CDCE913QPWRQ1 [TI]

具有 2.5V 或 3.3V LVCMOS 输出的汽车类可编程 1-PLL VCXO 时钟合成器 | PW | 14 | -40 to 125;
CDCE913QPWRQ1
型号: CDCE913QPWRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 2.5V 或 3.3V LVCMOS 输出的汽车类可编程 1-PLL VCXO 时钟合成器 | PW | 14 | -40 to 125

时钟 石英晶振 压控振荡器
文件: 总37页 (文件大小:1138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
CDCE913-Q1, CDCEL913-Q1  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
CDCEx913-Q1 Programmable 1-PLL VCXO Clock Synthesizer  
With 1.8-V, 2.5-V, and 3.3-V Outputs  
1 Features  
2 Applications  
1
Qualified for Automotive Applications  
Clusters  
AEC-Q100 Qualified With the Following Results:  
Head Units  
Navigation Systems  
Device Temperature Grades  
Advanced Driver Assistance Systems (ADAS)  
Grade 1 For CDCE913-Q1: –40°C to  
+125°C Ambient Operating Temperature  
3 Description  
The CDCE913-Q1 and CDCEL913-Q1 devices are  
Grade 3 For CDCEL913-Q1: –40°C to  
+85°C Ambient Operating Temperature  
modular,  
phase-locked  
loop  
(PLL)  
based  
Device HBM ESD Classification Level H2  
Device CDM ESD Classification Level C6  
programmable clock synthesizers. These devices  
provide flexible and programmable options, such as  
output clocks, input signals, and control pins, so that  
the user can configure the CDCEx913-Q1 for their  
own specifications.  
In-System Programmability and EEPROM  
Serial Programmable Volatile Register  
Nonvolatile EEPROM to Store Customer  
Settings  
The CDCEx913-Q1 generates up to three output  
clocks from a single input frequency to enable both  
board space and cost savings. Additionally, with  
multiple outputs, the clock generator can replace  
multiple crystals with one clock generator. This  
makes the device well-suited for head unit and  
telematics applications in infotainment and camera  
systems in ADAS as these platforms are evolving into  
smaller and more cost effective systems.  
Flexible Input Clocking Concept  
External Crystal: 8 MHz to 32 MHz  
On-Chip VCXO: Pull Range ±150 ppm  
Single-Ended LVCMOS up to 160 MHz  
Free Selectable Output Frequency up to 230 MHz  
Low-Noise PLL Core  
PLL Loop Filter Components Integrated  
Low Period Jitter (Typical 50 ps)  
Device Information(1)  
PART NUMBER  
CDCE913-Q1  
PACKAGE  
BODY SIZE (NOM)  
Separate Output Supply Pins  
TSSOP (14)  
5.00 mm × 4.40 mm  
CDCE913-Q1: 3.3 V and 2.5 V  
CDCEL913-Q1: 1.8 V  
CDCEL913-Q1  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Flexible Clock Driver  
Three User-Definable Control Inputs [S0, S1,  
S2], for Example, SSC Selection, Frequency  
Switching, Output Enable, or Power Down  
Simplified Schematic  
Digital Radio  
Interface  
Generates Highly Accurate Clocks for Video,  
Audio, USB, IEEE1394, RFID, Bluetooth®,  
WLAN, Ethernet, and GPS  
Codec  
Generates Common Clock Frequencies Used  
With TI-DaVinci™, OMAP™, DSPs  
CDCE913-Q1  
Programmable SSC Modulation  
Enables 0-PPM Clock Generation  
Graphics  
Processor  
25 MHZ  
XTAL  
1.8-V Device Power Supply  
Packaged in TSSOP  
Copyright © 2016, Texas Instruments Incorporated  
Development and Programming Kit for Easy PLL  
Design and Programming (TI Pro-Clock™)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
 
CDCE913-Q1, CDCEL913-Q1  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
www.ti.com  
Table of Contents  
10.4 Device Functional Modes...................................... 15  
10.5 Programming......................................................... 16  
10.6 Register Maps....................................................... 17  
11 Application and Implementation........................ 21  
11.1 Application Information.......................................... 21  
11.2 Typical Application ............................................... 21  
12 Power Supply Recommendations ..................... 26  
13 Layout................................................................... 27  
13.1 Layout Guidelines ................................................. 27  
13.2 Layout Example .................................................... 27  
14 Device and Documentation Support ................. 28  
14.1 Documentation Support ........................................ 28  
14.2 Related Links ........................................................ 28  
14.3 Receiving Notification of Documentation Updates 28  
14.4 Community Resources.......................................... 28  
14.5 Trademarks........................................................... 28  
14.6 Electrostatic Discharge Caution............................ 28  
14.7 Glossary................................................................ 29  
1
2
3
4
5
6
7
8
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Description (Continued)........................................ 4  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 6  
8.1 Absolute Maximum Ratings ...................................... 6  
8.2 ESD Ratings.............................................................. 6  
8.3 Recommended Operating Conditions....................... 6  
8.4 Thermal Information.................................................. 7  
8.5 Electrical Characteristics .......................................... 7  
8.6 Timing Requirements................................................ 9  
8.7 Typical Characteristics............................................ 10  
Parameter Measurement Information ................ 11  
9
10 Detailed Description ........................................... 12  
10.1 Overview ............................................................... 12  
10.2 Functional Block Diagram ..................................... 12  
10.3 Feature Description............................................... 13  
15 Mechanical, Packaging, and Orderable  
Information ........................................................... 30  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (September 2016) to Revision C  
Page  
Clarified different temperature range for the CDCEL913-Q1 device...................................................................................... 1  
Deleted old table notes from the Thermal Information table ................................................................................................. 7  
Changes from Revision A (June 2013) to Revision B  
Page  
Added Feature Description section, Device Functional Modes, Application and Implementation section, Power  
Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical,  
Packaging, and Orderable Information section ...................................................................................................................... 1  
Changed ESD Ratings: Human-body model (HBM) from 2500 V to 2000 V and Charged-device model (CDM) from  
500 V to 1000 V...................................................................................................................................................................... 6  
Changed second S to Sr in Byte Read Protocol .................................................................................................................. 16  
Changes from Original (June 2013) to Revision A  
Page  
Changed CDM ESD classification level.................................................................................................................................. 1  
Added ESD ratings ................................................................................................................................................................. 6  
Changed IDDPD typical From: 20 To: 30 .................................................................................................................................. 7  
Changed II LVCMOS input current value from typical to maximum ....................................................................................... 7  
Changed IIH LVCMOS input current for S0, S1, and S2 value from typical to maximum....................................................... 7  
Changed IIL LVCMOS input current for S0, S1, and S2 value from typical to maximum....................................................... 7  
Changed Test Load for 50-Ω Board Environment................................................................................................................ 11  
Changed Output Selection From: (Y2, Y9) To: (Y2, Y3)...................................................................................................... 13  
Changed text note for Block Write Protocol ......................................................................................................................... 17  
Changed 01h, Bit 7 From: For internal use – always write 1 To: Reserved – always write 0.............................................. 18  
2
Submit Documentation Feedback  
Copyright © 2013–2016, Texas Instruments Incorporated  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
 
