CC430F6145IRGCR [TI]

MSP430 SoC With RF Core; MSP430 SoC的射频核心
CC430F6145IRGCR
型号: CC430F6145IRGCR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MSP430 SoC With RF Core
MSP430 SoC的射频核心

射频
文件: 总116页 (文件大小:1258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
MSP430 SoC With RF Core  
1
FEATURES  
23  
True System-on-Chip (SoC) for Low-Power  
– Embedded Emulation Module (EEM)  
Wireless Communication Applications  
Wide Supply Voltage Range: 1.8 V to 3.6 V  
Ultralow Power Consumption:  
High-Performance Sub-1-GHz RF Transceiver  
Core  
Same as in CC1101  
CPU Active Mode (AM): 160 µA/MHz  
Standby Mode (LPM3 RTC Mode): 2.0 µA  
Off Mode (LPM4 RAM Retention): 1.0 µA  
RTC Only Mode (LPM3.5): 1.0 µA  
Wide Supply Voltage Range: 2.0 V to 3.6 V  
Frequency Bands: 300 MHz to 348 MHz,  
389 MHz to 464 MHz, and 779 MHz to  
928 MHz  
Programmable Data Rate From 0.6 kBaud  
to 500 kBaud  
Shutdown Mode (LPM4.5): 0.3 µA  
Radio in RX: 15 mA, 250 kbps, 915 MHz  
High Sensitivity (-117 dBm at 0.6 kBaud,  
111 dBm at 1.2 kBaud, 315 MHz, 1% Packet  
Error Rate)  
MSP430™ System and Peripherals  
16-Bit RISC Architecture, Extended  
Memory, up to 20-MHz System Clock  
Excellent Receiver Selectivity and Blocking  
Performance  
Wake-Up From Standby Mode in Less  
Than 6 µs  
Programmable Output Power Up to  
+12 dBm for All Supported Frequencies  
Flexible Power Management System With  
SVS and Brownout  
2-FSK, 2-GFSK, and MSK Supported as well  
as OOK and Flexible ASK Shaping  
Unified Clock System With FLL  
16-Bit Timer TA0, Timer_A With Five  
Capture/Compare Registers  
Flexible Support for Packet-Oriented  
Systems: On-Chip Support for Sync Word  
Detection, Address Check, Flexible Packet  
Length, and Automatic CRC Handling  
16-Bit Timer TA1, Timer_A With Three  
Capture/Compare Registers  
Hardware Real-Time Clock  
Support for Automatic Clear Channel  
Assessment (CCA) Before Transmitting (for  
Listen-Before-Talk Systems)  
Two Universal Serial Communication  
Interfaces  
Digital RSSI Output  
USCI_A0 Supports UART, IrDA, SPI  
USCI_B0 Supports I2C™, SPI  
Suited for Systems Targeting Compliance  
With EN 300 220 (Europe) and  
FCC CFR Part 15 (US)  
10-Bit A/D Converter With Internal  
Reference, Sample-and-Hold, and Autoscan  
Features (Only CC430F614x and  
CC430F514x)  
Suited for Systems Targeting Compliance  
With Wireless M-Bus Standard  
EN 137574:2005  
Comparator  
Support for Asynchronous and  
Integrated LCD Driver With Contrast  
Control for up to 96 Segments (Only  
CC430F614x)  
Synchronous Serial Receive/Transmit Mode  
for Backward Compatibility With Existing  
Radio Communication Protocols  
128-Bit AES Security Encryption and  
Decryption Coprocessor  
Family Members Summarized in Table 1  
For Complete Module Descriptions, See the  
CC430 Family User's Guide (SLAU259)  
32-Bit Hardware Multiplier  
Three-Channel Internal DMA  
Serial Onboard Programming, No External  
Programming Voltage Needed  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
MSP430 is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
DESCRIPTION  
The Texas Instruments CC430 family of ultralow-power microcontroller system-on-chip with integrated RF  
transceiver cores consists of several devices featuring different sets of peripherals targeted for a wide range of  
applications. The architecture, combined with seven low-power modes (including LPM3.5 and LMP4.5), is  
optimized to achieve extended battery life in portable measurement applications. The device features the  
powerful MSP430™ 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code  
efficiency.  
The CC430 family provides a tight integration between the microcontroller core, its peripherals, software, and the  
RF transceiver, making these true system-on-chip solutions easy to use as well as improving performance.  
The CC430F614x series are microcontroller system-on-chip configurations combining the excellent performance  
of the state-of-the-art CC1101 sub-1-GHz RF transceiver with the MSP430 CPUXV2, up to 32 kB of in-system  
programmable flash memory, up to 4 kB of RAM, two 16-bit timers, a high-performance 10-bit A/D converter with  
eight external inputs plus internal temperature and battery sensors, comparator, universal serial communication  
interfaces (USCIs), 128-bit AES security accelerator, hardware multiplier, DMA, real-time clock module with  
alarm capabilities, LCD driver, and up to 44 I/O pins.  
The CC430F514x and CC430F512x series are microcontroller system-on-chip configurations combining the  
excellent performance of the state-of-the-art CC1101 sub-1-GHz RF transceiver with the MSP430 CPUXV2, up  
to 32 kB of in-system programmable flash memory, up to 4 kB of RAM, two 16-bit timers, a high performance 10-  
bit A/D converter with six external inputs plus internal temperature and battery sensors on CC430F514x devices,  
comparator, universal serial communication interfaces (USCI), 128-bit AES security accelerator, hardware  
multiplier, DMA, real-time clock module with alarm capabilities, and up to 30 I/O pins.  
Typical applications for these devices include wireless analog and digital sensor systems, heat cost allocators,  
thermostats, metering (AMR, AMI), smart grid wireless networks etc.  
Family members available are summarized in Table 1.  
For complete module descriptions, see the CC430 Family User's Guide (SLAU259).  
Table 1. Family Members  
USCI  
Channel  
A:  
UART,  
LIN, IrDA,  
SPI  
Channel  
B:  
Program  
(KB)  
SRAM  
(KB)  
Device  
Timer_A(1) LCD_B(2)  
ADC10_A(2) Comp_B  
I/O  
Package  
SPI, I2C  
8 ext,  
8 ch.  
CC430F6147  
CC430F6145  
CC430F6143  
CC430F5147  
CC430F5145  
CC430F5143  
32  
16  
8
4
2
2
4
2
2
5, 3  
5, 3  
5, 3  
5, 3  
5, 3  
5, 3  
96 seg  
96 seg  
96 seg  
n/a  
1
1
1
1
1
1
1
1
1
1
1
1
44  
44  
44  
30  
30  
30  
64 RGC  
64 RGC  
64 RGC  
48 RGZ  
48 RGZ  
48 RGZ  
4 int ch.  
8 ext,  
8 ch.  
4 int ch.  
8 ext,  
8 ch.  
4 int ch.  
6 ext,  
6 ch.  
32  
16  
8
4 int ch.  
6 ext,  
6 ch.  
n/a  
4 int ch.  
6 ext,  
6 ch.  
n/a  
4 int ch.  
CC430F5125  
CC430F5123  
16  
8
2
2
5, 3  
5, 3  
n/a  
n/a  
1
1
1
1
n/a  
n/a  
6 ch.  
6 ch.  
30  
30  
48 RGZ  
48 RGZ  
(1) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM  
output generators available. For example, a number sequence of 5, 3 would represent two instantiations of Timer_A, the first  
instantiation having 5 and the second instantiation having 3 capture compare registers and PWM output generators, respectively.  
(2) n/a = not available  
2
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Table 2. Ordering Information(1)  
PACKAGED DEVICES(2)  
TA  
PLASTIC 64-PIN QFN (RGC)  
CC430F6147IRGC  
PLASTIC 48-PIN QFN (RGZ)  
CC430F5147IRGZ  
CC430F5145IRGZ  
CC430F5143IRGZ  
CC430F5125IRGZ  
CC430F5123IRGZ  
CC430F6145IRGC  
-40°C to 85°C  
CC430F6143IRGC  
(1) For the most current package and ordering information, see the Package Option Addendum at the end  
of this document, or see the TI web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
CC430F614x Functional Block Diagram  
XIN XOUT  
(32kHz)  
P1.x/P2.x  
2x8  
P3.x/P4.x  
2x8  
P5.x  
RF_XIN RF_XOUT  
(26MHz)  
1x8  
I/O Ports  
P1/P2  
2x8 I/Os  
I/O Ports  
P3/P4  
2x8 I/Os  
I/O Ports  
P5  
1x8 I/Os  
REF  
MCLK  
ACLK  
Unified  
Clock  
System  
Packet  
Handler  
Voltage  
Reference  
incl.  
Comp_B  
ADC10  
SMCLK  
PA  
1x16 I/Os  
PB  
1x16 I/Os  
REFOUT  
Digital RSSI  
Carrier Sense  
PQI / LQI  
CCA  
DMA  
Controller  
3 Channel  
MAB  
MDB  
Bus  
Cntrl  
Logic  
Sub-1GHz  
Radio  
CPUXV2  
incl. 16  
Registers  
(CC1101)  
SYS  
RAM  
4kB  
2kB  
Flash  
Watch-  
dog  
CPU Interface  
MODEM  
CRC16  
MPY32  
32kB  
16kB  
8kB  
incl.  
Port  
Mapping  
Controller  
Backup  
RAM  
(128B)  
EEM  
(S: 3+1)  
MDB  
MAB  
JTAG  
Interface  
Frequency  
Synthesizer  
Spy-Bi-  
Wire  
Power  
Mgmt  
USCI_A0  
(UART,  
IrDA, SPI)  
LCD_B  
RTC_D  
AES128  
TA0  
TA1  
(Calendar  
+
Counter  
Mode)  
96  
Segments  
1,2,3,4  
Mux  
RF/ANALOG  
TX & RX  
Security  
En-/De-  
cryption  
LDO  
SVM/SVS  
Brownout  
5 CC  
Registers  
3 CC  
Registers  
USCI_B0  
(SPI, I2C)  
LPM3.5  
Domain  
RF_P RF_N  
NOTE: Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for ports P1 and P2.  
4
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
RGC PACKAGE  
(TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
P1.7/PM_UCA0CLK/PM_UCB0STE/R03  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
GUARD  
2
P1.6/PM_UCA0TXD/PM_UCA0SIMO/R13/LCDREF  
P1.5/PM_UCA0RXD/PM_UCA0SOMI/R23  
LCDCAP/R33  
3
4
5
COM0  
R_BIAS  
6
AVCC_RF  
AVCC_RF  
RF_N  
P5.7/COM1/S26  
7
P5.6/COM2/S25  
8
P5.5/COM3/S24  
CC430F614x  
9
RF_P  
P5.4/S23  
10  
11  
12  
13  
14  
15  
16  
VCORE  
AVCC_RF  
AVCC_RF  
RF_XOUT  
RF_XIN  
DVCC  
P1.4/PM_UCB0CLK/PM_UCA0STE/S22  
P1.3/PM_UCB0SIMO/PM_UCB0SDA/S21  
P1.2/PM_UCB0SOMI/PM_UCB0SCL/S20  
P1.1/PM_RFGDO2/S19  
P1.0/PM_RFGDO0/S18  
P5.2/S0  
P5.3/S1  
P4.0/S2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
VSS  
Exposed die  
attached pad  
NOTE: The secondary digital functions on ports P1, P2, and P3 are fully mappable. Pinout shows only the default mapping.  
See Table 10 for details.  
CAUTION: LCDCAP/R33 must be connected to VSS if not used.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
CC430F514x Functional Block Diagram  
XIN XOUT  
(32kHz)  
P1.x/P2.x  
2x8  
P3.x  
P5.x  
RF_XIN RF_XOUT  
(26MHz)  
1x8  
1x2  
I/O Ports  
P1/P2  
2x8 I/Os  
I/O Ports  
P3  
1x8 I/Os  
I/O Ports  
P5  
1x2 I/Os  
REF  
MCLK  
ACLK  
Unified  
Clock  
System  
Packet  
Handler  
Voltage  
Reference  
incl.  
Comp_B  
ADC10  
SMCLK  
PA  
1x16 I/Os  
REFOUT  
Digital RSSI  
Carrier Sense  
PQI / LQI  
CCA  
DMA  
Controller  
3 Channel  
MAB  
MDB  
Bus  
Cntrl  
Logic  
Sub-1GHz  
Radio  
CPUXV2  
incl. 16  
Registers  
(CC1101)  
SYS  
RAM  
4kB  
2kB  
Flash  
Watch-  
dog  
CPU Interface  
MODEM  
CRC16  
MPY32  
32kB  
16kB  
8kB  
incl.  
Port  
Mapping  
Controller  
Backup  
RAM  
(128B)  
EEM  
(S: 3+1)  
MDB  
MAB  
JTAG  
Interface  
Frequency  
Synthesizer  
Spy-Bi-  
Wire  
Power  
Mgmt  
USCI_A0  
(UART,  
IrDA, SPI)  
RTC_D  
AES128  
TA0  
TA1  
(Calendar  
+
Counter  
Mode)  
RF/ANALOG  
TX & RX  
Security  
En-/De-  
cryption  
LDO  
SVM/SVS  
Brownout  
5 CC  
Registers  
3 CC  
Registers  
USCI_B0  
(SPI, I2C)  
LPM3.5  
Domain  
RF_P RF_N  
NOTE: Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for ports P1 and P2.  
6
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
RGZ PACKAGE  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PJ.1/TDI/TCLK  
P2.2/PM_TA1CCR1A/CB2/A2  
P2.1/PM_TA1CCR0A/CB1/A1  
2
PJ.0/TDO  
GUARD  
R_BIAS  
3
4
P2.0/PM_CBOUT1/PM_TA1CLK/CB0/A0  
P1.7/PM_UCA0CLK/PM_UCB0STE  
P1.6/PM_UCA0TXD/PM_UCA0SIMO  
P1.5/PM_UCA0RXD/PM_UCA0SOMI  
VCORE  
5
AVCC_RF  
AVCC_RF  
RF_N  
6
CC430F514x  
7
8
DVCC  
RF_P  
9
P1.4/PM_UCB0CLK/PM_UCA0STE  
P1.3/PM_UCB0SIMO/PM_UCB0SDA  
P1.2/PM_UCB0SOMI/PM_UCB0SCL  
P1.1/PM_RFGDO2  
AVCC_RF  
AVCC_RF  
RF_XOUT  
RF_XIN  
10  
11  
12  
13 14 15 16 17 18 19 20 21 22 23 24  
VSS  
Exposed die  
attached pad  
NOTE: The secondary digital functions on ports P1, P2, and P3 are fully mappable. Pinout shows only the default mapping.  
See Table 10 for details.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
CC430F512x Functional Block Diagram  
XIN XOUT  
(32kHz)  
P1.x/P2.x  
2x8  
P3.x  
P5.x  
RF_XIN RF_XOUT  
(26MHz)  
1x8  
1x2  
I/O Ports  
P1/P2  
2x8 I/Os  
I/O Ports  
P3  
1x8 I/Os  
I/O Ports  
P5  
1x2 I/Os  
REF  
MCLK  
ACLK  
Unified  
Clock  
System  
Packet  
Handler  
Comp_B  
Voltage  
Reference  
SMCLK  
PA  
1x16 I/Os  
Digital RSSI  
Carrier Sense  
PQI / LQI  
CCA  
DMA  
Controller  
3 Channel  
MAB  
MDB  
Bus  
Cntrl  
Logic  
Sub-1GHz  
Radio  
CPUXV2  
incl. 16  
Registers  
(CC1101)  
SYS  
RAM  
4kB  
2kB  
Flash  
Watch-  
dog  
CPU Interface  
MODEM  
CRC16  
MPY32  
32kB  
16kB  
8kB  
incl.  
Port  
Mapping  
Controller  
Backup  
RAM  
(128B)  
EEM  
(S: 3+1)  
MDB  
MAB  
JTAG  
Interface  
Frequency  
Synthesizer  
Spy-Bi-  
Wire  
Power  
Mgmt  
USCI_A0  
(UART,  
IrDA, SPI)  
RTC_D  
AES128  
TA0  
TA1  
(Calendar  
+
Counter  
Mode)  
RF/ANALOG  
TX & RX  
Security  
En-/De-  
cryption  
LDO  
SVM/SVS  
Brownout  
5 CC  
Registers  
3 CC  
Registers  
USCI_B0  
(SPI, I2C)  
LPM3.5  
Domain  
RF_P RF_N  
NOTE: Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for ports P1 and P2.  
8
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
RGZ PACKAGE  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PJ.1/TDI/TCLK  
P2.2/PM_TA1CCR1A/CB2  
P2.1/PM_TA1CCR0A/CB1  
2
PJ.0/TDO  
GUARD  
R_BIAS  
3
4
P2.0/PM_CBOUT1/PM_TA1CLK/CB0  
P1.7/PM_UCA0CLK/PM_UCB0STE  
P1.6/PM_UCA0TXD/PM_UCA0SIMO  
P1.5/PM_UCA0RXD/PM_UCA0SOMI  
VCORE  
5
AVCC_RF  
AVCC_RF  
RF_N  
6
CC430F512x  
7
8
DVCC  
RF_P  
9
P1.4/PM_UCB0CLK/PM_UCA0STE  
P1.3/PM_UCB0SIMO/PM_UCB0SDA  
P1.2/PM_UCB0SOMI/PM_UCB0SCL  
P1.1/PM_RFGDO2  
AVCC_RF  
AVCC_RF  
RF_XOUT  
RF_XIN  
10  
11  
12  
13 14 15 16 17 18 19 20 21 22 23 24  
VSS  
Exposed die  
attached pad  
NOTE: The secondary digital functions on ports P1, P2, and P3 are fully mappable. Pinout shows only the default mapping.  
See Table 10 for details.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Table 3. CC430F614x Terminal Functions  
TERMINAL  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
General-purpose digital I/O with port interrupt and mappable secondary function  
I/O Default mapping: USCI_A0 clock input/output; USCI_B0 SPI slave transmit enable  
Input/output port of lowest analog LCD voltage (V5)  
P1.7/ PM_UCA0CLK/  
PM_UCB0STE/ R03  
1
General-purpose digital I/O with port interrupt and mappable secondary function  
P1.6/ PM_UCA0TXD/  
PM_UCA0SIMO/ R13/ LCDREF  
Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in master out  
Input/output port of third most positive analog LCD voltage (V3 or V4)  
External reference voltage input for regulated LCD voltage  
2
3
I/O  
General-purpose digital I/O with port interrupt and mappable secondary function  
I/O Default mapping: USCI_A0 UART receive data; USCI_A0 SPI slave out master in  
Input/output port of second most positive analog LCD voltage (V2)  
P1.5/ PM_UCA0RXD/  
PM_UCA0SOMI/ R23  
LCD capacitor connection  
LCDCAP/ R33  
COM0  
4
5
6
I/O Input/output port of most positive analog LCD voltage (V1)  
CAUTION: Must be connected to VSS if not used.  
O
LCD common output COM0 for LCD backplane  
General-purpose digital I/O  
P5.7/ COM1/ S26  
I/O LCD common output COM1 for LCD backplane  
LCD segment output S26  
General-purpose digital I/O  
P5.6/ COM2/ S25  
7
I/O LCD common output COM2 for LCD backplane  
LCD segment output S25  
General-purpose digital I/O  
P5.5/ COM3/ S24  
P5.4/ S23  
8
9
I/O LCD common output COM3 for LCD backplane  
LCD segment output S24  
General-purpose digital I/O  
I/O  
LCD segment output S23  
VCORE  
DVCC  
10  
11  
Regulated core power supply  
Digital power supply  
General-purpose digital I/O with port interrupt and mappable secondary function  
I/O Default mapping: USCI_B0 clock input/output; USCI_A0 SPI slave transmit enable  
LCD segment output S22  
P1.4/ PM_UCB0CLK/  
PM_UCA0STE/ S22  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
General-purpose digital I/O with port interrupt and mappable secondary function  
I/O Default mapping: USCI_B0 SPI slave in master out; USCI_B0 I2C data  
LCD segment output S21  
P1.3/ PM_UCB0SIMO/  
PM_UCB0SDA/ S21  
General-purpose digital I/O with port interrupt and mappable secondary function  
I/O Default mapping: USCI_B0 SPI slave out master in; UCSI_B0 I2C clock  
LCD segment output S20  
P1.2/ PM_UCB0SOMI/  
PM_UCB0SCL/ S20  
General-purpose digital I/O with port interrupt and mappable secondary function  
I/O Default mapping: Radio GDO2 output  
P1.1/ PM_RFGDO2/ S19  
P1.0/ PM_RFGDO0/ S18  
P3.7/ PM_SMCLK/ S17  
P3.6/ PM_RFGDO1/ S16  
P3.5/ PM_TA0CCR4A/ S15  
P3.4/ PM_TA0CCR3A/ S14  
LCD segment output S19  
General-purpose digital I/O with port interrupt and mappable secondary function  
I/O Default mapping: Radio GDO0 output  
LCD segment output S18  
General-purpose digital I/O with mappable secondary function  
I/O Default mapping: SMCLK output  
LCD segment output S17  
General-purpose digital I/O with mappable secondary function  
I/O Default mapping: Radio GDO1 output  
LCD segment output S16  
General-purpose digital I/O with mappable secondary function  
I/O Default mapping: TA0 CCR4 compare output, capture input  
LCD segment output S15  
General-purpose digital I/O with mappable secondary function  
I/O Default mapping: TA0 CCR3 compare output, capture input  
LCD segment output S14  
General-purpose digital I/O with mappable secondary function  
I/O Default mapping: TA0 CCR2 compare output, capture input  
LCD segment output S13  
P3.3/ PM_TA0CCR2A/ S13  
(1) I = input, O = output  
10  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Table 3. CC430F614x Terminal Functions (continued)  
TERMINAL  
NAME  
I/O(1)  
DESCRIPTION  
NO.  
General-purpose digital I/O with mappable secondary function  
P3.2/ PM_TA0CCR1A/ S12  
P3.1/ PM_TA0CCR0A/ S11  
22  
I/O Default mapping: TA0 CCR1 compare output, capture input  
LCD segment output S12  
General-purpose digital I/O with mappable secondary function  
I/O Default mapping: TA0 CCR0 compare output, capture input  
LCD segment output S11  
23  
24  
General-purpose digital I/O with mappable secondary function  
I/O Default mapping: Comparator_B output; TA0 clock input  
LCD segment output S10  
P3.0/ PM_CBOUT0/ PM_TA0CLK/  
S10  
DVCC  
25  
26  
Digital power supply  
General-purpose digital I/O  
I/O  
P4.7/ S9  
LCD segment output S9  
General-purpose digital I/O  
I/O  
P4.6/ S8  
P4.5/ S7  
P4.4/ S6  
P4.3/ S5  
P4.2/ S4  
P4.1/ S3  
P4.0/ S2  
P5.3/ S1  
P5.2/ S0  
27  
28  
29  
30  
31  
32  
33  
34  
35  
LCD segment output S8  
General-purpose digital I/O  
I/O  
LCD segment output S7  
General-purpose digital I/O  
I/O  
LCD segment output S6  
General-purpose digital I/O  
I/O  
LCD segment output S5  
General-purpose digital I/O  
I/O  
LCD segment output S4  
General-purpose digital I/O  
I/O  
LCD segment output S3  
General-purpose digital I/O  
I/O  
LCD segment output S2  
General-purpose digital I/O  
I/O  
LCD segment output S1  
General-purpose digital I/O  
I/O  
LCD segment output S0  
RF_XIN  
36  
37  
38  
39  
I
Input terminal for RF crystal oscillator or external clock input  
Output terminal for RF crystal oscillator  
Radio analog power supply  
RF_XOUT  
AVCC_RF  
AVCC_RF  
O
Radio analog power supply  
RF Positive RF input to LNA in receive mode  
I/O Positive RF output from PA in transmit mode  
RF_P  
RF_N  
40  
41  
RF Negative RF input to LNA in receive mode  
I/O Negative RF output from PA in transmit mode  
AVCC_RF  
AVCC_RF  
RBIAS  
42  
43  
44  
45  
Radio analog power supply  
Radio analog power supply  
External bias resistor for radio reference current  
Power supply connection for digital noise isolation  
GUARD  
General-purpose digital I/O  
I/O  
PJ.0/ TDO  
46  
47  
48  
49  
50  
Test data output port  
General-purpose digital I/O  
I/O  
PJ.1/ TDI/ TCLK  
PJ.2/ TMS  
Test data input or test clock input  
General-purpose digital I/O  
Test mode select  
I/O  
General-purpose digital I/O  
Test clock  
PJ.3/ TCK  
I/O  
Test mode pin - select digital I/O on JTAG pins  
Spy-bi-wire input clock  
TEST/ SBWTCK  
I
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Table 3. CC430F614x Terminal Functions (continued)  
TERMINAL  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
Reset input active low  
RST/NMI/ SBWTDIO  
51  
I/O Non-maskable interrupt input  
Spy-bi-wire data input/output  
DVCC  
AVSS  
52  
53  
Digital power supply  
Analog ground supply for ADC10  
General-purpose digital I/O  
I/O  
P5.1/ XOUT  
54  
Output terminal of crystal oscillator XT1  
General-purpose digital I/O  
Input terminal for crystal oscillator XT1  
P5.0/ XIN  
AVCC  
55  
56  
I/O  
Analog power supply  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: ADC10CLK output; DMA external trigger input  
Comparator_B input CB7  
P2.7/ PM_ADC10CLK/  
PM_DMAE0/ CB7 (/A7)  
57  
58  
I/O  
I/O  
Analog input A7 - 10-bit ADC  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: ACLK output  
Comparator_B input CB6  
P2.6/ PM_ACLK/ CB6 (/A6)  
Analog input A6 - 10-bit ADC  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: SVM output  
Comparator_B input CB5  
I/O Analog input A5 - 10-bit ADC  
P2.5/ PM_SVMOUT/ CB5  
(/A5/ VREF+/ VeREF+)  
59  
60  
Output of reference voltage to the ADC  
Positive terminal for the ADC reference voltage for both sources, the internal reference  
voltage, or an external applied reference voltage  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: RTCCLK output  
Comparator_B input CB4  
P2.4/ PM_RTCCLK/ CB4  
(/A4/ VeREF-)  
I/O  
Analog input A4 - 10-bit ADC  
Negative terminal for the ADC reference voltage for an external applied reference  
voltage  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: TA1 CCR2 compare output, capture input  
Comparator_B input CB3  
Analog input A3 - 10-bit ADC  
P2.3/ PM_TA1CCR2A/ CB3 (/A3)  
P2.2/ PM_TA1CCR1A/ CB2 (/A2)  
P2.1/PM_TA1CCR0A/CB1(/A1)  
61  
62  
63  
64  
I/O  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: TA1 CCR1 compare output, capture input  
Comparator_B input CB2  
Analog input A2 - 10-bit ADC  
I/O  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: TA1 CCR0 compare output, capture input  
Comparator_B input CB1  
Analog input A1 - 10-bit ADC  
I/O  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: Comparator_B output; TA1 clock input  
Comparator_B input CB0  
P2.0/ PM_CBOUT1/ PM_TA1CLK/  
CB0 (/A0)  
I/O  
Analog input A0 - 10-bit ADC  
Ground supply  
VSS - Exposed die attach pad  
The exposed die attach pad must be connected to a solid ground plane as this is  
the ground connection for the chip.  
12  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Table 4. CC430F514x and CC430F512x Terminal Functions  
TERMINAL  
NAME  
I/O(1)  
DESCRIPTION  
NO.  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: TA1 CCR1 compare output, capture input  
Comparator_B input CB2  
P2.2/ PM_TA1CCR1A/ CB2/ (A2)  
P2.1/ PM_TA1CCR0A/ CB1/ (A1)  
1
I/O  
Analog input A2 - 10-bit ADC (only CC430F514x)  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: TA1 CCR0 compare output, capture input  
Comparator_B input CB1  
2
3
I/O  
I/O  
Analog input A1 - 10-bit ADC (only CC430F514x)  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: Comparator_B output; TA1 clock input  
Comparator_B input CB0  
P2.0/ PM_CBOUT1/ PM_TA1CLK/  
CB0/ (A0)  
Analog input A0 - 10-bit ADC (only CC430F514x)  
P1.7/ PM_UCA0CLK/  
PM_UCA0STE  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_A0 clock input/output; USCI_B0 SPI slave transmit enable  
4
5
6
I/O  
I/O  
I/O  
P1.6/ PM_UCA0TXD/  
PM_UCA0SIMO  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in master out  
P1.5/ PM_UCA0RXD/  
PM_UCA0SOMI  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_A0 UART receive data; USCI_A0 SPI slave out master in  
VCORE  
DVCC  
7
8
Regulated core power supply  
Digital power supply  
P1.4/ PM_UCB0CLK/  
PM_UCA0STE  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_B0 clock input/output; USCI_A0 SPI slave transmit enable  
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P1.3/ PM_UCB0SIMO/  
PM_UCB0SDA  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_B0 SPI slave in master out; USCI_B0 I2C data  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P1.2/ PM_UCB0SOMI/  
PM_UCB0SCL  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: USCI_B0 SPI slave out master in; UCSI_B0 I2C clock  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: Radio GDO2 output  
P1.1/ PM_RFGDO2  
P1.0/ PM_RFGDO0  
P3.7/ PM_SMCLK  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: Radio GDO0 output  
General-purpose digital I/O with mappable secondary function  
Default mapping: SMCLK output  
General-purpose digital I/O with mappable secondary function  
Default mapping: Radio GDO1 output  
P3.6/ PM_RFGDO1  
P3.5/ PM_TA0CCR4A  
P3.4/ PM_TA0CCR3A  
P3.3/ PM_TA0CCR2A  
P3.2/ PM_TA0CCR1A  
P3.1/ PM_TA0CCR0A  
General-purpose digital I/O with mappable secondary function  
Default mapping: TA0 CCR4 compare output, capture input  
General-purpose digital I/O with mappable secondary function  
Default mapping: TA0 CCR3 compare output, capture input  
General-purpose digital I/O with mappable secondary function  
Default mapping: TA0 CCR2 compare output, capture input  
General-purpose digital I/O with mappable secondary function  
Default mapping: TA0 CCR1 compare output, capture input  
General-purpose digital I/O with mappable secondary function  
Default mapping: TA0 CCR0 compare output, capture input  
General-purpose digital I/O with mappable secondary function  
Default mapping: Comparator_B output; TA0 clock input  
P3.0/ PM_CBOUT0/ PM_TA0CLK  
DVCC  
21  
22  
23  
Digital power supply  
P2.7/ PM_ADC10CLK/  
PM_DMAE0  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: ADC10CLK output; DMA external trigger input  
I/O  
I/O  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: ACLK output  
P2.6/ PM_ACLK  
24  
RF_XIN  
25  
26  
27  
I
Input terminal for RF crystal oscillator, or external clock input  
Output terminal for RF crystal oscillator  
Radio analog power supply  
RF_XOUT  
AVCC_RF  
O
(1) I = input, O = output  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Table 4. CC430F514x and CC430F512x Terminal Functions (continued)  
TERMINAL  
NAME  
I/O(1)  
DESCRIPTION  
NO.  
AVCC_RF  
RF_P  
28  
Radio analog power supply  
RF Positive RF input to LNA in receive mode  
I/O Positive RF output from PA in transmit mode  
29  
30  
RF Negative RF input to LNA in receive mode  
I/O Negative RF output from PA in transmit mode  
RF_N  
AVCC_RF  
AVCC_RF  
RBIAS  
31  
32  
33  
34  
Radio analog power supply  
Radio analog power supply  
External bias resistor for radio reference current  
Power supply connection for digital noise isolation  
GUARD  
General-purpose digital I/O  
I/O  
PJ.0/ TDO  
35  
36  
37  
38  
39  
Test data output port  
General-purpose digital I/O  
I/O  
PJ.1/ TDI/ TCLK  
PJ.2/ TMS  
Test data input or test clock input  
General-purpose digital I/O  
Test mode select  
I/O  
General-purpose digital I/O  
Test clock  
PJ.3/ TCK  
I/O  
Test mode pin - select digital I/O on JTAG pins  
Spy-bi-wire input clock  
TEST/ SBWTCK  
I
Reset input active low  
I/O Non-maskable interrupt input  
Spy-bi-wire data input/output  
RST/NMI/ SBWTDIO  
40  
DVCC  
AVSS  
41  
42  
Digital power supply  
Analog ground supply for ADC10  
General-purpose digital I/O  
I/O  
P5.1/ XOUT  
43  
Output terminal of crystal oscillator XT1  
General-purpose digital I/O  
I/O  
P5.0/ XIN  
AVCC  
44  
45  
Input terminal for crystal oscillator XT1  
Analog power supply  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: SVM output  
P2.5/ PM_SVMOUT/ CB5/  
(A5/ VREF+/VeREF+)  
Comparator_B input CB5  
Analog input A5 - 10-bit ADC (only CC430F514x)  
46  
I/O  
Positive terminal for the ADC reference voltage for both sources, the internal reference  
voltage, or an external applied reference voltage (only CC430F514x)  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: RTCCLK output  
P2.4/ PM_RTCCLK/ CB4/  
(A4/ VeREF-)  
Comparator_B input CB4  
47  
48  
I/O  
I/O  
Analog input A4 - 10-bit ADC (only CC430F514x)  
Negative terminal for the ADC reference voltage for an external applied reference  
voltage (only CC430F514x)  
General-purpose digital I/O with port interrupt and mappable secondary function  
Default mapping: TA1 CCR2 compare output, capture input  
Comparator_B input CB3  
P2.3/ PM_TA1CCR2A/ CB3/ (A3)  
VSS - Exposed die attach pad  
Analog input A3 - 10-bit ADC (only CC430F514x)  
Ground supply  
The exposed die attach pad must be connected to a solid ground plane as this is  
the ground connection for the chip.  
14  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
SHORT-FORM DESCRIPTION  
Sub-1-GHz Radio  
The implemented sub-1-GHz radio module is based on the industry-leading CC1101, requiring very few external  
components. Figure 1 shows a high-level block diagram of the implemented radio.  
RADIO CONTROL  
ADC  
LNA  
ADC  
RF_P  
0
FREQ  
SYNTH  
RF_N  
90  
PA  
RC OSC  
BIAS  
XOSC  
RBIAS  
RF_XIN RF_XOUT  
Figure 1. Sub-1 GHz Radio Block Diagram  
The radio features a low-IF receiver. The received RF signal is amplified by a low-noise amplifier (LNA) and  
down-converted in quadrature to the intermediate frequency (IF). At IF, the I/Q signals are digitized. Automatic  
gain control (AGC), fine channel filtering, demodulation bit and packet synchronization are performed digitally.  
The transmitter part is based on direct synthesis of the RF frequency. The frequency synthesizer includes a  
completely on-chip LC VCO and a 90° phase shifter for generating the I and Q LO signals to the down-  
conversion mixers in receive mode.  
The 26-MHz crystal oscillator generates the reference frequency for the synthesizer, as well as clocks for the  
ADC and the digital part.  
A memory mapped register interface is used for data access, configuration and status request by the CPU.  
The digital baseband includes support for channel configuration, packet handling, and data buffering.  
For complete module descriptions, see the CC430 Family User's Guide (SLAU259).  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
 
