCAA085).  
(2) Pulling range depends on crystal-type, on-chip crystal load capacitance and PCB stray capacitance; pulling range of min ±120 ppm  
applies for crystal listed in the application report (SCAA085).  
4
Copyright © 2015, Texas Instruments Incorporated  
CDCEL824  
www.ti.com.cn  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
7.4 Thermal Information  
CDCEL824  
AIRFLOW  
(lfm)  
THERMAL METRIC(1)(2)  
PW (TSSOP)  
UNIT  
30 PINS  
101  
85  
0
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
150  
200  
250  
500  
RθJA  
Junction-to-ambient thermal resistance  
84  
82  
74  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
42  
58  
ψJB  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
64  
RθJC(bot)  
1.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) The package thermal impedance is calculated in accordance with JESD 51 and JEDEC2S2P (high-k board).  
Copyright © 2015, Texas Instruments Incorporated  
5
CDCEL824  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
7.5 Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
OVERALL PARAMETER  
All PLLS on  
20  
9
All outputs off, fCLK = 27 MHz,  
fVCO = 135 MHz; fOUT = 27 MHz  
IDD  
Supply current (see Figure 1)  
Supply current (see Figure 2)  
mA  
Per PLL  
No load, all outputs on,  
fOUT = 27 MHz  
1
IDDOUT  
IDDPD  
VPUC  
VDDOUT = 1.8 V  
mA  
μA  
V
Power-down current. Every circuit  
powered down except SDA/SCL  
fIN = 0 MHz,  
VDD = 1.9 V  
30  
Supply voltage VDD threshold for power-  
up control circuit  
0.85  
1.45  
201  
fVCO  
fOUT  
VCO frequency range of PLL  
LVCMOS output frequency  
80  
MHz  
MHz  
VDDOUT = 1.8 V  
201  
LVCMOS PARAMETER  
VIK  
II  
LVCMOS input voltage  
VDD = 1.7 V; IS = –18 mA  
VI = 0 V or VDD; VDD = 1.9 V  
VI = VDD; VDD = 1.9 V  
VI = 0 V; VDD = 1.9 V  
VIClk = 0 V or VDD  
–1.2  
±5  
5
V
LVCMOS input current  
μA  
μA  
μA  
IIH  
IIL  
LVCMOS input current for S0/S1/S2  
LVCMOS Input current for S0/S1/S2  
Input capacitance at Xin/Clk  
Input capacitance at Xout  
–4  
6
2
3
CI  
VIXout = 0 V or VDD  
pF  
Input capacitance at S0/S1/S2  
VIS = 0 V or VDD  
LVCMOS PARAMETER for VDDOUT = 1.8 V – MODE  
VDDOUT = 1.7 V, IOH = –0.1 mA  
VDDOUT = 1.7 V, IOH = –4 mA  
VDDOUT = 1.7 V, IOH = –8 mA  
VDDOUT = 1.7 V, IOL = 0.1 mA  
VDDOUT = 1.7 V, IOL = 4 mA  
VDDOUT = 1.7 V, IOL = 8 mA  
All PLL bypass  
1.6  
1.4  
1.1  
VOH  
LVCMOS high-level output voltage  
LVCMOS low-level output voltage  
V
V
0.1  
0.3  
0.6  
VOL  
tPLH, tPHL Propagation delay  
2.6  
0.7  
80  
ns  
ns  
tr/tf  
Rise and fall time  
VDDOUT = 1.8 V (20%–80%)  
1 PLL switching, Y1-to-Y2  
2 PLL switching, Y1-to-Y4  
1 PLL switching, Y1-to-Y2  
2 PLL switching, Y1-to-Y4  
fOUT = 50 MHz; Y1-to-Y2  
fOUT = 50 MHz; Y1-to-Y4  
fVCO = 100 MHz; Pdiv = 1  
110  
200  
130  
220  
50  
(2) (3)  
tjit(cc)  
Cycle-to-cycle jitter  
ps  
ps  
ps  
130  
100  
150  
(3)  
tjit(per)  
Peak-to-peak period jitter  
tsk(o)  
odc  
Output skew(4)  
110  
55%  
Output duty cycle(5)  
45%  
SDA/SCL PARAMETER  
VIK  
IIH  
SCL and SDA input clamp voltage  
SCL and SDA input current  
SDA/SCL input high voltage(6)  
SDA/SCL input low voltage(6)  
SDA low-level output voltage  
SCL/SDA Input capacitance  
VDD = 1.7 V; II = –18 mA  
VI = VDD; VDD = 1.9 V  
–1.2  
±10  
V
μA  
V
VIH  
VIL  
VOL  
CI  
0.7 VDD  
0.3 VDD  
0.2 VDD  
10  
V
IOL = 3 mA VDD = 1.7 V  
VI = 0 V or VDD  
V
3
pF  
(1) All typical values are at respective nominal VDD  
.
(2) 10,000 cycles  
(3) Jitter depends on configuration. Jitter data is for input frequency = 27 MHz, fVCO = 135 MHz, fOUT = 27 MHz. fOUT = 3.072 MHz or input  
frequency = 27 MHz, fVCO = 108 MHz, fOUT = 27 MHz. fOUT = 16.384 MHz, fOUT = 25 MHz, fOUT = 74.25 MHz, fOUT = 48 MHz  
(4) The tsk(o) specification is only valid for equal loading of each bank of outputs, and the outputs are generated from the same divider,  
data sampled on rising edge (tr).  
(5) odc depends on output rise- and fall time (tr/tf).  
(6) SDA and SCL pins are 3.3-V tolerant.  
6
Copyright © 2015, Texas Instruments Incorporated  
CDCEL824  
www.ti.com.cn  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
7.6 CLK_IN Timing Requirements  
over recommended ranges of supply voltage, load, and operating free-air temperature  
MIN  
0
NOM  
MAX  
130  
130  
3
UNIT  
MHz  
ns  
PLL bypass mode  
fCLK  
LVCMOS clock input frequency  
PLL mode  
8
tr / tf  
Rise and fall time CLK signal (20% to 80%)  
Duty cycle CLK at VDD / 2  
dutyCLK  
40%  
60%  
7.7 SDA/SCL Timing Requirements  
STANDARD MODE  
FAST MODE  
(SeeFigure 5)  
UNIT  
MIN  
0
MAX  
MIN  
0
MAX  
fSCL  
SCL clock frequency  
100  
400  
kHz  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
μs  
tsu(START)  
th(START)  
tw(SCLL)  
tw(SCLH)  
th(SDA)  
tsu(SDA)  
tr  
START setup time (SCL high before SDA low)  
START hold time (SCL low after SDA low)  
SCL low-pulse duration  
4.7  
4
0.6  
0.6  
1.3  
0.6  
0
4.7  
4
SCL high-pulse duration  
SDA hold time (SDA valid after SCL low)  
SDA setup time  
0
3.45  
0.9  
250  
100  
SCL/SDA input rise time  
1000  
300  
300  
300  
tf  
SCL/SDA input fall time  
tsu(STOP)  
tBUS  
STOP setup time  
4
0.6  
1.3  
Bus free time between a STOP and START condition  
4.7  
7.8 EEPROM Specification  
MIN  
100  
10  
TYP  
MAX  
UNIT  
cycles  
years  
EEcyc  
EEret  
Programming cycles of EEPROM  
Data retention  
1000  
7.9 Typical Characteristics  
60  
50  
40  
30  
20  
10  
0
6
5
4
3
2
1
0
All PLL Off  
1 PLL On  
2 PLL On  
All Outputs Off  
1 Output On  
3 Outputs On  
10  
50  
90  
130  
170  
200  
10  
50  
90  
130  
170  
200  
f - Frequency (MHz)  
fOUT - Output Frequency (MHz)  
D001  
D002  
Figure 1. Supply Current vs PLL Frequency  
Figure 2. Output Current vs Output Frequency  
Copyright © 2015, Texas Instruments Incorporated  
7
CDCEL824  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
8 Parameter Measurement Information  
CDCEL824  
1 kW  
1 kW  
LVCMOS  
10 pF  
Figure 3. Test Load  
CDCEL824  
LVCMOS  
LVCMOS  
Series  
Termination  
~ 18 W  
Line Impedance  
Zo = 50 W  
Typical Driver  
Impedance  
~ 32 W  
Figure 4. Test Load for 50-Board Environment  
8
Copyright © 2015, Texas Instruments Incorporated  
CDCEL824  
www.ti.com.cn  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
9 Detailed Description  
9.1 Overview  
The CDCEL824 is a modular PLL-based low-cost, high-performance, programmable clock synthesizer, multiplier,  
and divider. It generates up to four output clocks from a single input frequency. Each output can be programmed  
in-system for any clock frequency up to 201 MHz, using up to two independent configurable PLLs.  
The CDCEL824 has a separate output supply pins, VDDOUT, which are 1.8 V.  
The input accepts an external crystal or LVCMOS clock signal. In case of a crystal input, an on-chip load  
capacitor is adequate for most applications. The value of the load capacitor is programmable from 0 pF to 20 pF.  
The deep M/N divider ratio allows the generation of zero-ppm audio/video, networking (WLAN, Bluetooth,  
Ethernet, GPS) or interface (USB, IEEE1394, memory stick) clocks from a 27-MHz reference input frequency, for  
example.  
Based on the PLL frequency and the divider settings, the internal loop filter components are automatically  
adjusted to achieve high stability and optimized jitter transfer characteristic of each PLL.  
The device supports nonvolatile EEPROM programming for easy customization of the device in the application. It  
is preset to a factory default configuration and can be reprogrammed to a different application configuration  
before it goes onto the PCB or reprogrammed by in-system programming. All device settings are programmable  
through the SDA/SCL bus, a 2-wire serial interface.  
Three, free programmable control inputs, S0, S1, and S2, can be used to select different frequencies, or other  
control features like outputs disable to low, outputs in high-impedance state, power down, PLL bypass, and so  
forth.  
The CDCx824 operates in a 1.8-V environment. It operates in a temperature range of –40°C to 85°C.  
9.2 Functional Block Diagram  
V
V
GND  
DDOUT  
DD  
Vctr  
Xin/CLK  
VCXO  
XO  
LV  
CMOS  
Pdiv2  
7-Bit  
Y1  
Y2  
LVCMOS  
PLL 1  
Xout  
LV  
CMOS  
Pdiv3  
7-Bit  
PLL Bypass  
EEPROM  
Programming  
and  
SDA/SCL  
Register  
S0  
S1/SDA  
S2/SCL  
LV  
CMOS  
Pdiv4  
7-Bit  
Y3  
Y4  
PLL 2  
LV  
CMOS  
Pdiv5  
7-Bit  
PLL Bypass  
Copyright © 2015, Texas Instruments Incorporated  
9
CDCEL824  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Control Pins Settings  
The CDCEL824 has three user-definable control pins (S0, S1, and S2) which allow external control of device  
settings. They can be programmed to any of the following settings:  
Frequency selection switching between any of two user-defined frequencies  
Output state selection output configuration and power-down control  
The user can predefine up to eight different control settings. Table 1 and Table 2 explain these settings.  
Table 1. Control Pin Definition  
EXTERNAL  
CONTROL  
BITS  
PLL1 SETTING  
PLL2 SETTING  
RSVD SETTING  
Control  
function  
PLL frequency  
selection  
Output Y1/Y2  
selection  
PLL frequency  
selection  
Output Y3/Y4  
selection  
Reserved  
Reserved  
Reserved  
Table 2. PLL Setting (Can Be Selected for Each PLL Individual)(1)  
FREQUENCY SELECTION(2)  
FSx  
0
FUNCTION  
Frequency0  
Frequency1  
1
OUTPUT SELECTION(3) (Y1 ... Y4)  
YxYx  
FUNCTION  
State0  
0
1
State1  
(1) Center/down-spread, Frequency0/1 and State0/1 are user-definable in the PLLx configuration register.  
(2) Frequency0 and Frequency1 can be any frequency within the specified fVCO range.  
(3) State0/1 selection is valid for both outputs of the corresponding PLL module and can be power down,  
high-impedance state, low, or active  
SDA/S1 and SCL/S2 pins of the CDCEL824 are dual-function pins. In the default configuration, they are  
predefined as the SDA/SCL serial programming interface. They can be programmed to control pins (S1/S2) by  
setting the relevant bits in the EEPROM. Note that the changes of the bits in the control register (bit [6] of byte  
02h) have no effect until they are written into the EEPROM.  
Once they are set as control pins, the serial programming interface is no longer available. However, if VDDOUT is  
forced to GND, the two control pins, S1 and S2, temporally act as serial programming pins (SDA/SCL).  
S0 is not a multi-use pin; it is a control pin only.  
10  
Copyright © 2015, Texas Instruments Incorporated  
 