CDCE913-Q1, CDCEL913-Q1  
www.ti.com  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
Changed 06h, 7:1 From: 30h To: 20h .................................................................................................................................. 19  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
CDCE913-Q1, CDCEL913-Q1  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
www.ti.com  
5 Description (Continued)  
Furthermore, each output can be programmed in-system for any clock frequency up to 230 MHz through the  
integrated, configurable PLL. The PLL also supports spread-spectrum clocking (SSC) with programmable down  
and center spread. This provides better electromagnetic interference (EMI) performance to enable customers to  
pass industry standards such as CISPR-25.  
Customization of frequency programming and SSC are accessed using three, user-defined control pins. This  
eliminates the need to use an additional interface to control the clock. Specific power-up and power-down  
sequences can also be defined to the user’s needs.  
6 Device Comparison Table  
DEVICE  
SUPPLY (V)  
2.5 to 3.3  
1.8  
PLL  
1
OUTPUT  
CDCE913-Q1  
CDCEL913-Q1  
CDCE937-Q1  
CDCEL937-Q1  
CDCE949-Q1  
CDCEL949-Q1  
3
3
7
7
9
9
1
2.5 to 3.3  
1.8  
3
3
2.5 to 3.3  
1.8  
4
4
4
Submit Documentation Feedback  
Copyright © 2013–2016, Texas Instruments Incorporated  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
CDCE913-Q1, CDCEL913-Q1  
www.ti.com  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
7 Pin Configuration and Functions  
PW Package  
14-Pin TSSOP  
Top View  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
GND  
5, 10  
G
I
Ground  
SCL: serial clock input LVCMOS (default configuration), 500 kΩ internal pullup; or  
S2: user-programmable control input, LVCMOS input, 500-kΩ internal pullup  
SCL/S2  
SDA/S1  
12  
13  
SDA: bidirectional serial data input/output (default configuration), LVCMOS internal pullup; or  
S1: user-programmable control input, LVCMOS input, 500-kΩ internal pullup  
I/O or I  
S0  
2
4
3
I
I
User-programmable control input S0, LVCMOS input, 500-kΩ internal pullup  
VCXO control voltage (leave open or pull up when not used)  
1.8-V power supply for the device  
Vctr  
VDD  
P
CDCE913-Q1: 3.3-V or 2.5-V supply for all outputs  
CDCEL913-Q1: 1.8-V supply for all outputs  
Crystal oscillator input or LVCMOS clock input (selectable through the I2C bus)  
Crystal oscillator output (leave open or pull up when not used)  
LVCMOS output  
VDDOUT  
6, 7  
P
Xin/CLK  
Xout  
Y1  
1
14  
11  
9
I
O
O
O
O
Y2  
LVCMOS output  
Y3  
8
LVCMOS output  
(1) G = Ground, I = Input, O = Output, P = Power  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
CDCE913-Q1, CDCEL913-Q1  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
www.ti.com  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
MAX  
2.5  
UNIT  
VDD  
Supply voltage  
V
CDCEL913-Q1  
CDCE913-Q1  
VDD  
VDDOUT  
Output clocks supply voltage  
V
3.6 + 0.5  
VDD + 0.5  
VDDOUT + 0.5  
20  
VI  
Input voltage(2)(3)  
Output voltage(2)  
V
V
VO  
II  
Input current (VI < 0, VI > VDD  
)
mA  
mA  
IO  
Continuous output current  
50  
TJ  
Tstg  
Maximum junction temperature  
Storage temperature  
125  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
(3) SDA and SCL can go up to 3.6 V as stated in the Recommended Operating Conditions table.  
8.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011(2)  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) Charged-device model ESD rating for corner pins is 750 V.  
8.3 Recommended Operating Conditions  
MIN  
1.7  
2.3  
1.7  
NOM  
MAX  
1.9  
UNIT  
VDD  
VO  
Device supply voltage  
1.8  
V
CDCE913-Q1  
CDCEL913-Q1  
3.6  
Output Yx supply voltage, VDDOUT  
V
1.9  
VIL  
Low-level input voltage, LVCMOS  
High-level input voltage, LVCMOS  
Input voltage threshold, LVCMOS  
0.3 × VDD  
V
V
V
VIH  
0.7 × VDD  
VI(thresh)  
0.5 × VDD  
S0  
0
0
0
1.9  
3.6  
VI(S)  
Input voltage  
V
V
S1, S2, SDA, SCL (VI(thresh)  
0.5 VDD  
=
)
VI(CLK)  
Input voltage range CLK  
1.9  
±12  
±10  
±8  
VDDOUT = 3.3 V  
VDDOUT = 2.5 V  
VDDOUT = 1.8 V  
IOH, IOL  
Output current  
mA  
CL  
TA  
Output load, LVCMOS  
15  
pF  
°C  
CDCE913-Q1  
CDCEL913-Q1  
–40  
–40  
125  
85  
Operating ambient temperature  
6
Submit Documentation Feedback  
Copyright © 2013–2016, Texas Instruments Incorporated  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
CDCE913-Q1, CDCEL913-Q1  
www.ti.com  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
Recommended Operating Conditions (continued)  
MIN  
NOM  
27  
MAX  
UNIT  
CRYSTAL AND VCXO SPECIFICATIONS(1)  
fXtal  
Crystal input frequency (fundamental mode)  
Effective series resistance  
Pulling range (0 V Vctr 1.8 V)(2)  
8
32  
MHz  
Ω
ESR  
fPR  
100  
±120  
0
±150  
ppm  
V
Vctr  
Frequency control voltage  
VDD  
220  
20  
C0 / C1  
CL  
Pullability ratio  
On-chip load capacitance at Xin and Xout  
0
pF  
(1) For more information about VCXO configuration, and crystal recommendation, see VCXO Application Guideline for CDCE(L)9xx Family  
(SCAA085).  
(2) Pulling range depends on crystal type, on-chip crystal load capacitance, and PCB stray capacitance; pulling range of minimum ±120  
ppm applies for crystal listed in VCXO Application Guideline for CDCE(L)9xx Family (SCAA085).  
8.4 Thermal Information  
CDCE913-Q1,  
CDCEL913-Q1  
THERMAL METRIC(1)(2)  
UNIT  
PW (TSSOP)  
14 PINS  
110.6  
35.4  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
53.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.1  
ψJB  
52.8  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
(2) The package thermal impedance is calculated in accordance with JESD 51 and JEDEC2S2P (high-K board).  
8.5 Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
OVERALL PARAMETER  
All outputs off,  
fCLK = 27 MHz,  
fVCO = 135 MHz,  
fOUT = 27 MHz  
All PLLS on  
Per PLL  
11  
9
IDD  
Supply current (see Figure 1)  
mA  
VDDOUT = 3.3 V  
VDDOUT = 1.8 V  
1.3  
0.7  
No load, all outputs on,  
fOUT = 27 MHz  
IDD(OUT)  
Supply current (see Figure 2 and Figure 3)  
mA  
µA  
Power-down current. Every circuit powered  
down except I2C  
IDD(PD)  
V(PUC)  
fVCO  
fIN = 0 MHz, VDD = 1.9 V  
30  
Supply voltage VDD threshold for power-up  
control circuit  
0.85  
80  
1.45  
V
VCO frequency range of PLL  
230  
230  
230  
MHz  
VDDOUT = 3.3 V  
VDDOUT = 1.8 V  
fOUT  
LVCMOS output frequency  
MHz  
LVCMOS PARAMETER  
VIK  
II  
LVCMOS input voltage  
VDD = 1.7 V, II = –18 mA  
VI = 0 V or VDD, VDD = 1.9 V  
VI = VDD, VDD = 1.9 V  
–1.2  
±5  
5
V
LVCMOS input current  
µA  
µA  
µA  
IIH  
IIL  
LVCMOS input current for S0, S1, and S2  
LVCMOS input current for S0, S1, and S2  
VI = 0 V, VDD = 1.9 V  
–4  
(1) All typical values are at respective nominal VDD  
.
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
CDCE913-Q1, CDCEL913-Q1  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
www.ti.com  
Electrical Characteristics (continued)  
over recommended operating free-air temperature range (unless otherwise noted)  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
Input capacitance at Xin/CLK  
Input capacitance at Xout  
VIClk = 0 V or VDD  
VIXout = 0 V or VDD  
VIS = 0 V or VDD  
6
2
3
CI  
pF  
Input capacitance at S0, S1, and S2  
CDCE913-Q1, LVCMOS PARAMETER FOR VDDOUT = 3.3-V MODE  
VDDOUT = 3 V, IOH = –0.1 mA  
2.9  
2.4  
2.2  
VOH  
LVCMOS high-level output voltage  
VDDOUT = 3 V, IOH = –8 mA  
VDDOUT = 3 V, IOH = –12 mA  
VDDOUT = 3 V, IOL = 0.1 mA  
VDDOUT = 3 V, IOL = 8 mA  
VDDOUT = 3 V, IOL = 12 mA  
PLL bypass  
V
0.1  
VOL  
LVCMOS low-level output voltage  
0.5  
0.8  
V
tPLH, tPHL  
tr, tf  
Propagation delay  
3.2  
0.6  
50  
ns  
ns  
ps  
ps  
ps  
Rise and fall time  
VDDOUT = 3.3 V (20%–80%)  
1 PLL switching, Y2-to-Y3, 10,000 cycles  
1 PLL switching, Y2-to-Y3  
fOUT = 50 MHz, Y1-to-Y3  
fVCO = 100 MHz, Pdiv = 1  
tjit(cc)  
Cycle-to-cycle jitter(2)  
Peak-to-peak period jitter(2)  
Output skew (see Table 2)(3)  
200  
200  
440  
55%  
tjit(per)  
tsk(o)  
60  
(4)  
odc  
Output duty cycle  
45%  
CDCE913-Q1, LVCMOS PARAMETER FOR VDDOUT = 2.5-V MODE  
VDDOUT = 2.3 V, IOH = –0.1 mA  
2.2  
1.7  
1.6  
VOH  
LVCMOS high-level output voltage  
LVCMOS low-level output voltage  
VDDOUT = 2.3 V, IOH = –6 mA  
VDDOUT = 2.3 V, IOH = –10 mA  
VDDOUT = 2.3 V, IOL = 0.1 mA  
VDDOUT = 2.3 V, IOL = 6 mA  
VDDOUT = 2.3 V, IOL = 10 mA  
PLL bypass  
V
V
0.1  
0.5  
0.7  
VOL  
tPLH, tPHL  
tr, tf  
Propagation delay  
3.6  
0.8  
50  
ns  
ns  
ps  
ps  
ps  
Rise and fall time  
VDDOUT = 2.5 V (20%–80%)  
1 PLL switching, Y2-to-Y3, 10,000 cycles  
1 PLL switching, Y2-to-Y3  
fOUT = 50 MHz, Y1-to-Y3  
tjit(cc)  
Cycle-to-cycle jitter(2)  
Peak-to-peak period jitter(2)  
Output skew (see Table 2)(3)  
Output duty cycle(4)  
200  
200  
440  
55%  
tjit(per)  
tsk(o)  
60  
odc  
fVCO = 100 MHz, Pdiv = 1  
45%  
CDCEL913-Q1, LVCMOS PARAMETER FOR VDDOUT = 1.8-V MODE  
VDDOUT = 1.7 V, IOH = –0.1 mA  
1.6  
1.4  
1.1  
VOH  
LVCMOS high-level output voltage  
LVCMOS low-level output voltage  
VDDOUT = 1.7 V, IOH = –4 mA  
VDDOUT = 1.7 V, IOH = –8 mA  
VDDOUT = 1.7 V, IOL = 0.1 mA  
VDDOUT = 1.7 V, IOL = 4 mA  
VDDOUT = 1.7 V, IOL = 8 mA  
PLL bypass  
V
V
0.1  
0.3  
0.6  
VOL  
tPLH, tPHL  
tr, tf  
Propagation delay  
2.6  
0.7  
80  
ns  
ns  
ps  
ps  
ps  
Rise and fall time  