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
CPU  
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations,  
other than program-flow instructions, are performed as register operations in conjunction with seven addressing  
modes for source operand and four addressing modes for destination operand.  
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register  
operation execution time is one cycle of the CPU clock.  
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant  
generator, respectively. The remaining registers are general-purpose registers.  
Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all  
instructions.  
The instruction set consists of the original 51 instructions with three formats and seven address modes and  
additional instructions for the expanded address range. Each instruction can operate on word and byte data.  
Operating Modes  
The CC430 has one active mode and seven software selectable low-power modes of operation. An interrupt  
event can wake up the device from any of the low-power modes, service the request, and restore back to the  
low-power mode on return from the interrupt program.  
The following eight operating modes can be configured by software:  
Low-power mode 4 (LPM4)  
Active mode (AM)  
All clocks are active  
Low-power mode 0 (LPM0)  
CPU is disabled  
ACLK is disabled  
MCLK, FLL loop control, and DCOCLK are  
disabled  
CPU is disabled  
ACLK and SMCLK remain active, MCLK is  
disabled  
DCO's dc-generator is disabled  
Crystal oscillator is stopped  
Complete data retention  
FLL loop control remains active  
Low-power mode 1 (LPM1)  
Low-power mode 3.5 (LPM3.5)  
CPU is disabled  
FLL loop control is disabled  
ACLK and SMCLK remain active, MCLK is  
disabled  
Internal regulator disabled  
No data retention except Backup RAM and  
RTC  
RTC enabled and clocked by low-frequency  
crystal oscillator XT1  
Wake up from RST/NMI, RTC, P1, P2  
Low-power mode 2 (LPM2)  
CPU is disabled  
MCLK and FLL loop control and DCOCLK are  
disabled  
Low-power mode 4.5 (LPM4.5)  
Internal regulator disabled  
No data retention except Backup RAM  
Wake up from RST/NMI, P1, P2  
DCO's dc-generator remains enabled  
ACLK remains active  
Low-power mode 3 (LPM3)  
CPU is disabled  
MCLK, FLL loop control, and DCOCLK are  
disabled  
DCO's dc-generator is disabled  
ACLK remains active  
16  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Interrupt Vector Addresses  
The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The  
vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.  
Table 5. Interrupt Sources, Flags, and Vectors  
SYSTEM  
INTERRUPT  
WORD  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
PRIORITY  
System Reset  
Power-Up  
External Reset  
Watchdog Timeout, Password  
Violation  
WDTIFG, KEYV (SYSRSTIV)(1)(2)  
Reset  
0FFFEh  
63, highest  
Flash Memory Password Violation  
System NMI  
PMM  
Vacant Memory Access  
JTAG Mailbox  
SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG,  
VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG,  
JMBOUTIFG (SYSSNIV)(1)(3)  
(Non)maskable  
(Non)maskable  
0FFFCh  
0FFFAh  
62  
61  
User NMI  
NMI  
Oscillator Fault  
NMIIFG, OFIFG, ACCVIFG (SYSUNIV)(1)(3)  
Flash Memory Access Violation  
Comparator_B  
Comparator_B Interrupt Flags (CBIV)(1)  
WDTIFG  
UCA0RXIFG, UCA0TXIFG (UCA0IV)(1)  
Maskable  
Maskable  
Maskable  
0FFF8h  
0FFF6h  
0FFF4h  
60  
59  
58  
Watchdog Interval Timer Mode  
USCI_A0 Receive/Transmit  
UCB0RXIFG, UCB0TXIFG, I2C Status Interrupt  
Flags (UCB0IV)(1)  
USCI_B0 Receive/Transmit  
Maskable  
0FFF2h  
57  
ADC10IFG0, ADC10INIFG, ADC10LOIFG,  
ADC10HIIFG, ADC10TOVIFG, ADC10OVIFG  
(ADC10IV)(1)  
ADC10_A  
(Reserved on CC430F512x)  
Maskable  
0FFF0h  
56  
TA0  
TA0  
TA0CCR0 CCIFG0  
Maskable  
Maskable  
0FFEEh  
0FFECh  
55  
54  
TA0CCR1 CCIFG1 ... TA0CCR4 CCIFG4,  
TA0IFG (TA0IV)(1)  
Radio Interface Interrupt Flags (RF1AIFIV)  
Radio Core Interrupt Flags (RF1AIV)  
RF1A CC1101-based Radio  
Maskable  
0FFEAh  
53  
DMA  
TA1  
DMA0IFG, DMA1IFG, DMA2IFG (DMAIV)(1)  
Maskable  
Maskable  
0FFE8h  
0FFE6h  
52  
51  
TA1CCR0 CCIFG0  
TA1CCR1 CCIFG1 ... TA1CCR2 CCIFG2,  
TA1IFG (TA1IV)(1)  
TA1  
Maskable  
0FFE4h  
50  
I/O Port P1  
I/O Port P2  
P1IFG.0 to P1IFG.7 (P1IV)(1)  
P2IFG.0 to P2IFG.7 (P2IV)(1)  
Maskable  
Maskable  
0FFE2h  
0FFE0h  
49  
48  
LCD_B  
(Reserved on CC430F514x and  
CC430F512x)  
LCD_B Interrupt Flags (LCDBIV)(1)  
Maskable  
0FFDEh  
47  
RTCRDYIFG, RTCTEVIFG, RTCAIFG,  
RTC_D  
AES  
Maskable  
Maskable  
0FFDCh  
46  
RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV)(1)  
AESRDYIFG  
Reserved(4)  
0FFDAh  
0FFD8h  
45  
44  
Reserved  
0FF80h  
0, lowest  
(1) Multiple source flags  
(2) A reset is generated if the CPU tries to fetch instructions from within peripheral space.  
(3) (Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable cannot disable it.  
(4) Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain  
compatibility with other devices, it is recommended to reserve these locations.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Memory Organization  
Table 6. Memory Organization(1)  
CC430F6145  
CC430F6143  
CC430F5143  
CC430F5123  
CC430F6147  
CC430F5145  
CC430F5147  
CC430F5125  
Total  
Size  
32kB  
16kB  
8kB  
Main Memory (flash)  
Main: Interrupt vector  
Main: code memory  
00FFFFh-00FF80h  
00FFFFh-00FF80h  
00FFFFh-00FF80h  
Bank 0  
32kB  
00FFFFh-008000h  
16kB  
00FFFFh-00C000h  
8kB  
00FFFFh-00E000h  
Total  
Size  
4kB  
2kB  
2kB  
RAM  
Sect 1  
2kB  
not available  
not available  
002BFFh-002400h  
Sect 0  
1.875kB  
1.875kB  
1.875kB  
0023FFh-001C80h  
0023FFh-001C80h  
0023FFh-001C80h  
128B  
001C7Fh-001C00h  
128B  
001C7Fh-001C00h  
128B  
001C7Fh-001C00h  
Backup RAM(2)  
128 B  
128 B  
128 B  
001AFFh to 001A80h  
001AFFh to 001A80h  
001AFFh to 001A80h  
Device Descriptor  
128 B  
128 B  
128 B  
001A7Fh to 001A00h  
001A7Fh to 001A00h  
001A7Fh to 001A00h  
Info A  
Info B  
Info C  
Info D  
BSL 3  
BSL 2  
BSL 1  
BSL 0  
128 B  
0019FFh to 001980h  
128 B  
0019FFh to 001980h  
128 B  
0019FFh to 001980h  
128 B  
00197Fh to 001900h  
128 B  
00197Fh to 001900h  
128 B  
00197Fh to 001900h  
Information memory  
(flash)  
128 B  
0018FFh to 001880h  
128 B  
0018FFh to 001880h  
128 B  
0018FFh to 001880h  
128 B  
00187Fh to 001800h  
128 B  
00187Fh to 001800h  
128 B  
00187Fh to 001800h  
512 B  
0017FFh to 001600h  
512 B  
0017FFh to 001600h  
512 B  
0017FFh to 001600h  
512 B  
0015FFh to 001400h  
512 B  
0015FFh to 001400h  
512 B  
0015FFh to 001400h  
Bootstrap loader  
(BSL) memory (flash)  
512 B  
0013FFh to 001200h  
512 B  
0013FFh to 001200h  
512 B  
0013FFh to 001200h  
512 B  
512 B  
512 B  
0011FFh to 001000h  
0011FFh to 001000h  
0011FFh to 001000h  
4 KB  
000FFFh to 0h  
4 KB  
000FFFh to 0h  
4 KB  
000FFFh to 0h  
Peripherals  
(1) All memory regions not specified here are vacant memory and any access to them causes a Vacant Memory Interrupt.  
(2) Content retained in LPM3.5 and LPM4.5.  
18  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Bootstrap Loader (BSL)  
The BSL enables users to program the flash memory or RAM using various serial interfaces. Access to the  
device memory via the BSL is protected by an user-defined password. BSL entry requires a specific entry  
sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For a complete description of the features of the  
BSL and its implementation, see the MSP430 Programming Via the Bootstrap Loader User's Guide (SLAU319).  
Table 7. UART BSL Pin Requirements and Functions  
DEVICE SIGNAL  
BSL FUNCTION  
Entry sequence signal  
Entry sequence signal  
Data transmit  
RST/NMI/SBWTDIO  
TEST/SBWTCK  
P1.6  
P1.5  
VCC  
VSS  
Data receive  
Power supply  
Ground supply  
JTAG Operation  
JTAG Standard Interface  
The CC430 family supports the standard JTAG interface which requires four signals for sending and receiving  
data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the  
JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430  
development tools and device programmers. The JTAG pin requirements are shown in Table 8. For further  
details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's  
Guide (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see  
MSP430 Programming Via the JTAG Interface (SLAU320).  
Table 8. JTAG Pin Requirements and Functions  
DEVICE SIGNAL  
PJ.3/TCK  
DIRECTION  
FUNCTION  
JTAG clock input  
JTAG state control  
JTAG data input, TCLK input  
JTAG data output  
Enable JTAG pins  
External reset  
IN  
IN  
PJ.2/TMS  
PJ.1/TDI/TCLK  
PJ.0/TDO  
IN  
OUT  
IN  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
IN  
Power supply  
VSS  
Ground supply  
Spy-Bi-Wire Interface  
In addition to the standard JTAG interface, the CC430 family supports the two wire Spy-Bi-Wire interface. Spy-Bi-  
Wire can be used to interface with MSP430 development tools and device programmers. The Spy-Bi-Wire  
interface pin requirements are shown in Table 9. For further details on interfacing to development tools and  
device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278). For a complete description of  
the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface  
(SLAU320).  
Table 9. Spy-Bi-Wire Pin Requirements and Functions  
DEVICE SIGNAL  
TEST/SBWTCK  
RST/NMI/SBWTDIO  
VCC  
DIRECTION  
IN  
FUNCTION  
Spy-Bi-Wire clock input  
Spy-Bi-Wire data input/output  
Power supply  
IN, OUT  
VSS  
Ground supply  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
 
 
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Flash Memory  
The flash memory can be programmed via the JTAG port, Spy-Bi-Wire (SBW), or in-system by the CPU. The  
CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the flash  
memory include:  
Flash memory has n segments of main memory and four segments of information memory (Info A to Info D)  
of 128 bytes each. Each segment in main memory is 512 bytes in size.  
Segments 0 to n may be erased in one step, or each segment may be individually erased.  
Segments Info A to Info D can be erased individually, or as a group with the main memory segments.  
Segments Info A to Info D are also called information memory.  
Segment A can be locked separately.  
RAM Memory  
The RAM memory is made up of n sectors. Each sector can be completely powered down to save leakage,  
however all data is lost. Features of the RAM memory include:  
RAM memory has n sectors of 2k bytes each.  
Each sector 0 to n can be complete disabled; however, data retention is lost.  
Each sector 0 to n automatically enters low-power retention mode when possible.  
Backup RAM  
The backup RAM provides 128 bytes of memory that are retained even in LPM3.5 and LPM4.5 when the core is  
powered down.  
Peripherals  
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all  
instructions. For complete module descriptions, see the CC430 Family User's Guide (SLAU259).  
Oscillator and System Clock  
The Unified Clock System (UCS) module includes support for a 32768-Hz watch crystal oscillator, an internal  
very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an  
integrated internal digitally-controlled oscillator (DCO), and a high-frequency crystal oscillator. The UCS module  
is designed to meet the requirements of both low system cost and low-power consumption. The UCS module  
features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the  
DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast  
turn-on clock source and stabilizes in less than 5 µs. The UCS module provides the following clock signals:  
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high-frequency crystal, the internal low-  
frequency oscillator (VLO), or the trimmed low-frequency oscillator (REFO).  
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made  
available to ACLK.  
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by  
same sources made available to ACLK.  
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.  
Power Management Module (PMM)  
The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains  
programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor  
(SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is  
implemented to provide the proper internal reset signal to the device during power-on and power-off. The  
SVS/SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply  
voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not  
automatically reset). SVS and SVM circuitry is available on the primary supply and core supply.  
20  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Digital I/O  
There are up to five 8-bit I/O ports implemented: ports P1 through P5.  
All individual I/O bits are independently programmable.  
Any combination of input, output, and interrupt conditions is possible.  
Programmable pullup or pulldown on all ports.  
Programmable drive strength on all ports.  
Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for all the eight bits of  
ports P1 and P2.  
Read and write access to port-control registers is supported by all instructions.  
Ports can be accessed byte-wise (P1 through P5) or word-wise in pairs (PA and PB).  
Port Mapping Controller  
The port mapping controller allows the flexible and re-configurable mapping of digital functions to port pins of  
ports P1 through P3.  
Table 10. Port Mapping Mnemonics and Functions  
INPUT PIN FUNCTION  
(PxDIR.y = 0)  
OUTPUT PIN FUNCTION  
(PxDIR.y = 1)  
VALUE  
PxMAPy MNEMONIC  
0
PM_NONE  
PM_CBOUT0  
PM_TA0CLK  
None  
DVSS  
Comparator_B output (on TA0 clock input)  
-
1(1)  
2(1)  
TA0 clock input  
PM_CBOUT1  
PM_TA1CLK  
-
Comparator_B output (on TA1 clock input)  
-
TA1 clock input  
3
4
5
6
PM_ACLK  
None  
ACLK output  
PM_MCLK  
None  
MCLK output  
PM_SMCLK  
None  
SMCLK output  
PM_RTCCLK  
PM_ADC10CLK  
PM_DMAE0  
None  
RTCCLK output  
-
ADC10CLK output  
7(1)  
DMA external trigger input  
None  
-
8
PM_SVMOUT  
PM_TA0CCR0A  
PM_TA0CCR1A  
PM_TA0CCR2A  
PM_TA0CCR3A  
PM_TA0CCR4A  
PM_TA1CCR0A  
PM_TA1CCR1A  
PM_TA1CCR2A  
PM_UCA0RXD  
PM_UCA0SOMI  
PM_UCA0TXD  
PM_UCA0SIMO  
PM_UCA0CLK  
PM_UCB0STE  
PM_UCB0SOMI  
PM_UCB0SCL  
SVM output  
9
TA0 CCR0 capture input CCI0A  
TA0 CCR1 capture input CCI1A  
TA0 CCR2 capture input CCI2A  
TA0 CCR3 capture input CCI3A  
TA0 CCR4 capture input CCI4A  
TA1 CCR0 capture input CCI0A  
TA1 CCR1 capture input CCI1A  
TA1 CCR2 capture input CCI2A  
TA0 CCR0 compare output Out0  
TA0 CCR1 compare output Out1  
TA0 CCR2 compare output Out2  
TA0 CCR3 compare output Out3  
TA0 CCR4 compare output Out4  
TA1 CCR0 compare output Out0  
TA1 CCR1 compare output Out1  
TA1 CCR2 compare output Out2  
10  
11  
12  
13  
14  
15  
16  
USCI_A0 UART RXD (Direction controlled by USCI - input)  
17(2)  
18(2)  
19(3)  
20(4)  
USCI_A0 SPI slave out master in (direction controlled by USCI)  
USCI_A0 UART TXD (Direction controlled by USCI - output)  
USCI_A0 SPI slave in master out (direction controlled by USCI)  
USCI_A0 clock input/output (direction controlled by USCI)  
USCI_B0 SPI slave transmit enable (direction controlled by USCI - input)  
USCI_B0 SPI slave out master in (direction controlled by USCI)  
USCI_B0 I2C clock (open drain and direction controlled by USCI)  
(1) Input or output function is selected by the corresponding setting in the port direction register PxDIR.  
(2) UART or SPI functionality is determined by the selected USCI mode.  
(3) UCA0CLK function takes precedence over UCB0STE function. If the mapped pin is required as UCA0CLK input or output, USCI_B0 is  
forced to 3-wire SPI mode even if 4-wire mode is selected.  
(4) SPI or I2C functionality is determined by the selected USCI mode. If I2C functionality is selected, the output of the mapped pin drives  
only the logical 0 to VSS level.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
 