 
CDCEL824  
www.ti.com.cn  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
9.3.2 SDA/SCL Serial Interface  
This section describes the SDA/SCL interface of the CDCEL824 device. The CDCEL824 operates as a slave  
device of the 2-wire serial SDA/SCL bus, compatible with the popular SMBus or I2C specification. It operates in  
the standard-mode transfer (up to 100 kbit/s) and fast-mode transfer (up to 400 kbit/s) and supports 7-bit  
addressing.  
The SDA/S1 and SCL/S2 pins of the CDCEL824 are dual-function pins. In the default configuration they are used  
as SDA/SCL serial programming interface. They can be reprogrammed as general-purpose control pins, S1 and  
S2, by changing the corresponding EEPROM setting, byte 02h, bit [6].  
Bit 7 (MSB)  
Bit 6  
Bit 0 (LSB)  
P
S
A
P
t
w(SCLL)  
t
w(SCLH)  
t
r
t
f
V
IH  
SCL  
V
IL  
t
t
t
su(START)  
h(START)  
su(SDA)  
t
h(SDA)  
t
su(STOP)  
t
f
t
t
r
(BUS)  
V
IH  
SDA  
V
IL  
Figure 5. Timing Diagram for SDA/SCL Serial Control Interface  
9.3.3 SDA/SCL Hardware Interface  
Figure 6 shows how the CDCEL824 clock synthesizer is connected to the SDA/SCL serial interface bus. Multiple  
devices can be connected to the bus, but the speed may need to be reduced (400 kHz is the maximum) if many  
devices are connected.  
Note that the pullup resistors (RP) depend on the supply voltage, bus capacitance, and number of connected  
devices. The recommended pullup value is 4.7 k. It must meet the minimum sink current of 3 mA at VOLmax  
=
0.4 V for the output stages (for more details see the SMBus or I2C Bus specification).  
CDCEL824  
R
R
P
P
Master  
SDA  
Slave  
SCL  
C
C
BUS  
BUS  
Figure 6. SDA/SCL Hardware Interface  
Copyright © 2015, Texas Instruments Incorporated  
11  
 
