CC2650MODA [TI]

具有 128kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M3 多协议 2.4GHz 无线模块;
CC2650MODA
型号: CC2650MODA
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 128kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M3 多协议 2.4GHz 无线模块

无线 无线模块 闪存
文件: 总52页 (文件大小:2246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
CC2650MODA SimpleLink™ 低功耗 Bluetooth® 无线 MCU 模块  
1 器件概述  
1.1 特性  
1
微控制器  
低功耗  
宽电源电压范围  
强大的 ARM® Cortex®-M3  
– EEMBC CoreMark®评分:142  
高达 48MHz 的时钟速度  
– 128KB 系统内可编程闪存  
– 8KB 缓存静态 RAM (SRAM)  
– 20KB 超低泄漏 SRAM  
– 2 引脚 cJTAG JTAG 调试  
支持无线 (OTA) 升级  
超低功耗传感器控制器  
可独立于系统其余部分自主运行  
– 16 位架构  
工作电压范围为 1.8V 3.8V  
有源模式 RX6.2mA  
有源模式 TX (0dBm)6.8mA  
有源模式 TX (+5dBm)9.4mA  
有源模式 MCU61µA/MHz  
有源模式 MCU48.5 CoreMark/mA  
有源模式传感器控制器:  
0.4mA + 8.2μA/MHz  
待机电流:1μARTC 运行,RAM/CPU 保持)  
关断电流:100nA(发生外部事件时唤醒)  
射频 (RF) 部分  
存储代码和数据的 2KB 超低泄漏  
静态随机存取存储器 (SRAM)  
高效代码尺寸架构,ROM 中装载驱动程序、低功耗  
Bluetooth® 控制器、 IEEE ®802.15.4 媒体接入控制  
(MAC) 和引导加载程序  
– 2.4GHz 射频收发器,符合低功耗蓝牙 (BLE) 5.1  
规范及 IEEE 802.15.4 PHY MAC  
符合 CC2650MODA RF-PHY 标准 (QDID:  
88415)  
集成天线  
外设  
出色的接收器灵敏度(蓝牙低功耗对应  
–97dBm802.15.4 对应 –100dBm)、可选择性  
以及阻断性能  
所有数字外设引脚均可连接任意 GPIO  
最高达 +5dBm 的可编程输出功率  
已经过预认证,符合全球射频规范  
– ETSI RED(欧洲)  
四个通用定时器模块  
8 × 16 位或 4 × 32 位,均采用脉宽调制  
(PWM))  
– 12 位模数转换器 (ADC)200 ksps8 通道模拟  
多路复用器  
– IC(加拿大)  
– FCC(美国)  
持续时间比较器  
超低功耗模拟比较器  
可编程电流源  
– UART  
– 2 个同步串行接口 (SSI)SPIMICROWIRE 和  
TI)  
– I2C  
– ARIB STD-T66(日本)  
– JATE(日本)  
工具和开发环境  
功能全面的低成本开发套件  
针对不同 RF 配置的多种参考设计  
数据包监听器 PC 软件  
– Sensor Controller Studio  
– SmartRF™Studio  
– SmartRF Flash Programmer 2  
– IAR Embedded Workbench®(用于 ARM)  
– Code Composer Studio™  
– I2S  
实时时钟 (RTC)  
– AES-128 安全模块  
真随机数发生器 (TRNG)  
– 15 个通用输入输出 (GPIO)  
支持八个电容感测按钮  
集成温度传感器  
外部系统  
片上内部直流/直流转换器  
无需外部组件,只需电源电压  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SWRS187  
 
 
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
1.2 应用  
楼宇自动化  
医疗和健康  
电器  
接近标签  
警报和安全  
遥控  
工业  
无线传感器网络  
消费类电子产品  
1.3 说明  
SimpleLink™CC2650MODA 器件是一款无线微控制器 (MCU) 模块,主要适用于低功耗 Bluetooth® 应  
用。CC2650MODA 器件还适用于 ZigBee®6LoWPAN 以及 ZigBee RF4CE™远程控制 应用。  
该模块基于 SimpleLink CC2650 无线 MCU,属于 CC26xx 系列的经济高效型超低功耗 2.4GHz RF 器件。  
它具有极低的有源 RF MCU 电流以及低功耗模式流耗,可确保卓越的电池使用寿命,适合小型纽扣电池  
供电以及在能源采集型应用中 使用。  
CC2650MODA 模块含有一个 32 ARM Cortex-M3 处理器(与主处理器工作频率同为 48MHz),并且具  
有丰富的外设功能集,其中包括一个独特的超低功耗传感器控制器。此传感器控制器非常适合连接外部传感  
器,或适合用于在系统其余部分处于睡眠模式的情况下自主收集模拟和数字数据。因此,CC2650MODA 器  
件成为工业、消费类电子和医疗产品中各类 应用 的理想选择。  
CC2650MODA 模块已通过预认证,能够按照 FCCICETSI ARIB 规范运行。在客户将此模块集成到  
其产品中时,这些认证能够为客户节省大量成本和精力。  
蓝牙低功耗控制器和 IEEE 802.15.4 MAC 嵌入在 ROM 中,并在 ARM® Cortex®-M0 处理器上单独运行。此  
架构可改善系统整体性能和功耗,并释放更多闪存以供应用。  
蓝牙低功耗软件堆栈 (BLE-Stack) 以及 ZigBee 软件堆栈 ( Z-Stack™) 可以免费获取。  
器件信息(1)  
封装  
器件型号  
CC2650MODAMOH  
(1) 详细信息请参阅10。  
封装尺寸  
MOH(模块)  
16.90mm x 11.00mm  
2
器件概述  
版权 © 2016–2019, Texas Instruments Incorporated  
 
 
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
1.4 功能框图  
1-1 CC2650MODA 器件的框图。  
SimpleLink CC2650MODA Wireless MCU Module  
32.768-kHz  
Crystal  
Oscillator  
24-MHz Crystal  
Oscillator  
RF Balun  
RF core  
cJTAG  
ROM  
Main CPU  
ADC  
ADC  
128-KB  
Flash  
ARM  
Cortex-M3  
Digital PLL  
DSP Modem  
8-KB  
Cache  
4-KB  
SRAM  
ARM  
Cortex-M0  
20-KB  
SRAM  
ROM  
Sensor Controller  
General Peripherals / Modules  
I2C  
UART  
4× 32-bit Timers  
Sensor Controller Engine  
2× SSI (SPI, µWire, TI)  
Watchdog Timer  
TRNG  
12-bit ADC, 200 ks/s  
2× Analog Comparators  
SPI / I2C Digital Sensor IF  
Constant Current Source  
Time-to-Digital Converter  
2-KB SRAM  
I2S  
15 GPIOs  
AES  
Temp. / Batt. Monitor  
RTC  
32 ch. µDMA  
DC-DC Converter  
Copyright © 2017, Texas Instruments Incorporated  
1-1. CC2650MODA 框图  
版权 © 2016–2019, Texas Instruments Incorporated  
器件概述  
3
 
 
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
内容  
1
器件概.................................................... 1  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 2  
1.3 说明 ................................................... 2  
1.4 功能框图 .............................................. 3  
修订历史记录............................................... 5  
Device Comparison ..................................... 6  
3.1 Related Products ..................................... 6  
Terminal Configuration and Functions.............. 7  
4.1 Module Pin Diagram.................................. 7  
4.2 Pin Functions ......................................... 8  
Specifications ............................................ 9  
5.1 Absolute Maximum Ratings .......................... 9  
5.2 ESD Ratings.......................................... 9  
5.3 Recommended Operating Conditions ................ 9  
5.4 Power Consumption Summary...................... 10  
5.5 General Characteristics ............................. 10  
5.6 Antenna ............................................. 11  
6.2 Functional Block Diagram........................... 24  
6.3 Main CPU ........................................... 25  
6.4 RF Core ............................................. 25  
6.5 Sensor Controller ................................... 26  
6.6 Memory.............................................. 27  
6.7 Debug ............................................... 27  
6.8 Power Management................................. 28  
6.9 Clock Systems ...................................... 29  
6.10 General Peripherals and Modules .................. 29  
6.11 System Architecture................................. 30  