VDDOUT = 1.8 V (20%–80%)  
1 PLL switching, Y2-to-Y3, 10,000 cycles  
1 PLL switching, Y2-to-Y3  
fOUT = 50 MHz, Y1-to-Y3  
fVCO = 100 MHz, Pdiv = 1  
tjit(cc)  
Cycle-to-cycle jitter(2)  
Peak-to-peak period jitter(2)  
Output skew (see Table 2)(3)  
Output duty cycle(4)  
110  
130  
50  
tjit(per)  
tsk(o)  
100  
odc  
45%  
55%  
I2C PARAMETER  
VIK  
IIH  
SCL and SDA input clamp voltage  
VDD = 1.7 V, II = –18 mA  
VI = VDD, VDD = 1.9 V  
–1.2  
±10  
V
µA  
V
SCL and SDA input current  
I2C input high voltage(5)  
VIH  
0.7 × VDD  
(2) Jitter depends on configuration. Jitter data is for input frequency = 27 MHz, fVCO = 108 MHz, fOUT = 27 MHz (measured at Y2).  
(3) The tsk(o) specification is only valid for equal loading of each bank of outputs, and the outputs are generated from the same divider.  
(4) odc depends on the output rise and fall time (tr and tf); data sampled on the rising edge (tr)  
(5) SDA and SCL pins are 3.3-V tolerant.  
8
Submit Documentation Feedback  
Copyright © 2013–2016, Texas Instruments Incorporated  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
CDCE913-Q1, CDCEL913-Q1  
www.ti.com  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
Electrical Characteristics (continued)  
over recommended operating free-air temperature range (unless otherwise noted)  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
I2C input low voltage(5)  
VIL  
0.3 × VDD  
V
V
VOL  
CI  
SDA low-level output voltage  
SCL-SDA input capacitance  
IOL = 3 mA, VDD = 1.7 V  
VI = 0 V or VDD  
0.2 × VDD  
10  
3
pF  
EEPROM SPECIFICATION  
EEcyc  
EEret  
Programming cycles of EEPROM  
Data retention  
100  
10  
1000  
cycles  
years  
8.6 Timing Requirements  
over recommended ranges of supply voltage, load, and operating free-air temperature  
MIN  
NOM  
MAX  
UNIT  
CLK_IN  
PLL bypass mode  
0
8
160  
160  
3
fCLK  
LVCMOS clock input frequency  
MHz  
ns  
PLL mode  
tr and tf  
Rise and fall time, CLK signal (20% to 80%)  
Duty cycle of CLK at VDD / 2  
40%  
60%  
I2C (SEE Figure 13)  
Standard mode  
Fast mode  
0
0
100  
400  
fSCL  
SCL clock frequency  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
Standard mode  
Fast mode  
4.7  
0.6  
4
tsu(START) START setup time (SCL high before SDA low)  
th(START) START hold time (SCL low after SDA low)  
Standard mode  
Fast mode  
0.6  
4.7  
1.3  
4
Standard mode  
Fast mode  
tw(SCLL)  
tw(SCLH)  
th(SDA)  
SCL low-pulse duration  
Standard mode  
Fast mode  
SCL high-pulse duration  
SDA hold time (SDA valid after SCL low)  
SDA setup time  
0.6  
0
Standard mode  
Fast mode  
3.45  
0.9  
0
Standard mode  
Fast mode  
250  
100  
tsu(SDA)  
Standard mode  
Fast mode  
1000  
300  
tr  
SCL-SDA input rise time  
SCL-SDA input fall time  
STOP setup time  
ns  
ns  
µs  
tf  
300  
Standard mode  
Fast mode  
4
0.6  
4.7  
1.3  
tsu(STOP)  
Standard mode  
Fast mode  
tBUS  
Bus free time between a STOP and START condition  
µs  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
CDCE913-Q1, CDCEL913-Q1  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
www.ti.com  
8.7 Typical Characteristics  
30  
16  
14  
12  
10  
8
V
= 1.8 V  
V
V
= 1.8 V,  
DD  
DD  
= 3.3 V,  
DDOUT  
25  
20  
15  
10  
5
no load  
3 Outputs on  
1 PLL on  
1 Output on  
6
4
all PLL off  
2
0
all Outputs off  
0
10 30 50 70 90 110 130 150 170 190 210 230  
- Output Frequency - MHz  
10  
60  
f
110  
160  
210  
f
- Frequency - MHz  
OUT  
VCO  
Figure 2. CDCE913-Q1 Output Current  
vs Output Frequency  
Figure 1. CDCEx913-Q1 Supply Current  
vs PLL Frequency  
4.5  
V
V
= 1.8 V,  
DD  
4
3.5  
3
= 1.8 V,  
DDOUT  
no load  
3 Outputs on  
2.5  
2
1 Output on  
1.5  
1
all Outputs off  
0.5  
0
10 30 50 70 90 110 130 150 170 190 210 230  
f
- Output Frequency - MHz  
OUT  
Figure 3. CDCEL913-Q1 Output Current vs Output Frequency  
10  
Submit Documentation Feedback  
Copyright © 2013–2016, Texas Instruments Incorporated  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
CDCE913-Q1, CDCEL913-Q1  
www.ti.com  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
9 Parameter Measurement Information  
CDCE913-Q1  
CDCEL913-Q1  
1 kW  
LVCMOS  
10 pF  
1 kW  
Figure 4. Test Load  
CDCE913-Q1  
CDCEL913-Q1  
LVCMOS  
LVCMOS  
Series  
Termination  
Approx. 18 W  
Line Impedance  
Zo = 50 W  
Typical Driver  
Impedance  
Approx. 32 W  
Figure 5. Test Load for 50-Ω Board Environment  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
CDCE913-Q1, CDCEL913-Q1  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
www.ti.com  
10 Detailed Description  
10.1 Overview  
The CDCE913-Q1 and CDCEL913-Q1 devices are modular PLL-based, low-cost, high-performance,  
programmable clock synthesizers, multipliers, and dividers. They generate up to three output clocks from a single  
input frequency. Each output can be programmed in-system for any clock frequency up to 230 MHz, using the  
integrated configurable PLL.  
The CDCEx913-Q1 device has separate output supply pins, VDDOUT, with output of 1.8 V for the CDCEL913-Q1  
device and 2.5 V to 3.3 V for the CDCE913-Q1 device. Additionally, each device requires a 1.8-V supply applied  
to its VDD pin in order for it to operate.  
The input accepts an external crystal or LVCMOS clock signal. If an external crystal is used, an on-chip load  
capacitor is adequate for most applications. The value of the load capacitor is programmable from 0 pF to 20 pF.  
Additionally, a selectable on-chip VCXO allows synchronization of the output frequency to an external control  
signal, that is, the PWM signal.  
The deep M / N divider ratio allows the generation of zero-ppm audio-video, networking (WLAN, Bluetooth,  
Ethernet, GPS) or interface (USB, IEEE1394, memory stick) clocks from, for example, a 27-MHz reference input  
frequency.  
The PLL supports spread-spectrum clocking (SSC). SSC can be center-spread or down-spread clocking, which  
is a common technique to reduce electromagnetic interference (EMI).  
Based on the PLL frequency and the divider settings, the internal loop filter components are automatically  
adjusted to achieve high stability and optimized jitter transfer characteristics.  
The device supports nonvolatile EEPROM programming for easy customization of the device to the application. It  
is preset to a factory default configuration (see Default Device Configuration). It can be reprogrammed to a  
different application configuration before PCB assembly, or reprogrammed by in-system programming. All device  
settings are programmable through the SDA-SCL bus, a 2-wire serial interface.  
Three programmable control inputs, S0, S1, and S2, can be used to select different frequencies, change SSC  
setting for lowering EMI, or control other features like outputs disable to low, outputs in Hi-Z state, power down,  
PLL bypass, and so forth).  
The CDCE913-Q1 device operates in a temperature range of –40°C to +125°C and the CDCEL913-Q1 device  
operates in a temperature range of –40°C to 85°C.  
10.2 Functional Block Diagram  
GND  
V
DD  
V
DDOUT  
Input Clock  
V
ctr  
LV  
Pdiv1  
10-Bit  
Y1  
CMOS  
Xin/CLK  
VCXO  
XO  
LV  
CMOS  
Pdiv2  
Y2  
Y3  
PLL 1  
LVCMOS  
7-Bit  
with SSC  
Xout  
LV  
Pdiv3  
7-Bit  
CMOS  
PLL Bypass  
EEPROM  
Programming  
and I2C  
Register  
S0  
S1/SDA  
S2/SCL  
/opyright © 2016, Çexas Lnstruments Lncorporated  
12  
Submit Documentation Feedback  
Copyright © 2013–2016, Texas Instruments Incorporated  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
CDCE913-Q1, CDCEL913-Q1  
www.ti.com  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
10.3 Feature Description  
10.3.1 Control Terminal Configuration  
The CDCE913-Q1 and CDCEL913-Q1 devices have three user-definable control terminals (S0, S1, and S2),  
which allow external control of device settings. They can be programmed to any of the following functions:  
Spread-spectrum clocking selection spread type and spread amount selection  
Frequency selection switching between any of two user-defined frequencies  
Output state selection output configuration and power-down control  
The user can predefine up to eight different control settings. Table 1 and Table 2 explain these settings.  
Table 1. Control Terminal Definition  
EXTERNAL CONTROL  
PLL1 SETTING  
Y1 SETTING  
BITS  
PLL frequency  
selection  
Output Y2 and Y3  
selection  
Control function  
SSC selection  
Output Y1 and power-down selection  
Table 2. PLLx Setting  
(Can Be Selected for Each PLL Individually)(1)  
SSCx [3 Bits]  
SSC SELECTION (CENTER AND DOWN)  
CENTER  
DOWN  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0% (off)  
±0.25%  
±0.5%  
0% (off)  
–0.25%  
–0.5%  
±0.75%  
±1.0%  
–0.75%  
–1.0%  
±1.25%  
±1.5%  
–1.25%  
–1.5%  
±2.0%  
–2.0%  
(1) Center and down-spread, Frequency0, Frequency1, State0, and State1 are user-definable in PLLx  
configuration register.  
Table 3. PLLx Setting, Frequency Selection (Can Be  
Selected for Each PLL Individually)(1)  
FSx  
0
FUNCTION  
Frequency0  
Frequency1  
1
(1) Frequency0 and Frequency1 can be any frequency within the  
specified fVCO range.  
Table 4. PLLx Setting, Output Selection (Y2, Y3)(1)  
Y2, Y3  
FUNCTION  
State0  
0
1
State1  
(1) State0 or State1 selection is valid for both outputs of the  
corresponding PLL module and can be power down, Hi-Z state, low,  
or active.  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
 