CDCEL824  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
9.4 Device Functional Modes  
9.4.1 Default Device Setting  
The internal EEPROM of CDCEL824 is preconfigured as shown in Figure 7. The input frequency is passed  
through the output as a default. This allows the device to operate in default mode without the extra production  
step of programming it. The default setting appears after power is supplied or after a power-down/up sequence  
until it is reprogrammed by the user to a different application configuration. A new register setting is programmed  
via the serial SDA/SCL interface.  
V
V
DDOUT  
DD  
GND  
Xin  
27-MHz  
Crystal  
Xtal  
LV  
CMOS  
Y1 = 27 MHz  
Y2 = 27 MHz  
PLL1  
Power Down  
Pdiv2 = 1  
Pdiv3 = 1  
Xout  
S0  
LV  
CMOS  
PLL Bypass  
EEPROM  
1 = Outputs Enabled  
Programming  
and  
SDA/SCL  
Register  
0 = Outputs Disabled  
(High-Impedance)  
SDA  
SCL  
LV  
CMOS  
Y3 = 27 MHz  
PLL2  
Programming Bus  
Pdiv4 = 1  
Pdiv5 = 1  
Power Down  
LV  
CMOS  
Y4 = 27 MHz  
PLL Bypass  
Figure 7. Preconfiguration of CDCEL824 Internal EEPROM  
Table 3 shows the factory default setting for the control terminal register (external control pins). Note that even  
though eight different register settings are possible, in default configuration, only the first two settings (0 and 1)  
can be selected with S0, as S1 and S2 are configured as programming pins in the default mode.  
Table 3. Factory Default Settings for Control Terminal Register(1)  
PLL1 SETTINGS  
PLL2 SETTINGS  
FREQUENCY  
SELECTION  
OUTPUT  
SELECTION  
FREQUENCY  
SELECTION  
OUTPUT  
SELECTION  
EXTERNAL CONTROL PINS  
S2  
S1  
S0  
0
FS1  
Y1Y2  
FS2  
Y2Y3  
High-impedance  
state  
High-impedance  
state  
SDA (I2C)  
SDA (I2C)  
SCL (I2C)  
SCL (I2C)  
fVCO1_0  
fVCO1_0  
fVCO2_0  
fVCO2_0  
1
Enabled  
Enabled  
(1) S1 is SDA and S2 is SCL in default mode or when programmed (SPICON bit 6 of register 2 set to 0). They do not have any control-pin  
function but they are internally interpreted as if S1 = 0 and S2 = 0. S0, however, is a control pin which in the default mode switches all  
outputs ON or OFF (as previously predefined).  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
 