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Table 10. Port Mapping Mnemonics and Functions (continued)  
INPUT PIN FUNCTION  
(PxDIR.y = 0)  
OUTPUT PIN FUNCTION  
(PxDIR.y = 1)  
VALUE  
PxMAPy MNEMONIC  
PM_UCB0SIMO  
PM_UCB0SDA  
PM_UCB0CLK  
PM_UCA0STE  
PM_RFGDO0  
PM_RFGDO1  
PM_RFGDO2  
Reserved  
USCI_B0 SPI slave in master out (direction controlled by USCI)  
USCI_B0 I2C data (open drain and direction controlled by USCI)  
USCI_B0 clock input/output (direction controlled by USCI)  
21(4)  
22(5)  
USCI_A0 SPI slave transmit enable (direction controlled by USCI - input)  
Radio GDO0 (direction controlled by Radio)  
23  
24  
25  
26  
27  
28  
29  
30  
Radio GDO1 (direction controlled by Radio)  
Radio GDO2 (direction controlled by Radio)  
None  
None  
None  
None  
None  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
Reserved  
Reserved  
Reserved  
Reserved  
Disables the output driver and the input Schmitt trigger to prevent parasitic cross currents  
when applying analog signals.  
31 (0FFh)(6)  
PM_ANALOG  
(5) UCB0CLK function takes precedence over UCA0STE function. If the mapped pin is required as UCB0CLK input or output, USCI_A0 is  
forced to 3-wire SPI mode even if 4-wire mode is selected.  
(6) The value of the PMPAP_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide and the upper bits are  
ignored resulting in a read out value of 31.  
Table 11. Default Mapping  
INPUT PIN FUNCTION  
(PxDIR.y = 0)  
OUTPUT PIN FUNCTION  
(PxDIR.y = 1)  
PIN  
PxMAPy MNEMONIC  
P1.0/P1MAP0  
P1.1/P1MAP1  
PM_RFGDO0  
PM_RFGDO2  
None  
None  
Radio GDO0  
Radio GDO2  
USCI_B0 SPI slave out master in (direction controlled by USCI)  
USCI_B0 I2C clock (open drain and direction controlled by USCI)  
P1.2/P1MAP2  
P1.3/P1MAP3  
P1.4/P1MAP4  
P1.5/P1MAP5  
P1.6/P1MAP6  
P1.7/P1MAP7  
PM_UCB0SOMI/PM_UCB0SCL  
PM_UCB0SIMO/PM_UCB0SDA  
PM_UCB0CLK/PM_UCA0STE  
PM_UCA0RXD/PM_UCA0SOMI  
PM_UCA0TXD/PM_UCA0SIMO  
PM_UCA0CLK/PM_UCB0STE  
USCI_B0 SPI slave in master out (direction controlled by USCI)  
USCI_B0 I2C data (open drain and direction controlled by USCI)  
USCI_B0 clock input/output (direction controlled by USCI)  
USCI_A0 SPI slave transmit enable (direction controlled by USCI - input)  
USCI_A0 UART RXD (Direction controlled by USCI - input)  
USCI_A0 SPI slave out master in (direction controlled by USCI)  
USCI_A0 UART TXD (Direction controlled by USCI - output)  
USCI_A0 SPI slave in master out (direction controlled by USCI)  
USCI_A0 clock input/output (direction controlled by USCI)  
USCI_B0 SPI slave transmit enable (direction controlled by USCI - input)  
P2.0/P2MAP0  
P2.1/P2MAP1  
P2.2/P2MAP2  
P2.3/P2MAP3  
P2.4/P2MAP4  
P2.5/P2MAP5  
P2.6/P2MAP6  
P2.7/P2MAP7  
P3.0/P3MAP0  
P3.1/P3MAP1  
P3.2/P3MAP2  
P3.3/P3MAP3  
P3.4/P3MAP4  
P3.5/P3MAP5  
PM_CBOUT1/PM_TA1CLK  
PM_TA1CCR0A  
TA1 clock input  
TA1 CCR0 capture input CCI0A  
TA1 CCR1 capture input CCI1A  
TA1 CCR2 capture input CCI2A  
None  
Comparator_B output  
TA1 CCR0 compare output Out0  
TA1 CCR1 compare output Out1  
TA1 CCR2 compare output Out2  
RTCCLK output  
PM_TA1CCR1A  
PM_TA1CCR2A  
PM_RTCCLK  
PM_SVMOUT  
None  
SVM output  
PM_ACLK  
None  
ACLK output  
PM_ADC10CLK/PM_DMAE0  
PM_CBOUT0/PM_TA0CLK  
PM_TA0CCR0A  
DMA external trigger input  
TA0 clock input  
ADC10CLK output  
Comparator_B output  
TA0 CCR0 capture input CCI0A  
TA0 CCR1 capture input CCI1A  
TA0 CCR2 capture input CCI2A  
TA0 CCR3 capture input CCI3A  
TA0 CCR4 capture input CCI4A  
TA0 CCR0 compare output Out0  
TA0 CCR1 compare output Out1  
TA0 CCR2 compare output Out2  
TA0 CCR3 compare output Out3  
TA0 CCR4 compare output Out4  
PM_TA0CCR1A  
PM_TA0CCR2A  
PM_TA0CCR3A  
PM_TA0CCR4A  
22  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Table 11. Default Mapping (continued)  
INPUT PIN FUNCTION  
(PxDIR.y = 0)  
OUTPUT PIN FUNCTION  
(PxDIR.y = 1)  
PIN  
P3.6/P3MAP6  
PxMAPy MNEMONIC  
PM_RFGDO1  
PM_SMCLK  
None  
None  
Radio GDO1  
P3.7/P3MAP7  
SMCLK output  
System Module (SYS)  
The SYS module handles many of the system functions within the device. These include power on reset and  
power up clear handling, NMI source selection and management, reset interrupt vector generators, boot strap  
loader entry mechanisms, as well as, configuration management (device descriptors). It also includes a data  
exchange mechanism via JTAG called a JTAG mailbox that can be used in the application.  
Table 12. System Module Interrupt Vector Registers  
INTERRUPT VECTOR REGISTER  
SYSRSTIV, System Reset  
ADDRESS  
INTERRUPT EVENT  
No interrupt pending  
Brownout (BOR)  
RST/NMI (POR)  
DoBOR (BOR)  
Reserved  
VALUE  
00h  
PRIORITY  
019Eh  
02h  
Highest  
04h  
06h  
08h  
Security violation (BOR)  
SVSL (POR)  
0Ah  
0Ch  
SVSH (POR)  
0Eh  
SVML_OVP (POR)  
SVMH_OVP (POR)  
DoPOR (POR)  
WDT timeout (PUC)  
WDT password violation (PUC)  
KEYV flash password violation (PUC)  
Reserved  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
Peripheral area fetch (PUC)  
PMM password violation (PUC)  
Reserved  
1Eh  
20h  
22h to 3Eh  
00h  
Lowest  
Highest  
SYSSNIV, System NMI  
019Ch  
No interrupt pending  
SVMLIFG  
02h  
SVMHIFG  
04h  
DLYLIFG  
06h  
DLYHIFG  
08h  
VMAIFG  
0Ah  
JMBINIFG  
0Ch  
JMBOUTIFG  
0Eh  
VLRLIFG  
10h  
VLRHIFG  
12h  
Reserved  
14h to 1Eh  
00h  
Lowest  
Highest  
SYSUNIV, User NMI  
019Ah  
No interrupt pending  
NMIFG  
02h  
OFIFG  
04h  
ACCVIFG  
06h  
Reserved  
08h to 1Eh  
Lowest  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
DMA Controller  
The DMA controller allows movement of data from one memory address to another without CPU intervention.  
Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces  
system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move  
data to or from a peripheral.  
Table 13. DMA Trigger Assignments(1)  
CHANNEL  
TRIGGER  
0
1
2
0
DMAREQ  
DMAREQ  
DMAREQ  
1
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
Reserved  
TA0CCR0 CCIFG  
TA0CCR2 CCIFG  
TA1CCR0 CCIFG  
TA1CCR2 CCIFG  
Reserved  
2
3
4
5
6
Reserved  
Reserved  
Reserved  
7
Reserved  
Reserved  
Reserved  
8
Reserved  
Reserved  
Reserved  
9
Reserved  
Reserved  
Reserved  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RFRXIFG  
RFRXIFG  
RFRXIFG  
RFTXIFG  
RFTXIFG  
RFTXIFG  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
Reserved  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
Reserved  
UCA0RXIFG  
UCA0TXIFG  
UCB0RXIFG  
UCB0TXIFG  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ADC10IFG0(2)  
Reserved  
ADC10IFG0(2)  
Reserved  
ADC10IFG0(2)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
MPY ready  
DMA2IFG  
MPY ready  
DMA0IFG  
MPY ready  
DMA1IFG  
DMAE0  
DMAE0  
DMAE0  
(1) Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers will not  
cause any DMA trigger event when selected.  
(2) Only on CC430F614x and CC430F514x. Reserved on CC430F512x.  
Watchdog Timer (WDT_A)  
The primary function of the watchdog timer is to perform a controlled system restart after a software problem  
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed  
in an application, the timer can be configured as an interval timer and can generate interrupts at selected time  
intervals.  
24  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
CRC16  
The CRC16 module produces a signature based on a sequence of entered data values and can be used for data  
checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.  
Hardware Multiplier  
The multiplication operation is supported by a dedicated peripheral module. The module performs operations with  
32-bit, 24-bit, 16-bit, and 8-bit operands. The module is capable of supporting signed and unsigned multiplication  
as well as signed and unsigned multiply and accumulate operations.  
AES128 Accelerator  
The AES accelerator module performs encryption and decryption of 128-bit data with 128-bit keys according to  
the Advanced Encryption Standard (AES) (FIPS PUB 197) in hardware.  
Universal Serial Communication Interface (USCI)  
The USCI module is used for serial data communication. The USCI module supports synchronous  
communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols such as  
UART, enhanced UART with automatic baudrate detection, and IrDA.  
The USCI_An module provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA.  
The USCI_Bn module provides support for SPI (3 or 4 pin) and I2C.  
A USCI_A0 and USCI_B0 module are implemented.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
TA0  
TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 can support multiple  
capture/compares, PWM outputs, and interval timing. TA0 also has extensive interrupt capabilities. Interrupts  
may be generated from the counter on overflow conditions and from each of the capture/compare registers.  
Table 14. TA0 Signal Connections  
MODULE OUTPUT  
SIGNAL  
DEVICE OUTPUT  
SIGNAL  
DEVICE INPUT SIGNAL  
MODULE INPUT NAME  
MODULE BLOCK  
PM_TA0CLK  
ACLK (internal)  
SMCLK (internal)  
RFCLK/192(1)  
PM_TA0CCR0A  
DVSS  
TACLK  
ACLK  
SMCLK  
INCLK  
CCI0A  
CCI0B  
GND  
Timer  
NA  
PM_TA0CCR0A  
PM_TA0CCR1A  
CCR0  
CCR1  
CCR2  
CCR3  
TA0  
DVSS  
DVCC  
VCC  
PM_TA0CCR1A  
CCI1A  
ADC10 (internal)(2)  
ADC10SHSx = {1}  
CBOUT (internal)  
CCI1B  
TA1  
TA2  
TA3  
DVSS  
DVCC  
GND  
VCC  
PM_TA0CCR2A  
ACLK (internal)  
DVSS  
CCI2A  
CCI2B  
GND  
PM_TA0CCR2A  
PM_TA0CCR3A  
DVCC  
VCC  
PM_TA0CCR3A  
CCI3A  
GDO1 from radio  
(internal)  
CCI3B  
DVSS  
DVCC  
GND  
VCC  
PM_TA0CCR4A  
CCI4A  
PM_TA0CCR4A  
GDO2 from radio  
(internal)  
CCI4B  
CCR4  
TA4  
DVSS  
DVCC  
GND  
VCC  
(1) If a different RFCLK divider setting is selected for a radio GDO output, this divider setting is also used for the Timer_A INCLK.  
(2) Only on CC430F614x and CC430F514x.  
26  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
TA1  
TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 can support multiple  
capture/compares, PWM outputs, and interval timing. TA1 also has extensive interrupt capabilities. Interrupts  
may be generated from the counter on overflow conditions and from each of the capture/compare registers.  
Table 15. TA1 Signal Connections  
DEVICE OUTPUT  
MODULE OUTPUT  
SIGNAL  
PZ  
DEVICE INPUT SIGNAL  
MODULE INPUT NAME  
MODULE BLOCK  
SIGNAL  
PM_TA1CLK  
ACLK (internal)  
SMCLK (internal)  
RFCLK/192(1)  
TACLK  
ACLK  
Timer  
NA  
SMCLK  
INCLK  
CCI0A  
PM_TA1CCR0A  
PM_TA1CCR0A  
RF Async. Output  
(internal)  
CCI0B  
RF Async. Input (internal)  
CCR0  
TA0  
DVSS  
DVCC  
GND  
VCC  
PM_TA1CCR1A  
CBOUT (internal)  
DVSS  
CCI1A  
CCI1B  
GND  
VCC  
PM_TA1CCR1A  
PM_TA1CCR2A  
CCR1  
CCR2  
TA1  
TA2  
DVCC  
PM_TA1CCR2A  
ACLK (internal)  
DVSS  
CCI2A  
CCI2B  
GND  
VCC  
DVCC  
(1) If a different RFCLK divider setting is selected for a radio GDO output, this divider setting is also used for the Timer_A INCLK.  
Real-Time Clock (RTC_D)  
The RTC_D module can be used as a general-purpose 32-bit counter (counter mode) or as an integrated real-  
time clock (RTC) (calendar mode). In counter mode, the RTC_D also includes two independent 8-bit timers that  
can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. Calendar mode  
integrates an internal calendar which compensates for months with less than 31 days and includes leap year  
correction. The RTC_D also supports flexible alarm functions and offset-calibration hardware.  
REF Voltage Reference (Including Output)  
The reference module (REF) is responsible for generation of all critical reference voltages that can be used by  
the various analog peripherals in the device. These include the ADC10_A, LCD_B, and COMP_B modules.  
It can also provide the ADC reference voltages to the VREF+ pin (see the pin schematics).  
LCD_B (Only CC430F614x)  
The LCD_B driver generates the segment and common signals required to drive a Liquid Crystal Display (LCD).  
The LCD_B controller has dedicated data memories to hold segment drive information. Common and segment  
signals are generated as defined by the mode. Static, 2-mux, 3-mux, and 4-mux LCDs are supported. The  
module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. It is  
possible to control the level of the LCD voltage and thus contrast by software. The module also provides an  
automatic blinking capability for individual segments.  
Comparator_B  
The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions,  
battery voltage supervision, and monitoring of external analog signals.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
ADC10_A (Only CC430F614x and CC430F514x)  
The ADC10_A module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR  
core, sample select control, reference generator and a conversion result buffer. A window comparator with a  
lower and upper limit allows CPU independent result monitoring with three window comparator interrupt flags.  
Embedded Emulation Module (EEM) (S Version)  
The Embedded Emulation Module (EEM) supports real-time in-system debugging. The S version of the EEM  
implemented on all devices has the following features:  
Three hardware triggers or breakpoints on memory access  
One hardware trigger or breakpoint on CPU register write access  
Up to four hardware triggers can be combined to form complex triggers or breakpoints  
One cycle counter  
Clock control on module level  
28  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Peripheral File Map  
Table 16. Peripherals  
OFFSET ADDRESS  
RANGE  
MODULE NAME  
BASE ADDRESS  
Special Functions (see Table 17)  
PMM (see Table 18)  
0100h  
0120h  
0140h  
0150h  
0158h  
015Ch  
0160h  
0180h  
01B0h  
01C0h  
01C8h  
01D0h  
01D8h  
0200h  
000h-01Fh  
000h-00Fh  
000h-00Fh  
000h-007h  
000h-001h  
000h-001h  
000h-01Fh  
000h-01Fh  
000h-001h  
000h-007h  
000h-007h  
000h-007h  
000h-007h  
000h-01Fh  
Flash Control (see Table 19)  
CRC16 (see Table 20)  
RAM Control (see Table 21)  
Watchdog (see Table 22)  
UCS (see Table 23)  
SYS (see Table 24)  
Shared Reference (see Table 25)  
Port Mapping Control (see Table 26)  
Port Mapping Port P1 (see Table 27)  
Port Mapping Port P2 (see Table 28)  
Port Mapping Port P3 (see Table 29)  
Port P1, P2 (see Table 30)  
Port P3, P4 (see Table 31)  
(P4 not available on CC430F514x and  
CC430F512x)  
0220h  
000h-01Fh  
Port P5 (see Table 32)  
Port PJ (see Table 33)  
TA0 (see Table 34)  
0240h  
0320h  
0340h  
0380h  
04A0h  
04C0h  
0500h  
0510h  
0520h  
0530h  
05C0h  
05E0h  
000h-01Fh  
000h-01Fh  
000h-03Fh  
000h-03Fh  
000h-01Fh  
000h-02Fh  
000h-00Fh  
000h-00Fh  
000h-00Fh  
000h-00Fh  
000h-01Fh  
000h-01Fh  
TA1 (see Table 35)  
RTC_D (see Table 36)  
32-Bit Hardware Multiplier (see Table 37)  
DMA Module Control (see Table 38)  
DMA Channel 0 (see Table 39)  
DMA Channel 1 (see Table 40)  
DMA Channel 2 (see Table 41)  
USCI_A0 (see Table 42)  
USCI_B0 (see Table 43)  
ADC10 (see Table 44)  
(only CC430F614x and CC430F514x)  
0740h  
000h-01Fh  
Comparator_B (see Table 45)  
AES Accelerator (see Table 46)  
08C0h  
09C0h  
0A00h  
0F00h  
000h-00Fh  
000h-00Fh  
000h-05Fh  
000h-03Fh  
LCD_B (see Table 47, only CC430F614x)  
Radio Interface (see Table 48)  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Table 17. Special Function Registers (Base Address: 0100h)  
REGISTER DESCRIPTION  
REGISTER  
SFRIE1  
OFFSET  
SFR interrupt enable  
SFR interrupt flag  
00h  
02h  
04h  
SFRIFG1  
SFR reset pin control  
SFRRPCR  
Table 18. PMM Registers (Base Address: 0120h)  
REGISTER DESCRIPTION  
REGISTER  
PMMCTL0  
OFFSET  
PMM Control 0  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
10h  
PMM control 1  
PMMCTL1  
SVSMHCTL  
SVSMLCTL  
PMMIFG  
SVS high side control  
SVS low side control  
PMM interrupt flags  
PMM interrupt enable  
PMM power mode 5 control  
PMMIE  
PM5CTL0  
Table 19. Flash Control Registers (Base Address: 0140h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Flash control 1  
Flash control 3  
Flash control 4  
FCTL1  
FCTL3  
FCTL4  
00h  
04h  
06h  
Table 20. CRC16 Registers (Base Address: 0150h)  
REGISTER DESCRIPTION  
REGISTER  
CRC16DI  
OFFSET  
CRC data input  
00h  
02h  
04h  
06h  
CRC data input reverse byte  
CRC initialization and result  
CRC result reverse byte  
CRCDIRB  
CRCINIRES  
CRCRESR  
Table 21. RAM Control Registers (Base Address: 0158h)  
REGISTER DESCRIPTION  
REGISTER  
RCCTL0  
OFFSET  
OFFSET  
OFFSET  
RAM control 0  
00h  
00h  
Table 22. Watchdog Registers (Base Address: 015Ch)  
REGISTER DESCRIPTION  
REGISTER  
WDTCTL  
Watchdog timer control  
Table 23. UCS Registers (Base Address: 0160h)  
REGISTER DESCRIPTION  
REGISTER  
UCSCTL0  
UCS control 0  
UCS control 1  
UCS control 2  
UCS control 3  
UCS control 4  
UCS control 5  
UCS control 6  
UCS control 7  
UCS control 8  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
UCSCTL1  
UCSCTL2  
UCSCTL3  
UCSCTL4  
UCSCTL5  
UCSCTL6  
UCSCTL7  
UCSCTL8  
30  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Table 24. SYS Registers (Base Address: 0180h)  
REGISTER DESCRIPTION  
REGISTER  
SYSCTL  
OFFSET  
System control  
00h  
02h  
06h  
08h  
0Ah  
0Ch  
0Eh  
18h  
1Ah  
1Ch  
1Eh  
Bootstrap loader configuration area  
JTAG mailbox control  
SYSBSLC  
SYSJMBC  
SYSJMBI0  
SYSJMBI1  
SYSJMBO0  
SYSJMBO1  
SYSBERRIV  
SYSUNIV  
JTAG mailbox input 0  
JTAG mailbox input 1  
JTAG mailbox output 0  
JTAG mailbox output 1  
Bus Error vector generator  
User NMI vector generator  
System NMI vector generator  
Reset vector generator  
SYSSNIV  
SYSRSTIV  
Table 25. Shared Reference Registers (Base Address: 01B0h)  
REGISTER DESCRIPTION  
REGISTER  
REFCTL  
OFFSET  
OFFSET  
Shared reference control  
00h  
Table 26. Port Mapping Control Registers (Base Address: 01C0h)  
REGISTER DESCRIPTION  
REGISTER  
PMAPKEYID  
PMAPCTL  
Port mapping key register  
00h  
02h  
Port mapping control register  
Table 27. Port Mapping Port P1 Registers (Base Address: 01C8h)  
REGISTER DESCRIPTION  
REGISTER  
P1MAP0  
OFFSET  
Port P1.0 mapping register  
Port P1.1 mapping register  
Port P1.2 mapping register  
Port P1.3 mapping register  
Port P1.4 mapping register  
Port P1.5 mapping register  
Port P1.6 mapping register  
Port P1.7 mapping register  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
P1MAP1  
P1MAP2  
P1MAP3  
P1MAP4  
P1MAP5  
P1MAP6  
P1MAP7  
Table 28. Port Mapping Port P2 Registers (Base Address: 01D0h)  
REGISTER DESCRIPTION  
REGISTER  
P2MAP0  
OFFSET  
Port P2.0 mapping register  
Port P2.1 mapping register  
Port P2.2 mapping register  
Port P2.3 mapping register  
Port P2.4 mapping register  
Port P2.5 mapping register  
Port P2.6 mapping register  
Port P2.7 mapping register  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
P2MAP1  
P2MAP2  
P2MAP3  
P2MAP4  
P2MAP5  
P2MAP6  
P2MAP7  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Table 29. Port Mapping Port P3 Registers (Base Address: 01D8h)  
REGISTER DESCRIPTION  
REGISTER  
P3MAP0  
OFFSET  
Port P3.0 mapping register  
Port P3.1 mapping register  
Port P3.2 mapping register  
Port P3.3 mapping register  
Port P3.4 mapping register  
Port P3.5 mapping register  
Port P3.6 mapping register  
Port P3.7 mapping register  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
P3MAP1  
P3MAP2  
P3MAP3  
P3MAP4  
P3MAP5  
P3MAP6  
P3MAP7  
Table 30. Port P1, P2 Registers (Base Address: 0200h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P1 input  
P1IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Eh  
18h  
1Ah  
1Ch  
01h  
03h  
05h  
07h  
09h  
0Bh  
1Eh  
19h  
1Bh  
1Dh  
Port P1 output  
Port P1 direction  
P1OUT  
P1DIR  
P1REN  
P1DS  
P1SEL  
P1IV  
Port P1 pullup/pulldown enable  
Port P1 drive strength  
Port P1 selection  
Port P1 interrupt vector word  
Port P1 interrupt edge select  
Port P1 interrupt enable  
Port P1 interrupt flag  
P1IES  
P1IE  
P1IFG  
P2IN  
Port P2 input  
Port P2 output  
P2OUT  
P2DIR  
P2REN  
P2DS  
P2SEL  
P2IV  
Port P2 direction  
Port P2 pullup/pulldown enable  
Port P2 drive strength  
Port P2 selection  
Port P2 interrupt vector word  
Port P2 interrupt edge select  
Port P2 interrupt enable  
Port P2 interrupt flag  
P2IES  
P2IE  
P2IFG  
Table 31. Port P3, P4 Registers (Base Address: 0220h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P3 input  
P3IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
01h  
03h  
05h  
07h  
09h  
0Bh  
Port P3 output  
P3OUT  
P3DIR  
P3REN  
P3DS  
Port P3 direction  
Port P3 pullup/pulldown enable  
Port P3 drive strength  
Port P3 selection  
P3SEL  
P4IN  
Port P4 input  
Port P4 output  
P4OUT  
P4DIR  
P4REN  
P4DS  
Port P4 direction  
Port P4 pullup/pulldown enable  
Port P4 drive strength  
Port P4 selection  
P4SEL  
32  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Table 32. Port P5 Registers (Base Address: 0240h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port P5 input  
P5IN  
00h  
02h  
04h  
06h  
08h  
0Ah  
Port P5 output  
Port P5 direction  
P5OUT  
P5DIR  
P5REN  
P5DS  
Port P5 pullup/pulldown enable  
Port P5 drive strength  
Port P5 selection  
P5SEL  
Table 33. Port J Registers (Base Address: 0320h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
Port PJ input  
PJIN  
00h  
02h  
04h  
06h  
08h  
Port PJ output  
PJOUT  
PJDIR  
PJREN  
PJDS  
Port PJ direction  
Port PJ pullup/pulldown enable  
Port PJ drive strength  
Table 34. TA0 Registers (Base Address: 0340h)  
REGISTER DESCRIPTION  
REGISTER  
TA0CTL  
OFFSET  
TA0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
10h  
12h  
14h  
16h  
18h  
1Ah  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
Capture/compare control 3  
Capture/compare control 4  
TA0 counter register  
TA0CCTL0  
TA0CCTL1  
TA0CCTL2  
TA0CCTL3  
TA0CCTL4  
TA0R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
Capture/compare register 3  
Capture/compare register 4  
TA0 expansion register 0  
TA0 interrupt vector  
TA0CCR0  
TA0CCR1  
TA0CCR2  
TA0CCR3  
TA0CCR4  
TA0EX0  
TA0IV  
Table 35. TA1 Registers (Base Address: 0380h)  
REGISTER DESCRIPTION  
REGISTER  
TA1CTL  
OFFSET  
TA1 control  
00h  
02h  
04h  
06h  
10h  
12h  
14h  
16h  
20h  
2Eh  
Capture/compare control 0  
Capture/compare control 1  
Capture/compare control 2  
TA1 counter register  
TA1CCTL0  
TA1CCTL1  
TA1CCTL2  
TA1R  
Capture/compare register 0  
Capture/compare register 1  
Capture/compare register 2  
TA1 expansion register 0  
TA1 interrupt vector  
TA1CCR0  
TA1CCR1  
TA1CCR2  
TA1EX0  
TA1IV  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Table 36. Real Time Clock Registers (Base Address: 04A0h)  
REGISTER DESCRIPTION  
REGISTER  
RTCCTL0  
OFFSET  
RTC control 0  
00h  
01h  
02h  
03h  
08h  
0Ah  
0Ch  
0Dh  
0Eh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
RTC control 1  
RTCCTL1  
RTC control 2  
RTCCTL2  
RTC control 3  
RTCCTL3  
RTC prescaler 0 control  
RTC prescaler 1 control  
RTC prescaler 0  
RTC prescaler 1  
RTC interrupt vector word  
RTCPS0CTL  
RTCPS1CTL  
RTCPS0  
RTCPS1  
RTCIV  
RTC seconds/counter register 1  
RTC minutes/counter register 2  
RTC hours/counter register 3  
RTC day of week/counter register 4  
RTC days  
RTCSEC/RTCNT1  
RTCMIN/RTCNT2  
RTCHOUR/RTCNT3  
RTCDOW/RTCNT4  
RTCDAY  
RTC month  
RTCMON  
RTC year low  
RTCYEARL  
RTCYEARH  
RTCAMIN  
RTC year high  
RTC alarm minutes  
RTC alarm hours  
RTCAHOUR  
RTCADOW  
RTCADAY  
RTC alarm day of week  
RTC alarm days  
Table 37. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)  
REGISTER DESCRIPTION  
REGISTER  
OFFSET  
16-bit operand 1 - multiply  
MPY  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
16-bit operand 1 - signed multiply  
16-bit operand 1 - multiply accumulate  
16-bit operand 1 - signed multiply accumulate  
16-bit operand 2  
MPYS  
MAC  
MACS  
OP2  
16 × 16 result low word  
RESLO  
RESHI  
16 × 16 result high word  
16 × 16 sum extension register  
SUMEXT  
MPY32L  
MPY32H  
MPYS32L  
MPYS32H  
MAC32L  
MAC32H  
MACS32L  
MACS32H  
OP2L  
32-bit operand 1 - multiply low word  
32-bit operand 1 - multiply high word  
32-bit operand 1 - signed multiply low word  
32-bit operand 1 - signed multiply high word  
32-bit operand 1 - multiply accumulate low word  
32-bit operand 1 - multiply accumulate high word  
32-bit operand 1 - signed multiply accumulate low word  
32-bit operand 1 - signed multiply accumulate high word  
32-bit operand 2 - low word  
32-bit operand 2 - high word  
OP2H  
32 × 32 result 0 - least significant word  
32 × 32 result 1  
RES0  
RES1  
32 × 32 result 2  
RES2  
32 × 32 result 3 - most significant word  
MPY32 control register 0  
RES3  
MPY32CTL0  
34  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Table 38. DMA Module Control Registers (Base Address: 0500h)  
REGISTER DESCRIPTION  
REGISTER  
DMACTL0  
OFFSET  
OFFSET  
OFFSET  
OFFSET  
DMA module control 0  
DMA module control 1  
DMA module control 2  
DMA module control 3  
DMA module control 4  
DMA interrupt vector  
00h  
02h  
04h  
06h  
08h  
0Ah  
DMACTL1  
DMACTL2  
DMACTL3  
DMACTL4  
DMAIV  
Table 39. DMA Channel 0 Registers (Base Address: 0510h)  
REGISTER DESCRIPTION  
REGISTER  
DMA0CTL  
DMA channel 0 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
DMA channel 0 source address low  
DMA channel 0 source address high  
DMA channel 0 destination address low  
DMA channel 0 destination address high  
DMA channel 0 transfer size  
DMA0SAL  
DMA0SAH  
DMA0DAL  
DMA0DAH  
DMA0SZ  
Table 40. DMA Channel 1 Registers (Base Address: 0520h)  
REGISTER DESCRIPTION  
REGISTER  
DMA1CTL  
DMA channel 1 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
DMA channel 1 source address low  
DMA channel 1 source address high  
DMA channel 1 destination address low  
DMA channel 1 destination address high  
DMA channel 1 transfer size  
DMA1SAL  
DMA1SAH  
DMA1DAL  
DMA1DAH  
DMA1SZ  
Table 41. DMA Channel 2 Registers (Base Address: 0530h)  
REGISTER DESCRIPTION  
REGISTER  
DMA2CTL  
DMA channel 2 control  
00h  
02h  
04h  
06h  
08h  
0Ah  
DMA channel 2 source address low  
DMA channel 2 source address high  
DMA channel 2 destination address low  
DMA channel 2 destination address high  
DMA channel 2 transfer size  
DMA2SAL  
DMA2SAH  
DMA2DAL  
DMA2DAH  
DMA2SZ  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Table 42. USCI_A0 Registers (Base Address: 05C0h)  
REGISTER DESCRIPTION  
REGISTER  
UCA0CTL1  
OFFSET  
USCI control 1  
00h  
01h  
06h  
07h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
13h  
1Ch  
1Dh  
1Eh  
USCI control 0  
UCA0CTL0  
UCA0BR0  
USCI baud rate 0  
USCI baud rate 1  
UCA0BR1  
USCI modulation control  
USCI status  
UCA0MCTL  
UCA0STAT  
UCA0RXBUF  
UCA0TXBUF  
UCA0ABCTL  
UCA0IRTCTL  
UCA0IRRCTL  
UCA0IE  
USCI receive buffer  
USCI transmit buffer  
USCI LIN control  
USCI IrDA transmit control  
USCI IrDA receive control  
USCI interrupt enable  
USCI interrupt flags  
USCI interrupt vector word  
UCA0IFG  
UCA0IV  
Table 43. USCI_B0 Registers (Base Address: 05E0h)  
REGISTER DESCRIPTION  
REGISTER  
UCB0CTL1  
OFFSET  
USCI synchronous control 1  
USCI synchronous control 0  
USCI synchronous bit rate 0  
USCI synchronous bit rate 1  
USCI synchronous status  
USCI synchronous receive buffer  
USCI synchronous transmit buffer  
USCI I2C own address  
00h  
01h  
06h  
07h  
0Ah  
0Ch  
0Eh  
10h  
12h  
1Ch  
1Dh  
1Eh  
UCB0CTL0  
UCB0BR0  
UCB0BR1  
UCB0STAT  
UCB0RXBUF  
UCB0TXBUF  
UCB0I2COA  
UCB0I2CSA  
UCB0IE  
USCI I2C slave address  
USCI interrupt enable  
USCI interrupt flags  
UCB0IFG  
USCI interrupt vector word  
UCB0IV  
Table 44. ADC10_A Registers (Base Address: 0740h)  
REGISTER DESCRIPTION  
REGISTER  
ADC10CTL0  
OFFSET  
ADC10_A Control register 0  
00h  
02h  
04h  
06h  
08h  
0Ah  
12h  
1Ah  
1Ch  
1Eh  
ADC10_A Control register 1  
ADC10CTL1  
ADC10CTL2  
ADC10LO  
ADC10_A Control register 2  
ADC10_A Window Comparator Low Threshold  
ADC10_A Window Comparator High Threshold  
ADC10_A Memory Control Register 0  
ADC10_A Conversion Memory Register  
ADC10_A Interrupt Enable  
ADC10HI  
ADC10MCTL0  
ADC10MEM0  
ADC10IE  
ADC10_A Interrupt Flags  
ADC10IGH  
ADC10IV  
ADC10_A Interrupt Vector Word  
36  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Table 45. Comparator_B Registers (Base Address: 08C0h)  
REGISTER DESCRIPTION  
REGISTER  
CBCTL0  
OFFSET  
OFFSET  
OFFSET  
Comp_B control register 0  
Comp_B control register 1  
Comp_B control register 2  
Comp_B control register 3  
Comp_B interrupt register  
00h  
02h  
04h  
06h  
0Ch  
0Eh  
CBCTL1  
CBCTL2  
CBCTL3  
CBINT  
Comp_B interrupt vector word  
CBIV  
Table 46. AES Accelerator Registers (Base Address: 09C0h)  
REGISTER DESCRIPTION  
REGISTER  
AESACTL0  
AES accelerator control register 0  
Reserved  
00h  
02h  
AES accelerator status register  
AES accelerator key register  
AES accelerator data in register  
AES accelerator data out register  
AESASTAT  
AESAKEY  
AESADIN  
04h  
06h  
008h  
00Ah  
AESADOUT  
Table 47. LCD_B Registers (Base Address: 0A00h)  
REGISTER DESCRIPTION  
REGISTER  
LCDBCTL0  
LCD_B control register 0  
LCD_B control register 1  
LCD_B blinking control register  
LCD_B memory control register  
LCD_B voltage control register  
LCD_B port control register 0  
LCD_B port control register 1  
LCD_B charge pump control register  
LCD_B interrupt vector word  
LCD_B memory 1  
000h  
002h  
004h  
006h  
008h  
00Ah  
00Ch  
012h  
01Eh  
020h  
021h  
LCDBCTL1  
LCDBBLKCTL  
LCDBMEMCTL  
LCDBVCTL  
LCDBPCTL0  
LCDBPCTL1  
LCDBCTL0  
LCDBIV  
LCDM1  
LCD_B memory 2  
LCDM2  
...  
LCD_B memory 14  
LCDM14  
LCDBM1  
LCDBM2  
02Dh  
040h  
041h  
LCD_B blinking memory 1  
LCD_B blinking memory 2  
...  
LCD_B blinking memory 14  
LCDBM14  
04Dh  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Table 48. Radio Interface Registers (Base Address: 0F00h)  
REGISTER DESCRIPTION  
REGISTER  
RF1AIFCTL0  
OFFSET  
Radio interface control register 0  
Radio interface control register 1  
Radio interface error flag register  
Radio interface error vector word  
Radio interface interrupt vector word  
Radio instruction word register  
00h  
02h  
06h  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
20h  
22h  
24h  
28h  
2Ah  
2Ch  
30h  
32h  
34h  
36h  
38h  
RF1AIFCTL1  
RF1AIFERR  
RF1AIFERRV  
RF1AIFIV  
RF1AINSTRW  
RF1AINSTR1W  
RF1AINSTR2W  
RF1ADINW  
RF1ASTATW  
RF1ASTAT1W  
RF1AISTAT2W  
RF1ADOUTW  
RF1ADOUT1W  
RF1ADOUT2W  
RF1AIN  
Radio instruction word register, 1-byte auto-read  
Radio instruction word register, 2-byte auto-read  
Radio data in register  
Radio status word register  
Radio status word register, 1-byte auto-read  
Radio status word register, 2-byte auto-read  
Radio data out register  
Radio data out register, 1-byte auto-read  
Radio data out register, 2-byte auto-read  
Radio core signal input register  
Radio core interrupt flag register  
Radio core interrupt edge select register  
Radio core interrupt enable register  
Radio core interrupt vector word  
RF1AIFG  
RF1AIES  
RF1AIE  
RF1AIV  
38  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
Voltage applied at DVCC and AVCC pins to VSS  
-0.3 V to 4.1 V  
-0.3 V to (VCC + 0.3 V),  
4.1 V Maximum  
Voltage applied to any pin (excluding VCORE, RF_P, RF_N, and R_BIAS)(2)  
Voltage applied to VCORE, RF_P, RF_N, and R_BIAS(2)  
Input RF level at pins RF_P and RF_N  
Diode current at any device terminal  
-0.3 V to 2.0 V  
10 dBm  
±2 mA  
Storage temperature range(3), Tstg  
-55°C to 150°C  
95°C  
Maximum junction temperature, TJ  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS  
.
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow  
temperatures not higher than classified on the device label on the shipping boxes or reels.  
Thermal Packaging Characteristics CC430F51xx  
Low-K board  
High-K board  
48 QFN (RGZ)  
48 QFN (RGZ)  
98°C/W  
28°C/W  
θJA  
Junction-to-ambient thermal resistance, still air  
Thermal Packaging Characteristics CC430F61xx  
Low-K board  
High-K board  