 
 
CDCE913-Q1, CDCEL913-Q1  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
www.ti.com  
Table 5. Y1 Setting(1)  
Y1  
0
FUNCTION  
State 0  
State 1  
1
(1) State0 and State1 are user definable in the generic configuration  
register and can be power down, Hi-Z state, low, or active.  
The S1/SDA and S2/SCL pins of the CDCE913-Q1 and CDCEL913-Q1 devices are dual-function pins. In the  
default configuration, they are defined as SDA and SCL for the serial programming interface. They can be  
programmed as control pins (S1 and S2) by setting the appropriate bits in the EEPROM. Note that changes to  
the control register (Bit [6] of byte 02h) have no effect until they are written into the EEPROM.  
Once they are set as control pins, the serial programming interface is no longer available. However, if VDDOUT is  
forced to GND, the two control pins, S1 and S2, temporally act as serial programming pins (SDA and SCL).  
S0 is not a multi-use pin; it is a control pin only.  
10.3.2 Default Device Configuration  
The internal EEPROM of the CDCE913-Q1 and CDCEL913-Q1 devices is preconfigured with a factory default  
configuration as shown in Figure 6 (The input frequency is passed through the output as a default), thus allowing  
the device to operate in default mode without the extra production step of programming it. The default setting  
appears after power is supplied or after a power-down–power-up sequence until it is reprogrammed by the user  
to a different application configuration. A new register setting is programmed through the serial I2C interface.  
V
V
GND  
DD  
DDOUT  
Input Clock  
LV  
CMOS  
Pdiv1 =1  
Y1 = 27 MHz  
Xin  
27 MHz  
Crystal  
X-tal  
LV  
CMOS  
Y2 = 27 MHz  
Y3 = 27 MHz  
PLL1  
Pdiv 2 = 1  
power down  
Xout  
LV  
CMOS  
Pdiv 3 = 1  
PLL Bypass  
EEPROM  
1 = Output Enabled  
0 = Output 3-State  
S0  
Programming  
and I2C  
Register  
SDA  
SCL  
Programming Bus  
/opyright © 2016, Çexas Lnstruments Lncorporated  
Figure 6. Default Configuration  
Table 6 shows the factory default setting for the Control Terminal Register. Note that even though eight different  
register settings are possible, in the default configuration, only the first two settings (0 and 1) can be selected  
with S0, as S1, and S2 are configured as programming pins in default mode.  
Table 6. Factory Default Setting for Control Terminal Register(1)  
Y1  
PLL1 SETTINGS  
OUTPUT  
SELECTION  
FREQUENCY  
SELECTION  
SSC  
SELECTION  
OUTPUT  
SELECTION  
EXTERNAL CONTROL PINS  
S2  
S1  
S0  
0
Y1  
FS1  
SSC1  
Off  
Y2Y3  
SCL (I2C)  
SCL (I2C)  
SDA (I2C)  
SDA (I2C)  
3-state  
Enabled  
fVCO1_0  
fVCO1_0  
Hi-Z state  
Enabled  
1
Off  
(1) In default mode or when programmed respectively, S1 and S2 act as serial programming interface, I2C. They do not have any control-  
pin function but they are internally interpreted as if S1 = 0 and S2 = 0. However, S0 is a control pin, which in the default mode switches  
all outputs ON or OFF (as previously predefined).  
14  
Submit Documentation Feedback  
Copyright © 2013–2016, Texas Instruments Incorporated  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
 