6.12 Certification.......................................... 30  
6.13 End Product Labeling ............................... 32  
6.14 Manual Information to the End User ................ 32  
6.15 Module Marking ..................................... 33  
Application, Implementation, and Layout ......... 34  
7.1 Application Information .............................. 34  
7.2 Layout ............................................... 35  
2
3
4
5
7
8
Environmental Requirements and  
Specifications ........................................... 36  
5.7  
5.8  
5.9  
1-Mbps GFSK (Bluetooth low energy) – RX ........ 11  
8.1 PCB Bending........................................ 36  
8.2 Handling Environment .............................. 36  
8.3 Storage Condition ................................... 36  
8.4 Baking Conditions................................... 36  
8.5 Soldering and Reflow Condition .................... 37  
器件和文档支持 .......................................... 38  
9.1 器件命名规则 ........................................ 38  
9.2 工具和软件 .......................................... 39  
9.3 文档支............................................. 40  
9.4 德州仪器 (TI) 低功耗射频网站....................... 40  
9.5 低功耗射频电子新闻简报 ............................ 40  
9.6 社区资............................................. 41  
9.7 其他信............................................. 41  
9.8 商标.................................................. 41  
9.9 静电放电警告 ........................................ 42  
9.10 Export Control Notice ............................... 42  
9.11 Glossary ............................................. 42  
1-Mbps GFSK (Bluetooth low energy) – TX ........ 12  
IEEE 802.15.4 (Offset Q-PSK DSSS, 250 kbps) –  
RX ................................................... 12  
5.10 IEEE 802.15.4 (Offset Q-PSK DSSS, 250 kbps) –  
TX ................................................... 13  
5.11 24-MHz Crystal Oscillator (XOSC_HF) ............. 13  
5.12 32.768-kHz Crystal Oscillator (XOSC_LF).......... 13  
5.13 48-MHz RC Oscillator (RCOSC_HF) ............... 13  
5.14 32-kHz RC Oscillator (RCOSC_LF)................. 13  
5.15 ADC Characteristics................................. 14  
5.16 Temperature Sensor ................................ 15  
5.17 Battery Monitor...................................... 15  
5.18 Continuous Time Comparator....................... 15  
5.19 Low-Power Clocked Comparator ................... 15  
5.20 Programmable Current Source ..................... 16  
9
5.21 DC Characteristics .................................. 16  
5.22 Thermal Resistance Characteristics for MOH  
Package ............................................. 17  
5.23 Timing Requirements ............................... 17  
5.24 Switching Characteristics ........................... 17  
5.25 Typical Characteristics .............................. 20  
Detailed Description ................................... 24  
6.1 Overview ............................................ 24  
10 机械、封装和可订购信息 ............................... 42  
10.1 封装信............................................. 42  
10.2 PACKAGE OPTION ADDENDUM .................. 43  
10.3 PACKAGE MATERIALS INFORMATION ........... 44  
6
4
内容  
版权 © 2016–2019, Texas Instruments Incorporated  
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from July 1, 2017 to July 31, 2019  
Page  
Added Module Marking section. .................................................................................................. 33  
Added Environmental Requirements and Specifications section. ............................................................ 36  
Copyright © 2016–2019, Texas Instruments Incorporated  
修订历史记录  
5
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
3 Device Comparison  
Table 3-1. Device Family Overview  
DEVICE  
PHY SUPPORT  
Multiprotocol(1)  
FLASH (KB) RAM (KB)  
128 20  
GPIO  
PACKAGE  
CC2650MODAMOH  
15  
MOH  
(1) The CC2650 device supports all PHYs and can be reflashed to run all the supported standards.  
3.1 Related Products  
TI's Wireless Connectivity The wireless connectivity portfolio offers a wide selection of low-power RF  
solutions suitable for a broad range of applications. The offerings range from fully  
customized solutions to turn key offerings with pre-certified hardware and software  
(protocol).  
TI's SimpleLink™ Sub-1 GHz Wireless MCUs Long-range, low-power wireless connectivity solutions  
are offered in a wide range of Sub-1 GHz ISM bands.  
Companion Products Review products that are frequently purchased or used in conjunction with this  
product.  
SimpleLink™ CC2650 Wireless MCU LaunchPad™ Development Kit  
The CC2650 LaunchPad™  
development kit brings easy Bluetooth® low energy connectivity to the LaunchPad kit  
ecosystem with the SimpleLink ultra-low power CC26xx family of devices. This LaunchPad  
kit also supports development for multi-protocol support for the SimpleLink multi-standard  
CC2650 wireless MCU and the rest of CC26xx family of products: CC2630 wireless MCU for  
ZigBee®/6LoWPAN and CC2640 wireless MCU for Bluetooth low energy.  
Reference Designs for CC2650MODA TI Designs Reference Design Library is a robust reference design  
library spanning analog, embedded processor and connectivity. Created by TI experts to  
help you jump-start your system design, all TI Designs include schematic or block diagrams,  
BOMs, and design files to speed your time to market. Search and download designs at  
ti.com/tidesigns.  