64 QFN (RGC)  
64 QFN (RGC)  
83°C/W  
26°C/W  
θJA  
Junction-to-ambient thermal resistance, still air  
Recommended Operating Conditions  
MIN NOM  
MAX UNIT  
Supply voltage range applied at all DVCC and AVCC  
PMMCOREVx = 0  
(default after POR)  
1.8  
3.6  
V
pins(1)(2) during program execution and flash  
VCC  
programming with PMM default settings. Radio is not  
operational with PMMCOREVx = 0, 1.(3)  
PMMCOREVx = 1  
PMMCOREVx = 2  
PMMCOREVx = 3  
2.0  
2.2  
2.4  
3.6  
3.6  
3.6  
V
V
V
Supply voltage range applied at all DVCC and AVCC  
VCC  
pins(1)(2) during program execution, flash programming  
and radio operation with PMM default settings.(3)  
Supply voltage range applied at all DVCC and AVCC  
pins(1)(2) during program execution, flash programming  
and radio operation with PMMCOREVx = 2, high-side  
SVS level lowered (SVSHRVLx = SVSHRRRLx = 1) or  
high-side SVS disabled (SVSHE = 0).(4)(3)  
PMMCOREVx = 2,  
SVSHRVLx = SVSHRRRLx = 1  
or SVSHE = 0  
VCC  
2.0  
3.6  
V
Supply voltage applied at the exposed die attach VSS  
and AVSS pin  
VSS  
0
V
TA  
Operating free-air temperature  
Operating junction temperature  
Recommended capacitor at VCORE  
-40  
-40  
85  
85  
°C  
°C  
nF  
TJ  
CVCORE  
470  
f
SYSTEM 16 MHz,  
CVCORE  
CDVCC  
Reduced capacitor at VCORE  
100  
4.7  
nF  
µF  
PMMCOREVx 2, VCC 2.2 V  
Recommended capacitor at DVCC  
(1) It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be  
tolerated during power up and operation.  
(2) The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the PMM, SVS High Side threshold  
parameters for the exact values and further details.  
(3) Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet.  
(4) Lowering the high-side SVS level or disabling the high-side SVS might cause the LDO to operate out of regulation but the core voltage  
still stays within its limits and is still supervised by the low-side SVS to ensure reliable operation.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
MAX UNIT  
Recommended Operating Conditions (continued)  
MIN NOM  
PMMCOREVx = 0  
(default condition)  
0
8
MHz  
PMMCOREVx = 1  
PMMCOREVx = 2  
PMMCOREVx = 3  
0
12 MHz  
16 MHz  
20 MHz  
W
fSYSTEM  
Processor (MCLK) frequency(5) (see Figure 2)  
0
0
PINT  
PIO  
Internal power dissipation  
VCC × IDVCC  
(VCC - VIOH) × IIOH  
VIOL × IIOL  
+
I/O power dissipation of I/O pins powered by DVCC  
Maximum allowed power dissipation, PMAX > PIO + PINT  
W
W
PMAX  
(TJ - TA) / θJA  
(5) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.  
20  
3
16  
2, 3  
2
12  
8
1, 2  
1, 2, 3  
1
0
0, 1  
0, 1, 2  
0, 1, 2, 3  
0
1.8  
2.0  
2.2  
2.4  
3.6  
Supply Voltage - V  
The numbers within the fields denote the supported PMMCOREVx settings.  
Figure 2. Maximum System Frequency  
40  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Electrical Characteristics  
Active Mode Supply Current Into VCC Excluding External Current  
over recommended operating free-air temperature (unless otherwise noted)(1)(2)(3)  
FREQUENCY (fDCO = fMCLK = fSMCLK  
)
EXECUTION  
MEMORY  
PARAMETER  
VCC  
PMMCOREVx  
1 MHz  
8 MHz 12 MHz 16 MHz  
20 MHz  
UNIT  
TYP MAX TYP MAX TYP MAX TYP MAX TYP MAX  
0
1
2
3
0
1
2
3
0.23 0.26 1.35 1.60  
0.25 0.28 1.55  
0.27 0.30 1.75  
0.28 0.32 1.85  
0.18 0.20 0.95 1.10  
0.20 0.22 1.10  
0.21 0.24 1.20  
0.22 0.25 1.30  
2.30 2.65  
2.60  
(4)  
IAM, Flash  
Flash  
RAM  
3.0 V  
mA  
3.45 3.90  
3.65  
2.75  
4.55 5.10  
3.10 3.60  
1.60 1.85  
1.80  
(5)  
IAM, RAM  
3.0 V  
mA  
2.40 2.70  
2.50  
1.90  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load  
capacitance are chosen to closely match the required 12.5 pF.  
(3) Characterized with program executing typical data processing.  
fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency.  
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0.  
(4) Active mode supply current when program executes in flash at a nominal supply voltage of 3.0 V.  
(5) Active mode supply current when program executes in RAM at a nominal supply voltage of 3.0 V.  
Typical Characteristics - Active Mode Supply Currents  
Active Mode Supply Current  
vs  
MCLK Frequency  
5
VCC = 3.0 V  
PMMVCOREx=3  
4
3
PMMVCOREx=2  
2
PMMVCOREx=1  
1
PMMVCOREx=0  
0
0
5
10  
15  
20  
MCLK Frequency - MHz  
Figure 3.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Low-Power Mode Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(2)  
Temperature (TA)  
PARAMETER  
VCC  
PMMCOREVx  
-40°C  
TYP MAX  
25°C  
MAX  
100  
60°C  
MAX  
100  
85°C  
TYP MAX  
UNIT  
TYP  
80  
TYP  
80  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
0
3
80  
90  
100  
110  
11  
80  
90  
100  
110  
11  
ILPM0,1MHz  
Low-power mode 0(3)(4)  
Low-power mode 2(5)(4)  
µA  
µA  
90  
6.5  
7.5  
2.0  
2.1  
2.2  
2.2  
1.1  
1.2  
1.3  
1.3  
1.0  
1.1  
1.2  
1.2  
0.9  
1.0  
0.25  
0.3  
110  
11  
90  
6.5  
7.5  
3.0  
3.2  
3.4  
3.5  
2.1  
2.3  
2.5  
2.6  
2.0  
2.2  
2.4  
2.5  
1.0  
1.2  
0.4  
0.4  
110  
11  
0
6.5  
7.5  
1.8  
1.9  
2.0  
2.0  
0.9  
1.0  
1.1  
1.1  
0.8  
0.9  
1.0  
1.0  
0.7  
1.0  
0.2  
0.3  
6.5  
7.5  
4.4  
4.8  
5.1  
5.3  
3.5  
3.9  
4.2  
4.4  
3.4  
3.8  
4.1  
4.3  
1.2  
1.4  
0.6  
0.7  
ILPM2  
3
12  
12  
12  
12  
0
2.6  
4.0  
5.9  
1
Low-power mode 3,  
crystal mode(6)(4)  
ILPM3,XT1LF  
ILPM3,VLO,WDT  
ILPM4  
3.0 V  
3.0 V  
3.0 V  
µA  
µA  
µA  
2
3
2.9  
2.3  
4.8  
3.7  
7.4  
5.6  
0
Low-power mode 3,  
VLO mode, only WDT  
enabled(7)(4)  
1
2
3
2.6  
2.2  
4.5  
3.6  
7.1  
5.5  
0
1
Low-power mode 4(8)(4)  
2
3
2.5  
1.4  
1.5  
0.7  
0.8  
4.4  
1.5  
1.7  
0.9  
0.9  
7.0  
1.7  
1.8  
1.1  
1.2  
2.2 V  
3.0 V  
2.2 V  
3.0 V  
n/a  
n/a  
n/a  
n/a  
µA  
µA  
µA  
µA  
ILPM3.5  
Low-power mode 3.5(9)  
Low-power mode 4.5(10)  
ILPM4.5  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load  
capacitance are chosen to closely match the required 12.5 pF.  
(3) Current for watchdog timer clocked by SMCLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0); fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz  
(4) Current for brownout and high-side supervisor (SVSH) normal mode included. Low-side supervisor (SVSL) and low-side monitor (SVML)  
disabled. High-side monitor disabled (SVMH). RAM retention enabled.  
(5) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low frequency crystal operation  
(XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2); fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz; DCO setting = 1  
MHz operation, DCO bias generator enabled.  
(6) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low frequency crystal operation  
(XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz  
(7) Current for watchdog timer clocked by VLO included.  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz  
(8) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4); fDCO = fACLK = fMCLK = fSMCLK = 0 MHz  
(9) Internal regulator disabled. No data retention except Backup RAM. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF =  
1 (LPMx.5), RTC active (Calendar mode) with RTCHOLD = 0 (LPM3.5) and fXT1 = 32768 Hz, fDCO = fACLK = fMCLK = fSMCLK = 0 MHz.  
(10) Internal regulator disabled. No data retention except bBackup RAM. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF  
= 1 (LPMx.5), RTC disabled with RTCHOLD = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz.  
42  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Typical Characteristics - Low-Power Mode Supply Currents  
LPM3 Supply Current  
vs  
LPM4 Supply Current  
vs  
Temperature  
Temperature  
5
4
3
2
1
0
5
4
3
2
1
0
VCC = 3.0 V  
VDD = 3.0 V  
PMMCOREVx = 3  
PMMCOREVx = 0  
PMMCOREVx = 3  
PMMCOREVx = 0  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TA - Free-Air Temperature - °C  
TA - Free-Air Temperature - °C  
Figure 4.  
Figure 5.  
LPM3.5 Supply Current  
LPM4.5 Supply Current  
vs  
vs  
Temperature  
Temperature  
VCC = 3.0 V  
VCC = 3.0 V  
2
2
1.5  
1.5  
1
1
0.5  
0.5  
0
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TA - Free-Air Temperature - ˚C  
TA - Free-Air Temperature - °C  
Figure 6.  
Figure 7.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
(2)  
Temperature (TA)  
PARAMETER  
VCC  
PMMCOREVx  
-40°C  
TYP MAX  
3.1  
25°C  
TYP MAX  
3.3 4.0  
60°C  
TYP MAX  
4.3  
85°C  
TYP MAX  
UNIT  
0
1
2
3
0
1
2
0
1
2
3
5.8  
6.2  
6.5  
6.7  
7.4  
Low-power mode 3  
(LPM3) current, LCD 4-  
mux mode, internal  
biasing, charge pump  
disabled(3) (4)  
ILPM3  
LCD,  
int. bias  
3.2  
3.3  
3.3  
3.4  
3.5  
3.5  
4.0  
4.1  
4.2  
4.2  
4.3  
4.5  
4.5  
4.5  
4.7  
4.8  
3.0 V  
2.2 V  
3.0 V  
µA  
µA  
4.3  
8.9  
Low-power mode 3  
(LPM3) current, LCD 4-  
mux mode, internal  
biasing, charge pump  
enabled(3) (5)  
ILPM3  
LCD,CP  
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.  
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load  
capacitance are chosen to closely match the required 12.5 pF.  
(3) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).  
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz  
Current for brownout, high-side supervisor (SVSH) normal mode included. Low-side supervisor and monitors disabled (SVSL, SVML).  
High side monitor disabled (SVMH). RAM retention enabled.  
(4) LCDMx = 11 (4-mux mode), LCDREXT=0, LCDEXTBIAS=0 (internal biasing), LCD2B=0 (1/3 bias), LCDCPEN=0 (charge pump  
disabled), LCDSSEL=0, LCDPREx=101, LCDDIVx=00011 (fLCD = 32768 Hz/32/4 = 256 Hz)  
Even segments S0, S2,...=0, odd segments S1, S3,...=1. No LCD panel load.  
(5) LCDMx = 11 (4-mux mode), LCDREXT=0, LCDEXTBIAS=0 (internal biasing), LCD2B=0 (1/3 bias), LCDCPEN = 1 (charge pump  
enabled), VLCDx = 1000 (VLCD= 3 V typ.), LCDSSEL=0, LCDPREx=101, LCDDIVx=00011 (fLCD = 32768 Hz/32/4 = 256 Hz)  
Even segments S0, S2,...=0, odd segments S1, S3,...=1. No LCD panel load.  
44  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Digital Inputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
1.8 V  
3 V  
MIN  
0.80  
1.50  
0.45  
0.75  
0.3  
TYP  
MAX UNIT  
1.40  
V
VIT+  
Positive-going input threshold voltage  
2.10  
1.8 V  
3 V  
1.00  
V
VIT-  
Negative-going input threshold voltage  
1.65  
1.8 V  
3 V  
0.8  
V
Vhys  
RPull  
Input voltage hysteresis (VIT+ - VIT-  
)
0.4  
1.0  
For pullup: VIN = VSS  
For pulldown: VIN = VCC  
,
Pullup/pulldown resistor  
20  
35  
5
50  
kΩ  
CI  
Input capacitance  
VIN = VSS or VCC  
(1)(2)  
pF  
nA  
Ilkg(Px.x)  
High-impedance leakage current  
±50  
Ports with interrupt capability  
(see block diagram and  
terminal function descriptions)  
External interrupt timing (external trigger pulse  
duration to set interrupt flag)(3)  
t(int)  
1.8 V, 3 V  
20  
ns  
(1) The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.  
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is  
disabled.  
(3) An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals  
shorter than t(int)  
.
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
MAX UNIT  
Digital Outputs  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
High-level output voltage,  
Reduced Drive Strength(1)  
VOH  
VOH  
VOH  
VOH  
VOL  
VOL  
VOL  
VOL  
VOH  
I(OHmax) = -1 mA, PxDS.y = 0(2)  
1.8 V  
VCC - 0.25  
VCC  
VCC  
VCC  
VCC  
V
V
V
V
V
V
V
V
V
High-level output voltage,  
Reduced Drive Strength(1)  
I(OHmax) = -3 mA, PxDS.y = 0(3)  
I(OHmax) = -2 mA, PxDS.y = 0(2)  
I(OHmax) = -6 mA, PxDS.y = 0(3)  
I(OLmax) = 1 mA, PxDS.y = 0(2)  
I(OLmax) = 3 mA, PxDS.y = 0(3)  
I(OLmax) = 2 mA, PxDS.y = 0(2)  
I(OLmax) = 6 mA, PxDS.y = 0(3)  
I(OHmax) = -3 mA, PxDS.y = 1(2)  
1.8 V  
3.0 V  
3.0 V  
1.8 V  
1.8 V  
3.0 V  
3.0 V  
1.8 V  
VCC - 0.60  
VCC - 0.25  
VCC - 0.60  
High-level output voltage,  
Reduced Drive Strength(1)  
High-level output voltage,  
Reduced Drive Strength(1)  
Low-level output voltage,  
Reduced Drive Strength(1)  
VSS VSS + 0.25  
VSS VSS + 0.60  
VSS VSS + 0.25  
VSS VSS + 0.60  
Low-level output voltage,  
Reduced Drive Strength(1)  
Low-level output voltage,  
Reduced Drive Strength(1)  
Low-level output voltage,  
Reduced Drive Strength(1)  
High-level output voltage,  
Full Drive Strength  
VCC - 0.25  
VCC  
VCC  
VCC  
VCC  
High-level output voltage,  
Full Drive Strength  
VOH  
VOH  
VOH  
VOL  
VOL  
VOL  
VOL  
I(OHmax) = -10 mA, PxDS.y = 1(3)  
I(OHmax) = -5 mA, PxDS.y = 1(2)  
I(OHmax) = -15 mA, PxDS.y = 1(3)  
I(OLmax) = 3 mA, PxDS.y = 1(2)  
I(OLmax) = 10 mA, PxDS.y = 1(3)  
I(OLmax) = 5 mA, PxDS.y = 1(2)  
I(OLmax) = 15 mA, PxDS.y = 1(3)  
1.8 V  
3 V  
VCC - 0.60  
VCC - 0.25  
VCC - 0.60  
V
V
V
V
V
V
V
High-level output voltage,  
Full Drive Strength  
High-level output voltage,  
Full Drive Strength  
3 V  
Low-level output voltage,  
Full Drive Strength  
1.8 V  
1.8 V  
3 V  
VSS VSS + 0.25  
Low-level output voltage,  
Full Drive Strength  
VSS VSS + 0.60  
Low-level output voltage,  
Full Drive Strength  
VSS VSS + 0.25  
Low-level output voltage,  
Full Drive Strength  
3 V  
VSS VSS + 0.60  
VCC = 1.8 V,  
PMMCOREVx = 0  
16  
25  
16  
25  
Port output frequency  
(with load)  
(4)(5)  
fPx.y  
CL = 20 pF, RL  
MHz  
MHz  
VCC = 3 V,  
PMMCOREVx = 2  
VCC = 1.8 V,  
PMMCOREVx = 0  
fPort_CLK  
Clock output frequency  
CL = 20 pF(5)  
VCC = 3 V,  
PMMCOREVx = 2  
(1) Selecting reduced drive strength may reduce EMI.  
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
(3) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage  
drop specified.  
(4) A resistive divider with 2 × R1 between VCC and VSS is used as load. The output is connected to the center tap of the divider. For full  
drive strength, R1 = 550 Ω. For reduced drive strength, R1 = 1.6 kΩ. CL = 20 pF is connected to the output to VSS  
.
(5) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.  
46  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Typical Characteristics - Outputs, Reduced Drive Strength (PxDS.y = 0)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
25  
20  
15  
10  
5
8
7
6
5
4
3
2
1
0
VCC = 3.0 V  
P4.3  
VCC = 1.8 V  
TA = 25°C  
P4.3  
TA = 25°C  
TA = 85°C  
TA = 85°C  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
VOL - Low-Level Output Voltage - V  
VOL - Low-Level Output Voltage - V  
Figure 8.  
Figure 9.  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0
0
VCC = 3.0 V  
P4.3  
VCC = 1.8 V  
P4.3  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-5  
-10  
-15  
-20  
-25  
TA = 85°C  
TA = 25°C  
TA = 85°C  
TA = 25°C  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
VOH - High-Level Output Voltage - V  
VOH - High-Level Output Voltage - V  
Figure 10.  
Figure 11.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Typical Characteristics - Outputs, Full Drive Strength (PxDS.y = 1)  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
TYPICAL LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
60  
50  
40  
30  
20  
10  
0
25  
20  
15  
10  
5
VCC = 3.0 V  
P4.3  
TA = 25°C  
TA = 85°C  
VCC = 1.8 V  
P4.3  
TA = 25°C  
TA = 85°C  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
VOL - Low-Level Output Voltage - V  
VOL - Low-Level Output Voltage - V  
Figure 12.  
Figure 13.  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
TYPICAL HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0
0
VCC = 3.0 V  
P4.3  
VCC = 1.8 V  
P4.3
-10  
-20  
-30  
-40  
-50  
-60  
-5  
-10  
-15  
-20  
-25  
TA = 85°C  
TA = 25°C  
TA = 85°C  
TA = 25°C  
1.5  
0
0.5  
1
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
VOH - High-Level Output Voltage - V  
VOH - High-Level Output Voltage - V  
Figure 14.  
Figure 15.  
48  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Crystal Oscillator, XT1, Low-Frequency Mode(1)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 1, TA = 25°C  
0.075  
0.170  
0.290  
32768  
Differential XT1 oscillator crystal  
current consumption from lowest  
drive setting, LF mode  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 2, TA = 25°C  
ΔIDVCC.LF  
3 V  
µA  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C  
XT1 oscillator crystal frequency,  
LF mode  
fXT1,LF0  
XTS = 0, XT1BYPASS = 0  
Hz  
XT1 oscillator logic-level square-  
wave input frequency, LF mode  
fXT1,LF,SW  
XTS = 0, XT1BYPASS = 1(2)(3)  
10 32.768  
210  
50 kHz  
XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0,  
fXT1,LF = 32768 Hz, CL,eff = 6 pF  
Oscillation allowance for  
LF crystals(4)  
OALF  
kΩ  
XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1,  
fXT1,LF = 32768 Hz, CL,eff = 12 pF  
300  
XTS = 0, XCAPx = 0(6)  
XTS = 0, XCAPx = 1  
XTS = 0, XCAPx = 2  
XTS = 0, XCAPx = 3  
2
5.5  
Integrated effective load  
capacitance, LF mode(5)  
CL,eff  
pF  
8.5  
12.0  
XTS = 0, Measured at ACLK,  
fXT1,LF = 32768 Hz  
Duty cycle, LF mode  
30  
10  
70  
%
Oscillator fault frequency,  
LF mode(7)  
fFault,LF  
XTS = 0(8)  
10000  
Hz  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 0,  
TA = 25°C, CL,eff = 6 pF  
1000  
500  
tSTART,LF  
Startup time, LF mode  
3 V  
ms  
fOSC = 32768 Hz, XTS = 0,  
XT1BYPASS = 0, XT1DRIVEx = 3,  
TA = 25°C, CL,eff = 12 pF  
(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.  
(a) Keep the trace between the device and the crystal as short as possible.  
(b) Design a good ground plane around the oscillator pins.  
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.  
(2) When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in  
the Schmitt-trigger Inputs section of this datasheet.  
(3) Maximum frequency of operation of the entire device cannot be exceeded.  
(4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the  
XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following  
guidelines, but should be evaluated based on the actual crystal selected for the application:  
(a) For XT1DRIVEx = 0, CL,eff 6 pF  
(b) For XT1DRIVEx = 1, 6 pF CL,eff 9 pF  
(c) For XT1DRIVEx = 2, 6 pF CL,eff 10 pF  
(d) For XT1DRIVEx = 3, CL,eff 6 pF  
(5) Includes parasitic bond and package capacitance (approximately 2 pF per pin).  
Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a  
correct setup, the effective load capacitance should always match the specification of the used crystal.  
(6) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.  
(7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.  
Frequencies in between might set the flag.  
(8) Measured with logic-level input frequency but also applies to operation with crystals.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Internal Very-Low-Power Low-Frequency Oscillator (VLO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
VLO frequency  
VLO frequency temperature drift  
TEST CONDITIONS  
VCC  
MIN  
TYP  
9.4  
0.5  
4
MAX UNIT  
14 kHz  
%/°C  
fVLO  
Measured at ACLK  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
6
dfVLO/dT  
Measured at ACLK(1)  
Measured at ACLK(2)  
Measured at ACLK  
dfVLO/dVCC VLO frequency supply voltage drift  
Duty cycle  
%/V  
40  
50  
60  
%
(1) Calculated using the box method: (MAX(-40 to 85°C) - MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C - (-40°C))  
(2) Calculated using the box method: (MAX(1.8 to 3.6 V) - MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V - 1.8 V)  
Internal Reference, Low-Frequency Oscillator (REFO)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
3
MAX UNIT  
IREFO  
fREFO  
REFO oscillator current consumption TA = 25°C  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
3 V  
µA  
Hz  
REFO frequency calibrated  
REFO absolute tolerance calibrated  
REFO absolute tolerance calibrated  
REFO frequency temperature drift  
REFO frequency supply voltage drift  
Duty cycle  
Measured at ACLK  
32768  
Full temperature range  
±3.5  
±1.5  
%
%
TA = 25°C  
dfREFO/dT  
Measured at ACLK(1)  
Measured at ACLK(2)  
Measured at ACLK  
40%/60% duty cycle  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
1.8 V to 3.6 V  
0.01  
1.0  
50  
%/°C  
%/V  
%
dfREFO/dVCC  
40  
60  
tSTART  
REFO startup time  
25  
µs  
(1) Calculated using the box method: (MAX(-40 to 85°C) - MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C - (-40°C))  
(2) Calculated using the box method: (MAX(1.8 to 3.6 V) - MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V - 1.8 V)  
50  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
DCO Frequency  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DCORSELx = 0, DCOx = 0, MODx = 0  
DCORSELx = 0, DCOx = 31, MODx = 0  
DCORSELx = 1, DCOx = 0, MODx = 0  
DCORSELx = 1, DCOx = 31, MODx = 0  
DCORSELx = 2, DCOx = 0, MODx = 0  
DCORSELx = 2, DCOx = 31, MODx = 0  
DCORSELx = 3, DCOx = 0, MODx = 0  
DCORSELx = 3, DCOx = 31, MODx = 0  
DCORSELx = 4, DCOx = 0, MODx = 0  
DCORSELx = 4, DCOx = 31, MODx = 0  
DCORSELx = 5, DCOx = 0, MODx = 0  
DCORSELx = 5, DCOx = 31, MODx = 0  
DCORSELx = 6, DCOx = 0, MODx = 0  
DCORSELx = 6, DCOx = 31, MODx = 0  
DCORSELx = 7, DCOx = 0, MODx = 0  
DCORSELx = 7, DCOx = 31, MODx = 0  
MIN  
0.07  
0.70  
0.15  
1.47  
0.32  
3.17  
0.64  
6.07  
1.3  
TYP  
MAX UNIT  
0.20 MHz  
1.70 MHz  
0.36 MHz  
3.45 MHz  
0.75 MHz  
7.38 MHz  
1.51 MHz  
14.0 MHz  
3.2 MHz  
fDCO(0,0)  
fDCO(0,31)  
fDCO(1,0)  
fDCO(1,31)  
fDCO(2,0)  
fDCO(2,31)  
fDCO(3,0)  
fDCO(3,31)  
fDCO(4,0)  
fDCO(4,31)  
fDCO(5,0)  
fDCO(5,31)  
fDCO(6,0)  
fDCO(6,31)  
fDCO(7,0)  
fDCO(7,31)  
DCO frequency (0, 0)  
DCO frequency (0, 31)  
DCO frequency (1, 0)  
DCO frequency (1, 31)  
DCO frequency (2, 0)  
DCO frequency (2, 31)  
DCO frequency (3, 0)  
DCO frequency (3, 31)  
DCO frequency (4, 0)  
DCO frequency (4, 31)  
DCO frequency (5, 0)  
DCO frequency (5, 31)  
DCO frequency (6, 0)  
DCO frequency (6, 31)  
DCO frequency (7, 0)  
DCO frequency (7, 31)  
12.3  
2.5  
28.2 MHz  
6.0 MHz  
23.7  
4.6  
54.1 MHz  
10.7 MHz  
88.0 MHz  
19.6 MHz  
135 MHz  
39.0  
8.5  
60  
Frequency step between range  
DCORSEL and DCORSEL + 1  
SDCORSEL  
SDCO  
SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO)  
1.2  
2.3 ratio  
Frequency step between tap  
DCO and DCO + 1  
SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO)  
Measured at SMCLK  
1.02  
40  
1.12 ratio  
Duty cycle  
50  
0.1  
1.9  
60  
%
dfDCO/dT  
DCO frequency temperature drift fDCO = 1 MHz  
%/°C  
%/V  
dfDCO/dVCC  
DCO frequency voltage drift  
fDCO = 1 MHz  
Typical DCO Frequency, VCC = 3.0 V,TA = 25°C  
100  
10  
DCOx = 31  
1
DCOx = 0  
0.1  
0
1
2
3
4
5
6
7
DCORSEL  
Figure 16. Typical DCO frequency  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
MAX UNIT  
PMM, Brown-Out Reset (BOR)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
BORH on voltage,  
DVCC falling level  
V(DVCC_BOR_IT-)  
V(DVCC_BOR_IT+)  
| dDVCC/dt | < 3 V/s  
1.45  
V
V
BORH off voltage,  
DVCC rising level  
| dDVCC/dt | < 3 V/s  
0.80  
1.30  
1.50  
250  
V(DVCC_BOR_hys) BORH hysteresis  
60  
2
mV  
µs  
tRESET  
Pulse duration required at RST/NMI pin to accept a reset  
PMM, Core Voltage  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
2.4 V DVCC 3.6 V  
2.2 V DVCC 3.6 V  
2.0 V DVCC 3.6 V  
1.8 V DVCC 3.6 V  
2.4 V DVCC 3.6 V  
2.2 V DVCC 3.6 V  
2.0 V DVCC 3.6 V  
1.8 V DVCC 3.6 V  
MIN  
TYP  
1.90  
1.80  
1.60  
1.40  
1.93  
1.90  
1.70  
1.50  
MAX UNIT  
VCORE3(AM)  
VCORE2(AM)  
VCORE1(AM)  
VCORE0(AM)  
VCORE3(LPM)  
VCORE2(LPM)  
VCORE1(LPM)  
VCORE0(LPM)  
Core voltage, active mode, PMMCOREV = 3  
Core voltage, active mode, PMMCOREV = 2  
Core voltage, active mode, PMMCOREV = 1  
Core voltage, active mode, PMMCOREV = 0  
Core voltage, low-current mode, PMMCOREV = 3  
Core voltage, low-current mode, PMMCOREV = 2  
Core voltage, low-current mode, PMMCOREV = 1  
Core voltage, low-current mode, PMMCOREV = 0  
V
V
V
V
V
V
V
V
52  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
PMM, SVS High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVSHE = 0, DVCC = 3.6 V  
MIN  
TYP  
MAX UNIT  
0
200  
1.5  
nA  
nA  
I(SVSH)  
SVS current consumption  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0  
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1  
SVSHE = 1, SVSHRVL = 0  
µA  
1.55  
1.75  
1.95  
2.05  
1.60  
1.80  
2.00  
2.10  
2.25  
2.52  
2.85  
2.85  
1.62  
1.82  
2.02  
2.12  
1.70  
1.90  
2.10  
2.20  
2.35  
2.65  
3.00  
3.00  
2.5  
1.69  
SVSHE = 1, SVSHRVL = 1  
1.89  
V
V(SVSH_IT-) SVSH on voltage level(1)  
SVSHE = 1, SVSHRVL = 2  
2.09  
SVSHE = 1, SVSHRVL = 3  
2.19  
1.80  
2.00  
2.20  
SVSHE = 1, SVSMHRRL = 0  
SVSHE = 1, SVSMHRRL = 1  
SVSHE = 1, SVSMHRRL = 2  
SVSHE = 1, SVSMHRRL = 3  
2.30  
V
V(SVSH_IT+) SVSH off voltage level(1)  
SVSHE = 1, SVSMHRRL = 4  
2.50  
SVSHE = 1, SVSMHRRL = 5  
2.78  
3.15  
3.15  
SVSHE = 1, SVSMHRRL = 6  
SVSHE = 1, SVSMHRRL = 7  
SVSHE = 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1  
SVSHE = 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0  
SVSHE = 0 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1  
SVSHE = 0 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0  
tpd(SVSH)  
SVSH propagation delay  
SVSH on or off delay time  
µs  
µs  
20  
12.5  
100  
t(SVSH)  
dVDVCC/dt DVCC rise time  
0
1000  
V/s  
(1) The SVSH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the CC430 Family User's Guide (SLAU259) on recommended settings and use.  
PMM, SVM High Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVMHE = 0, DVCC = 3.6 V  
MIN  
TYP  
0
MAX UNIT  
nA  
I(SVMH)  
SVMH current consumption  
SVMHE= 1, DVCC = 3.6 V, SVMHFP = 0  
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1  
SVMHE = 1, SVSMHRRL = 0  
200  
1.5  
nA  
µA  
1.60  
1.80  
2.00  
2.10  
2.25  
2.52  
2.85  
2.85  
1.70  
1.90  
2.10  
2.20  
2.35  
2.65  
3.00  
3.00  
3.75  
2.5  
1.80  
SVMHE = 1, SVSMHRRL = 1  
2.00  
SVMHE = 1, SVSMHRRL = 2  
2.20  
SVMHE = 1, SVSMHRRL = 3  
2.30  
V(SVMH)  
SVMH on or off voltage level(1)  
SVMHE = 1, SVSMHRRL = 4  
2.50  
2.78  
3.15  
3.15  
V
SVMHE = 1, SVSMHRRL = 5  
SVMHE = 1, SVSMHRRL = 6  
SVMHE = 1, SVSMHRRL = 7  
SVMHE = 1, SVMHOVPE = 1  
SVMHE = 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1  
SVMHE = 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0  
SVMHE = 0 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1  
SVMHE = 0 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0  
tpd(SVMH)  
SVMH propagation delay  
SVMH on or off delay time  
µs  
µs  
20  
12.5  
100  
t(SVMH)  
(1) The SVMH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage  
Supervisor chapter in the CC430 Family User's Guide (SLAU259) on recommended settings and use.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
PMM, SVS Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVSLE = 0, PMMCOREV = 2  
MIN  
TYP  
0
MAX UNIT  
nA  
nA  
µA  
I(SVSL)  
SVSL current consumption  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 0  
200  
1.5  
2.5  
20  
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1  
SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1  
SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0  
SVSLE = 0 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1  
SVSLE = 0 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0  
tpd(SVSL)  
SVSL propagation delay  
SVSL on or off delay time  
µs  
µs  
12.5  
100  
t(SVSL)  
PMM, SVM Low Side  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SVMLE = 0, PMMCOREV = 2  
MIN  
TYP  
0
MAX UNIT  
nA  
nA  
µA  
I(SVML)  
SVML current consumption  
SVMLE= 1, PMMCOREV = 2, SVMLFP = 0  
200  
1.5  
2.5  
20  
SVMLE= 1, PMMCOREV = 2, SVMLFP = 1  
SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1  
SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0  
SVMLE = 0 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1  
SVMLE = 0 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0  
tpd(SVML)  
SVML propagation delay  
SVML on or off delay time  
µs  
µs  
12.5  
100  
t(SVML)  
Wake-up From Low-Power Modes and Reset  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
PMMCOREV = SVSMLRRL = n  
(where n = 0, 1, 2, or 3),  
SVSLFP = 1  
f
MCLK 4.0 MHz  
5
tWAKE-UP-  
FAST  
Wake-up time from LPM2, LPM3, or  
LPM4 to active mode(1)  
µs  
fMCLK < 4.0 MHz  
6
tWAKE-UP-  
SLOW  
Wake-up time from LPM2, LPM3 or  
LPM4 to active mode(2)  
PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3),  
SVSLFP = 0  
150 165 µs  
tWAKE-UP-  
LPM5  
Wake-up time from LPMx.5 to active  
mode(3)  
2
2
3
3
ms  
ms  
tWAKE-UP-  
RESET  
Wake-up time from RST or BOR  
event to active mode(3)  
(1) This value represents the time from the wakeup event to the first active edge of MCLK. The wakeup time depends on the performance  
mode of the low-side supervisor (SVSL) and low side monitor (SVML). Fastest wakeup times are possible with SVSLand SVML in full  
performance mode or disabled when operating in AM, LPM0, and LPM1. Various options are available for SVSLand SVML while  
operating in LPM2, LPM3, and LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the CC430 Family  
User's Guide (SLAU259).  
(2) This value represents the time from the wakeup event to the first active edge of MCLK. The wakeup time depends on the performance  
mode of the low-side supervisor (SVSL) and low side monitor (SVML). In this case, the SVSLand SVML are in normal mode (low current)  
mode when operating in AM, LPM0, and LPM1. Various options are available for SVSLand SVML while operating in LPM2, LPM3, and  
LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the CC430 Family User's Guide (SLAU259).  
(3) This value represents the time from the wakeup event to the reset vector execution.  
Timer_A  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK,  
External: TACLK,  
Duty cycle = 50% ± 10%  
1.8 V,  
3.0 V  
fTA  
Timer_A input clock frequency  
25 MHz  
All capture inputs, minimum pulse  
duration required for capture  
1.8 V,  
3.0 V  
tTA,cap  
Timer_A capture timing  
20  
ns  
54  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
USCI (UART Mode) Recommended Operating Conditions  
PARAMETER  
CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
External: UCLK  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ± 10%  
BITCLK clock frequency  
(equals baud rate in MBaud)  
fBITCLK  
1
MHz  
USCI (UART Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2.2 V  
3 V  
MIN  
50  
TYP  
MAX UNIT  
600  
ns  
tτ  
UART receive deglitch time(1)  
50  
600  
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are  
correctly recognized their width should exceed the maximum specification of the deglitch time.  
USCI (SPI Master Mode) Recommended Operating Conditions  
PARAMETER  
CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK  
Duty cycle = 50% ± 10%  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
USCI (SPI Master Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise  
noted)(1)Figure 17Figure 18  
PMM  
COREVx  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
1.8 V  
3.0 V  
2.4 V  
3.0 V  
1.8 V  
3.0 V  
2.4 V  
3.0 V  
1.8 V  
3.0 V  
2.4 V  
3.0 V  
1.8 V  
3.0 V  
2.4 V  
3.0 V  
55  
38  
30  
25  
0
0
ns  
tSU,MI  
SOMI input data setup time  
3
0
3
0
3
0
3
ns  
ns  
ns  
0
tHD,MI  
SOMI input data hold time  
SIMO output data valid time(2)  
SIMO output data hold time(3)  
0
0
20  
ns  
18  
UCLK edge to SIMO valid,  
CL = 20 pF  
tVALID,MO  
16  
ns  
15  
-10  
-8  
ns  
ns  
tHD,MO  
CL = 20 pF  
-10  
-8  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)).  
For the slave's parameters tSU,SI(Slave) and tVALID,SO(Slave) see the SPI parameters of the attached slave.  
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 17 and Figure 18.  
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data  
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in  
Figure 17 and Figure 18.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
1/fUCxCLK  
CKPL = 0  
UCLK  
CKPL = 1  
tLO/HI  
tLO/HI  
tSU,MI  
tHD,MI  
SOMI  
tHD,MO  
tVALID,MO  
SIMO  
Figure 17. SPI Master Mode, CKPH = 0  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,MI  
tSU,MI  
SOMI  
tHD,MO  
tVALID,MO  
SIMO  
Figure 18. SPI Master Mode, CKPH = 1  
56  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
 