 
CDCE913-Q1, CDCEL913-Q1  
www.ti.com  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
10.3.3 I2C Serial Interface  
The CDCE913-Q1 and CDCEL913-Q1 devices operate as a slave device on the 2-wire serial I2C bus,  
compatible with the popular SMBus or I2C specification. It operates in the standard-mode transfer (up to  
100 kbit/s) and fast-mode transfer (up to 400 kbit/s) and supports 7-bit addressing.  
The S1/SDA and S2/SCL pins of the CDCE913-Q1 and CDCEL913-Q1 devices are dual-function pins. In the  
default configuration, they are used as the I2C serial programming interface. They can be reprogrammed as  
general-purpose control pins, S1 and S2, by changing the corresponding EEPROM setting, byte 02h, bit [6].  
10.3.4 Data Protocol  
The device supports Byte Write and Byte Read and Block Write and Block Read operations.  
For Byte Write/Read operations, the system controller can individually access addressed bytes.  
For Block Write/Read operations, the bytes are accessed in sequential order from lowest to highest byte (with  
most-significant bit first) with the ability to stop after any complete byte has been transferred. The numbers of  
bytes read out are defined by Byte Count in the generic configuration register. At the Block Read instruction, all  
bytes defined in Byte Count must be read out to finish the read cycle correctly.  
Once a byte has been sent, it is written into the internal register and is effective immediately. This applies to  
each transferred byte, regardless of whether this is a Byte Write or a Block Write sequence.  
If the EEPROM write cycle is initiated, the internal SDA registers are written into the EEPROM. During this write  
cycle, data is not accepted at the I2C bus until the write cycle is completed. However, data can be read out  
during the programming sequence (Byte Read or Block Read). The programming status can be monitored by  
EEPIP, byte 01h–bit 6.  
The offset of the indexed byte is encoded in the command code, as described in Table 7.  
Table 7. Slave Receiver Address (7 Bits)  
DEVICE  
A6  
1
A5  
1
A4  
0
A3  
0
A2  
1
A1(1)  
A0(1)  
R/W  
1/0  
1/0  
1/0  
1/0  
CDCEx913-Q1  
CDCEx925  
CDCEx937  
CDCEx949  
0
0
0
0
1
0
1
0
1
1
0
0
1
1
1
0
1
1
1
1
0
1
1
(1) Address bits A0 and A1 are programmable through the I2C bus (byte 01, bits [1:0]. This allows addressing up to 4 devices connected to  
the same I2C bus. The least-significant bit of the address byte designates a write or read operation.  
10.4 Device Functional Modes  
10.4.1 SDA and SCL Hardware Interface  
Figure 7 shows how the CDCE913-Q1 and CDCEL913-Q1 clock synthesizer is connected to the I2C serial  
interface bus. Multiple devices can be connected to the bus, but it may be necessary to reduce the speed  
(400 kHz is the maximum) if many devices are connected.  
Note that the pullup resistors (RP) depend on the supply voltage, bus capacitance, and number of connected  
devices. The recommended pullup value is 4.7 kΩ. The resistor must meet the minimum sink current of 3 mA at  
VOLmax = 0.4 V for the output stages (for more details see the SMBus or I2C Bus specification).  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
 
CDCE913-Q1, CDCEL913-Q1  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
www.ti.com  
Device Functional Modes (continued)  
CDCE913-Q1  
CDCEL913-Q1  
R
P
R
P
Master  
SDA  
Slave  
SCL  
C
C
BUS  
BUS  
Copyright © 2016, Texas Instruments Incorporated  
Figure 7. I2C Hardware Interface  
10.5 Programming  
Table 8. Command Code Definition  
BIT  
DESCRIPTION  
0 = Block Read or Block Write operation  
1 = Byte Read or Byte Write operation  
Byte offset for Byte Read, Block Read, Byte Write, and Block Write operations  
7
(6:0)  
1
7
1
1
8
1
1
S
Slave Address  
A
Data Byte  
A
P
R/W  
MSB  
LSB  
MSB  
LSB  
S
Start Condition  
Sr Repeated Start Condition  
1 = Read (Rd) From CDCE9xx Device; 0 = Write (Wr) to CDCE9xxx  
Acknowledge (ACK = 0 and NACK =1)  
Stop Condition  
R/W  
A
P
Master-to-Slave Transmission  
Slave-to-Master Transmission  
Figure 8. Generic Programming Sequence  
1
7
1
1
8
1
8
1
1
S
Slave Address  
Wr  
A
CommandCode  
A
Data Byte  
A
P
Figure 9. Byte Write Protocol  
1
7
1
1
8
1
1
7
1
1
S
Slave Address  
Wr  
A
CommandCode  
A
Sr  
Slave Address  
Rd  
A
8
1
1
Data Byte  
A
P
Figure 10. Byte Read Protocol  
16  
Submit Documentation Feedback  
Copyright © 2013–2016, Texas Instruments Incorporated  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
CDCE913-Q1, CDCEL913-Q1  
www.ti.com  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
1
7
1
1
8
1
8
1
S
Slave Address  
Wr  
A
CommandCode  
A
Byte Count = N  
A
8
1
8
1
8
1
1
Data Byte 0  
A
Data Byte 1  
A
Data Byte N-1  
A
P
(1) Data byte 0 bits [7:0] is reserved for Revision Code and Vendor Identification. Also, it is used for internal test purpose  
and must not be overwritten.  
Figure 11. Block Write Protocol  
1
7
1
1
8
1
1
7
1
1
S
Slave Address  
Wr  
A
CommandCode  
A
Sr  
Slave Address  
Rd  
A
8
1
8
1
8
1
1
Byte Count N  
A
Data Byte 0  
A
Data Byte N-1  
A
P
Figure 12. Block Read Protocol  
Bit 7 (MSB)  
Bit 6  
Bit 0 (LSB)  
P
S
t
A
P
w(SCLL)  
t
w(SCLH)  
t
r
t
f
V
IH  
SCL  
V
IL  
t
t
t
su(START)  
h(START)  
su(SDA)  
t
t
h(SDA)  
su(STOP)  
t
f
t
t
r
(BUS)  
V
IH  
SDA  
V
IL  
Figure 13. Timing Diagram for I2C Serial Control Interface  
10.6 Register Maps  
10.6.1 I2C Configuration Registers  
The clock input, control pins, PLLs, and output stages are user configurable. The following tables and  
explanations describe the programmable functions of the CDCE913-Q1 and CDCEL913-Q1 devices. All settings  
can be manually written into the device through the I2C bus or easily programmed by using the TI Pro-Clock™  
software. TI Pro-Clock™ software allows the user to make all settings quickly, and automatically calculates the  
values for optimized performance at lowest jitter.  
Table 9. I2C Registers  
ADDRESS OFFSET  
REGISTER DESCRIPTION  
Generic configuration register  
PLL1 configuration register  
TABLE  
Table 11  
Table 12  
00h  
10h  
The grey-highlighted bits, described in the configuration register tables in the following pages, belong to the  
control terminal register. The user can predefine up to eight different control settings. These settings then can be  
selected by the external control pins, S0, S1, and S2. See the Control Terminal Configuration section.  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
CDCE913-Q1, CDCEL913-Q1  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
www.ti.com  
Table 10. Configuration Register, External Control Terminals  
Y1  
PLL1 Settings  
EXTERNAL  
CONTROL PINS  
OUTPUT  
SELECTION  
OUTPUT SELECTION  
FREQUENCY SELECTION  
SSC SELECTION  
S2  
0
S1  
0
S0  
0
Y1  
FS1  
SSC1  
Y2Y3  
0
1
2
3
4
5
6
7
Y1_0  
Y1_1  
Y1_2  
Y1_3  
Y1_4  
Y1_5  
Y1_6  
Y1_7  
04h  
FS1_0  
FS1_1  
FS1_2  
FS1_3  
FS1_4  
FS1_5  
FS1_6  
FS1_7  
13h  
SSC1_0  
SSC1_1  
SSC1_2  
SSC1_3  
SSC1_4  
SSC1_5  
SSC1_6  
SSC1_7  
10h–12h  
Y2Y3_0  
Y2Y3_1  
Y2Y3_2  
Y2Y3_3  
Y2Y3_4  
Y2Y3_5  
Y2Y3_6  
Y2Y3_7  
15h  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Address offset(1)  
(1) Address offset refers to the byte address in the configuration register in Table 11 and Table 12.  
Table 11. Generic Configuration Register  
OFFSET(1) BIT(2)  
ACRONYM  
E_EL  
RID  
DEFAULT(3)  
DESCRIPTION  
Device identification (read-only): 1 is CDCE913-Q1 (3.3 V out), 0 is CDCEL913-Q1 (1.8 V out)  
Revision identification number (read-only)  
7
Xb  
Xb  
1h  
0b  
00h  
6:4  
3:0  
7
VID  
Vendor identification number (read-only)  
Reserved – always write 0  
0 – EEPROM programming is completed.  
EEPROM programming Status:(4) (read-only)  
6
5
EEPIP  
0b  
0b  
1 – EEPROM is in programming mode.  
0 – EEPROM is not locked.  
Permanently lock EEPROM data(5)  
EELOCK  
1 – EEPROM is permanently locked.  
Device power down (overwrites S0, S1, and S2 settings; configuration register settings are unchanged)  
Note: PWDN cannot be set to 1 in the EEPROM.  
01h  
4
PWDN  
0b  
0 – Device active (PLL1 and all outputs are enabled)  
1 – Device power down (PLL1 in power down and all outputs in Hi-Z state)  
00 – Xtal  
10 – LVCMOS  
11 – Reserved  
3:2  
INCLK  
00b  
Input clock selection:  
01 – VCXO  
1:0  
7
SLAVE_ADR  
M1  
01b  
1b  
Address bits A0 and A1 of the slave receiver address  
Clock source selection for output Y1:  
0 – Input clock  
1 – PLL1 clock  
Operation mode selection for pins 12 and 13(6)  
6
SPICON  
0b  
0 – Serial programming interface SDA (pin 13) and SCL (pin 12)  
1 – Control pins S1 (pin 13) and S2 (pin 12)  
02h  
03h  
5:4  
3:2  
Y1_ST1  
Y1_ST0  
11b  
01b  
Y1-State0/1 definition  
00 – Device power down (all PLLs in power down and all  
outputs in Hi-Z state)  
01 – Y1 disabled to Hi-Z state  
10 – Y1 disabled to low  
11 – Y1 enabled  
1:0  
7:0  
Pdiv1 [9:8]  
Pdiv1 [7:0]  
0 – Divider reset and stand-by  
1 to 1023 – Divider value  
001h  
10-bit Y1-output-divider Pdiv1:  
(1) Writing data beyond 20h may affect device function.  
(2) All data transferred with the MSB first  
(3) Unless customer-specific setting  
(4) During EEPROM programming, no data is allowed to be sent to the device through the I2C bus until the programming sequence is  
completed. However, data can be read out during the programming sequence (Byte Read or Block Read).  
(5) If this bit is set to high in the EEPROM, the actual data in the EEPROM is permanently locked. No further programming is possible.  
However, data can still be written through the I2C bus to the internal register to change device function on the fly, but new data can no  
longer be saved to the EEPROM. EELOCK is effective only if written into the EEPROM.  
(6) Selection of control pins is effective only if written into the EEPROM. Once written into the EEPROM, the serial programming pins are no  
longer available. However, if VDDOUT is forced to GND, the two control pins, S1 and S2, temporarily act as serial programming pins  
(SDA-SCL), and the two slave receiver address bits are reset to A0 = 0 and A1 = 0.  
18  
Submit Documentation Feedback  
Copyright © 2013–2016, Texas Instruments Incorporated  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
 