6
Device Comparison  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
4 Terminal Configuration and Functions  
Section 4.1 shows pin assignments for the CC2650MODA device.  
4.1 Module Pin Diagram  
Antenna  
GND  
NC  
1
2
3
4
5
6
7
8
9
25 GND  
24 NC  
GND  
23 VDD  
22 VDD  
DIO 0  
DIO 1  
21 DIO 14  
20 DIO 13  
19 DIO 12  
18 DIO 11  
17 DIO 10  
G1  
G3  
G2  
G4  
DIO 2  
DIO 3  
DIO 4  
(Exposed GND Pads)  
JTAG_TMS  
10 11 12 13 14 15 16  
(1) The following I/O pins marked in bold in the pinout have high-drive capabilities:  
DIO 2  
DIO 3  
DIO 4  
JTAG_TMS  
DIO 5/JTAG_TDO  
DIO 6/JTAG_TDI  
(2) The following I/O pins marked in italics in the pinout have analog capabilities:  
DIO 7  
DIO 8  
DIO 9  
DIO 10  
DIO 11  
DIO 12  
DIO 13  
DIO 14  
Figure 4-1. CC2650MODA MOH Package  
(16.9-mm × 11-mm) Module Pinout  
Copyright © 2016–2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
7
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
 
 
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
4.2 Pin Functions  
Table 4-1 describes the CC2650MODA pins.  
Table 4-1. Signal Descriptions – MOH Package  
PIN NAME  
DIO_0  
PIN NO.  
PIN TYPE  
DESCRIPTION  
4
Digital I/O  
GPIO, Sensor Controller  
DIO_1  
5
Digital I/O  
GPIO, Sensor Controller  
DIO_2  
6
Digital I/O  
GPIO, Sensor Controller, high-drive capability  
GPIO, Sensor Controller, high-drive capability  
GPIO, Sensor Controller, high-drive capability  
GPIO, high-drive capability, JTAG_TDO  
GPIO, high-drive capability, JTAG_TDI  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
GPIO, Sensor Controller, analog  
Ground – Exposed ground pad  
Ground  
DIO_3  
7
Digital I/O  
DIO_4  
8
Digital I/O  
DIO_5/JTAG_TDO  
DIO_6/JTAG_TDI  
DIO_7  
11  
12  
14  
15  
16  
17  
18  
19  
20  
21  
Digital I/O  
Digital I/O  
Digital I/O, Analog I/O  
Digital I/O, Analog I/O  
Digital I/O, Analog I/O  
Digital I/O, Analog I/O  
Digital I/O, Analog I/O  
Digital I/O, Analog I/O  
Digital I/O, Analog I/O  
Digital I/O, Analog I/O  
DIO_8  
DIO_9  
DIO_10  
DIO_11  
DIO_12  
DIO_13  
DIO_14  
EGP  
G1, G2, G3, G4 Power  
GND  
1, 3, 25  
10  
JTAG_TCK  
JTAG_TMS  
NC  
Digital I/O  
Digital I/O  
NC  
JTAG TCKC  
9
JTAG TMSC, high-drive capability  
2, 24  
13  
Not Connected—TI recommends leaving these pins floating  
Reset, active low. No internal pullup  
nRESET  
VDD  
Digital input  
Power  
22, 23  
1.8-V to 3.8-V main chip supply  
8
Terminal Configuration and Functions  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
 
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
5 Specifications  
5.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
VDD  
Vin  
Supply voltage  
Voltage on any digital pin(3)  
4.1  
VDD + 0.3, max 4.1  
V
Voltage scaling enabled  
VDD  
1.49  
Voltage on ADC input  
Voltage scaling disabled, internal reference  
Voltage scaling disabled, VDD as reference  
V
VDD / 2.9  
5
Input RF level  
dBm  
°C  
Tstg  
Storage temperature  
–40  
85  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to ground, unless otherwise noted.  
(3) Including analog capable DIO.  
5.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS001(1)  
All pins  
±1000  
VESD  
Electrostatic discharge  
V
RF pins  
±500  
±500  
Charged device model (CDM), per JESD22-C101(2)  
Non-RF pins  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
5.3 Recommended Operating Conditions  
MIN  
MAX  
UNIT  
Ambient temperature  
–40  
85  
°C  
For operation in battery-powered and 3.3-V systems  
(internal DC-DC can be used to minimize power  
consumption)  
Operating supply voltage (VDD)  
1.8  
3.8  
V
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
9
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
 
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
5.4 Power Consumption Summary  
Tc = 25°C, VDD = 3.0 V with internal DC-DC converter, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
100  
150  
1
MAX UNIT  
Reset. RESET_N pin asserted or VDD below Power-on-  
Reset threshold  
nA  
Shutdown. No clocks running, no retention  
Standby. With RTC, CPU, RAM and (partial) register  
retention. RCOSC_LF  
Standby. With RTC, CPU, RAM and (partial) register  
retention. XOSC_LF  
1.2  
2.5  
Standby. With Cache, RTC, CPU, RAM and (partial)  
register retention. RCOSC_LF  
µA  
Core current  
consumption  
Icore  
Standby. With Cache, RTC, CPU, RAM and (partial)  
register retention. XOSC_LF  
2.7  
Idle. Supply systems and RAM powered.  
550  
1.45 mA +  
31 µA/MHz  
Active. Core running CoreMark  
Radio RX  
6.2  
6.8  
9.4  
Radio TX, 0-dBm output power  
mA  
Radio TX, 5-dBm output power  
Peripheral Current Consumption (Adds to core current Icore for each peripheral unit activated)(1)  
Peripheral power  
Delta current with domain enabled  
domain  
20  
13  
Serial power domain  
Delta current with domain enabled  
Delta current with power domain enabled, clock  
enabled, RF Core Idle  
RF core  
237  
µDMA  
Timers  
I2C  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
130  
113  
12  
Iperi  
µA  
I2S  
36  
SSI  
93  
UART  
164  
(1) Iperi is not supported in Standby or Shutdown.  
5.5 General Characteristics  
Tc = 25°C, VDD = 3.0 V, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FLASH MEMORY  
Supported flash erase cycles before  
failure  
100  
k Cycles  
Flash page/sector erase current  
Flash page/sector erase time(1)  
Flash page/sector size  
Flash write current  
Average delta current  
12.6  
8
mA  
ms  
KB  
mA  
µs  
4
Average delta current, 4 bytes at a time  
4 bytes at a time  
8.15  
8
Flash write time(1)  
(1) This number is dependent on flash aging and will increase over time and erase cycles.  