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
USCI (SPI Slave Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise  
noted)(1)Figure 19Figure 20  
PMM  
COREVx  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
1.8 V  
3.0 V  
2.4 V  
3.0 V  
1.8 V  
3.0 V  
2.4 V  
3.0 V  
1.8 V  
3.0 V  
2.4 V  
3.0 V  
1.8 V  
3.0 V  
2.4 V  
3.0 V  
1.8 V  
3.0 V  
2.4 V  
3.0 V  
1.8 V  
3.0 V  
2.4 V  
3.0 V  
1.8 V  
3.0 V  
2.4 V  
3.0 V  
1.8 V  
3.0 V  
2.4 V  
3.0 V  
11  
8
0
tSTE,LEAD  
tSTE,LAG  
tSTE,ACC  
tSTE,DIS  
tSU,SI  
STE lead time, STE low to clock  
ns  
7
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
6
3
3
STE lag time, Last clock to STE high  
ns  
3
3
66  
50  
ns  
36  
STE access time, STE low to SOMI  
data out  
30  
30  
23  
ns  
16  
STE disable time, STE high to SOMI  
high impedance  
13  
5
5
2
2
5
5
5
5
SIMO input data setup time  
SIMO input data hold time  
SOMI output data valid time(2)  
SOMI output data hold time(3)  
ns  
tHD,SI  
ns  
76  
60  
ns  
44  
UCLK edge to SOMI valid,  
CL = 20 pF  
tVALID,SO  
40  
18  
12  
10  
8
tHD,SO  
CL = 20 pF  
ns  
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)).  
For the master's parameters tSU,MI(Master) and tVALID,MO(Master) see the SPI parameters of the attached master.  
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams  
in Figure 17 and Figure 18.  
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 17  
and Figure 18.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tSU,SI  
tLO/HI  
tLO/HI  
tHD,SI  
SIMO  
tHD,SO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 19. SPI Slave Mode, CKPH = 0  
tSTE,LEAD  
tSTE,LAG  
STE  
1/fUCxCLK  
CKPL = 0  
CKPL = 1  
UCLK  
tLO/HI  
tLO/HI  
tHD,SI  
tSU,SI  
SIMO  
tHD,MO  
tVALID,SO  
tSTE,ACC  
tSTE,DIS  
SOMI  
Figure 20. SPI Slave Mode, CKPH = 1  
58  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
USCI (I2C Mode)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 21)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Internal: SMCLK, ACLK,  
External: UCLK,  
fUSCI  
USCI input clock frequency  
fSYSTEM MHz  
Duty cycle = 50% ± 10%  
fSCL  
SCL clock frequency  
2.2 V, 3 V  
2.2 V, 3 V  
0
4.0  
0.6  
4.7  
0.6  
0
400 kHz  
µs  
f
SCL 100 kHz  
fSCL > 100 kHz  
SCL 100 kHz  
fSCL > 100 kHz  
tHD,STA  
Hold time (repeated) START  
f
tSU,STA  
Setup time for a repeated START  
2.2 V, 3 V  
µs  
tHD,DAT  
tSU,DAT  
Data hold time  
Data setup time  
2.2 V, 3 V  
2.2 V, 3 V  
ns  
ns  
250  
4.0  
0.6  
50  
fSCL 100 kHz  
tSU,STO  
Setup time for STOP  
2.2 V, 3 V  
µs  
fSCL > 100 kHz  
2.2 V  
3 V  
600  
ns  
Pulse duration of spikes suppressed by input  
filter  
tSP  
50  
600  
tHD,STA  
tSU,STA  
tHD,STA  
tBUF  
SDA  
SCL  
tLOW  
tHIGH  
tSP  
tSU,DAT  
tSU,STO  
tHD,DAT  
Figure 21. I2C Mode Timing  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
 