 
CDCE913-Q1, CDCEL913-Q1  
www.ti.com  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
Table 11. Generic Configuration Register (continued)  
OFFSET(1) BIT(2)  
ACRONYM  
Y1_7  
DEFAULT(3)  
DESCRIPTION  
7
6
5
0b  
0b  
0b  
0b  
0b  
0b  
1b  
0b  
Y1_6  
Y1_5  
4
Y1_4  
0 – State0 (predefined by Y1_ST0)  
1 – State1 (predefined by Y1_ST1)  
04h  
Y1_x State selection(7)  
3
Y1_3  
2
1
0
Y1_2  
Y1_1  
Y1_0  
Crystal load capacitor selection(8)  
00h – 0 pF  
01h – 1 pF  
02h – 2 pF  
7:3  
XCSEL  
0Ah  
05h  
:14h to 1Fh – 20 pF  
2:0  
0b  
Reserved – do not write other than 0  
7-bit byte count (defines the number of bytes which will be sent from this device at the next Block Read transfer); all bytes  
must be read out to finish the read cycle correctly.  
7:1  
BCOUNT  
20h  
06h  
0– No EEPROM write cycle  
1 – Start EEPROM write cycle (internal registers are saved to the EEPROM)  
(4)(9)  
0
EEWRITE  
0b  
0h  
Initiate EEPROM write cycle  
07h-0Fh  
Unused address range  
(7) These are the bits of the control terminal register (see Table 10 ). The user can predefine up to eight different control settings. These  
settings then can be selected by the external control pins, S0, S1, and S2.  
(8) The internal load capacitor (C1, C2) must be used to achieve the best clock performance. External capacitors should be used only to  
finely adjust CL by a few picofarads. The value of CL can be programmed with a resolution of 1 pF for a crystal load range of 0 pF to  
20 pF. For CL > 20 pF, use additional external capacitors. The device input capacitance value must be considered, which always adds  
1.5 pF (6 pF//2 pF) to the selected CL. For more about VCXO config. and crystal recommendation, see VCXO Application Guideline for  
CDCE(L)9xx Family (SCAA085).  
(9) The EEPROM WRITE bit must be sent last. This ensures that the content of all internal registers are stored in the EEPROM. The  
EEWRITE cycle is initiated with the rising edge of the EEWRITE bit. A static level-high does not trigger an EEPROM WRITE cycle. The  
EEWRITE bit must be reset to low after the programming is completed. The programming status can be monitored by reading out  
EEPIP. If EELOCK is set to high, no EEPROM programming is possible.  
Table 12. PLL1 Configuration Register  
OFFSET(1)  
BIT(2)  
7:5  
4:2  
1:0  
7
ACRONYM  
SSC1_7 [2:0]  
SSC1_6 [2:0]  
SSC1_5 [2:1]  
SSC1_5 [0]  
SSC1_4 [2:0]  
SSC1_3 [2:0]  
SSC1_2 [2]  
SSC1_2 [1:0]  
SSC1_1 [2:0]  
SSC1_0 [2:0]  
FS1_7  
DEFAULT(3)  
DESCRIPTION  
(4)  
000b  
SSC1: PLL1 SSC selection (modulation amount).  
10h  
000b  
Down  
000 (off)  
Center  
000 (off)  
001 – 0.25%  
010 – 0.5%  
011 – 0.75%  
100 – 1.0%  
101 – 1.25%  
110 – 1.5%  
111 – 2.0%  
001 ± 0.25%  
010 ± 0.5%  
011 ± 0.75%  
100 ± 1.0%  
101 ± 1.25%  
110 ± 1.5%  
111 ± 2.0%  
000b  
6:4  
3:1  
0
000b  
000b  
11h  
12h  
000b  
7:6  
5:3  
2:0  
7
000b  
000b  
0b  
(4)  
FS1_x: PLL1 frequency selection  
6
FS1_6  
0b  
5
FS1_5  
0b  
4
FS1_4  
0b  
13h  
0 – fVCO1_0 (predefined by PLL1_0 – multiplier/divider value)  
1 – fVCO1_1 (predefined by PLL1_1 – multiplier/divider value)  
3
FS1_3  
0b  
2
FS1_2  
0b  
1
FS1_1  
0b  
0
FS1_0  
0b  
(1) Writing data beyond 20h may adversely affect device function.  
(2) All data is transferred MSB-first.  
(3) Unless a custom setting is used  
(4) The user can predefine up to eight different control settings. In normal device operation, these settings can be selected by the external  
control pins, S0, S1, and S2.  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
CDCE913-Q1, CDCEL913-Q1  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
www.ti.com  
Table 12. PLL1 Configuration Register (continued)  
OFFSET(1)  
BIT(2)  
ACRONYM  
DEFAULT(3)  
DESCRIPTION  
0 – PLL1  
7
MUX1  
1b  
PLL1 multiplexer:  
1 – PLL1 bypass (PLL1 is in power down)  
0 – Pdiv1  
1 – Pdiv2  
6
M2  
M3  
1b  
Output Y2 multiplexer:  
00 – Pdiv1-divider  
01 – Pdiv2-divider  
10 – Pdiv3-divider  
11 – Reserved  
14h  
5:4  
10b  
Output Y3 Multiplexer:  
3:2  
1:0  
Y2Y3_ST1  
Y2Y3_ST0  
11b  
01b  
00 – Y2 and Y3 disabled to Hi-Z state (PLL1 is in power down)  
01 – Y2 and Y3 disabled to Hi-Z state  
10–Y2 and Y3 disabled to low  
Y2, Y3-  
State0/1definition:  
11 – Y2 and Y3 enabled  
(4)  
7
6
5
4
3
2
1
0
Y2Y3_7  
Y2Y3_6  
Y2Y3_5  
Y2Y3_4  
Y2Y3_3  
Y2Y3_2  
Y2Y3_1  
Y2Y3_0  
0b  
0b  
0b  
0b  
0b  
0b  
1b  
0b  
Y2Y3_x output state selection.  
15h  
0 – State0 (predefined by Y2Y3_ST0)  
1 – State1 (predefined by Y2Y3_ST1)  
PLL1 SSC down or center  
selection:  
0 – Down  
1 – Center  
7
SSC1DC  
0b  
16h  
17h  
0 – Reset and standby  
1 to 127 – Divider value  
6:0  
7
Pdiv2  
01h  
0b  
7-bit Y2-output-divider Pdiv2:  
Reserved – do not write other than 0  
7-bit Y3-output-divider Pdiv3:  
0 – Reset and standby  
1 to 127 – Divider value  
6:0  
Pdiv3  
01h  
18h  
19h  
7:0  
7:4  
3:0  
7:3  
2:0  
7:5  
4:2  
PLL1_0N [11:4]  
PLL1_0N [3:0]  
PLL1_0R [8:5]  
PLL1_0R[4:0]  
PLL1_0Q [5:3]  
PLL1_0Q [2:0]  
PLL1_0P [2:0]  
004h  
000h  
PLL1_0(5): 30-bit multiplier or divider value for frequency fVCO1_0  
(for more information, see PLL Frequency Planning).  
1Ah  
10h  
010b  
1Bh  
00 – fVCO1_0 < 125 MHz  
01 – 125 MHz fVCO1_0 < 150 MHz  
10 – 150 MHz fVCO1_0 < 175 MHz  
1:0  
VCO1_0_RANGE  
00b  
fVCO1_0 range selection:  
11 – fVCO1_0 175 MHz  
1Ch  
1Dh  
7:0  
7:4  
3:0  
7:3  
2:0  
7:5  
4:2  
PLL1_1N [11:4]  
PLL1_1N [3:0]  
PLL1_1R [8:5]  
PLL1_1R[4:0]  
PLL1_1Q [5:3]  
PLL1_1Q [2:0]  
PLL1_1P [2:0]  
004h  
000h  
PLL1_1(5): 30-bit multiplier or divider value for frequency fVCO1_1  
(for more information, see PLL Frequency Planning).  
1Eh  
10h  
010b  
1Fh  
00 – fVCO1_1 < 125 MHz  
01 – 125 MHz fVCO1_1 < 150 MHz  
10 – 150 MHz fVCO1_1 < 175 MHz  
1:0  
VCO1_1_RANGE  
00b  
fVCO1_1 range selection:  
11 – fVCO1_1 175 MHz  
(5) PLL settings limits: 16 q 63, 0 p 7, 0 r 511, 0 < N < 4096  
20  
Submit Documentation Feedback  
Copyright © 2013–2016, Texas Instruments Incorporated  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
CDCE913-Q1, CDCEL913-Q1  
www.ti.com  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
11 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
11.1 Application Information  
The CDCE913-Q1 device is an easy-to-use, high-performance, programmable CMOS clock synthesizer which  
can be used as a crystal buffer, clock synthesizer with separate output supply pin. The CDCE913-Q1 device  
features an on-chip loop filter and spread-spectrum modulation. Programming can be done through the I2C  
interface, or previously saved settings can be loaded from on-chip EEPROM. The pins S0, S1, and S2 can be  
programmed as control pins to select various output settings. This section shows some examples of using the  
CDCE913-Q1 device in various applications.  
11.2 Typical Application  
Figure 14 shows the use of the CDCEL913-Q1 device in an infotainment system, such as in head unit or  
telematics applications, using a 1.8-V single supply.  
Copyright © 2016, Texas Instruments Incorporated  
Figure 14. Single-Chip Solution Using a CDCE913-Q1 Device for Generating Clocking Frequencies  
for Infotainment Application  
11.2.1 Design Requirements  
The CDCE913-Q1 device supports spread-spectrum clocking (SSC) with multiple control parameters:  
Modulation amount (%)  
Modulation frequency (>20 kHz)  
Modulation shape (triangular, hershey, and others)  
Center spread or down spread (± or –)  
Consider the following sample design requirements:  
EMI 55 dBmV  
CLK1 frequency = 27 MHz  
CLK2 frequency = 54 MHz  
CLK3 frequency = 108 MHz  
For sample calculations of PLL constants, see PLL Frequency Planning.  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
 