10  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
5.6 Antenna  
Tc = 25°C, VDD = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
Linear  
1.26  
MAX  
UNIT  
Polarization  
Peak Gain  
Efficiency  
2450 MHz  
2450 MHz  
dBi  
57%  
5.7 1-Mbps GFSK (Bluetooth low energy) – RX  
RF performance is specified in a single ended 50-Ω reference plane at the antenna feeding point with Tc = 25°C,  
VDD = 3.0 V, fRF = 2440 MHz, unless otherwise noted.  
PARAMETER  
Receiver sensitivity  
TEST CONDITIONS  
MIN  
TYP  
–97  
4
MAX UNIT  
dBm  
BER = 10–3  
BER = 10–3  
Receiver saturation  
dBm  
Difference between center frequency of the received RF signal  
and local oscillator frequency.  
Frequency error tolerance  
Data rate error tolerance  
Co-channel rejection(1)  
–350  
–750  
350 kHz  
750 ppm  
dB  
Wanted signal at –67 dBm, modulated interferer in channel,  
BER = 10–3  
–6  
7 / 3(2)  
29 / 23(2)  
38 / 26(2)  
42 / 29(2)  
32  
Wanted signal at –67 dBm, modulated interferer at ±1 MHz,  
BER = 10–3  
Selectivity, ±1 MHz(1)  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Wanted signal at –67 dBm, modulated interferer at ±2 MHz,  
BER = 10–3  
Selectivity, ±2 MHz(1)  
Wanted signal at –67 dBm, modulated interferer at ±3 MHz,  
BER = 10–3  
Selectivity, ±3 MHz(1)  
Wanted signal at –67 dBm, modulated interferer at ±4 MHz,  
BER = 10–3  
Selectivity, ±4 MHz(1)  
Wanted signal at –67 dBm, modulated interferer at ±5 MHz,  
Selectivity, ±5 MHz or more(1)  
Selectivity, Image frequency(1)  
BER = 10–3  
Wanted signal at –67 dBm, modulated interferer at image  
frequency, BER = 10–3  
23  
Selectivity,  
Wanted signal at –67 dBm, modulated interferer at ±1 MHz from  
image frequency, BER = 10–3  
3 / 26(2)  
Image frequency ±1 MHz(1)  
Out-of-band blocking(3)  
Out-of-band blocking  
Out-of-band blocking  
Out-of-band blocking  
30 MHz to 2000 MHz  
2003 MHz to 2399 MHz  
2484 MHz to 2997 MHz  
3000 MHz to 12.75 GHz  
–20  
–5  
dBm  
dBm  
dBm  
dBm  
–8  
–8  
Wanted signal at 2402 MHz, –64 dBm. Two interferers at 2405  
and 2408 MHz respectively, at the given power level  
Intermodulation  
–34  
dBm  
Conducted measurement in a 50-Ω single-ended load. Suitable  
for systems targeting compliance with EN 300 328, EN 300 440  
class 2, FCC CFR47, Part 15 and ARIB STD-T-66  
Spurious emissions,  
30 MHz to 1000 MHz  
–71  
dBm  
Conducted measurement in a 50-Ω single-ended load. Suitable  
for systems targeting compliance with EN 300 328, EN 300 440  
class 2, FCC CFR47, Part 15 and ARIB STD-T-66  
Spurious emissions,  
1 GHz to 12.75 GHz  
–62  
dBm  
RSSI dynamic range  
RSSI accuracy  
70  
±4  
dB  
dB  
(1) Numbers given as I/C dB  
(2) X / Y, where X is +N MHz and Y is –N MHz  
(3) Excluding one exception at Fwanted / 2, per Bluetooth Specification  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
11  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
5.8 1-Mbps GFSK (Bluetooth low energy) – TX  
RF performance is specified in a single ended 50-Ω reference plane at the antenna feeding point with Tc = 25°C,  
VDD = 3.0 V, fRF = 2440 MHz, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
5
MAX UNIT  
dBm  
Output power, highest setting  
Output power, lowest setting  
–21  
–43  
–58  
–57  
–45  
dBm  
f < 1 GHz, outside restricted bands  
f < 1 GHz, restricted bands ETSI  
f < 1 GHz, restricted bands FCC  
f > 1 GHz, including harmonics  
Spurious emission conducted  
measurement(1)  
dBm  
(1) Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 Class 2  
(Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan)  
5.9 IEEE 802.15.4 (Offset Q-PSK DSSS, 250 kbps) – RX  
RF performance is specified in a single ended 50-Ω reference plane at the antenna feeding point with Tc = 25°C,  
VDD = 3.0 V, unless otherwise noted.  
PARAMETER  
Receiver sensitivity  
TEST CONDITIONS  
MIN  
TYP  
–100  
–7  
MAX UNIT  
dBm  
PER = 1%  
PER = 1%  
Receiver saturation  
dBm  
Wanted signal at –82 dBm, modulated interferer at ±5 MHz,  
PER = 1%  
Adjacent channel rejection  
35  
52  
dB  
dB  
Wanted signal at –82 dBm, modulated interferer at ±10 MHz,  
PER = 1%  
Alternate channel rejection  
Wanted signal at –82 dBm, undesired signal is IEEE 802.15.4  
modulated channel, stepped through all channels 2405 to  
2480 MHz, PER = 1%  
Channel rejection, ±15 MHz or  
more  
57  
dB  
Blocking and desensitization,  
5 MHz from upper band edge  
Wanted signal at –97 dBm (3 dB above the sensitivity level),  
CW jammer, PER = 1%  
64  
64  
65  
68  
63  
63  
65  
67  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Blocking and desensitization,  
10 MHz from upper band edge  
Wanted signal at –97 dBm (3 dB above the sensitivity level),  
CW jammer, PER = 1%  
Blocking and desensitization,  
20 MHz from upper band edge  
Wanted signal at –97 dBm (3 dB above the sensitivity level),  
CW jammer, PER = 1%  
Blocking and desensitization,  
50 MHz from upper band edge  
Wanted signal at –97 dBm (3 dB above the sensitivity level),  
CW jammer, PER = 1%  
Blocking and desensitization,  
–5 MHz from lower band edge  
Wanted signal at –97 dBm (3 dB above the sensitivity level),  
CW jammer, PER = 1%  
Blocking and desensitization,  
–10 MHz from lower band edge  
Wanted signal at –97 dBm (3 dB above the sensitivity level),  
CW jammer, PER = 1%  
Blocking and desensitization,  
–20 MHz from lower band edge  
Wanted signal at –97 dBm (3 dB above the sensitivity level),  
CW jammer, PER = 1%  
Blocking and desensitization,  
–50 MHz from lower band edge  
Wanted signal at –97 dBm (3 dB above the sensitivity level),  
CW jammer, PER = 1%  
Conducted measurement in a 50-Ω single-ended load.  