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
MAX UNIT  
LCD_B Recommended Operating Conditions  
PARAMETER  
CONDITIONS  
MIN  
NOM  
Supply voltage range, charge  
pump enabled, VLCD 3.6 V  
LCDCPEN = 1, 0000 < VLCDx 1111  
(charge pump enabled, VLCD 3.6 V)  
VCC,LCD_B,CPen,3.6  
VCC,LCD_B,CPen,3.3  
VCC,LCD_B,int. bias  
VCC,LCD_B,ext. bias  
2.2  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
Supply voltage range, charge  
pump enabled, VLCD 3.3 V  
LCDCPEN = 1, 0000 < VLCDx 1100  
(charge pump enabled, VLCD 3.3 V)  
2.0  
2.4  
2.4  
Supply voltage range, internal  
biasing, charge pump disabled  
LCDCPEN = 0, VLCDEXT = 0  
LCDCPEN = 0, VLCDEXT = 0  
Supply voltage range, external  
biasing, charge pump disabled  
Supply voltage range, external  
VCC,LCD_B,VLCDEXT  
LCD voltage, internal or external LCDCPEN = 0, VLCDEXT = 1  
biasing, charge pump disabled  
2.0  
2.4  
3.6  
3.6  
V
V
External LCD voltage at  
LCDCAP/R33, internal or external LCDCPEN = 0, VLCDEXT = 1  
biasing, charge pump disabled  
VLCDCAP/R33  
Capacitor on LCDCAP when  
charge pump enabled  
LCDCPEN = 1, VLCDx > 0000  
(charge pump enabled)  
CLCDCAP  
fFrame  
4.7  
32  
10  
µF  
Hz  
fLCD = 2 × mux × fFRAME  
with mux = 1 (static), 2, 3, 4  
LCD frame frequency range  
0
100  
fACLK,in  
CPanel  
ACLK input frequency range  
Panel capacitance  
30  
40 kHz  
100-Hz frame frequency  
10000  
VCC  
pF  
+
VR33  
Analog input voltage at R33  
LCDCPEN = 0, VLCDEXT = 1  
2.4  
V
0.2  
VR03 + 2/3  
LCDREXT = 1, LCDEXTBIAS = 1,  
LCD2B = 0  
VR23,1/3bias  
Analog input voltage at R23  
VR13  
* (VR33  
-
)
VR33  
V
V
V
VR03  
VR03 + 1/3  
Analog input voltage at R13 with LCDREXT = 1, LCDEXTBIAS = 1,  
1/3 biasing LCD2B = 0  
VR13,1/3bias  
VR03  
* (VR33  
-
)
VR23  
VR03  
VR03 + 1/2  
Analog input voltage at R13 with LCDREXT = 1, LCDEXTBIAS = 1,  
1/2 biasing  
VR13,1/2bias  
VR03  
* (VR33  
-
)
VR33  
LCD2B = 1  
VR03  
VR03  
Analog input voltage at R03  
R0EXT = 1  
VSS  
2.4  
V
V
Voltage difference between VLCD  
and R03  
VCC  
0.2  
+
VLCD - VR03  
LCDCPEN = 0, R0EXT = 1  
External LCD reference voltage  
applied at LCDREF/R13  
VLCDREF/R13  
VLCDREFx = 01  
0.8  
1.2  
1.5  
V
60  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
LCD_B Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
VLCD  
LCD voltage, with internal  
reference  
VLCDx = 0000, VLCDEXT = 0  
LCDCPEN = 1, VLCDx = 0001  
LCDCPEN = 1, VLCDx = 0010  
LCDCPEN = 1, VLCDx = 0011  
LCDCPEN = 1, VLCDx = 0100  
LCDCPEN = 1, VLCDx = 0101  
LCDCPEN = 1, VLCDx = 0110  
LCDCPEN = 1, VLCDx = 0111  
LCDCPEN = 1, VLCDx = 1000  
LCDCPEN = 1, VLCDx = 1001  
LCDCPEN = 1, VLCDx = 1010  
LCDCPEN = 1, VLCDx = 1011  
LCDCPEN = 1, VLCDx = 1100  
LCDCPEN = 1, VLCDx = 1101  
LCDCPEN = 1, VLCDx = 1110  
LCDCPEN = 1, VLCDx = 1111  
LCDCPEN = 1, VLCDx = 1111  
2.4 V to 3.6 V  
2.0 V to 3.6 V  
VCC  
2.59  
2.65  
2.71  
2.78  
2.84  
2.91  
2.97  
3.03  
3.09  
3.15  
3.22  
3.28  
3.34  
3.40  
3.46  
200  
V
2.2 V to 3.6 V  
3.53  
µA  
ICC,Peak,CP  
tLCD,CP,on  
ICP,Load  
Peak supply currents due to  
charge pump activities  
2.2 V  
2.2 V  
2.2 V  
2.2 V  
2.2 V  
Time to charge CLCD when  
discharge  
CLCDCAP = 4.7 µF,  
LCDCPEN = 01, VLCDx = 1111  
100  
500  
ms  
µA  
kΩ  
kΩ  
Maximum charge pump load  
current  
LCDCPEN = 1, VLCDx = 1111  
50  
RLCD,Seg  
RLCD,COM  
LCD driver output impedance,  
segment lines  
LCDCPEN = 1, VLCDx = 1000,  
ILOAD = ±10 µA  
10  
10  
LCD driver output impedance,  
common lines  
LCDCPEN = 1, VLCDx = 1000,  
ILOAD = ±10 µA  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
MAX UNIT  
10-Bit ADC, Power Supply and Input Range Conditions  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
AVCC and DVCC are connected together,  
AVSS and DVSS are connected together,  
V(AVSS) = V(DVSS) = 0 V  
AVCC  
V(Ax)  
Analog supply voltage  
1.8  
3.6  
V
V
Analog input voltage range(2) All ADC10_A pins: P1.0 to P1.5, P3.6, P3.7  
AVCC  
105  
fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0,  
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,  
ADC10SREF = 00  
2.2 V  
3 V  
70  
80  
Operating supply current into  
AVCC terminal. REF module  
and reference buffer off.  
µA  
115  
fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 1,  
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,  
ADC10SREF = 01  
Operating supply current into  
AVCC terminal. REF module  
on, reference buffer on.  
3 V  
3 V  
130  
120  
85  
185  
µA  
µA  
µA  
IADC10_A  
fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0,  
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,  
ADC10SREF = 10, VEREF = 2.5 V  
Operating supply current into  
AVCC terminal. REF module  
off, reference buffer on.  
170  
120  
fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0,  
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,  
ADC10SREF = 11, VEREF = 2.5 V  
Operating supply current into  
AVCC terminal. REF module  
off, reference buffer off.  
3 V  
Only one terminal Ax can be selected at one time  
from the pad to the ADC10_A capacitor array  
including wiring and pad.  
CI  
RI  
Input capacitance  
2.2 V  
3.5  
pF  
AVCC > 2.0 V, 0 V VAx AVCC  
36  
96  
Input MUX ON resistance  
kΩ  
1.8 V < AVCC < 2.0 V, 0 V VAx AVCC  
(1) The leakage current is defined in the leakage current table with P2.x/Ax parameter.  
(2) The analog input voltage range must be within the selected reference voltage range VR+ to VR-for valid conversion results. The external  
reference voltage requires decoupling capacitors. See ()  
.
10-Bit ADC, Timing Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
For specified performance of ADC10_A linearity  
parameters  
fADC10CLK  
fADC10OSC  
2.2 V, 3 V  
0.45  
5
5.5 MHz  
Internal ADC10_A  
oscillator(1)  
ADC10DIV = 0, fADC10CLK = fADC10OSC  
2.2 V, 3 V  
2.2 V, 3 V  
4.2  
2.4  
4.8  
5.4 MHz  
REFON = 0, Internal oscillator, 12 ADC10CLK cycles,  
10-bit mode, fADC10OSC = 4 MHz to 5 MHz  
3.0  
µs  
tCONVERT  
Conversion time  
External fADC10CLK from ACLK, MCLK or SMCLK,  
ADC10SSEL 0  
Turn on settling time of  
the ADC  
(2)  
(3)  
t
See  
100  
ns  
ADC10ON  
RS = 1000 , RI = 96 k, CI = 3.5 pF(4)  
RS = 1000 , RI = 36 k, CI = 3.5 pF(4)  
1.8 V  
3 V  
3
1
µs  
µs  
tSample  
Sampling time  
(1) The ADC10OSC is sourced directly from MODOSC inside the UCS.  
(2) 12 × ADC10DIV × 1/fADC10CLK  
(3) The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already  
settled.  
(4) Approximately eight Tau (τ) are needed to get an error of less than ±0.5 LSB  
62  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
 