CDCEL824  
www.ti.com.cn  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
9.5 Programming  
9.5.1 Data Protocol  
The device supports Byte Write and Byte Read and Block Write and Block Read operations.  
For Byte Write/Read operations, the system controller can individually access addressed bytes.  
For Block Write/Read operations, the bytes are accessed in sequential order from lowest to highest byte (with  
most-significant bit first) with the ability to stop after any complete byte has been transferred. The numbers of  
bytes read out are defined by byte count in the generic configuration register. At the Block Read instruction, all  
bytes defined in the byte count must be read out to finish the read cycle correctly.  
Once a byte has been sent, it is written into the internal register and is effective immediately. This applies to  
each transferred byte regardless of whether this is a Byte Write or a Block Write sequence.  
If the EEPROM write cycle is initiated, the internal SDA registers are written into the EEPROM. During this write  
cycle, data is not accepted at the SDA/SCL bus until the write cycle is completed. However, data can be read out  
during the programming sequence (Byte Read or Block Read). The programming status can be monitored by  
EEPIP, byte 01h–bit 6.  
The offset of the indexed byte is encoded in the command code, as described in Table 4.  
Table 4. Slave Receiver Address (7 Bits)  
DEVICE  
A6  
1
A5  
1
A4  
0
A3  
0
A2  
1
A1(1)  
0
A0(1)  
0
R/W  
1/0  
CDCEL824  
(1) Address bits A0 and A1 are programmable via the SDA/SCL bus (byte 01, bit [1:0]. This allows addressing up to four devices connected  
to the same SDA/SCL bus. The least-significant bit of the address byte designates a write or read operation.  
9.5.2 Command Code Definition  
Table 5. Command Code Definition  
BIT  
DESCRIPTION  
0 = Block Read or Block Write operation  
1 = Byte Read or Byte Write operation  
7
(6:0)  
Byte offset for Byte Read, Block Read, Byte Write and Block Write operations.  
9.5.3 Generic Programming Sequence  
1
7
1
1
8
1
1
S
Slave Address  
A
Data Byte  
A
P
R/W  
MSB  
LSB  
MSB  
LSB  
S
Start Condition  
Sr Repeated Start Condition  
1 = Read (Rd) From CDCE9xx Device; 0 = Write (Wr) to CDCE9xxx  
Acknowledge (ACK = 0 and NACK =1)  
Stop Condition  
R/W  
A
P
Master-to-Slave Transmission  
Slave-to-Master Transmission  
Figure 8. Generic Programming Sequence  
9.5.4 Byte Write Programming Sequence  
1
7
1
1
8
1
8
1
1
S
Slave Address  
Wr  
A
CommandCode  
A
Data Byte  
A
P
Figure 9. Byte Write Protocol  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
CDCEL824  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
9.5.5 Byte Read Programming Sequence  
1
7
1
1
8
1
1
7
1
1
S
Slave Address  
Wr  
A
CommandCode  
A
Sr  
Slave Address  
Rd  
A
8
1
1
Data Byte  
A
P
Figure 10. Byte Read Protocol  
9.5.6 Block Write Programming Sequence  
1
7
1
1
8
1
8
1
S
Slave Address  
Wr  
A
CommandCode  
A
Byte Count = N  
A
8
1
8
1
8
1
1
Data Byte 0  
A
Data Byte 1  
A
Data Byte N-1  
A
P
(1) Data byte 0 bits [7:0] is reserved for Revision Code and Vendor Identification. Also, it is used for internal test purpose  
and should not be overwritten.  
Figure 11. Block Write Protocol  
9.5.7 Block Read Programming Sequence  
1
7
1
1
8
1
1
7
1
1
S
Slave Address  
Wr  
A
CommandCode  
A
Sr  
Slave Address  
Rd  
A
8
1
8
1
8
1
1
Byte Count N  
A
Data Byte 0  
A
Data Byte N-1  
A
P
Figure 12. Block Read Protocol  
14  
Copyright © 2015, Texas Instruments Incorporated  
CDCEL824  
www.ti.com.cn  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
9.6 Register Maps  
9.6.1 SDA/SCL Configuration Registers  
The clock input, control pins, PLLs, and output stages are user configurable. The following tables and  
explanations describe the programmable functions of the CDCEL824. All settings can be manually written into  
the device via the SDA/SCL bus or easily programmed by using the TI Pro-Clock™ software.  
Table 6. SDA/SCL Registers  
ADDRESS OFFSET  
REGISTER DESCRIPTION  
Generic configuration register  
PLL1 configuration register  
PLL2 configuration register  
TABLE  
Table 8  
Table 9  
Table 10  
00h  
10h  
20h  
The grey-highlighted bits, described in the Configuration Registers tables in the following pages, belong to the  
Control Terminal Register. The user can predefine up to eight different control settings. These settings then can  
be selected by the external control pins, S0, S1, and S2. Table 7 explains the corresponding bit assignment  
between the Control Terminal Register and the Configuration Registers.  
Table 7. Configuration Register, External Control Terminals  
PLL1 SETTINGS  
PLL2 SETTINGS  
FREQUENCY  
OUTPUT  
SELECTION  
FREQUENCY  
OUTPUT  
SELECTION  
EXTERNAL CONTROL PINS  
SELECTION  
FS1  
SELECTION  
FS2  
S2  
0
S1  
S0  
0
Y1Y2  
Y3Y4  
Y3Y4_0  
Y3Y4_1  
Y3Y4_2  
Reserved  
Reserved  
Y3Y4_5  
Y3Y4_6  
Y3Y4_7  
25h  
0
1
2
3
4
5
6
7
0
FS1_0  
FS1_1  
FS1_2  
FS1_3  
FS1_4  
FS1_5  
FS1_6  
FS1_7  
13h  
Y1Y2_0  
Y1Y2_1  
Y1Y2_2  
Y1Y2_3  
Y1Y2_4  
Y1Y2_5  
Y1Y2_6  
Y1Y2_7  
15h  
FS2_0  
0
0
1
FS2_1  
0
1
0
FS2_2  
0
1
1
FS2_3Reserved  
FS2_4Reserved  
FS2_5  
1
0
0
1
0
1
1
1
0
FS2_6  
1
1
1
FS2_7  
Address offset(1)  
23h  
(1) Address offset refers to the byte address in the configuration register in Table 8, Table 9, and Table 10.  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
CDCEL824  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
Table 8. Generic Configuration Register  
OFFSET(1)  
BIT(2)  
7
ACRONYM  
DEFAULT(3)  
DESCRIPTION  
E_EL  
RID  
VID  
0b  
Xb  
1h  
0b  
Device identification (read-only): 0 is CDCEL824 (1.8 V out)  
Revision identification number (read-only)  
Vendor identification number (read-only)  
Reserved – always write 0  
00h  
6:4  
3:0  
7
EEPROM programming Status4:(4) (read-only)  
0 – EEPROM programming is completed  
1 – EEPROM is in programming mode  
6
5
EEPIP  
0b  
0b  
Permanently lock EEPROM data(5)  
0 – EEPROM is not locked  
1 – EEPROM is permanently locked  
EELOCK  
01h  
Device power down (overwrites S0/S1/S2 setting; configuration register settings are unchanged)  
Note: PWDN cannot be set to 1 in the EEPROM.  
0 – Device active (all PLLs and all outputs are enabled)  
4
PWDN  
0b  
1 – Device power down (all PLLs in power down and all outputs in high-impedance state)  
3:2  
1:0  
7
INCLK  
SLAVE_ADR  
M1  
00b  
00b  
0b  
Input clock selection:  
00 – Xtal 01 – VCXO  
10 – LVCMOS 1 – Reserved  
Address bits A0 and A1 of the slave receiver address  
RSVD  
0 – Input clock  
1 – PLL1 clock  
Operation mode selection for pins 14/15(6)  
6
SPICON  
0b  
0 – Serial programming interface SDA (pin 15) and SCL (pin 14)  
1 – Control pins S1 (pin 15) and S2 (pin 14)  
02h  
03h  
5:4  
3:2  
1:0  
7:0  
7
RSVD  
RSVD  
01b  
01b  
RSVD  
RSVD  
Reserved  
Reserved  
RSVD  
001h  
RSVD  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
6
5
04h  
4
RSVD  
Reserved  
3
2
1
(1) Writing data beyond 30h may affect device function.  
(2) All data transferred with the MSB first  
(3) Unless customer-specific setting  
(4) During EEPROM programming, no data is allowed to be sent to the device via the SDA/SCL bus until the programming sequence is completed. Data, however, can be read out during the  
programming sequence (Byte Read or Block Read).  
(5) If this bit is set to high in the EEPROM, the actual data in the EEPROM is permanently locked. No further programming is possible. Data, however can still be written via the SDA/SCL bus  
to the internal register to change device function on the fly. But new data can no longer be saved to the EEPROM. EELOCK is effective only if written into the EEPROM.  
(6) Selection of control pins is effective only if written into the EEPROM. Once written into the EEPROM, the serial programming pins are no longer available. However, if VDDOUT is forced to  
GND, the two control pins, S1 and S2, temporally act as serial programming pins (SDA/SCL), and the two slave receiver address bits are reset to A0 = 0 and A1 = 0.  
16  
Copyright © 2015, Texas Instruments Incorporated  
CDCEL824  
www.ti.com.cn  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
Table 8. Generic Configuration Register (continued)  
OFFSET(1)  
BIT(2)  
ACRONYM  
DEFAULT(3)  
DESCRIPTION  
05h  
Crystal load-capacitor selection(7)  
00h – 0 pF  
01h – 1 pF  
02h – 2 pF  
:
7:3  
XCSEL  
0Ah  
14h to 1Fh – 20 pF  
2:0  
7:1  
0b  
Reserved – do not write other than 0.  
06h  
7-bit byte count (defines the number of bytes which will be sent from this device at the next Block Read transfer); all bytes must be read out to correctly finish the read  
cycle.  
BCOUNT  
30h  
0 – No EEPROM write cycle  
Initiate EEPROM write cycle(8)  
0
EEWRITE  
0b  
0h  
1 – Start EEPROM write cycle (internal registers are saved to the EEPROM)  
07h-0Fh  
Reserved – do not write other than 0  
(7) The internal load capacitor (C1, C2) must be used to achieve the best clock performance. External capacitors should be used only to finely adjust CL by a few picofarads. The value of CL  