Suitable for systems targeting compliance with EN 300 328,  
EN 300 440 class 2, FCC CFR47, Part 15 and ARIB STD-T-  
66  
Spurious emissions,  
30 MHz to 1000 MHz  
–71  
dBm  
Conducted measurement in a 50-Ω single-ended load.  
Suitable for systems targeting compliance with EN 300 328,  
EN 300 440 class 2, FCC CFR47, Part 15 and ARIB STD-T-  
66  
Spurious emissions,  
1 GHz to 12.75 GHz  
–62  
dBm  
ppm  
Difference between center frequency of the received RF  
signal and local oscillator frequency  
Frequency error tolerance  
>200  
RSSI dynamic range  
RSSI accuracy  
100  
±4  
dB  
dB  
12  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
5.10 IEEE 802.15.4 (Offset Q-PSK DSSS, 250 kbps) – TX  
RF performance is specified in a single ended 50-Ω reference plane at the antenna feeding point with Tc = 25°C,  
VDD = 3.0 V, unless otherwise noted.  
PARAMETER  
Output power, highest setting  
Output power, lowest setting  
Error vector magnitude  
TEST CONDITIONS  
MIN  
TYP  
5
MAX  
UNIT  
dBm  
dBm  
–21  
2%  
–43  
–58  
–57  
–45  
At maximum output power  
f < 1 GHz, outside restricted bands  
f < 1 GHz, restricted bands ETSI  
f < 1 GHz, restricted bands FCC  
f > 1 GHz, including harmonics  
Spurious emission conducted  
measurement(1)  
dBm  
(1) Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 Class 2  
(Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan)  
5.11 24-MHz Crystal Oscillator (XOSC_HF)(1)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
ppm  
µs  
Crystal frequency  
24  
Crystal frequency tolerance(2)  
Start-up time(3)  
–40  
40  
150  
(1) Probing or otherwise stopping the XTAL while the DC-DC converter is enabled may cause permanent damage to the device.  
(2) Includes initial tolerance of the crystal, drift over temperature, aging and frequency pulling due to incorrect load capacitance. As per  
Bluetooth and IEEE 802.15.4 specification  
(3) Kick-started based on a temperature and aging compensated RCOSC_HF using precharge injection  
5.12 32.768-kHz Crystal Oscillator (XOSC_LF)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Crystal frequency  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
32.768  
kHz  
Initial crystal frequency tolerance, Bluetooth Tc = 25°C  
low energy applications  
–20  
-3  
20  
3
ppm  
Crystal aging  
ppm/year  
5.13 48-MHz RC Oscillator (RCOSC_HF)  
Tc = 25°C, VDD = 3.0 V, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Frequency  
48  
±1%  
MHz  
Uncalibrated frequency accuracy  
Calibrated frequency accuracy(1)  
Start-up time  
±0.25%  
5
µs  
(1) Accuracy relatively to the calibration source (XOSC_HF).  
5.14 32-kHz RC Oscillator (RCOSC_LF)  
Tc = 25°C, VDD = 3.0 V, unless otherwise noted  
PARAMETER  
Calibrated frequency  
TEST CONDITIONS  
MIN  
TYP  
32.8  
50  
MAX  
UNIT  
kHz  
Temperature coefficient  
ppm/°C  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
13  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
 
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
5.15 ADC Characteristics  
Tc = 25°C, VDD = 3.0 V and voltage scaling enabled, unless otherwise noted  
(1)  
PARAMETER  
Input voltage range  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
0
VDD  
V
12  
Bits  
ksps  
LSB  
LSB  
LSB  
LSB  
Sample rate  
200  
Offset  
Internal 4.3-V equivalent reference(2)  
Internal 4.3-V equivalent reference(2)  
2
2.4  
>–1  
±3  
Gain error  
DNL(3)  
INL(4)  
Differential nonlinearity  
Integral nonlinearity  
Internal 4.3-V equivalent reference(2), 200 ksps,  
9.6-kHz input tone  
9.8  
10  
ENOB  
Effective number of bits VDD as reference, 200 ksps, 9.6-kHz input tone  
Bits  
dB  
dB  
dB  
Internal 1.44-V reference, voltage scaling disabled,  
32 samples average, 200 ksps, 300-Hz input tone  
Internal 4.3-V equivalent reference(2), 200 ksps,  
9.6-kHz input tone  
11.1  
–65  
–69  
–71  
Total harmonic  
distortion  
THD  
VDD as reference, 200 ksps, 9.6-kHz input tone  
Internal 1.44-V reference, voltage scaling disabled,  
32 samples average, 200 ksps, 300-Hz input tone  
Internal 4.3-V equivalent reference(2), 200 ksps,  
9.6-kHz input tone  
60  
63  
69  
SINAD  
and SNDR distortion ratio  
Signal-to-noise and  
VDD as reference, 200 ksps, 9.6-kHz input tone  
Internal 1.44-V reference, voltage scaling disabled,  
32 samples average, 200 ksps, 300-Hz input tone  
Internal 4.3-V equivalent reference(2), 200 ksps,  
9.6-kHz input tone  
67  
72  
73  
Spurious-free dynamic  
range  
SFDR  
VDD as reference, 200 ksps, 9.6-kHz input tone  
Internal 1.44-V reference, voltage scaling disabled, 32  
samples average, 200 ksps, 300-Hz input tone  
clock-  
cycles  
Conversion time  
Serial conversion, time-to-output, 24-MHz clock  
50  
Current consumption  
Current consumption  
Internal 4.3-V equivalent reference(2)  
VDD as reference  
0.66  
0.75  
mA  
mA  
Equivalent fixed internal reference (input voltage  
scaling enabled). For best accuracy, the ADC  
conversion should be initiated through the TI-RTOS™  
API to include the gain or offset compensation factors  
stored in FCFG1.  