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
10-Bit ADC, Linearity Parameters  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
1.4 V (VEREF+ - VEREF-)min 1.6 V  
1.6 V < (VEREF+ - VEREF-)min VAVCC  
VCC  
MIN  
-1.0  
-1.0  
TYP  
MAX UNIT  
+1.0  
LSB  
+1.0  
EI  
Integral linearity error  
(VEREF+ - VEREF-)min (VEREF+ - VEREF-),  
CVEREF+ = 20 pF  
ED  
Differential linearity error  
-1.0  
+1.0 LSB  
(VEREF+ - VEREF-)min (VEREF+ - VEREF-),  
Internal impedance of source RS < 100 ,  
CVEREF+ = 20 pF  
EO  
Offset error  
-1.0  
+1.0 LSB  
Gain error, external reference  
-1.0  
-5  
+1.0 LSB  
+5 LSB  
(VEREF+ - VEREF-)min (VEREF+ - VEREF-),  
CVEREF+ = 20 pF  
Gain error, external reference,  
buffered  
EG  
(1)  
Gain error, internal reference  
See  
-1.5  
-2.0  
+1.5 %VREF  
+2.0 LSB  
Total unadjusted error, external  
reference  
±1.0  
±1.0  
±1.0  
(VEREF+ - VEREF-)min (VEREF+ - VEREF-),  
CVEREF+ = 20 pF  
Total unadjusted error, external  
reference, buffered  
ET  
-5  
+5 LSB  
Total unadjusted error, internal  
reference  
(1)  
See  
-1.5  
+1.5 %VREF  
(1) Dominated by the absolute voltage of the integrated reference voltage.  
REF, External Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VEREF+ > VEREF-(2)  
VCC  
MIN  
TYP  
MAX UNIT  
Positive external  
reference voltage input  
VEREF+  
VEREF-  
1.4  
AVCC  
1.2  
V
V
V
Negative external  
reference voltage input  
VEREF+ > VEREF-(3)  
VEREF+ > VEREF-(4)  
0
VEREF+ -  
VEREF-  
Differential external  
reference voltage input  
1.4  
AVCC  
1.4 V VEREF+ V(AVCC), VEREF- = 0 V  
fADC10CLK = 5 MHz, ADC10SHTx = 0x0001,  
Conversion rate 200 ksps  
I(VEREF+)  
I(VEREF-)  
Static input current  
Static input current  
2.2 V, 3 V  
2.2 V, 3 V  
±8.5  
±26  
±1  
µA  
1.4 V VEREF+ V(AVCC), VEREF- = 0 V  
fADC10CLK = 5 MHZ, ADC10SHTX = 0x1000,  
Conversion rate 20 ksps  
I(VEREF+)  
I(VEREF-)  
µA  
µF  
Capacitance at VEREF+  
or VEREF- terminal  
(5)  
C(VEREF+/-)  
See  
10  
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, CI, is also  
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the  
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.  
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced  
accuracy requirements.  
(3) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced  
accuracy requirements.  
(4) The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with  
reduced accuracy requirements.  
(5) Two decoupling capacitors, 10 µF and 100 nF, should be connected to VEREF to decouple the dynamic current required for an external  
reference source if it is used for the ADC10_A. See also the CC430 Family User's Guide (SLAU259).  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
MAX UNIT  
REF, Built-In Reference  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
REFVSEL = {2} for 2.5 V,  
REFON = REFOUT = 1  
VEREF+  
VEREF+  
VEREF+  
AVCC(min)  
AVCC(min)  
AVCC(min)  
Positive built-in reference voltage  
3 V  
2.5  
±1.5%  
±1.5%  
±1.5%  
V
V
V
V
V
V
REFVSEL = {1} for 2.0 V,  
REFON = REFOUT = 1  
Positive built-in reference voltage  
Positive built-in reference voltage  
3 V  
2.01  
REFVSEL = {0} for 1.5 V,  
REFON = REFOUT = 1  
2.2 V,  
3 V  
1.505  
AVCC minimum voltage, Positive  
built-in reference active  
REFVSEL = {0} for 1.5 V  
REFVSEL = {1} for 2.0 V  
REFVSEL = {2} for 2.5 V  
1.8  
2.3  
2.8  
AVCC minimum voltage, Positive  
built-in reference active  
AVCC minimum voltage, Positive  
built-in reference active  
fADC10CLK = 5 MHz,  
REFON = 1, REFBURST = 0,  
REFVSEL = {0} for 1.5 V  
3 V  
3 V  
3 V  
3 V  
15.5  
18  
19  
24  
µA  
µA  
µA  
mA  
fADC10CLK = 5 MHz,  
REFON = 1, REFBURST = 0,  
REFVSEL = {1} for 2.0 V  
Operating supply current into  
AVCC terminal(2)  
IREF+  
fADC10CLK = 5 MHz,  
REFON = 1, REFBURST = 0,  
REFVSEL = {2} for 2.5 V  
21  
30  
Operating supply current into  
AVCC terminal with REF output  
buffer enabled  
IREF+,REFO  
UT  
REFON = 1, REFOUT = 1,  
REFBURST = 0  
0.9  
1.7  
REFVSEL = {0, 1, 2},  
Load-current regulation, VREF+  
terminal(3)  
ILoad,VREF+ = +10 µA or -1000 µA,  
AVCC = AVCC (min) for each reference level,  
REFON = REFOUT = 1  
µV/  
mA  
IL(VREF+)  
2500  
CVREF+  
TCREF+  
Capacitance at VREF+ terminals REFON = REFOUT = 1  
Temperature coefficient of built-in  
20  
100  
50  
pF  
ppm/  
°C  
REFVSEL = {0, 1, 2}, REFON = 1  
30  
reference(4)  
2.2 V  
3 V  
150  
150  
765  
765  
1.1  
180  
190  
REFON = 0, INCH = 0Ah,  
ADC10ON = NA, TA = 30°C  
Operating supply current into  
AVCC terminal(5)  
ISENSOR  
VSENSOR  
VMID  
µA  
mV  
V
2.2 V  
3 V  
(6)  
See  
ADC10ON = 1, INCH = 0Ah, TA = 30°C  
2.2 V  
3 V  
1.06  
1.46  
1.14  
1.54  
ADC10ON = 1, INCH = 0Bh,  
VMID is approximately 0.5 × VAVCC  
AVCC divider at channel 11  
1.5  
ADC10ON = 1, INCH = 0Ah,  
Error of conversion result 1 LSB  
tSENSOR  
(sample)  
Sample time required if  
channel 10 is selected(7)  
30  
1
µs  
µs  
ADC10ON = 1, INCH = 0Bh,  
Error of conversion result 1 LSB  
tVMID  
(sample)  
Sample time required if  
channel 11 is selected(8)  
AVCC = AVCC (min) - AVCC(max)  
,
PSRR_DC Power supply rejection ratio (dc)  
TA = 25°C,  
120  
300 µV/V  
REFVSEL = {0, 1, 2}, REFON = 1  
(1) The leakage current is defined in the leakage current table with P2.x/Ax parameter.  
(2) The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a  
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.  
(3) Contribution only due to the reference and buffer including package. This does not include resistance due to PCB trace and other  
factors. Positive load currents are flowing into the device.  
(4) Calculated using the box method: (MAX(-40 to 85°C) - MIN(-40 to 85°C)) / MIN(-40 to 85°C)/(85°C - (-40°C)).  
(5) The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is  
high). When REFON = 1, ISENSOR is already included in IREF+  
.
(6) The temperature sensor offset can be as much as ±20°C. A single-point calibration is recommended to minimize the offset error of the  
built-in temperature sensor.  
(7) The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time tSENSOR(on)  
.
(8) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.  
64  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
REF, Built-In Reference (continued)  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
AVCC = AVCC (min) - AVCC(max)  
,
PSRR_AC Power supply rejection ratio (ac)  
TA = 25°C, f = 1 kHz, ΔVpp = 100 mV,  
6.4  
mV/V  
REFVSEL = (0, 1, 2}, REFON = 1  
TA = -40°C to  
85°C  
AVCC = AVCC (min)  
AVCC(max)  
REFVSEL = {0, 1, 2},  
-
23  
125  
,
Settling time of reference  
tSETTLE  
µs  
50  
voltage(9)  
TA = 25°C  
TA = 85°C  
23  
16  
REFON = 0 1  
25  
(9) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80  
Ambient Temperature - ˚C  
Figure 22. Typical Temperature Sensor Voltage  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
MAX UNIT  
Comparator_B  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
VCC  
Supply voltage  
1.8  
3.6  
40  
50  
65  
V
1.8 V  
2.2 V  
3 V  
CBPWRMD = 00, CBON = 1, CBRSx = 00  
31  
32  
Comparator operating  
supply current into  
IAVCC_COMP AVCC. Excludes  
reference resistor  
ladder.  
µA  
2.2 V,  
3 V  
CBPWRMD = 01, CBON = 1, CBRSx = 00  
CBPWRMD = 10, CBON = 1, CBRSx = 00  
10  
0.2  
10  
17  
0.85  
17  
2.2 V,  
3 V  
CBREFACC = 0, CBREFLx = 01, CBRSx = 10,  
REFON = 0, CBON = 0  
2.2 V,  
3 V  
Quiescent current of  
µA  
µA  
resistor ladder into  
AVCC. Includes REF  
IAVCC_REF  
CBREFACC = 1, CBREFLx = 01, CBRSx = 10,  
REFON = 0, CBON = 0  
2.2 V,  
3 V  
33  
40  
module current.  
VREF  
VREF  
VREF  
Reference voltage level CBREFLx = 01, CBREFACC = 0  
Reference voltage level CBREFLx = 10, CBREFACC = 0  
1.8 V  
2.2 V  
3.0 V  
1.49  
1.988  
2.5  
±1.5%  
±1.5%  
±1.5%  
V
V
V
Reference voltage level CBREFLx = 11, CBREFACC = 0  
Common mode input  
range  
VIC  
0
VCC-1  
V
VOFFSET  
VOFFSET  
CIN  
Input offset voltage  
Input offset voltage  
Input capacitance  
CBPWRMD = 00  
±20  
±10  
mV  
mV  
pF  
kΩ  
MΩ  
ns  
CBPWRMD = 01, 10  
5
3
ON - switch closed  
4
RSIN  
Series input resistance  
OFF - switch opened  
50  
CBPWRMD = 00, CBF = 0  
CBPWRMD = 01, CBF = 0  
CBPWRMD = 10, CBF = 0  
450  
600  
50  
Propagation delay,  
response time  
tPD  
ns  
µs  
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 00  
0.35  
0.6  
1.0  
1.8  
0.6  
1.0  
1.8  
1.5  
1.8  
3.4  
6.5  
µs  
µs  
µs  
µs  
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 01  
Propagation delay with  
filter active  
tPD,filter  
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 10  
CBPWRMD = 00, CBON = 1, CBF = 1,  
CBFDLY = 11  
3.4  
1
CBON = 0 to CBON = 1, CBPWRMD = 00, 01  
CBON = 0 to CBON = 1, CBPWRMD = 10  
2
µs  
µs  
tEN_CMP  
Comparator enable time  
1.5  
Resistor reference  
enable time  
tEN_REF  
TCREF  
CBON = 0 to CBON = 1  
1.0  
1.5  
50  
µs  
Temperature coefficient  
reference  
ppm/  
°C  
VIN × VIN ×  
(n+0.5) (n+1)  
VIN ×  
(n+1.5)  
/ 32  
VIN = reference into resistor ladder,  
n = 0 to 31  
Reference voltage for a  
given tap  
VCB_REF  
V
/ 32  
/ 32  
66  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Flash Memory  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
DVCC(PGM/ERASE) Program and erase supply voltage  
1.8  
3.6  
5
V
IPGM  
Average supply current from DVCC during program  
3
2
mA  
mA  
IERASE  
Average supply current from DVCC during erase  
6.5  
Average supply current from DVCC during mass erase or bank  
erase  
Cumulative program time(1)  
IMERASE, IBANK  
tCPT  
2.5  
16  
mA  
ms  
cycles  
years  
µs  
Program AND erase endurance  
Data retention duration  
Word or byte program time(2)  
Block program time for first byte or word(2)  
104  
100  
64  
105  
tRetention  
tWord  
TJ = 25°C  
85  
65  
tBlock, 0  
49  
µs  
Block program time for each additional byte or word, except for last  
byte or word(2)  
Block program time for last byte or word(2)  
tBlock, 1-(N-1)  
tBlock, N  
tErase  
37  
55  
23  
49  
73  
32  
µs  
µs  
Erase time for segment erase, mass erase, and bank erase when  
available(2)  
ms  
MCLK frequency in marginal read mode  
(FCTL4.MGR0 = 1 or FCTL4. MGR1 = 1)  
fMCLK,MGR  
0
1
MHz  
(1) The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming  
methods: individual word/byte write and block write modes.  
(2) These values are hardwired into the flash controller's state machine.  
JTAG and Spy-Bi-Wire Interface  
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
fSBW  
Spy-Bi-Wire input frequency  
2.2 V, 3 V  
0
20 MHz  
tSBW,Low  
Spy-Bi-Wire low clock pulse length  
2.2 V, 3 V  
0.025  
15  
µs  
Spy-Bi-Wire enable time (TEST high to acceptance of first clock  
edge)(1)  
tSBW, En  
tSBW,Rst  
2.2 V, 3 V  
1
µs  
Spy-Bi-Wire return to normal operation time  
TCK input frequency - 4-wire JTAG(2)  
Internal pull-down resistance on TEST  
15  
0
100  
5
µs  
2.2 V  
3 V  
MHz  
fTCK  
0
10 MHz  
80 kΩ  
Rinternal  
2.2 V, 3 V  
45  
60  
(1) Tools accessing the Spy-Bi-Wire interface need to wait for the minimum tSBW,En time after pulling the TEST/SBWTCK pin high before  
applying the first SBWTCK clock edge.  
(2) fTCK may be restricted to meet the timing requirements of the module selected.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
RF1A CC1101-Based Radio Parameters  
RF1A Recommended Operating Conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
2.0  
TYP  
MAX UNIT  
VCC  
Supply voltage range during radio operation  
3.6  
3
V
PMMCOREVx  
Core voltage range, PMMCOREVx setting during radio operation  
2
300 MHz range  
300  
389(1)  
779  
0.6  
348  
RF frequency range  
400 MHz range  
464 MHz  
928  
800/900 MHz range  
2-FSK  
500  
Data rate  
2-GFSK, OOK, and ASK  
(Shaped) MSK (also known as differential offset QPSK)(2)  
0.6  
250 kBaud  
500  
26  
RF crystal frequency  
RF crystal tolerance  
26  
27 MHz  
ppm  
Total tolerance including initial tolerance, crystal loading, aging and  
temperature dependency.(3)  
±40  
RF crystal load capacitance  
10  
13  
20  
pF  
RF crystal effective series  
resistance  
100  
Ω
(1) If using a 27-MHz crystal, the lower frequency limit for this band is 392 MHz.  
(2) If using optional Manchester encoding, the data rate in kbps is half the baud rate.  
(3) The acceptable crystal tolerance depends on frequency band, channel bandwidth, and spacing. Also see Design Note DN005 -- CC11xx  
Sensitivity versus Frequency Offset and Crystal Accuracy (SWRA122).  
RF Crystal Oscillator, XT2  
TA = 25°C, VCC = 3 V (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
150  
50  
MAX UNIT  
Start-up time(2)  
Duty cycle  
810  
55  
µs  
%
45  
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 49).  
(2) The start-up time depends to a very large degree on the used crystal.  
Current Consumption, Reduced-Power Modes  
TA = 25°C, VCC = 3 V (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
RF crystal oscillator only (for example, SLEEP state with  
MCSM0.OSC_FORCE_ON = 1)  
100  
µA  
Current consumption  
IDLE state (including RF crystal oscillator)  
FSTXON state (only the frequency synthesizer is running)(2)  
1.7  
9.5  
mA  
mA  
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 49).  
(2) This current consumption is also representative of other intermediate states when going from IDLE to RX or TX, including the calibration  
state.  
68  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Current Consumption, Receive Mode  
TA = 25°C, VCC = 3 V (unless otherwise noted)(1)  
(2)  
DATA  
RATE  
(kBaud)  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
Input at -100 dBm (close  
MIN  
TYP  
MAX UNIT  
(MHz)  
17  
16  
to sensitivity limit)  
1.2  
38.4  
250  
1.2  
Input at -40 dBm (well  
above sensitivity limit)  
Input at -100 dBm (close  
to sensitivity limit)  
17  
Register settings optimized  
for reduced current  
315  
Input at -40 dBm (well  
above sensitivity limit)  
16  
Input at -100 dBm (close  
to sensitivity limit)  
18  
Input at -40 dBm (well  
above sensitivity limit)  
16.5  
18  
Input at -100 dBm (close  
to sensitivity limit)  
Input at -40 dBm (well  
above sensitivity limit)  
17  
Input at -100 dBm (close  
to sensitivity limit)  
18  
Current  
consumption,  
RX  
Register settings optimized  
for reduced current  
433  
38.4  
250  
1.2  
mA  
Input at -40 dBm (well  
above sensitivity limit)  
17  
Input at -100 dBm (close  
to sensitivity limit)  
18.5  
17  
Input at -40 dBm (well  
above sensitivity limit)  
Input at -100 dBm (close  
to sensitivity limit)  
16  
Input at -40 dBm (well  
above sensitivity limit)  
15  
Input at -100 dBm (close  
to sensitivity limit)  
16  
Register settings optimized  
for reduced current(3)  
868, 915  
38.4  
250  
Input at -40 dBm (well  
above sensitivity limit)  
15  
Input at -100 dBm (close  
to sensitivity limit)  
16  
Input at -40 dBm (well  
above sensitivity limit)  
15  
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 49).  
(2) Reduced current setting (MDMCFG2.DEM_DCFILT_OFF = 1) gives a slightly lower current consumption at the cost of a reduction in  
sensitivity. See tables "RF Receive" for additional details on current consumption and sensitivity.  
(3) For 868 or 915 MHz, see Figure 23 for current consumption with register settings optimized for sensitivity.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
69  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
19  
18  
17  
19  
TA = 85°C  
TA = 25°C  
TA = -40°C  
TA = 85°C  
TA = 25°C  
TA = -40°C  
18  
17  
16  
16  
-100  
-80  
-60  
-40  
-20  
-100  
-80  
-60  
-40  
-20  
Input Power [dBm]  
Input Power [dBm]  
1.2 kBaud GFSK  
38.4 kBaud GFSK  
19  
19  
18  
17  
TA = 85°C  
TA = 25°C  
TA = -40°C  
TA = 85°C  
TA = 25°C  
TA = -40°C  
18  
17  
16  
16  
-100  
-80  
-60  
-40  
-20  
-100  
-80  
-60  
-40  
-20  
Input Power [dBm]  
Input Power [dBm]  
250 kBaud GFSK  
500 kBaud MSK  
Figure 23. Typical RX Current Consumption Over Temperature and Input Power Level, 868 MHz,  
Sensitivity-Optimized Setting  
70  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Current Consumption, Transmit Mode  
(2)  
TA = 25°C, VCC = 3 V (unless otherwise noted)(1)  
FREQUENCY  
[MHz}  
PATABLE  
Setting  
OUTPUT  
POWER (dBm)  
PARAMETER  
MIN  
TYP  
MAX UNIT  
0xC0  
0xC4  
0x51  
0x29  
0xC0  
0xC6  
0x50  
0x2D  
0xC0  
0xC3  
0x8D  
0x2D  
0xC0  
0xC3  
0x8D  
0x2D  
max.  
+10  
0
26  
25  
15  
15  
33  
29  
17  
17  
36  
33  
18  
18  
35  
32  
18  
18  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
315  
433  
868  
915  
-6  
max.  
+10  
0
-6  
Current consumption, TX  
max.  
+10  
0
-6  
max.  
+10  
0
-6  
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 49).  
(2) Reduced current setting (MDMCFG2.DEM_DCFILT_OFF = 1) gives a slightly lower current consumption at the cost of a reduction in  
sensitivity. See tables "RF Receive" for additional details on current consumption and sensitivity.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
71  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
UNIT  
Typical TX Current Consumption, 315 MHz, 25°C  
Output  
Power VCC  
(dBm)  
PATABLE  
Setting  
PARAMETER  
2.0 V  
3.0 V  
3.6 V  
0xC0  
0xC4  
0x51  
0x29  
max.  
+10  
0
27.5  
25.1  
14.4  
14.2  
26.4  
25.2  
14.6  
14.7  
28.1  
25.3  
14.7  
15.0  
Current  
consumption,  
TX  
mA  
-6  
Typical TX Current Consumption, 433 MHz, 25°C  
Output  
Power VCC  
(dBm)  
PATABLE  
Setting  
PARAMETER  
2.0 V  
3.0 V  
3.6 V  
UNIT  
0xC0  
0xC6  
0x50  
0x2D  
max.  
+10  
0
33.1  
28.6  
16.6  
16.8  
33.4  
28.8  
16.8  
17.5  
33.8  
28.8  
16.9  
17.8  
Current  
consumption,  
TX  
mA  
-6  
Typical TX Current Consumption, 868 MHz  
Output VCC  
Power  
(dBm)  
2.0 V  
3.0 V  
25°C  
3.6 V  
25°C  
PATABLE  
Setting  
PARAMETER  
UNIT  
TA  
-40°C  
25°C  
85°C  
-40°C  
85°C  
-40°C  
85°C  
0xC0  
0xC3  
0x8D  
0x2D  
max.  
+10  
0
36.7  
34.0  
18.0  
17.1  
35.2  
32.8  
17.6  
17.0  
34.2  
32.0  
17.5  
17.2  
38.5  
34.2  
18.3  
17.8  
35.5  
33.0  
17.8  
17.8  
34.9  
32.5  
18.1  
18.3  
37.1  
34.3  
18.4  
18.2  
35.7  
33.1  
18.0  
18.1  
34.7  
32.2  
17.7  
18.1  
Current  
consumption,  
TX  
mA  
-6  
Typical TX Current Consumption, 915 MHz  
Output VCC  
Power  
(dBm)  
2.0 V  
3.0 V  
25°C  
3.6 V  
25°C  
PATABLE  
Setting  
PARAMETER  
UNIT  
TA  
-40°C  
25°C  
85°C  
-40°C  
85°C  
-40°C  
85°C  
0xC0  
0xC3  
0x8D  
0x2D  
max.  
+10  
0
35.5  
33.2  
17.8  
17.0  
33.8  
32.0  
17.4  
16.9  
33.2  
31.0  
17.1  
16.9  
36.2  
33.4  
18.1  
17.7  
34.8  
32.1  
17.6  
17.6  
33.6  
31.2  
17.3  
17.6  
36.3  
33.5  
18.2  
18.1  
35.0  
32.3  
17.8  
18.0  
33.8  
31.3  
17.5  
18.0  
Current  
consumption,  
TX  
mA  
-6  
72  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
RF Receive, Overall  
TA = 25°C, VCC = 3 V (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Digital channel filter bandwidth(2)  
58  
812 kHz  
25 MHz to 1 GHz  
Spurious emissions(3) (4)  
-68  
-66  
9
-57  
dBm  
-47  
Above 1 GHz  
RX latency  
Serial operation(5)  
bit  
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 49).  
(2) User programmable. The bandwidth limits are proportional to crystal frequency (given values assume a 26.0 MHz crystal)  
(3) Typical radiated spurious emission is -49 dBm measured at the VCO frequency  
(4) Maximum figure is the ETSI EN 300 220 limit  
(5) Time from start of reception until data is available on the receiver data output pin is equal to 9 bit.  
RF Receive, 315 MHz  
TA = 25°C, VCC = 3 V (unless otherwise noted)(1)  
2-FSK, 1% packet error rate, 20-byte packet length, Sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF = 0 (unless  
otherwise noted)  
DATA RATE  
(kBaud)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
0.6  
14.3-kHz deviation, 58-kHz digital channel filter bandwidth  
5.2-kHz deviation, 58-kHz digital channel filter bandwidth(2)  
20-kHz deviation, 100-kHz digital channel filter bandwidth(3)  
-117  
-111  
-103  
-95  
1.2  
Receiver sensitivity  
38.4  
250  
dBm  
(4)  
127-kHz deviation, 540-kHz digital channel filter bandwidth  
MSK, 812-kHz digital channel filter bandwidth(4)  
500  
-86  
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 49).  
(2) Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF=1. The typical current consumption is then  
reduced by approximately 2 mA close to the sensitivity limit. The sensitivity is typically reduced to -109 dBm.  
(3) Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF=1. The typical current consumption is then  
reduced by approximately 2 mA close to the sensitivity limit. The sensitivity is typically reduced to -102 dBm.  
(4) MDMCFG2.DEM_DCFILT_OFF=1 can not be used for data rates 250 kBaud.  
RF Receive, 433 MHz  
TA = 25°C, VCC = 3 V (unless otherwise noted)(1)  
2-FSK, 1% packet error rate, 20-byte packet length, Sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF = 0 (unless  
otherwise noted)  
DATA RATE  
(kBaud)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
0.6  
14.3-kHz deviation, 58-kHz digital channel filter bandwidth  
5.2-kHz deviation, 58-kHz digital channel filter bandwidth(2)  
20-kHz deviation, 100-kHz digital channel filter bandwidth(3)  
-114  
-111  
-104  
-93  
1.2  
Receiver sensitivity  
38.4  
250  
dBm  
(4)  
127-kHz deviation, 540-kHz digital channel filter bandwidth  
MSK, 812-kHz digital channel filter bandwidth(4)  
500  
-85  
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 49).  
(2) Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF=1. The typical current consumption is then  
reduced by approximately 2 mA close to the sensitivity limit. The sensitivity is typically reduced to -109 dBm.  
(3) Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF=1. The typical current consumption is then  
reduced by approximately 2 mA close to the sensitivity limit. The sensitivity is typically reduced to -101 dBm.  
(4) MDMCFG2.DEM_DCFILT_OFF=1 can not be used for data rates 250 kBaud.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
73  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
RF Receive, 868 MHz and 915 MHz  
TA = 25°C, VCC = 3 V (unless otherwise noted)(1)  
1% packet error rate, 20-byte packet length, Sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF = 0 (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
0.6-kBaud data rate, 2-FSK, 14.3-kHz deviation, 58-kHz digital channel filter bandwidth (unless otherwise noted)  
Receiver sensitivity  
-115  
dBm  
1.2-kBaud data rate, 2-FSK, 5.2-kHz deviation, 58-kHz digital channel filter bandwidth (unless otherwise noted)  
-109  
-109  
Receiver sensitivity(2)  
dBm  
2-GFSK modulation by setting MDMCFG2.MOD_FORMAT=2,  
Gaussian filter with BT = 0.5  
Saturation  
FIFOTHR.CLOSE_IN_RX=0(3)  
-28  
39  
39  
dBm  
dB  
-100-kHz offset  
+100-kHz offset  
Adjacent channel  
rejection  
Desired channel 3 dB above the sensitivity limit,  
100 kHz channel spacing(4)  
IF frequency 152 kHz, desired channel 3 dB above  
the sensitivity limit  
Image channel rejection  
Blocking  
29  
dB  
±2 MHz offset  
±10 MHz offset  
-48  
-40  
dBm  
dBm  
Desired channel 3 dB above the sensitivity limit(5)  
38.4-kBaud data rate, 2-FSK, 20-kHz deviation, 100-kHz digital channel filter bandwidth (unless otherwise noted)  
-102  
Receiver sensitivity(6)  
dBm  
2-GFSK modulation by setting MDMCFG2.MOD_FORMAT = 2,  
Gaussian filter with BT = 0.5  
-101  
Saturation  
FIFOTHR.CLOSE_IN_RX=0(3)  
-19  
20  
dBm  
dB  
-200-kHz offset  
+200-kHz offset  
Adjacent channel  
rejection  
Desired channel 3 dB above the sensitivity limit,  
200 kHz channel spacing(5)  
25  
Image channel rejection IF frequency 152 kHz, Desired channel 3 dB above the sensitivity limit  
±2-MHz offset  
23  
dB  
-48  
-40  
dBm  
dBm  
Blocking  
Desired channel 3 dB above the sensitivity limit(5)  
±10-MHz offset  
250-kBaud data rate, 2-FSK, 127-kHz deviation, 540-kHz digital channel filter bandwidth (unless otherwise noted)  
-90  
(7)  
Receiver sensitivity  
dBm  
2-GFSK modulation by setting MDMCFG2.MOD_FORMAT = 2,  
Gaussian filter with BT = 0.5  
-90  
Saturation  
FIFOTHR.CLOSE_IN_RX=0(3)  
-19  
24  
dBm  
dB  
-750-kHz offset  
+750-kHz offset  
Adjacent channel  
rejection  
Desired channel 3 dB above the sensitivity limit,  
750-kHz channel spacing(8)  
30  
Image channel rejection IF frequency 304 kHz, Desired channel 3 dB above the sensitivity limit  
±2-MHz offset  
18  
dB  
-53  
-39  
dBm  
dBm  
Blocking  
Desired channel 3 dB above the sensitivity limit(8)  
±10-MHz offset  
500-kBaud data rate, MSK, 812-kHz digital channel filter bandwidth (unless otherwise noted)  
Receiver sensitivity(7)  
-84  
-2  
dBm  
dB  
Image channel rejection IF frequency 355 kHz, Desired channel 3 dB above the sensitivity limit  
±2-MHz offset  
-53  
-38  
dBm  
dBm  
Blocking  
Desired channel 3 dB above the sensitivity limit(9)  
±10-MHz offset  
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 49).  
(2) Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF=1. The typical current consumption is then  
reduced by approximately 2 mA close to the sensitivity limit. The sensitivity is typically reduced to -107 dBm  
(3) See Design Note DN010 Close-in Reception with CC1101 (SWRA147).  
(4) See Figure 24 for blocking performance at other offset frequencies.  
(5) See Figure 25 for blocking performance at other offset frequencies.  
(6) Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF=1. The typical current consumption is then  
reduced by approximately 2 mA close to the sensitivity limit. The sensitivity is typically reduced to -100dBm.  
(7) MDMCFG2.DEM_DCFILT_OFF = 1 cannot be used for data rates 250 kBaud.  
(8) See Figure 26 for blocking performance at other offset frequencies.  
(9) See Figure 27 for blocking performance at other offset frequencies.  
74  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
-10  
-20  
-10  
-40 -30  
-20 -10  
0
10  
20  
30  
40  
-1 -0.8 -0.6 -0.4 -0.2  
0
0.2 0.4 0.6 0.8  
1
Offset [MHz]  
Offset [MHz]  
NOTE: 868.3 MHz, 2-FSK, 5.2-kHz deviation, IF frequency is 152.3 kHz, digital channel filter bandwidth is 58 kHz  
Figure 24. Typical Selectivity at 1.2-kBaud Data Rate  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
-10  
-20  
-10  
-20  
-40 -30  
-20 -10  
0
10  
20  
30  
40  
-1 -0.8 -0.6 -0.4 -0.2  
0
0.2 0.4 0.6 0.8  
1
Offset [MHz]  
Offset [MHz]  
NOTE: 868 MHz, 2-FSK, 20 kHz deviation, IF frequency is 152.3 kHz, digital channel filter bandwidth is 100 kHz  
Figure 25. Typical Selectivity at 38.4-kBaud Data Rate  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
75  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
-10  
-20  
-10  
-20  
-40 -30  
-20 -10  
Offset [MHz]  
NOTE: 868 MHz, 2-FSK, IF frequency is 304 kHz, digital channel filter bandwidth is 540 kHz  
0
10  
20  
30  
40  
-3  
-2  
-1  
0
1
2
3
Offset [MHz]  
Figure 26. Typical Selectivity at 250-kBaud Data Rate  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
-10  
-20  
-10  
-20  
-40 -30  
-20 -10  
Offset [MHz]  
NOTE: 868 MHz, 2-FSK, IF frequency is 355 kHz, digital channel filter bandwidth is 812 kHz  
0
10  
20  
30  
40  
-3  
-2  
-1  
0
1
2
3
Offset [MHz]  
Figure 27. Typical Selectivity at 500-kBaud Data Rate  
76  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Typical Sensitivity, 315 MHz, Sensitivity Optimized Setting  
VCC  
2.0 V  
3.0 V  
3.6 V  
PARAMETER  
DATA RATE (kBaud)  
UNIT  
TA  
-40°C 25°C 85°C -40°C 25°C 85°C -40°C 25°C 85°C  
1.2  
38.4  
250  
-112  
-105  
-95  
-112  
-105  
-95  
-110  
-104  
-92  
-112  
-105  
-94  
-111  
-103  
-95  
-109  
-102  
-92  
-112  
-105  
-95  
-111  
-104  
-94  
-108  
-102  
-91  
Sensitivity,  
315 MHz  
dBm  
Typical Sensitivity, 433 MHz, Sensitivity Optimized Setting  
VCC  
TA  
2.0 V  
3.0 V  
3.6 V  
PARAMETER  
DATA RATE (kBaud)  
UNIT  
-40°C 25°C 85°C -40°C 25°C 85°C -40°C 25°C 85°C  
1.2  
38.4  
250  
-111  
-104  
-93  
-110  
-104  
-94  
-108  
-101  
-91  
-111  
-104  
-93  
-111  
-104  
-93  
-108  
-101  
-90  
-111  
-104  
-93  
-110  
-103  
-93  
-107  
-101  
-90  
Sensitivity,  
433 MHz  
dBm  
Typical Sensitivity, 868 MHz, Sensitivity Optimized Setting  
VCC  
2.0 V  
3.0 V  
3.6 V  
PARAMETER  
DATA RATE (kBaud)  
UNIT  
TA  
-40°C 25°C 85°C -40°C 25°C 85°C -40°C 25°C 85°C  
1.2  
38.4  
250  
500  
-109  
-102  
-90  
-109  
-102  
-90  
-107  
-100  
-88  
-109  
-102  
-89  
-109  
-102  
-90  
-106  
-99  
-87  
-80  
-109  
-102  
-89  
-108  
-101  
-90  
-106  
-99  
-87  
-80  
Sensitivity,  
868 MHz  
dBm  
-84  
-84  
-81  
-84  
-84  
-84  
-84  
Typical Sensitivity, 915 MHz, Sensitivity Optimized Setting  
VCC  
2.0 V  
3.0 V  
3.6 V  
PARAMETER  
DATA RATE (kBaud)  
UNIT  
TA  
-40°C 25°C 85°C -40°C 25°C 85°C -40°C 25°C 85°C  
1.2  
38.4  
250  
500  
-109  
-102  
-92  
-109  
-102  
-92  
-107  
-100  
-89  
-109  
-102  
-92  
-109  
-102  
-92  
-106  
-99  
-88  
-81  
-109  
-103  
-92  
-108  
-102  
-92  
-105  
-99  
-88  
-80  
Sensitivity,  
915 MHz  
dBm  
-87  
-86  
-81  
-86  
-86  
-86  
-85  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
77  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
RF Transmit  
TA = 25°C, VCC = 3 V (unless otherwise noted)(1), PTX = +10 dBm (unless otherwise noted)  
FREQ  
(MHz)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
315  
122 + j31  
116 + j41  
86.5 + j43  
+12  
Differential load  
433  
Ω
impedance(2)  
868, 915  
315  
433  
+13  
Output power, highest  
setting(3)  
Delivered to a 50Ω single-ended load via CC430 reference  
design's RF matching network  
dBm  
dBm  
868  
+11  
915  
+11  
Output power, lowest  
setting(3)  
Delivered to a 50Ω single-ended load via CC430 reference  
design's RF matching network  
-30  
Second harmonic  
Third harmonic  
Second harmonic  
Third harmonic  
Second harmonic  
Third harmonic  
-56  
-57  
433  
868  
915  
315  
433  
868  
915  
315  
-50  
Harmonics,  
dBm  
radiated(4)(5)(6)  
-52  
-50  
-54  
Frequencies below 960 MHz  
+10 dBm CW  
< -38  
< -48  
-45  
Frequencies above 960 MHz  
Frequencies below 1 GHz  
+10 dBm CW  
Frequencies above 1 GHz  
< -48  
-59  
Harmonics, conducted  
dBm  
Second harmonic  
+10 dBm CW  
Other harmonics  
< -71  
-53  
Second harmonic  
+11 dBm CW(7)  
Other harmonics  
< -47  
< -58  
< -53  
< -54  
< -54  
Frequencies below 960 MHz  
+10 dBm CW  
Frequencies above 960 MHz  
Frequencies below 1 GHz  
Frequencies above 1 GHz  
433  
+10 dBm CW  
Frequencies within 47 to 74, 87.5 to 118,  
174 to 230, 470 to 862 MHz  
< -63  
Spurious emissions,  
conducted, harmonics  
not included(8)  
dBm  
Frequencies below 1 GHz  
< -46  
< -59  
Frequencies above 1 GHz  
868  
915  
+10 dBm CW  
Frequencies within 47 to 74, 87.5 to 118,  
174 to 230, 470 to 862 MHz  
< -56  
Frequencies below 960 MHz  
+11 dBm CW  
< -49  
< -63  
8
Frequencies above 960 MHz  
TX latency(9)  
Serial operation  
bits  
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 49).  
(2) Differential impedance as seen from the RF-port (RF_P and RF_N) towards the antenna. Follow the CC430 reference designs available  
from the TI website.  
(3) Output power is programmable, and full range is available in all frequency bands. Output power may be restricted by regulatory limits.  
See also application note AN050 Using the CC1101 in the European 868 MHz SRD Band (SWRA146) and design note DN013  
Programming Output Power on CC1101 (SWRA151), which gives the output power and harmonics when using multi-layer inductors.  
The output power is then typically +10 dBm when operating at 868 or 915 MHz.  
(4) The antennas used during the radiated measurements (SMAFF-433 from R.W.Badland and Nearson S331 868 or 915) play a part in  
attenuating the harmonics.  
(5) Measured on EM430F6137RF900 with CW, maximum output power  
(6) All harmonics are below -41.2 dBm when operating in the 902 to 928 MHz band.  
(7) Requirement is -20 dBc under FCC 15.247  
(8) All radiated spurious emissions are within the limits of ETSI. Also see design note DN017 CC11xx 868/915 MHz RF Matching  
(SWRA168).  
(9) Time from sampling the data on the transmitter data input pin until it is observed on the RF output ports  
78  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Optimum PATABLE Settings for Various Output Power Levels and Frequency Bands  
TA = 25°C, VCC = 3 V (unless otherwise noted)(1)  
PATABLE SETTING  
OUTPUT POWER (dBm)  
315 MHz  
0x12  
433 MHz  
0x05  
868 MHz  
0x03  
915 MHz  
0x03  
-30  
-12  
-6  
0x33  
0x26  
0x25  
0x25  
0x29  
0x2D  
0x50  
0x2D  
0x8D  
0xC3  
0xC0  
0x2D  
0x8D  
0xC3  
0xC0  
0
0x51  
10  
0xC4  
0xC0  
0xC4  
0xC0  
max.  
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 49).  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
79  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
UNIT  
Typical Output Power, 315 MHz(1)  
VCC  
TA  
2.0 V  
3.0 V  
3.6 V  
PARAMETER  
PATABLE Setting  
-40°C 25°C 85°C -40°C 25°C 85°C -40°C 25°C 85°C  
0xC0 (max)  
11.9  
10.3  
11.8  
10.3  
9.3  
11.8  
10.3  
0xC4 (10 dBm)  
0xC6 (default)  
0x51 (0 dBm)  
0x29 (-6 dBm)  
Output power,  
315 MHz  
dBm  
0.7  
0.6  
0.7  
-6.8  
-5.6  
-5.3  
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 49).  
Typical Output Power, 433 MHz(1)  
VCC  
TA  
2.0 V  
3.0 V  
3.6 V  
PARAMETER  
PATABLE Setting  
UNIT  
-40°C 25°C 85°C -40°C 25°C 85°C -40°C 25°C 85°C  
0xC0 (max)  
12.6  
10.3  
12.6  
10.2  
10.0  
0.3  
12.6  
10.2  
0xC4 (10 dBm)  
0xC6 (default)  
0x50 (0 dBm)  
0x2D (-6 dBm)  
Output power,  
433 MHz  
dBm  
0.3  
0.3  
-6.4  
-5.4  
-5.1  
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 49).  
Typical Output Power, 868 MHz(1)  
VCC  
TA  
2.0 V  
3.0 V  
3.6 V  
PARAMETER  
PATABLE Setting  
UNIT  
-40°C 25°C 85°C -40°C 25°C 85°C -40°C 25°C 85°C  
0xC0 (max)  
11.9  
10.8  
11.2  
10.1  
10.5  
9.4  
11.9  
10.8  
11.2  
10.1  
8.8  
10.5  
9.4  
11.9  
10.7  
11.2  
10.1  
10.5  
9.4  
0xC3 (10 Bm)  
0xC6 (default)  
0x8D (0 dBm)  
0x2D (-6 dBm)  
Output power,  
868 MHz  
dBm  
1.0  
0.3  
-0.3  
-7.3  
1.1  
0.3  
-0.3  
-6.3  
1.1  
0.3  
-0.3  
-6.0  
-6.5  
-6.8  
-5.3  
-5.8  
-4.9  
-5.4  
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 49).  
Typical Output Power, 915 MHz(1)  
VCC  
TA  
2.0 V  
3.0 V  
3.6 V  
PARAMETER  
PATABLE Setting  
UNIT  
-40°C 25°C 85°C -40°C 25°C 85°C -40°C 25°C 85°C  
0xC0 (max)  
12.2  
11.0  
11.4  
10.3  
10.6  
9.5  
12.1  
11.0  
11.4  
10.3  
8.8  
10.7  
9.5  
12.1  
11.0  
11.4  
10.3  
10.7  
9.6  
0xC3 (10 dBm)  
0xC6 (default)  
0x8D (0 dBm)  
0x2D (-6 dBm)  
Output power,  
915 MHz  
dBm  
1.9  
1.0  
0.3  
1.9  
1.0  
0.3  
1.9  
1.1  
0.3  
-5.5  
-6.0  
-6.5  
-4.3  
-4.8  
-5.5  
-3.9  
-4.4  
-5.1  
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 49).  
80  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Frequency Synthesizer Characteristics  
TA = 25°C, VCC = 3 V (unless otherwise noted)(1)  
MIN figures are given using a 27-MHz crystal. TYP and MAX figures are given using a 26-MHz crystal.  
PARAMETER  
Programmed frequency resolution(2)  
Synthesizer frequency tolerance(3)  
TEST CONDITIONS  
26 to 27 MHz crystal  
MIN  
TYP  
fXOSC/216  
±40  
MAX  
UNIT  
Hz  
397  
412  
ppm  
50 kHz offset from carrier  
100 kHz offset from carrier  
200 kHz offset from carrier  
500 kHz offset from carrier  
1 MHz offset from carrier  
2 MHz offset from carrier  
5 MHz offset from carrier  
10 MHz offset from carrier  
Crystal oscillator running  
-95  
-94  
-94  
-98  
RF carrier phase noise  
dBc/Hz  
-107  
-112  
-118  
-129  
PLL turn-on and hop time(4)  
PLL RX to TX settling time(5)  
PLL TX to RX settling time(6)  
PLL calibration time(7)  
85.1  
9.3  
88.4  
9.6  
µs  
µs  
µs  
µs  
20.7  
694  
21.5  
721  
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 49).  
(2) The resolution (in Hz) is equal for all frequency bands.  
(3) Depends on crystal used. Required accuracy (including temperature and aging) depends on frequency band and channel bandwidth /  
spacing.  
(4) Time from leaving the IDLE state until arriving in the RX, FSTXON, or TX state when not performing calibration.  
(5) Settling time for the 1-IF frequency step from RX to TX  
(6) Settling time for the 1-IF frequency step from TX to RX  
(7) Calibration can be initiated manually or automatically before entering or after leaving RX/TX  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
81  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Typical RSSI_offset Values  
TA = 25°C, VCC = 3 V (unless otherwise noted)(1)  
RSSI_OFFSET (dB)  
DATA RATE (kBaud)  
433 MHz  
868 MHz  
1.2  
38.4  
250  
500  
74  
74  
74  
74  
74  
74  
74  
74  
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 49).  
0
-20  
0
-20  
250kBaud  
500kBaud  
1.2kBaud  
38.4kBaud  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-120  
-120  
-100  
-80  
-60  
-40  
-20  
0
-120  
-100  
-80  
-60  
-40  
-20  
0
Input Power [dBm]  
Input Power [dBm]  
Figure 28. Typical RSSI Value vs Input Power Level for Different Data Rates at 868 MHz  
82  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
APPLICATION CIRCUIT  
T C K  
T E S T / S B W T C K  
n R S T / N M I / S B W T D I O  
D V C C  
V A S S  
D V C C  
V A C C  
For a complete reference design including layout see the CC430 Wireless Development Tools and related  
documentation.  
Figure 29. Typical Application Circuit CC430F61xx  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
83  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
T M S  
T C K  
D V C C  
T E S T / S B W T C K  
n R S T / N M I / S B W T D I O  
D V C C  
V A S S  
V A C C  
For a complete reference design including layout, see the CC430 Wireless Development Tools and related  
documentation.  
Figure 30. Typical Application Circuit CC430F51xx  
84  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Table 49. Bill of Materials  
COMPONENTS  
FOR 315 MHz  
FOR 433 MHz  
100 nF  
FOR 868, 915 MHz  
COMMENT  
C1,3,4,5,7,9,11,13,15  
C8,10,12,14  
C2,6,16,17,18  
C19  
Decoupling capacitors  
Decoupling capacitors  
Decoupling capacitors  
VCORE capacitor  
10 µF  
2 pF  
470 nF  
RST decoupling cap  
(optimized for SBW)  
C20  
2.2 nF  
27 pF  
Load capacitors for  
26 MHz crystal(1)  
C21,22  
R1  
R2  
56 kΩ  
47kΩ  
R_BIAS (±1% required)  
RST pullup  
L1,2  
L3,4  
L5  
Capacitors: 220 pF  
0.033 µH  
0.033 µH  
dnp(2)  
0.016 µH  
0.027 µH  
0.047 µH  
dnp(2)  
0.012 µH  
0.018 µH  
0.015 µH  
0.0022 µH  
0.015 µH  
1 pF  
L6  
L7  
0.033 µH  
dnp(2)  
0.051 µH  
2.7 pF  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
220 pF  
220 pF  
3.9 pF  
100 pF  
1.5 pF  
6.8 pF  
6.8 pF  
3.9 pF  
1.5 pF  
220 pF  
220 pF  
4.7 pF  
1.5 pF  
10 pF  
8.2 pF  
220 pF  
220 pF  
1.5 pF  
(1) The load capacitance CL seen by the crystal is CL = 1/((1/C21)+(1/C22)) + Cparasitic. The parasitic capacitance Cparasitic includes pin  
capacitance and PCB stray capacitance. It can be typically estimated to be approximately 2.5 pF.  
(2) dnp = do not populate  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
85  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
INPUT/OUTPUT SCHEMATICS  
Port P1, P1.0 to P1.4, Input/Output With Schmitt Trigger  
S18...S22  
(n/a CC430F514x and CC430F512x)  
LCDS18...LCDS22  
Pad Logic  
P1REN.x  
P1MAP.x = PMAP_ANALOG  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
from Port Mapping  
P1OUT.x  
0
1
from Port Mapping  
P1.0/P1MAP0(/S18)  
P1.1/P1MAP1(/S19)  
P1.2/P1MAP2(/S20)  
P1.3/P1MAP3(/S21)  
P1.4/P1MAP4(/S22)  
P1DS.x  
0: Low drive  
1: High drive  
P1SEL.x  
P1IN.x  
Bus  
Keeper  
EN  
D
to Port Mapping  
P1IRQ.x  
P1IE.x  
EN  
Set  
Q
P1IFG.x  
P1SEL.x  
P1IES.x  
Interrupt  
Edge  
Select  
NOTE: CC430F514x and CC430F512x devices do not provide LCD functionality.  
86  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Table 50. Port P1 (P1.0 to P1.4) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
LCDS19 to  
P1DIR.x  
P1SEL.x  
P1MAPx  
LCDS22(1)  
P1.0/P1MAP/S18  
P1.1/P1MAP1/S19  
P1.2/P1MAP2/S20  
P1.3/P1MAP3/S21  
P1.4/P1MAP4/S22  
0
P1.0 (I/O)  
I: 0; O: 1  
0; 1(2)  
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
X
30(2)  
= 31  
X
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
Mapped secondary digital function (see Table 10)  
Output driver and input Schmitt trigger disabled  
S18 (not available on CC430F514x and CC430F512x)  
P1.1 (I/O)  
X
X
1
2
3
4
I: 0; O: 1  
0; 1(2)  
X
Mapped secondary digital function (see Table 10)  
Output driver and input Schmitt trigger disabled  
S19 (not available on CC430F514x and CC430F512x)  
P1.2 (I/O)  
30(2)  
= 31  
X
X
X
I: 0; O: 1  
0; 1(2)  
X
Mapped secondary digital function (see Table 10)  
Output driver and input Schmitt trigger disabled  
S22 (not available on CC430F514x and CC430F512x)  
P1.3 (I/O)  
30(2)  
= 31  
X
X
X
I: 0; O: 1  
0; 1(2)  
X
X
Mapped secondary digital function (see Table 10)  
Output driver and input Schmitt trigger disabled  
S21 (not available on CC430F514x and CC430F512x)  
P1.4 (I/O)  
30(2)  
= 31  
X
X
I: 0; O: 1  
0; 1(2)  
X
X
Mapped secondary digital function (see Table 10)  
Output driver and input Schmitt trigger disabled  
S22 (not available on CC430F514x and CC430F512x)  
30(2)  
= 31  
X
X
(1) LCDSx not available in CC430F514x and CC430F512x.  
(2) According to mapped function (see Table 10)  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
87  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Port P1, P1.5 to P1.7, Input/Output With Schmitt Trigger  
to LCD_B  
(n/a CC430F514x  
and CC430F512x)  
Pad Logic  
P1REN.x  
P1MAP.x = PMAP_ANALOG  
DVSS  
DVCC  
0
1
1
P1DIR.x  
0
1
Direction  
0: Input  
1: Output  
from Port Mapping  
P1OUT.x  
0
1
from Port Mapping  
P1.5/P1MAP5(/R23)  
P1.6/P1MAP6(/R13)  
P1.7/P1MAP7(/R03)  
P1DS.x  
0: Low drive  
1: High drive  
P1SEL.x  
P1IN.x  
Bus  
Keeper  
EN  
D
to Port Mapping  
P1IRQ.x  
P1IE.x  
EN  
Set  
Q
P1IFG.x  
P1SEL.x  
P1IES.x  
Interrupt  
Edge  
Select  
NOTE: CC430F514x and CC430F512x devices do not provide LCD functionality.  
88  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Table 51. Port P1 (P1.5 to P1.7) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P1.x)  
x
FUNCTION  
P1DIR.x  
I: 0; O: 1  
0; 1(1)  
X
P1SEL.x  
P1MAPx  
X
30(1)  
P1.5/P1MAP5/R23  
5
P1.5 (I/O)  
0
1
1
0
1
Mapped secondary digital function (see Table 10)  
R23(2) (not available on CC430F514x and CC430F512x)  
P1.6 (I/O)  
= 31  
P1.6/P1MAP6/R13/  
LCDREF  
6
7
I: 0; O: 1  
0; 1(1)  
X
Mapped secondary digital function (see Table 10)  
R13/LCDREF(2) (not available on CC430F514x and  
CC430F512x)  
30(1)  
X
1
= 31  
P1.7/P1MAP7/R03  
P1.7 (I/O)  
I: 0; O: 1  
0; 1(1)  
X
0
1
1
X
Mapped secondary digital function (see Table 10)  
R03(2) (not available on CC430F514x and CC430F512x)  
30(1)  
= 31  
(1) According to mapped function (see Table 10)  
(2) Setting P1SEL.x bit together with P1MAPx = PM_ANALOG disables the output driver and the input Schmitt trigger.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
89  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Port P2, P2.0 to P2.3, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC10_A  
(n/a CC430F512x)  
INCHx = x  
To Comparator_B  
from Comparator_B  
CBPD.x  
P2REN.x  
P2MAP.x = PMAP_ANALOG  
DVSS  
DVCC  
0
1
1
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
from Port Mapping  
P2OUT.x  
0
1
from Port Mapping  
P2.0/P2MAP0/CB0(/A0)  
P2.1/P2MAP2/CB1(/A1)  
P2.2/P2MAP2/CB2(/A2)  
P2.3/P2MAP3/CB3(/A3)  
P2DS.x  
0: Low drive  
1: High drive  
P2SEL.x  
P2IN.x  
Bus  
Keeper  
EN  
D
to Port Mapping  
P2IRQ.x  
P2IE.x  
EN  
Set  
Q
P2IFG.x  
P2SEL.x  
P2IES.x  
Interrupt  
Edge  
Select  
90  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Port P2, P2.4, Input/Output With Schmitt Trigger  
Pad Logic  
ADC10_A ext. Reference Input VeREF-  
(n/a CC430F512x)  
to ADC10_A  
(n/a CC430F512x)  
INCHx = x  
To Comparator_B  
from Comparator_B  
CBPD.x  
P2REN.x  
P2MAP.x = PMAP_ANALOG  
DVSS  
DVCC  
0
1
1
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
from Port Mapping  
P2OUT.x  
0
1
from Port Mapping  
P2.4/P2MAP4/CB4(/  
P2DS.x  
0: Low drive  
1: High drive  
P2SEL.x  
P2IN.x  
Bus  
Keeper  
EN  
D
to Port Mapping  
P2IRQ.x  
P2IE.x  
EN  
Set  
Q
P2IFG.x  
P2SEL.x  
P2IES.x  
Interrupt  
Edge  
Select  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
91  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Port P2, P2.5, Input/Output With Schmitt Trigger  
REFCTL0.REFOUT  
Pad Logic  
1.5V/2.0V/2.5V from shared REF  
(n/a CC430F512x)  
Buffer  
ADC10_A ext. Reference Input VeREF+  
(n/a CC430F512x)  
to ADC10_A  
(n/a CC430F512x)  
INCHx = x  
To Comparator_B  
from Comparator_B  
CBPD.x  
P2REN.x  
P2MAP.x = PMAP_ANALOG  
DVSS  
DVCC  
0
1
1
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
from Port Mapping  
P2OUT.x  
0
1
from Port Mapping  
P2.5/P2MAP5/CB5  
P2DS.x  
0: Low drive  
1: High drive  
P2SEL.x  
P2IN.x  
Bus  
Keeper  
EN  
D
to Port Mapping  
P2IRQ.x  
P2IE.x  
EN  
Q
P2IFG.x  
Set  
P2SEL.x  
P2IES.x  
Interrupt  
Edge  
Select  
92  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Port P2, P2.6 and P2.7, Input/Output With Schmitt Trigger  
Pad Logic  
To ADC10_A  
(n/a CC430F514x and CC430F512x)  
INCHx = x  
To Comparator_B  
(n/a CC430F514x and CC430F512x)  
from Comparator_B  
CBPD.x  
(n/a CC430F514x and CC430F512x)  
P2REN.x  
P2MAP.x = PMAP_ANALOG  
DVSS  
DVCC  
0
1
1
P2DIR.x  
0
1
Direction  
0: Input  
1: Output  
from Port Mapping  
P2OUT.x  
0
1
from Port Mapping  
P2.6/P2MAP6(/CB6/A6)  
P2.7/P2MAP7(/CB7/A7)  
P2DS.x  
0: Low drive  
1: High drive  
P2SEL.x  
P2IN.x  
Bus  
Keeper  
EN  
D
to Port Mapping  
P2IRQ.x  
P2IE.x  
EN  
Set  
Q
P2IFG.x  
P2SEL.x  
P2IES.x  
Interrupt  
Edge  
Select  
CC430F514x and CC430F512x devices do not provide analog functionality on port P2.6 and P2.7 pins.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
93  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Table 52. Port P2 (P2.0 to P2.7) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P2.x)  
x
FUNCTION  
P2DIR.x  
P2SEL.x  
P2MAPx  
X
CBPD.x  
P2.0/P2MAP0/CB0  
(/A0)  
0
P2.0 (I/O)  
I: 0; O: 1  
0; 1(1)  
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
0
0
X
1
0
0
X
1
0
0
X
1
0
0
X
1
0
0
X
1
0
0
X
1
0
0
Mapped secondary digital function (see Table 10)  
A0 (not available on CC430F512x)(2)  
30(1)  
= 31  
X
X
CB0(3)  
X
I: 0; O: 1  
0; 1(1)  
X
P2.1/P2MAP1/CB1  
(/A1)  
1
2
3
4
5
6
P2.1 (I/O)  
X
Mapped secondary digital function (see Table 10)  
A1 (not available on CC430F512x)(2)  
30(1)  
= 31  
X
CB1(3)  
X
P2.2/P2MAP2/CB2  
(/A2)  
P2.2 (I/O)  
I: 0; O: 1  
0; 1(1)  
X
X
Mapped secondary digital function (see Table 10)  
A2 (not available on CC430F512x)(2)  
30(1)  
= 31  
X
CB2(3)  
X
P2.3/P2MAP3/CB3  
(/A3)  
P2.3 (I/O)  
I: 0; O: 1  
0; 1(1)  
X
X
Mapped secondary digital function (see Table 10)  
A3 (not available on CC430F512x)(2)  
30(1)  
= 31  
X
CB3(3)  
X
P2.4/P2MAP4/CB4  
(/A4/VeREF-)  
P2.4 (I/O)  
I: 0; O: 1  
0; 1(1)  
X
X
Mapped secondary digital function (see Table 10)  
A4/VeREF- (not available on CC430F512x)(2)  
30(1)  
= 31  
X
CB4(3)  
X
P2.5/P2MAP5/CB5  
(/A5/VREF+/VeREF+)  
P2.5 (I/O)  
I: 0; O: 1  
0; 1(1)  
X
X
Mapped secondary digital function (see Table 10)  
A5/VREF+VeREF+ (not available on CC430F512x)(2)  
CB5(3)  
30(1)  
= 31  
X
X
P2.6/P2MAP6(/CB6)  
(/A6)  
P2.6 (I/O)  
I: 0; O: 1  
0; 1(1)  
X
Mapped secondary digital function (see Table 10)  
30(1)  
A6 (not available on CC430F514x and  
CC430F512x)(2)  
X
X
1
= 31  
X
X
1
CB6 (not available on CC430F514x and  
CC430F512x)(3)  
X
P2.7/P2MAP7(/CB7)  
(/A7)  
7
P2.7 (I/O)  
I: 0; O: 1  
0; 1(1)  
0
1
X
0
0
Mapped secondary digital function (see Table 10)  
30(1)  
A7 (not available on CC430F514x and  
CC430F512x)(2)  
X
X
1
= 31  
X
X
1
CB7 (not available on CC430F514x and  
CC430F512x)(3)  
X
(1) According to mapped function (see Table 10)  
(2) Setting P2SEL.x bit together with P2MAPx = PM_ANALOG disables the output driver and the input Schmitt trigger.  
(3) Setting the CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog  
signals. Selecting the CBx input pin to the comparator multiplexer with the CBx bits automatically disables output driver and input buffer  
for that pin, regardless of the state of the associated CBPD.x bit.  
94  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Port P3, P3.0 to P3.7, Input/Output With Schmitt Trigger  
S10...S17  
(n/a CC430F514x and CC430F512x)  
LCDS10...LCDS17  
Pad Logic  
P3REN.x  
P3MAP.x = PMAP_ANALOG  
DVSS  
DVCC  
0
1
1
P3DIR.x  
0
1
Direction  
0: Input  
1: Output  
from Port Mapping  
P3OUT.x  
0
1
from Port Mapping  
P3.0/P3MAP0(/S10)  
P3.1/P3MAP1(/S11)  
P3.2/P3MAP2(/S12)  
P3.3/P3MAP3(/S13)  
P3.4/P3MAP4(/S14)  
P3.5/P3MAP5(/S15)  
P3.6/P3MAP6(/S16)  
P3.7/P3MAP7(/S17)  
P3DS.x  
0: Low drive  
1: High drive  
P3SEL.x  
P3IN.x  
Bus  
Keeper  
EN  
D
to Port Mapping  
CC430F514x and CC430F512x devices do not provide LCD functionality.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
95  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Table 53. Port P3 (P3.0 to P3.7) Pin Functions  
CONTROL BITS/SIGNALS  
PIN NAME (P3.x)  
x
FUNCTION  
LCDS10...  
17(1)  
P3DIR.x  
P3SEL.x  
P3MAPx  
P3.0/P3MAP0/S10  
0
P3.0 (I/O)  
I: 0; O: 1  
0; 1(2)  
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
X
30(2)  
= 31  
X
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
Mapped secondary digital function (see Table 10)  
Output driver and input Schmitt trigger disabled  
S10 (not available on CC430F514x and CC430F512x)  
P3.1 (I/O)  
X
X
P3.1/P3MAP1/S11  
P3.2/P3MAP7/S12  
P3.3/P3MAP3/S13  
P3.4/P3MAP4/S14  
P3.5/P3MAP5/S15  
P3.6/P3MAP6/S16  
P3.7/P3MAP7/S17  
1
2
3
4
5
6
7
I: 0; O: 1  
0; 1(2)  
X
Mapped secondary digital function (see Table 10)  
Output driver and input Schmitt trigger disabled  
S11 (not available on CC430F514x and CC430F512x)  
P3.2 (I/O)  
30(2)  
= 31  
X
X
X
I: 0; O: 1  
0; 1(2)  
X
Mapped secondary digital function (see Table 10)  
Output driver and input Schmitt trigger disabled  
S12 (not available on CC430F514x and CC430F512x)  
P3.3 (I/O)  
30(2)  
= 31  
X
X
X
I: 0; O: 1  
0; 1(2)  
X
Mapped secondary digital function (see Table 10)  
Output driver and input Schmitt trigger disabled  
S13 (not available on CC430F514x and CC430F512x)  
P3.4 (I/O)  
30(2)  
= 31  
X
X
X
I: 0; O: 1  
0; 1(2)  
X
Mapped secondary digital function (see Table 10)  
Output driver and input Schmitt trigger disabled  
S14 (not available on CC430F514x and CC430F512x)  
P3.5 (I/O)  
30(2)  
= 31  
X
X
X
I: 0; O: 1  
0; 1(2)  
X
Mapped secondary digital function (see Table 10)  
Output driver and input Schmitt trigger disabled  
S15 (not available on CC430F514x and CC430F512x)  
P3.6 (I/O)  
30(2)  
= 31  
X
X
X
I: 0; O: 1  
0; 1(2)  
X
X
Mapped secondary digital function (see Table 10)  
Output driver and input Schmitt trigger disabled  
S16 (not available on CC430F514x and CC430F512x)  
P3.7 (I/O)  
30(2)  
= 31  
X
X
I: 0; O: 1  
0; 1(2)  
X
X
Mapped secondary digital function (see Table 10)  
Output driver and input Schmitt trigger disabled  
S17 (not available on CC430F514x and CC430F512x)  
30(2)  
= 31  
X
X
(1) LCDSx not available in CC430F514x and CC430F512x.  
(2) According to mapped function (see Table 10)  
96  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Port P4, P4.0 to P4.7, Input/Output With Schmitt Trigger (CC430F614x only)  
S2...S9  
LCDS2...LCDS9  
Pad Logic  
P4REN.x  
P4DIR.x  
DVSS  
DVCC  
0
1
1
0
1
Direction  
0: Input  
1: Output  
P4OUT.x  
DVSS  
0
1
P4.0/S2  
P4.1/S3  
P4.2/S4  
P4.3/S5  
P4.4/S6  
P4.5/S7  
P4.6/S8  
P4.7/S9  
P4DS.x  
P4SEL.x  
P4IN.x  
0: Low drive  
1: High drive  
Bus  
EN  
D
Keeper  
Not Used  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
97  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Table 54. Port P4 (P4.0 to P4.7) Pin Functions (CC430F614x only)  
CONTROL BITS/SIGNALS  
PIN NAME (P4.x)  
x
FUNCTION  
P4DIR.x  
P4SEL.x  
LCDS2...7  
P4.0/P4MAP0/S2  
0
P4.0 (I/O)  
N/A  
I: 0; O: 1  
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
DVSS  
S2  
1
X
P4.1/P4MAP1/S3  
P4.2/P4MAP7/S4  
P4.3/P4MAP3/S5  
P4.4/P4MAP4/S6  
P4.5/P4MAP5/S7  
P4.6/P4MAP6/S8  
P4.7/P4MAP7/S9  
1
2
3
4
5
6
7
P4.1 (I/O)  
N/A  
I: 0; O: 1  
0
DVSS  
S3  
1
X
P4.2 (I/O)  
N/A  
I: 0; O: 1  
0
DVSS  
S4  
1
X
P4.3 (I/O)  
N/A  
I: 0; O: 1  
0
DVSS  
S5  
1
X
P4.4 (I/O)  
N/A  
I: 0; O: 1  
0
DVSS  
S6  
1
X
P4.5 (I/O)  
N/A  
I: 0; O: 1  
0
DVSS  
S7  
1
X
P4.6 (I/O)  
N/A  
I: 0; O: 1  
0
DVSS  
S8  
1
X
P4.7 (I/O)  
N/A  
I: 0; O: 1  
0
1
X
DVSS  
S9  
98  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Port P5, P5.0, Input/Output With Schmitt Trigger  
Pad Logic  
to XT1  
P5REN.0  
DVSS  
DVCC  
0
1
1
P5DIR.0  
0
1
P5OUT.0  
0
1
Module X OUT  
P5.0/XIN  
P5DS.x  
P5SEL.0  
P5IN.0  
0: Low drive  
1: High drive  
Bus  
EN  
D
Keeper  
Module X IN  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
99  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Port P5, P5.1, Input/Output With Schmitt Trigger  
Pad Logic  
to XT1  
P5REN.1  
DVSS  
DVCC  
0
1
1
P5DIR.1  
0
1
P5OUT.1  
0
1
Module X OUT  
P5.1/XOUT  
P5DS.x  
P5SEL.0  
0: Low drive  
1: High drive  
XT1BYPASS  
P5IN.1  
Bus  
EN  
D
Keeper  
Module X IN  
Table 55. Port P5 (P5.0 and P5.1) Pin Functions  
CONTROL BITS/SIGNALS(1)  
PIN NAME (P5.x)  
x
FUNCTION  
P5DIR.x  
P5SEL.0  
P5SEL.1  
XT1BYPASS  
P5.0/XIN  
0
P5.0 (I/O)  
I: 0; O: 1  
0
1
1
0
1
1
X
X
X
X
X
X
X
0
1
X
0
1
XIN crystal mode(2)  
XIN bypass mode(2)  
P5.1 (I/O)  
XOUT crystal mode(3)  
P5.1 (I/O)(3)  
X
X
P5.1/XOUT  
1
I: 0; O: 1  
X
X
(1) X = Don't care  
(2) Setting P5SEL.0 causes the general-purpose I/O to be disabled. Pending the setting of XT1BYPASS, P5.0 is configured for crystal  
mode or bypass mode.  
(3) Setting P5SEL.0 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.1 can be used as  
general-purpose I/O.  
100  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Port P5, P5.2 to P5.4, Input/Output With Schmitt Trigger (CC430F614x only)  
S0(P5.2)/S1(P5.3)/S23(P5.4)  
LCDS0(P5.2)/LCDS1(P5.3)/LCDS23(P5.4)  
Pad Logic  
P5REN.x  
DVSS  
DVCC  
0
1
1
P5DIR.x  
0
1
P5OUT.x  
DVSS  
0
1
P5.2/S0  
P5.3/S1  
P5.4/S23  
P5DS.x  
P5SEL.x  
P5IN.x  
0: Low drive  
1: High drive  
Bus  
EN  
D
Keeper  
Not Used  
Table 56. Port P5 (P5.2 to P5.3) Pin Functions (CC430F614x only)  
CONTROL BITS/SIGNALS  
PIN NAME (P5.x)  
P5.2/S0  
x
FUNCTION  
P5DIR.x  
P5SEL.x  
LCDS0...1  
2
P5.2 (I/O)  
N/A  
I: 0; O: 1  
0
1
1
X
0
1
1
X
0
0
0
1
0
0
0
1
0
DVSS  
S0  
1
X
P5.3/S1  
3
P5.3 (I/O)  
N/A  
I: 0; O: 1  
0
1
X
DVSS  
S1  
Table 57. Port P5 (P5.4) Pin Functions (CC430F614x only)  
CONTROL BITS/SIGNALS  
PIN NAME (P5.x)  
P5.4/S23  
x
FUNCTION  
P5DIR.x  
P5SEL.x  
LCDS23  
4
P5.4 (I/O)  
N/A  
I: 0; O: 1  
0
1
1
X
0
0
0
1
0
1
X
DVSS  
S23  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
101  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Port P5, P5.5 to P5.7, Input/Output With Schmitt Trigger (CC430F614x only)  
S24(P5.5)/S25(P5.6)/S26(P5.7)  
LCDS24(P5.5)/LCDS25(P5.6)/LCDS26(P5.7)  
COM3(P5.5)/COM2(P5.6)/COM1(P5.7)  
Pad Logic  
P5REN.x  
DVSS  
DVCC  
0
1
1
P5DIR.x  
P5OUT.x  
P5.5/COM3/S24  
P5.6/COM2/S25  
P5.7/COM1/S26  
P5DS.x  
P5SEL.x  
P5IN.x  
0: Low drive  
1: High drive  
Bus  
Keeper  
Table 58. Port P5 (P5.5 to P5.7) Pin Functions (CC430F614x only)  
CONTROL BITS/SIGNALS  
PIN NAME (P5.x)  
x
FUNCTION  
LCDS24 to  
LCDS26  
P5DIR.x  
P5SEL.x  
P5.5/COM3/S24  
5
P5.5 (I/O)  
COM3(1)  
S24(1)  
I: 0; O: 1  
0
1
0
0
1
0
0
1
0
0
X
1
0
X
1
0
X
1
X
X
P5.6/COM2/S25  
P5.7/COM1/S26  
6
7
P5.6 (I/O)  
COM2(1)  
S25(1)  
I: 0; O: 1  
X
X
P5.7 (I/O)  
COM1(1)  
S26(1)  
I: 0; O: 1  
X
X
(1) Setting P5SEL.x bit disables the output driver and the input Schmitt trigger.  
102  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Port J, J.0 JTAG pin TDO, Input/Output With Schmitt Trigger or Output  
Pad Logic  
PJREN.0  
0
1
DVSS  
DVCC  
1
PJDIR.0  
DVCC  
0
1
PJOUT.0  
0
1
From JTAG  
PJ.0/TDO  
PJDS.0  
From JTAG  
PJIN.0  
0: Low drive  
1: High drive  
Port J, J.1 to J.3 JTAG pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output  
Pad Logic  
PJREN.x  
0
1
DVSS  
DVCC  
1
PJDIR.x  
DVSS  
0
1
PJOUT.x  
0
1
From JTAG  
PJ.1/TDI/TCLK  
PJ.2/TMS  
PJDS.x  
From JTAG  
PJIN.x  
0: Low drive  
1: High drive  
PJ.3/TCK  
EN  
D
To JTAG  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
103  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Table 59. Port PJ (PJ.0 to PJ.3) Pin Functions  
CONTROL BITS/  
SIGNALS(1)  
PIN NAME (PJ.x)  
x
FUNCTION  
PJDIR.x  
PJ.0/TDO  
0
PJ.0 (I/O)(2)  
TDO(3)  
I: 0; O: 1  
X
PJ.1/TDI/TCLK  
PJ.2/TMS  
1
2
3
PJ.1 (I/O)(2)  
TDI/TCLK(3) (4)  
PJ.2 (I/O)(2)  
TMS(3) (4)  
PJ.3 (I/O)(2)  
TCK(3) (4)  
I: 0; O: 1  
X
I: 0; O: 1  
X
PJ.3/TCK  
I: 0; O: 1  
X
(1) X = Don't care  
(2) Default condition  
(3) The pin direction is controlled by the JTAG module.  
(4) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.  
104  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
Device Descriptor Structures  
Table 60 lists the content of the device descriptor tag-length-value (TLV) structure for CC430F614x and  
CC430F514x device types.  
Table 61 lists the content of the device descriptor tag-length-value (TLV) structure for CC430F512x device types.  
Table 60. Device Descriptor Table CC430F614x and CC430F514x  
F6147  
Value  
06h  
F6145  
Value  
06h  
F6143  
Value  
06h  
F5147  
Value  
06h  
F5145  
Value  
06h  
F5143  
Value  
06h  
Size  
bytes  
Description  
Address  
Info Block  
Info length  
CRC length  
CRC value  
Device ID  
Device ID  
01A00h  
01A01h  
01A02h  
01A04h  
01A05h  
1
1
2
1
1
1
1
1
1
4
2
2
2
06h  
06h  
06h  
06h  
06h  
06h  
per unit  
035h  
per unit  
036h  
per unit  
037h  
per unit  
038h  
per unit  
039h  
per unit  
03Ah  
081h  
081h  
081h  
081h  
081h  
081h  
Hardware revision 01A06h  
Firmware revision 01A07h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
Die Record  
Die Record Tag  
01A08h  
Die Record length 01A09h  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
0Ah  
Lot/Wafer ID  
Die X position  
Die Y position  
Test results  
01A0Ah  
01A0Eh  
01A10h  
01A12h  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
ADC10  
Calibration  
ADC10  
Calibration Tag  
01A14h  
01A15h  
1
1
13h  
10h  
13h  
10h  
13h  
10h  
13h  
10h  
13h  
10h  
13h  
10h  
ADC10  
Calibration length  
ADC Gain Factor  
ADC Offset  
01A16h  
01A18h  
2
2
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
ADC 1.5V  
Reference  
Temp. Sensor  
30°C  
01A1Ah  
01A1Ch  
01A1Eh  
01A20h  
01A22h  
01A24h  
2
2
2
2
2
2
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
ADC 1.5V  
Reference  
Temp. Sensor  
85°C  
ADC 2.0V  
Reference  
Temp. Sensor  
30°C  
ADC 2.0V  
Reference  
Temp. Sensor  
85°C  
ADC 2.5V  
Reference  
Temp. Sensor  
30°C  
ADC 2.5V  
Reference  
Temp. Sensor  
85°C  
REF  
Calibration  
REF Calibration  
Tag  
01A26h  
01A27h  
1
1
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
12h  
06h  
REF Calibration  
length  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
105  
 