can be programmed with a resolution of 1 pF for a crystal load range of 0 pF to 20 pF. For CL > 20 pF, use additional external capacitors. Also, the value of the device input capacitance  
has to be considered which always adds 1.5 pF (6 pF/2 pF) to the selected CL. For more information about VCXO configuration and crystal recommendation, see application report  
SCAA085.  
(8) Note: The EEPROM WRITE bit must be sent last. This ensures that the content of all internal registers are stored in the EEPROM. The EEWRITE cycle is initiated with the rising edge of  
the EEWRITE bit. A static level-high does not trigger an EEPROM WRITE cycle. The EEWRITE bit must be reset to low after the programming is completed. The programming status can  
be monitored by reading out EEPIP. If EELOCK is set to high, no EEPROM programming is possible.  
Copyright © 2015, Texas Instruments Incorporated  
17  
CDCEL824  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
Table 9. PLL1 Configuration Register  
OFFSET(1)  
10h  
BIT(2)  
ACRONYM  
Reserved  
Reserved  
Reserved  
FS1_7  
DEFAULT(3)  
DESCRIPTION  
7:0  
7:0  
7:0  
7
00000000b  
Reserved  
11h  
00000000b  
Reserved  
12h  
00000000b  
Reserved  
FS1_x: PLL1 frequency selection(4)  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
6
FS1_6  
0 – fVCO1_0 (predefined by PLL1_0 – multiplier/divider value)  
1 – fVCO1_1 (predefined by PLL1_1 – multiplier/divider value)  
5
FS1_5  
4
FS1_4  
13h  
3
FS1_3  
2
FS1_2  
1
FS1_1  
0
FS1_0  
0 – PLL1  
7
6
MUX1  
M2  
1b  
1b  
PLL1 multiplexer:  
1 – PLL1 bypass (PLL1 is in power down)  
0 – bypass  
1 – Pdiv2  
Output Y1 multiplexer:  
Output Y2 multiplexer:  
00 – bypass  
01 – Pdiv2-divider  
10 – Pdiv3-divider  
11 – Reserved  
14h  
5:4  
M3  
10b  
3:2  
1:0  
Y1Y2_ST1  
Y1Y2_ST0  
11b  
01b  
00 – Y1/Y2 disabled to high-impedance state (PLL1 is in power down)  
01 – Y1/Y2 disabled to high-impedance state (PLL1 on)  
10 – Y1/Y2 disabled to low (PLL1 on)  
Y1, Y2-state0/1definition:  
11 – Y1/Y2 enabled (normal operation, PLL1 on)  
(1) Writing data beyond 30h may adversely affect device function.  
(2) All data is transferred MSB-first.  
(3) Unless a custom setting is used  
18  
Copyright © 2015, Texas Instruments Incorporated  
CDCEL824  
www.ti.com.cn  
OFFSET(1)  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
Table 9. PLL1 Configuration Register (continued)  
BIT(2)  
ACRONYM  
Y1Y2_7  
Y1Y2_6  
Y1Y2_5  
Y1Y2_4  
Y1Y2_3  
Y1Y2_2  
Y1Y2_1  
Y1Y2_0  
Reserved  
DEFAULT(3)  
DESCRIPTION  
Y1Y2_x output state selection(4)  
0 – state0 (predefined by Y1Y2_ST0)  
7
6
5
4
3
2
1
0
7
0b  
0b  
0b  
0b  
0b  
0b  
1b  
0b  
0b  
1 – state1 (predefined by Y1Y2_ST1)  
15h  
RSVD Reserved  
16h  
17h  
7-bit Y1-output-divider Pdiv2:  
0 – Reset and in standby  
1 to 127 – Divider value  
6:0  
7
Pdiv2  
01h  
0b  
Reserved – do not write others than 0  
7-bit Y2-output-divider Pdiv3:  
0 – Reset and in standby  
1 to 127 – Divider value  
6:0  
Pdiv3  
01h  
18h  
19h  
7:0  
7:4  
3:0  
7:3  
2:0  
7:5  
4:2  
PLL1_0N [11:4  
PLL1_0N [3:0]  
PLL1_0R [8:5]  
PLL1_0R[4:0]  
PLL1_0Q [5:3]  
PLL1_0Q [2:0]  
PLL1_0P [2:0]  
004h  
000h  
PLL1_0(4): 30-bit multiplier/divider value for frequency fVCO1_0  
(for more information, see the PLL Multiplier/Divider Definition paragraph).  
1Ah  
10h  
010b  
1Bh  
00 – fVCO1_0 < 125 MHz  
01 – 125 MHz fVCO1_0 < 150 MHz  
10 – 150 MHz fVCO1_0 < 175 MHz  
11 – fVCO1_0 175 MHz  
1:0  
VCO1_0_RANGE  
00b  
fVCO1_0 range selection:  
1Ch  
1Dh  
7:0  
7:4  
3:0  
7:3  
2:0  
7:5  
4:2  
PLL1_1N [11:4]  
PLL1_1N [3:0]  
PLL1_1R [8:5]  
PLL1_1R[4:0]  
PLL1_1Q [5:3]  
PLL1_1Q [2:0]  
PLL1_1P [2:0]  
PLL1_1(4): 30-bit multiplier/divider value for frequency fVCO1_1  
(for more information see the PLL Multiplier/Divider Definition paragraph)  
004h  
000h  
1Eh  
10h  
010b  
1Fh  
00 – fVCO1_1 < 125 MHz  
01 – 125 MHz fVCO1_1 < 150 MHz  
10 – 150 MHz fVCO1_1 < 175 MHz  
11 – fVCO1_1 175 MHz  
1:0  
VCO1_1_RANGE  
00b  
fVCO1_1 range selection:  
(4) PLL settings limits: 16 q 63, 0 p 7, 0 r 511, 0 < N < 4096  
Copyright © 2015, Texas Instruments Incorporated  
19  
CDCEL824  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
Table 10. PLL2 Configuration Register  
OFFSET(1)  
20h  
BIT(2)  
ACRONYM  
Reserved  
Reserved  
Reserved  
FS2_7  
DEFAULT(3)  
DESCRIPTION  
7:0  
7:0  
7:0  
7
0000000b  
Reserved  
21h  
0000000b  
Reserved  
22h  
0000000b  
Reserved  
FS2_x: PLL2 frequency selection(4)  
23h  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
6
FS2_6  
0 – fVCO2_0 (predefined by PLL2_0 – multiplier/divider value)  
1 – fVCO2_1 (predefined by PLL2_1 – multiplier/divider value)  
5
FS2_5  
4
FS2_4  
3
FS2_3  
2
FS2_2  
1
FS2_1  
0
FS2_0  
24h  
PLL2 multiplexer:  
0 – PLL2  
7
6
MUX2  
M4  
1b  
1b  
1 – PLL2 bypass (PLL2 is in power down)  
Output Y3 multiplexer:  
Output Y4 multiplexer:  
0 – Pdiv2  
1 – Pdiv4  
00 – Pdiv2-divider  
01 – Pdiv4-divider  
10 – Pdiv5-divider  
11 – Reserved  
5:4  
M5  
10b  
3:2  
1:0  
Y3Y4_ST1  
Y3Y4_ST0  
11b  
01b  
Y3, Y4-State0/1definition:  
00 – Y3/Y4 disabled to high-impedance state (PLL2 is in power down)  
01 – Y3/Y4 disabled to high-impedance state (PLL2 on)  
10–Y3/Y4 disabled to low (PLL2 on)  
11 – Y3/Y4 enabled (normal operation, PLL2 on)  
(1) Writing data beyond 30h may adversely affect device function.  
(2) All data is transferred MSB-first.  
(3) Unless a custom setting is used  
20  
Copyright © 2015, Texas Instruments Incorporated  
CDCEL824  
www.ti.com.cn  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
Table 10. PLL2 Configuration Register (continued)  
OFFSET(1)  
BIT(2)  
ACRONYM  
Y3Y4_7  
Y3Y4_6  
Y3Y4_5  
Y3Y4_4  
Y3Y4_3  
Y3Y4_2  
Y3Y4_1  
Y3Y4_0  
DEFAULT(3)  
DESCRIPTION  
Y3Y4_x output state selection(4)  
0 – state0 (predefined by Y3Y4_ST0)  
25h  
7
6
5
4
3
2
1
0
0b  
0b  
0b  
0b  
0b  
0b  
1b  
0b  
1 – state1 (predefined by Y3Y4_ST1)  
26h  
27h  
Reserved  
0 – Down  
1 – Center  
7
Reserved  
0b  
7-Bit Y3-output-divider Pdiv4:  
0 – Reset and in standby  
1 to 127 – Divider value  
6:0  
7
Pdiv4  
01h  
0b  
Reserved – do not write others than 0  
7-bit Y4-output-divider Pdiv5:  
0 – Reset and in standby  
1 to 127 – Divider value  
6:0  
Pdiv5  
01h  
28h  
29h  
7:0  
7:4  
3:0  
7:3  
2:0  
7:5  
4:2  
PLL2_0N [11:4  
PLL2_0N [3:0]  
PLL2_0R [8:5]  
PLL2_0R[4:0]  
PLL2_0Q [5:3]  
PLL2_0Q [2:0]  
PLL2_0P [2:0]  
PLL2_0(4): 30-Bit Multiplier/Divider value for frequency fVCO2_0  
(for more information see the PLL Multiplier/Divider Definition paragraph)  
004h  
000h  
2Ah  
2Bh  
10h  
010b  
fVCO2_0 range selection:  
00 – fVCO2_0 < 125 MHz  
01 – 125 MHz fVCO2_0 < 150 MHz  
10 – 150 MHz fVCO2_0 < 175 MHz  
11 – fVCO2_0 175 MHz  
1:0  
VCO2_0_RANGE  
00b  
2Ch  
2Dh  
7:0  
7:4  
3:0  
7:3  
2:0  
7:5  
4:2  
PLL2_1N [11:4]  
PLL2_1N [3:0]  
PLL2_1R [8:5]  
PLL2_1R[4:0]  
PLL2_1Q [5:3]  
PLL2_1Q [2:0]  
PLL2_1P [2:0]  
PLL2_1(4): 30-bit multiplier/divider value for frequency fVCO2_1  
(for more information see the PLL Multiplier/Divider Definition paragraph)  
004h  
000h  
2Eh  
2Fh  
10h  
010b  
fVCO2_1 range selection:  
00 – fVCO2_1 < 125 MHz  
01 – 125 MHz fVCO2_1 < 150 MHz  
10 – 150 MHz fVCO2_1 < 175 MHz  
11 – fVCO2_1 175 MHz  
1:0  
VCO2_1_RANGE  
00b  
(4) PLL settings limits: 16 q 63, 0 p 7, 0 r 511, 0 < N < 4096  
Copyright © 2015, Texas Instruments Incorporated  
21  
CDCEL824  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
CDCEL824 is an easy to use low-cost, programmable CMOS clock synthesizer. it can be used as a crystal  
buffer, clock synthesizer with separate output supply pin. CDCEL824 features on-chip loop filter. Programming  
can be done through SPI, pin-mode, or using on-chip EEPROM. This section shows some examples of using  
CDCEL824 in various applications.  
10.2 Typical Application  
CDCEL824 is ideal clock generator for medium-range phase-shift laser distance meter. Having two separate  
PLLs allows for achieving as low intermediate frequency as required as well as high maximum modulation  
frequency, hence increasing the accuracy of the measurement device. Moreover, a fast settling PLL supports  
faster switching between multiple modulation frequencies required by a single measurement. this results in  
higher measurement rates for the device. Low power consumption and low cost position CDCEL824 as an ideal  
device for commercial laser distance metering equipment.  
Figure 13 shows a typical application concept for the CDCEL824, where the outputs of the PLL1, Y1 and Y2 are  
used to generate the modulation and the counter frequency respectively. Y3 coming out of the PLL2 is carrying  
the shifted modulation frequency for down mixing. all three frequencies are programmable and dynamically  
switchable.  
Example:  
f0 :modulation freq. 200 MHz  
fI :intermediate freq. 10 kHz  
fC :counter frequency. 2 MHz  
Laser  
Diode  
APD  
Mixer  
Y1  
Y3  
fI  
f0  
CDCEL824  
f0-fI  
Digital  
Processor  
fI  
Y2  
fC  
Figure 13. Heterodyne Phase-Shift Laser Distance Meter Concept  
22  
Copyright © 2015, Texas Instruments Incorporated  
 