Reference voltage  
4.3(2)(5)  
V
Fixed internal reference (input voltage scaling  
disabled). For best accuracy, the ADC conversion  
should be initiated through the TI-RTOS API to include  
the gain or offset compensation factors stored in  
FCFG1. This value is derived from the scaled value  
(4.3 V) as follows: Vref = 4.3 V × 1408 / 4095  
Reference voltage  
1.48  
V
VDD as reference (Also known as RELATIVE) (input  
voltage scaling enabled)  
Reference voltage  
Reference voltage  
VDD  
V
V
VDD as reference (Also known as RELATIVE) (input  
voltage scaling disabled)  
VDD / 2.82(5)  
200 ksps, voltage scaling enabled. Capacitive input,  
input impedance depends on sampling frequency and  
sampling time  
Input Impedance  
>1  
MΩ  
(1) Using IEEE Std 1241™-2010 for terminology and test methods.  
(2) Input signal scaled down internally before conversion, as if voltage range was 0 to 4.3 V.  
(3) No missing codes. Positive DNL typically varies from +0.3 to +3.5 depending on device, see Figure 5-24.  
(4) For a typical example, see Figure 5-25.  
(5) Applied voltage must be within absolute maximum ratings (see Section 5.1) at all times.  
14  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
5.16 Temperature Sensor  
Tc = 25°C, VDD = 3.0 V, unless otherwise noted  
PARAMETER  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
°C  
4
Range  
–40  
85  
°C  
Accuracy  
±5  
°C  
Supply voltage coefficient(1)  
3.2  
°C/V  
(1) Automatically compensated when using supplied driver libraries.  
5.17 Battery Monitor  
Tc = 25°C, VDD = 3.0 V, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mV  
V
Resolution  
Range  
50  
1.8  
3.8  
Accuracy  
13  
mV  
5.18 Continuous Time Comparator  
Tc = 25°C, VDD = 3.0 V, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
0
TYP  
MAX  
VDD  
VDD  
UNIT  
V
Input voltage range  
External reference voltage  
0
V
Internal reference voltage  
Offset  
DCOUPL as reference  
1.27  
3
V
mV  
mV  
µs  
Hysteresis  
<2  
Decision time  
Current consumption when enabled(1)  
Step from –10 mV to +10 mV  
0.72  
8.6  
µA  
(1) Additionally, the bias module must be enabled when running in standby mode.  
5.19 Low-Power Clocked Comparator  
Tc = 25°C, VDD = 3.0 V, unless otherwise noted  
PARAMETER  
Input voltage range  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0
VDD  
V
Clock frequency  
32  
kHz  
Internal reference voltage, VDD / 2  
Internal reference voltage, VDD / 3  
Internal reference voltage, VDD / 4  
Internal reference voltage, DCOUPL / 1  
Internal reference voltage, DCOUPL / 2  
Internal reference voltage, DCOUPL / 3  
Internal reference voltage, DCOUPL / 4  
Offset  
1.49–1.51  
1.01–1.03  
0.78–0.79  
1.25–1.28  
0.63–0.65  
0.42–0.44  
0.33–0.34  
<2  
V
V
V
V
V
V
V
mV  
Hysteresis  
<5  
mV  
Decision time  
Step from –50 mV to +50 mV  
<1  
clock-cycle  
nA  
Current consumption when enabled  
362  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
5.20 Programmable Current Source  
Tc = 25°C, VDD = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.25–20  
0.25  
MAX  
UNIT  
µA  
Current source programmable output range  
Resolution  
µA  
Including current source at maximum  
programmable output  
Current consumption(1)  
23  
µA  
(1) Additionally, the bias module must be enabled when running in standby mode.  
5.21 DC Characteristics  
PARAMETER  
TA = 25°C, VDD = 1.8 V  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GPIO VOH at 8-mA load  
GPIO VOL at 8-mA load  
GPIO VOH at 4-mA load  
GPIO VOL at 4-mA load  
GPIO pullup current  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 1  
1.32  
1.32  
1.54  
0.26  
1.58  
0.21  
71.7  
21.1  
V
V
0.32  
0.32  
V
IOCURR = 1  
V
Input mode, pullup enabled, Vpad = 0 V  
Input mode, pulldown enabled, Vpad = VDD  
µA  
µA  
GPIO pulldown current  
GPIO high/low input transition,  
no hysteresis  
IH = 0, transition between reading 0 and reading 1  
0.88  
1.07  
V
V
GPIO low-to-high input transition,  
with hysteresis  
IH = 1, transition voltage for input read as 0 1  
GPIO high-to-low input transition,  
with hysteresis  
IH = 1, transition voltage for input read as 1 0  
IH = 1, difference between 0 1 and 1 0 points  
0.74  
0.33  
V
V
GPIO input hysteresis  
TA = 25°C, VDD = 3.0 V  
GPIO VOH at 8-mA load  
GPIO VOL at 8-mA load  
GPIO VOH at 4-mA load  
GPIO VOL at 4-mA load  
TA = 25°C, VDD = 3.8 V  
GPIO pullup current  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 1  
2.68  
0.33  
2.72  
0.28  
V
V
V
V
IOCURR = 1  
Input mode, pullup enabled, Vpad = 0 V  
277  
113  
µA  
µA  
GPIO pulldown current  
Input mode, pulldown enabled, Vpad = VDD  
GPIO high/low input transition,  
no hysteresis  
IH = 0, transition between reading 0 and reading 1  
1.67  
1.94  
V
V
GPIO low-to-high input transition,  
with hysteresis  
IH = 1, transition voltage for input read as 0 1  
GPIO high-to-low input transition,  
with hysteresis  
IH = 1, transition voltage for input read as 1 0  
IH = 1, difference between 0 1 and 1 0 points  
1.54  
0.4  
V
V
GPIO input hysteresis  
TA = 25°C  
Lowest GPIO input voltage reliably interpreted as a  
«High»  
VIH  
VIL  
0.8  
VDD  
VDD  
Highest GPIO input voltage reliably interpreted as a  
«Low»  
0.2  
16  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
5.22 Thermal Resistance Characteristics for MOH Package  
NAME  
RΘJC  
RΘJB  
RΘJA  
RΘJMA  
PsiJT  
DESCRIPTION  
°C/W(1) (2)  
20.0  
AIR FLOW (m/s)(3)  
Junction-to-case  
Junction-to-board  
Junction-to-free air  
Junction-to-moving air  
Junction-to-package top  
Junction-to-board  
15.3  
29.6  
0
1
0
0
25.0  
8.8  
PsiJB  
14.8  
(1) °C/W = degrees Celsius per watt.  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
Power dissipation of 2 W and an ambient temperature of 70ºC is assumed.  
(3) m/s = meters per second.  