CDCE913-Q1, CDCEL913-Q1  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
www.ti.com  
Typical Application (continued)  
Figure 15. Modulation Frequency (fm) and Modulation Amount  
Figure 16. Spread Spectrum Modulation Shapes  
11.2.2 Detailed Design Procedure  
11.2.2.1 Spread-Spectrum Clock (SSC)  
Spread-spectrum modulation is a method to spread emitted energy over a larger bandwidth. In clocking, spread  
spectrum can reduce electromagnetic interference (EMI) by reducing the level of emission from clock distribution  
network.  
22  
Submit Documentation Feedback  
Copyright © 2013–2016, Texas Instruments Incorporated  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
CDCE913-Q1, CDCEL913-Q1  
www.ti.com  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
Typical Application (continued)  
CDCS502 with a 25-MHz Crystal, FS = 1, fOUT = 100 MHz, and 0%, ±0.5, ±1%, and ±2% SSC  
Figure 17. Comparison Between Typical Clock Power Spectrum and Spread-Spectrum Clock  
Spread spectrum clocking can be used to help reduce EMI in order to meet design specifications. For example, a  
specified EMI threshold of 55 dB/mV would require ±1% spread spectrum clocking to meet this requirement.  
11.2.2.2 PLL Frequency Planning  
At a given input frequency (fIN), the output frequency (fOUT) of the CDCE913-Q1 or CDCEL913-Q1 device is  
calculated with Equation 1.  
ƒIN  
´
N
ƒOUT  
=
Pdiv  
M
where  
M (1 to 511) and N (1 to 4095) are the multiplier or divider values of the PLL; Pdiv (1 to 127) is the output  
divider.  
(1)  
The target VCO frequency (ƒVCO) of each PLL is calculated with Equation 2.  
N
ƒVCO = ƒIN  
´
M
(2)  
The PLL internally operates as fractional divider and needs the following multiplier or divider settings:  
N
P = 4 – int(log2N / M); if P < 0 then P = 0  
Q = int(N' / M)  
R = N– M × Q  
where  
int(X) = integer portion of X  
N= N × 2P  
N M  
80 MHz ƒVCO 230 MHz  
16 Q 63 µs  
0 P 4 µs  
0 R 51 µs  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
 
 
CDCE913-Q1, CDCEL913-Q1  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
www.ti.com  
Typical Application (continued)  
Example:  
for ƒIN = 27 MHz; M = 1; N = 4; Pdiv = 2  
fOUT = 54 MHz  
for ƒIN = 27 MHz; M = 2; N = 11; Pdiv = 2  
fOUT = 74.25 MHz  
fVCO = 108 MHz  
fVCO = 148.50 MHz  
P = 4 – int(log24) = 4 – 2 = 2  
N' = 4 × 22 = 16  
P = 4 – int(log25.5) = 4 – 2 = 2  
N' = 11 × 22 = 44  
Q = int(16) = 16  
Q = int(22) = 22  
R = 16 – 16 = 0  
R = 44 – 44 = 0  
The values for P, Q, R, and N' are automatically calculated when using TI Pro-Clock™ software.  
The frequency of CLK1 shown in the application diagram can be obtained by passing the input frequency of the  
VCXO directly to output 1. The CLK2 frequency can be achieved by using the PLL constants derived in the first  
example. The value of CLK3 requires the same PLL constants as CLK2, but Pdiv3 is set to 1 instead of 2 to yield  
a frequency of 108 MHz.  
11.2.2.3 Crystal Oscillator Start-Up  
When the CDCE913-Q1 or CDCEL913-Q1 device is used as a crystal buffer, crystal oscillator start-up dominates  
the start-up time compared to the internal PLL lock time. The following diagram shows the oscillator start-up  
sequence for a 27-MHz crystal input with an 8-pF load. The start-up time for the crystal is on the order of  
approximately 250 µs compared to approximately 10 µs of lock time. In general, lock time is an order of  
magnitude less compared to the crystal start-up time.  
Figure 18. Crystal Oscillator Start-Up vs PLL Lock Time  
11.2.2.4 Frequency Adjustment With Crystal Oscillator Pulling  
The frequency for the CDCE913-Q1 or CDCEL913-Q1 device is adjusted for media and other applications with  
the VCXO control input Vctr. If a PWM-modulated signal is used as a control signal for the VCXO, an external  
filter is needed.  
24  
Submit Documentation Feedback  
Copyright © 2013–2016, Texas Instruments Incorporated  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
CDCE913-Q1, CDCEL913-Q1  
www.ti.com  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
Typical Application (continued)  
LP  
CDCE(L)913-Q1  
Vctr  
PWM  
Control  
Signal  
Xin/CLK  
Xout  
Figure 19. Frequency Adjustment Using PWM Input to the VCXO Control  
11.2.2.5 Unused Inputs and Outputs  
If VCXO-pulling functionality is not required, Vctr should be left floating. All other unused inputs should be set to  
GND. Unused outputs should be left floating.  
If one output block is not used, TI recommends disabling it. However, TI recommends providing a supply for all  
output blocks, even if they are disabled.  
11.2.2.6 Switching Between XO and VCXO Mode  
When the CDCE(L)913-Q1 device is in the crystal-oscillator or VCXO configuration, the internal capacitors  
require different internal capacitance. The following steps are recommended to switch to VCXO mode when the  
configuration for the on-chip capacitor is still set for XO mode. To center the output frequency to 0 ppm:  
1. While in XO mode, put Vctr = VDD / 2  
2. Switch from XO mode to VCXO mode  
3. Program the internal capacitors in order to obtain 0 ppm at the output.  
11.2.3 Application Curves  
Figure 20, Figure 21, Figure 22, and Figure 23 show CDCE913-Q1 measurements with the SSC feature enabled.  
Device configuration: 27-MHz input, 27-MHz output.  
Figure 20. fOUT = 27 MHz,  
Figure 21. fOUT = 27 MHz,  
VCO frequency < 125 MHz, SSC (2% Center)  
VCO frequency > 175 MHz, SSC (1%, Center)  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
 