 
CDCEL824  
www.ti.com.cn  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
Typical Application (continued)  
10.2.1 Design Requirements  
For Laser distance meter applications, if heterodyne technique is used as mentioned in Typical Application , it is  
shown that:  
c
R =  
2 f  
Maximum Measurement Range equals:  
o
(1)  
(2)  
f
f
c
1
I
Dd =  
2
f
And best error achievable in measurement:  
o
c
f
f
I
That means lower RF frequency allows for longer range, while lower ratio o ( higher RF frequency and lower IF  
frequency) gives lower error.  
The values of intermediate, RF, and counter frequency should be chosen according to design targets of the  
maximum range and maximum tolerable error. Typically multiple consecutive measurements with multiple RF  
frequencies are carried on to resolve the trade-off between the accuracy and the maximum range.  
10.2.2 Detailed Design Procedure  
10.2.2.1 PLL Multiplier/Divider Definition  
At a given input frequency (ƒIN), the output frequency (ƒOUT) of the CDCEL824 can be calculated:  
ƒ
IN  
N
M
ƒ
+
 
OUT  
Pdiv  
where  
M (1 to 511) and N (1 to 4095) are the multiplier/divide values of the PLL  
Pdiv (1 to 127) is the output divider.  
(3)  
(4)  
The target VCO frequency (ƒVCO) of each PLL can be calculated:  
N
ƒ
+ ƒ  
 