5.23 Timing Requirements  
MIN  
0
NOM  
MAX  
100  
20  
UNIT  
mV/µs  
mV/µs  
mV/µs  
Rising supply-voltage slew rate  
Falling supply-voltage slew rate  
Falling supply-voltage slew rate, with low-power flash settings(1)  
0
3
No limitation for negative  
temperature gradient, or  
outside standby mode  
Positive temperature gradient in standby(2)  
5
°C/s  
µs  
CONTROL INPUT AC CHARACTERISTICS(3)  
RESET_N low duration  
1
SYNCHRONOUS SERIAL INTERFACE (SSI)(4)  
System  
clocks  
S1 (SLAVE)(5)  
tclk_per  
SSIClk period  
12  
65024  
S2(5)  
S3(5)  
tclk_high  
tclk_low  
SSIClk high time  
SSIClk low time  
0.5  
0.5  
tclk_per  
tclk_per  
(1) For smaller coin cell batteries, with high worst-case end-of-life equivalent source resistance, a 22-µF VDD input capacitor (see  
Section 7.1.1) must be used to ensure compliance with this slew rate.  
(2) Applications using RCOSC_LF as sleep timer must also consider the drift in frequency caused by a change in temperature (see  
Section 5.14).  
(3) TA = –40°C to +85°C, VDD = 1.7 V to 3.8 V, unless otherwise noted.  
(4) Tc = 25°C, VDD = 3.0 V, unless otherwise noted. Device operating as slave. For SSI master operation, see Section 5.24.  
(5) Refer to the SSI timing diagrams Figure 5-1, Figure 5-2, and Figure 5-3.  
5.24 Switching Characteristics  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDD = 3.0 V, unless otherwise noted.  
PARAMETER  
WAKEUP AND TIMING  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Idle Active  
14  
151  
µs  
µs  
µs  
Standby Active  
Shutdown Active  
1015  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
17  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
 
 
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
Switching Characteristics (continued)  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDD = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
(1)  
SYNCHRONOUS SERIAL INTERFACE (SSI)  
System  
clocks  
S1 (TX only)(2) tclk_per (SSIClk period)  
S1 (TX and RX)(2) tclk_per (SSIClk period)  
One-way communication to SLAVE  
Normal duplex operation  
4
8
65024  
65024  
System  
clocks  
S2(2) tclk_high (SSIClk high time)  
S3(2) tclk_low (SSIClk low time)  
0.5  
0.5  
tclk_per  
tclk_per  
(1) Device operating as master. For SSI slave operation, see Section 5.23.  
(2) Refer to SSI timing diagrams Figure 5-1, Figure 5-2, and Figure 5-3.  
S1  
S2  
SSIClk  
S3  
SSIFss  
SSITx  
MSB  
LSB  
SSIRx  
4 to 16 bits  
Figure 5-1. SSI Timing for TI Frame Format (FRF = 01), Single Transfer Timing Measurement  
S2  
S1  
SSIClk  
SSIFss  
SSITx  
SSIRx  
S3  
MSB  
LSB  
8-bit control  
0
MSB  
LSB  
4 to 16 bits output data  
Figure 5-2. SSI Timing for MICROWIRE Frame Format (FRF = 10), Single Transfer  
18  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
 
 
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
S1  
S2  
SSIClk  
(SPO = 0)  
S3  
SSIClk  
(SPO = 1)  
SSITx  
(Master)  
MSB  
LSB  
SSIRx  
(Slave)  
MSB  
LSB  
SSIFss  
Figure 5-3. SSI Timing for SPI Frame Format (FRF = 00), With SPH = 1  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
19  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
5.25 Typical Characteristics  
This section contains typical performance plots measured on the CC2650F128RHB device. They are published in the  
CC2650 data sheet, and the plots relevant for the CC2650MODA device are repeated here. RF performance is specified in a  
single-ended 50-Ω reference plane at the antenna feeding point with Tc = 25°C and VDD = 3.0 V, unless otherwise noted.  
-93  
-94  
-95  
-96  
-97  
-98  
-99  
-95  
-96  
Sensitivity  
Sensitivity  
-97  
-98  
-99  
-100  
-101  
-102  
-103  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (èC)  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (èC)  
D005  
D004  
Figure 5-5. IEEE 802.15.4 Sensitivity vs Temperature  
Figure 5-4. Bluetooth low energy Sensitivity vs Temperature  
-95  
-95  
BLE Sensitivity  
IEEE 802.15.4 Sensitivity  
-96  
-97  
-96  
-97  
-98  
-98  
-99  
-99  
-100  
-100  
-101  
-101  
1.8  
2.3  
2.8  
VDDS (V)  
3.3  
3.8  
1.9  
2.4  
2.9  
VDDS (V)  
3.4  
3.8  
D006  
D007  
Figure 5-6. Bluetooth low energy Sensitivity  
vs Supply Voltage (VDD)  
Figure 5-7. IEEE 802.15.4 Sensitivity  
vs Supply Voltage (VDD)  
-95  
-96  
-95  
Sensitivity  
Sensitivity  
-95.5  
-96  
-97  
-96.5  
-97  
-98  
-97.5  
-98  
-99  
-100  
-98.5  
-99  
-101  
2400 2410 2420 2430 2440 2450 2460 2470 2480  
Frequency (MHz)  
2400 2410 2420 2430 2440 2450 2460 2470 2480  
Frequency (MHz)  
D008  
D009  
Figure 5-8. IEEE 802.15.4 Sensitivity  
vs Channel Frequency  
Figure 5-9. Bluetooth low energy Sensitivity  
vs Channel Frequency  
20  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
Typical Characteristics (continued)  
This section contains typical performance plots measured on the CC2650F128RHB device. They are published in the  
CC2650 data sheet, and the plots relevant for the CC2650MODA device are repeated here. RF performance is specified in a  
single-ended 50-Ω reference plane at the antenna feeding point with Tc = 25°C and VDD = 3.0 V, unless otherwise noted.  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
5-dBm Setting  
3.3 3.8  
5-dBm Setting  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (èC)  
1.8  
2.3  
2.8  
VDDS (V)  
D010  
D011  
Figure 5-10. TX Output Power vs Temperature  
Figure 5-11. TX Output Power vs Supply Voltage (VDD)  
8
7
6
5
4
3
2
1
0
16  
5-dBm Setting  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
5-dBm setting  
4
1.8  
-1  
2400 2410 2420 2430 2440 2450 2460 2470 2480  
Frequency (MHz)  
2
2.2 2.4 2.6 2.8  
VDDS (V)  
3
3.2 3.4 3.6 3.8  
D012  
D013  
Figure 5-12. TX Output Power  
vs Channel Frequency  
Figure 5-13. TX Current Consumption  
vs Supply Voltage (VDD)  
10.5  
7
RX Current  
6.9  
6.8  
6.7  
6.6  
6.5  
6.4  
6.3  
6.2  
6.1  
6
10  
9.5  
9
8.5  
8
7.5  
7
6.5  
6
5.9  
5.8  
5.7  
5.6  
5.5  
5.5  
5
4.5  
1.75  
2
2.25 2.5 2.75  
3
Voltage (V)  
3.25 3.5 3.75  
4
4.25 4.5  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (èC)  
Figure 5-14. RX Mode Current vs Supply Voltage (VDDD)014  
Figure 5-15. RX Mode Current Consumption vs Temperature  
D015  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
21  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
This section contains typical performance plots measured on the CC2650F128RHB device. They are published in the  
CC2650 data sheet, and the plots relevant for the CC2650MODA device are repeated here. RF performance is specified in a  
single-ended 50-Ω reference plane at the antenna feeding point with Tc = 25°C and VDD = 3.0 V, unless otherwise noted.  