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
SLAS555 JUNE 2012  
www.ti.com  
Table 60. Device Descriptor Table CC430F614x and CC430F514x (continued)  
F6147  
Value  
F6145  
Value  
F6143  
Value  
F5147  
Value  
F5145  
Value  
F5143  
Value  
Size  
bytes  
Description  
Address  
1.5V Reference  
Factor  
01A28h  
01A2Ah  
01A2Ch  
01A2Eh  
01A2Fh  
01A30h  
2
2
2
1
1
per unit  
per unit  
per unit  
02h  
per unit  
per unit  
per unit  
02h  
per unit  
per unit  
per unit  
02h  
per unit  
per unit  
per unit  
02h  
per unit  
per unit  
per unit  
02h  
per unit  
per unit  
per unit  
02h  
2.0V Reference  
Factor  
2.5V Reference  
Factor  
Peripheral  
Descriptor  
(PD)  
Peripheral  
Descriptor Tag  
Peripheral  
Descriptor Length  
5Dh  
5Dh  
5Dh  
5Bh  
5Bh  
5Bh  
Peripheral  
Descriptors  
PD  
Length  
...  
...  
...  
...  
...  
...  
Table 61. Device Descriptor Table CC430F512x  
F5125  
Value  
06h  
F5123  
Value  
06h  
Size  
bytes  
Description  
Address  
Info Block  
Info length  
CRC length  
CRC value  
Device ID  
Device ID  
01A00h  
01A01h  
01A02h  
01A04h  
01A05h  
1
1
2
1
1
1
1
1
1
4
2
2
2
06h  
06h  
per unit  
03Bh  
per unit  
03Ch  
081h  
081h  
Hardware revision 01A06h  
Firmware revision 01A07h  
per unit  
per unit  
08h  
per unit  
per unit  
08h  
Die Record  
Die Record Tag  
01A08h  
Die Record length 01A09h  
0Ah  
0Ah  
Lot/Wafer ID  
Die X position  
Die Y position  
Test results  
01A0Ah  
01A0Eh  
01A10h  
01A12h  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
per unit  
Empty  
Descriptor  
Empty Tag  
01A14h  
1
05h  
05h  
Empty Tag length 01A15h  
01A16h  
1
16  
2
10h  
10h  
undefined  
per unit  
undefined  
per unit  
ADC Offset  
01A18h  
REF  
Calibration  
REF Calibration  
Tag  
01A26h  
1
1
2
2
2
1
1
12h  
06h  
12h  
06h  
REF Calibration  
length  
01A27h  
01A28h  
01A2Ah  
01A2Ch  
01A2Eh  
01A2Fh  
01A30h  
1.5V Reference  
Factor  
per unit  
per unit  
per unit  
02h  
per unit  
per unit  
per unit  
02h  
2.0V Reference  
Factor  
2.5V Reference  
Factor  
Peripheral  
Descriptor  
(PD)  
Peripheral  
Descriptor Tag  
Peripheral  
Descriptor Length  
59h  
59h  
Peripheral  
Descriptors  
PD  
Length  
...  
...  
106  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
ECCN 5E002 TSPA - Technology / Software Publicly Available  
CC430F614x  
CC430F514x  
CC430F512x  
www.ti.com  
SLAS555 JUNE 2012  
REVISION HISTORY  
REVISION  
SLAS555  
COMMENTS  
Production Data release  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
107  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jul-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
CC430F5123IRGZR  
CC430F5123IRGZT  
CC430F5125IRGZR  
CC430F5125IRGZT  
CC430F5143IRGZR  
CC430F5143IRGZT  
CC430F5145IRGZR  
CC430F5145IRGZT  
CC430F5147IRGZR  
CC430F5147IRGZT  
CC430F6143IRGCR  
CC430F6143IRGCT  
CC430F6145IRGCR  
CC430F6145IRGCT  
CC430F6147IRGCR  
CC430F6147IRGCT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
64  
64  
64  
64  
64  
64  
2500  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
2500  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2500  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2500  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2500  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jul-2012  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

CC430F6145IRGCT

MSP430 SoC With RF Core
TI

CC430F6147

MSP430 SoC With RF Core
TI

CC430F6147IRGC

MSP430 SoC With RF Core
TI

CC430F6147IRGCR

MSP430 SoC With RF Core
TI

CC430F6147IRGCT

MSP430 SoC With RF Core
TI

CC430F6147_15

MSP430 SoC With RF Core
TI

CC4532100KL

WOUND CHIP INDUCTOR
ABC

CC4532101KL

WOUND CHIP INDUCTOR
ABC

CC4532120KL

WOUND CHIP INDUCTOR
ABC

CC4532121KL

WOUND CHIP INDUCTOR
ABC

CC4532150KL

WOUND CHIP INDUCTOR
ABC

CC4532151KL

WOUND CHIP INDUCTOR
ABC