CDCE913-Q1, CDCEL913-Q1  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
www.ti.com  
Typical Application (continued)  
Figure 23. Output Spectrum With SSC On,  
2% Center  
Figure 22. Output Spectrum With SSC Off  
12 Power Supply Recommendations  
There is no restriction on the power-up sequence. In case VDDOUT is applied first, TI recommends grounding  
VDD –. In case VDDOUT is powered while VDD is floating, there is a risk of high current flowing on the VDDOUT pins.  
The device has a power-up control that is connected to the 1.8-V supply. This keeps the whole device disabled  
until the 1.8-V supply reaches a sufficient voltage level. Then the device switches on all internal components,  
including the outputs. If a 3.3-V VDDOUT is available before the 1.8-V, the outputs stay disabled until the 1.8-V  
supply has reached a certain level.  
26  
Submit Documentation Feedback  
Copyright © 2013–2016, Texas Instruments Incorporated  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
CDCE913-Q1, CDCEL913-Q1  
www.ti.com  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
13 Layout  
13.1 Layout Guidelines  
When the CDCE913-Q1 device is used as a crystal buffer, any parasitics across the crystal affect the pulling  
range of the VCXO. Therefore, take care in placing the crystal units on the board. Crystals should be placed as  
close to the device as possible, ensuring that the routing lines from the crystal terminals to Xin and Xout have the  
same length.  
If possible, cut out both ground plane and power plane under the area where the crystal and the routing to the  
device are placed. In this area, always avoid routing any other signal line, as it could be a source of noise  
coupling.  
Additional discrete capacitors can be required to meet the load capacitance specification of certain crystals. For  
example, a 10.7-pF load capacitor is not fully programmable on the chip, because the internal capacitor can  
range from 0 pF to 20 pF with steps of 1 pF. Therefore, the 0.7-pF capacitor can be discretely added on top of  
an internal 10 pF.  
To minimize the inductive influence of the trace, TI recommends placing this small capacitor as close to the  
device as possible and symmetrically with respect to Xin and Xout.  
Figure 24 shows a conceptual layout detailing recommended placement of power-supply bypass capacitors. For  
component-side mounting, use 0402 body-size capacitors to facilitate signal routing. Keep the connections  
between the bypass capacitors and the power supply on the device as short as possible. Ground the other side  
of the capacitor using a low-impedance connection to the ground plane.  
13.2 Layout Example  
ꢂlace tꢃe crystal ꢄitꢃ  
associated load caps as close  
to tꢃe cꢃip as possiꢅle  
Ço ëLh  
óin/ꢀ[Y  
óhÜÇ  
Ço 1.8ë  
{5!  
{1/{5!  
{2/{ꢀ[  
ò1  
{0  
ë55  
{ꢀ[  
Üse ferrite ꢅeads to isolate  
tꢃe deꢆice supply pins from  
ꢅoard noise sources  
ò1 hutput  
ëꢀÇw[  
Db5  
Db5  
ò2  
ë55hÜÇ  
ë55hÜÇ  
ò2 hutput  
ò3 hutput  
Ço 3.3ë  
ꢀ5ꢀ9ꢁ13-v1  
ò3  
ꢂlace ꢅypass caps close to  
tꢃe deꢆice pins, ensure ꢄide  
frequency range  
ꢂlace series termination  
resistors at clock outputs to  
improꢆe signal integrity  
ëia  
ꢀopper trace/pour  
Figure 24. Annotated Layout  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
 
CDCE913-Q1, CDCEL913-Q1  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
www.ti.com  
14 Device and Documentation Support  
14.1 Documentation Support  
14.1.1 Related Documentation  
For related documentation see the following:  
Crystal Or Crystal Oscillator Replacement with Silicon Devices (SNAA217)  
!~  
CDCE(L)9xx and CDCEx06 Programming Evaluation Module (SCAU026)  
CDCE(L)9xx Performance Evaluation Module (SCAU022)  
General I2C/EEPROM Usage for the CDCE(L)9xx Family (SCAA104)  
Generating Low Phase-Noise Clocks for Audio Data Converters from Low Frequency Word Clock (SCAA088)  
Practical Consideration on Choosing a Crystal for CDCE(L)9xx Family (SLEA071)  
Usage of I2C for CDCE(L)949, CDCE(L)937, CDCE(L)925, CDCE(L)913 (SCAA105)  
VCXO Application Guideline for CDCE(L)9xx Family (SCAA085)  
14.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 13. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
CDCE913-Q1  
CDCEL913-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
14.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
14.4 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
14.5 Trademarks  
DaVinci, OMAP, Pro-Clock, E2E are trademarks of Texas Instruments.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
All other trademarks are the property of their respective owners.  
14.6 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
28  
Submit Documentation Feedback  
Copyright © 2013–2016, Texas Instruments Incorporated  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
CDCE913-Q1, CDCEL913-Q1  
www.ti.com  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
14.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
CDCE913-Q1, CDCEL913-Q1  
SCAS918C JUNE 2013REVISED NOVEMBER 2016  
www.ti.com  
15 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
30  
Submit Documentation Feedback  
Copyright © 2013–2016, Texas Instruments Incorporated  
Product Folder Links: CDCE913-Q1 CDCEL913-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CDCE913QPWRQ1  
CDCEL913IPWRQ1  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
14  
14  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 85  
CE913Q  
CEL913Q  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
OTHER QUALIFIED VERSIONS OF CDCE913-Q1, CDCEL913-Q1 :  
Catalog: CDCE913, CDCEL913  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CDCE913QPWRQ1  
CDCEL913IPWRQ1  
TSSOP  
TSSOP  
PW  
PW  
14  
14  
2000  
2000  
330.0  
330.0  
12.4  
12.4  
6.9  
6.9  
5.6  
5.6  
1.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CDCE913QPWRQ1  
CDCEL913IPWRQ1  
TSSOP  
TSSOP  
PW  
PW  
14  
14  
2000  
2000  
356.0  
356.0  
356.0  
356.0  
35.0  
35.0  
Pack Materials-Page 2  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

CDCE913_1

Programmable 1-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V, and 3.3-V Outputs
TI

CDCE913_10

Programmable 1-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V, and 3.3-V Outputs
TI

CDCE913_12

Programmable 1-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V, and 3.3-V Outputs
TI

CDCE913_15

Programmable 1-PLL VCXO Clock Synthesizer
TI

CDCE925

Programmable 1-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V, and 3.3-V Outputs
TI

CDCE925PW

PROGRAMMABLE 2-PLL VCXO CLOCK SYNTHESIZER WITH 1.8-V, 2.5-V and 3.3-V LVCMOS OUTPUTS
TI

CDCE925PWG4

PROGRAMMABLE 2-PLL VCXO CLOCK SYNTHESIZER WITH 1.8-V, 2.5-V and 3.3-V LVCMOS OUTPUTS
TI

CDCE925PWR

PROGRAMMABLE 2-PLL VCXO CLOCK SYNTHESIZER WITH 1.8-V, 2.5-V and 3.3-V LVCMOS OUTPUTS
TI

CDCE925PWRG4

PROGRAMMABLE 2-PLL VCXO CLOCK SYNTHESIZER WITH 1.8-V, 2.5-V and 3.3-V LVCMOS OUTPUTS
TI

CDCE937

Programmable 1-PLL VCXO Clock Synthesizer With 1.8-V, 2.5-V, and 3.3-V Outputs
TI

CDCE937-Q1

PROGRAMMABLE 3-PLL VCXO CLOCK SYNTHESIZER WITH 1.8-V, 2.5-V, AND 3.3-V LVCMOS OUTPUTS
TI

CDCE937-Q1_15

PROGRAMMABLE 3-PLL VCXO CLOCK SYNTHESIZER
TI