VCO  
IN  
M
The PLL internally operates as fractional divider and needs the following multiplier/divider settings:  
N
NȀ  
ǒlog Ǔ[if P t 0 then P + 0]  
ǒ Ǔ  
2 M  
M
NP = 4 – int  
Q = int  
R = N– M × Q  
where  
N= N × 2P  
N M  
80 MHz ƒVCO 200 MHz  
16 q 63  
0 p 4  
0 r 511  
Example:  
for ƒIN = 27 MHz; M = 1; N = 4; Pdiv = 2;  
fOUT = 54 MHz  
for ƒIN = 27 MHz; M = 2; N = 11; Pdiv = 2;  
fOUT = 74.25 MHz  
fVCO = 108 MHz  
fVCO = 148.50 MHz  
P = 4 – int(log24) = 4 – 2 = 2  
N’ = 4 × 22 = 16  
P = 4 – int(log25.5) = 4 – 2 = 2  
N’ = 11 × 22 = 44  
Q = int(16) = 16  
Q = int(22) = 22  
R = 16 – 16 = 0  
R = 44 – 44 = 0  
Copyright © 2015, Texas Instruments Incorporated  
23  
CDCEL824  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
Typical Application (continued)  
The values for P, Q, R, and N’ are automatically calculated when using TI Pro-Clock™ software.  
10.2.3 Application Curves  
1.625 MHz to 3.25 MHz  
1.5 MHz to 2.5 MHz  
Figure 15. Phase Noise and RMS Jitter  
Figure 14. Phase Noise and RMS Jitter  
11 Power Supply Recommendations  
There is no restriction on the power-up sequence. In case VDDOUT is applied first, it is recommended to ground  
VDD. In case VDDOUT is powered while VDD is floating, there is a risk of high current flowing on the VDDOUT.  
The device has a power-up control that is connected to the 1.8-V supply. This keeps the whole device disabled  
until the 1.8-V supply reaches a sufficient voltage level. Then the device switches on all internal components,  
including the outputs. If there is a VDDOUT available before the VDD supply, the outputs will stay disabled until  
the VDD supply has reached a certain level.  
12 Layout  
12.1 Layout Guidelines  
When the CDCEL824 is used as a crystal buffer, any parasitics across the crystal affects the pulling range of the  
VCXO. Therefore, care must be taken in placing the crystal units on the board. Crystals should be placed as  
close to the device as possible, ensuring that the routing lines from the crystal terminals to XIN and XOUT have the  
same length.  
If possible, cut out both ground plane and power plane under the area where the crystal and the routing to the  
device are placed. In this area, always avoid routing any other signal line, as it could be a source of noise  
coupling.  
Additional discrete capacitors can be required to meet the load capacitance specification of certain crystal. For  
example, a 10.7-pF load capacitor is not fully programmable on the chip, because the internal capacitor can  
range from 0 pF to 20 pF with steps of 1 pF. The 0.7-pF capacitor therefore can be discretely added on top of an  
internal 10 pF.  
To minimize the inductive influence of the trace, it is recommended to place this small capacitor as close to the  
device as possible and symmetrically with respect to XIN and XOUT.  
Figure 16 shows a conceptual layout detailing recommended placement of power supply bypass capacitors. For  
component side mounting, use 0402 body size capacitors to facilitate signal routing. Keep the connections  
between the bypass capacitors and the power supply on the device as short as possible. Ground the other side  
of the capacitor using a low-impedance connection to the ground plane.  
24  
Copyright © 2015, Texas Instruments Incorporated  
CDCEL824  
www.ti.com.cn  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
12.2 Layout Example  
Figure 16. Board Layout  
版权 © 2015, Texas Instruments Incorporated  
25  
CDCEL824  
ZHCSEA7A JUNE 2015REVISED SEPTEMBER 2015  
www.ti.com.cn  
13 器件和文档支持  
13.1 文档支持  
13.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.3 商标  
Pro-Clock, E2E are trademarks of Texas Instruments.  
13.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CDCEL824PWR  
ACTIVE  
TSSOP  
PW  
16  
2000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 85  
CKEL824  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CDCEL824PWR  
TSSOP  
PW  
16  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
CDCEL824PWR  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

CDCEL913

Programmable 1-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V, and 3.3-V Outputs
TI

CDCEL913-Q1

Programmable 1-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V, and 3.3-V Outputs
TI

CDCEL913IPWRQ1

Programmable 1-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V, and 3.3-V Outputs
TI

CDCEL913PW

Programmable 1-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V, and 3.3-V Outputs
TI

CDCEL913PWG4

Programmable 1-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V, and 3.3-V Outputs
TI

CDCEL913PWR

Programmable 1-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V, and 3.3-V Outputs
TI

CDCEL913PWRG4

Programmable 1-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V, and 3.3-V Outputs
TI

CDCEL925

Programmable 1-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V, and 3.3-V Outputs
TI

CDCEL925PW

PROGRAMMABLE 2-PLL VCXO CLOCK SYNTHESIZER WITH 1.8-V, 2.5-V and 3.3-V LVCMOS OUTPUTS
TI

CDCEL925PWG4

PROGRAMMABLE 2-PLL VCXO CLOCK SYNTHESIZER WITH 1.8-V, 2.5-V and 3.3-V LVCMOS OUTPUTS
TI

CDCEL925PWR

PROGRAMMABLE 2-PLL VCXO CLOCK SYNTHESIZER WITH 1.8-V, 2.5-V and 3.3-V LVCMOS OUTPUTS
TI

CDCEL925PWRG4

PROGRAMMABLE 2-PLL VCXO CLOCK SYNTHESIZER WITH 1.8-V, 2.5-V and 3.3-V LVCMOS OUTPUTS
TI