12  
10  
8
3.1  
3.05  
3
Active Mode Current  
6
2.95  
2.9  
4
2
5-dBm Setting  
0
2.85  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (èC)  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (èC)  
Figure 5-16. TX Mode Current Consumption vs TemperaDtu01r6e  
D006  
Figure 5-17. Active Mode (MCU Running, No Peripherals)  
Current Consumption vs Temperature  
5
4
Active Mode Current  
Standby Mode Current  
3.5  
4.5  
4
3
2.5  
2
3.5  
3
1.5  
1
2.5  
0.5  
0
2
1.8  
2.3  
2.8  
VDDS (V)  
3.3  
3.8  
-20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (èC)  
D007  
D008  
Figure 5-18. Active Mode (MCU Running, No Peripherals)  
Current Consumption vs Supply Voltage (VDD)  
Figure 5-19. Standby Mode Current Consumption  
With RCOSC RTC vs Temperature  
1006.4  
11.4  
Fs= 200 kHz, No Averaging  
Fs= 200 kHz, 32 samples averaging  
11.2  
1006.2  
1006  
11  
10.8  
10.6  
10.4  
10.2  
10  
1005.8  
1005.6  
1005.4  
1005.2  
1005  
9.8  
9.6  
9.4  
1004.8  
200300 500 1000 2000  
5000 10000 20000  
100000  
1.8  
2.3  
2.8  
VDDS (V)  
3.3  
3.8  
Input Frequency (Hz)  
D009  
D012  
Figure 5-20. SoC ADC Effective Number of Bits vs Input  
Frequency (Internal Reference)  
Figure 5-21. SoC ADC Output vs Supply Voltage (Fixed Input,  
Internal Reference)  
22  
Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
Typical Characteristics (continued)  
This section contains typical performance plots measured on the CC2650F128RHB device. They are published in the  
CC2650 data sheet, and the plots relevant for the CC2650MODA device are repeated here. RF performance is specified in a  
single-ended 50-Ω reference plane at the antenna feeding point with Tc = 25°C and VDD = 3.0 V, unless otherwise noted.  
10.5  
10.4  
10.3  
10.2  
10.1  
10  
1007.5  
ENOB Internal Reference (No Averaging)  
ENOB Internal Reference (32 Samples Averaging)  
1007  
1006.5  
1006  
9.9  
1005.5  
1005  
9.8  
9.7  
1004.5  
9.6  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (èC)  
1k  
10k  
Sampling Frequency (Hz)  
100k 200k  
D013  
D009A  
Figure 5-22. SoC ADC Output vs Temperature (Fixed Input,  
Internal Reference)  
Figure 5-23. SoC ADC ENOB vs Sampling Frequency  
(Input Frequency = FS / 10)  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
D010  
ADC Code  
Figure 5-24. SoC ADC DNL vs ADC Code (Internal Reference)  
3
2
1
0
-1  
-2  
-3  
-4  
0
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200  
ADC Code  
D011  
Figure 5-25. SoC ADC INL vs ADC Code (Internal Reference)  
Copyright © 2016–2019, Texas Instruments Incorporated  
Specifications  
23  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
6 Detailed Description  
6.1 Overview  
Figure 6-1 shows the core modules of the CC2650MODA device.  
6.2 Functional Block Diagram  
SimpleLink CC2650MODA Wireless MCU Module  
32.768-kHz  
24-MHz Crystal  
Crystal  
Oscillator  
RF Balun  
Oscillator  
RF core  
cJTAG  
ROM  
Main CPU  
ADC  
ADC  
128-KB  
Flash  
ARM  
Cortex-M3  
Digital PLL  
DSP Modem  
8-KB  
Cache  
4-KB  
SRAM  
ARM  
Cortex-M0  
20-KB  
SRAM  
ROM  
Sensor Controller  
General Peripherals / Modules  
I2C  
UART  
4× 32-bit Timers  
Sensor Controller Engine  
2× SSI (SPI, µWire, TI)  
Watchdog Timer  
TRNG  
12-bit ADC, 200 ks/s  
2× Analog Comparators  
SPI / I2C Digital Sensor IF  
Constant Current Source  
Time-to-Digital Converter  
2-KB SRAM  
I2S  
15 GPIOs  
AES  
Temp. / Batt. Monitor  
RTC  
32 ch. µDMA  
DC-DC Converter  
Copyright © 2017, Texas Instruments Incorporated  
Figure 6-1. CC2650MODA Functional Block Diagram  
24  
Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
 
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
6.3 Main CPU  
The SimpleLink CC2650MODA wireless MCU contains an ARM Cortex-M3 32-bit CPU, which runs the  
application and the higher layers of the protocol stack.  
The Cortex-M3 processor provides a high-performance, low-cost platform that meets the system  
requirements of minimal memory implementation, and low-power consumption, while delivering  
outstanding computational performance and exceptional system response to interrupts.  
Cortex-M3 features include:  
32-bit ARM Cortex-M3 architecture optimized for small-footprint embedded applications  
Outstanding processing performance combined with fast interrupt handling  
ARM Thumb®-2 mixed 16- and 32-bit instruction set delivers the high performance expected of a 32-bit  
ARM core in a compact memory size usually associated with 8- and 16-bit devices, typically in the  
range of a few kilobytes of memory for microcontroller-class applications:  
Single-cycle multiply instruction and hardware divide  
Atomic bit manipulation (bit-banding), delivering maximum memory use and streamlined peripheral  
control  
Unaligned data access, enabling data to be efficiently packed into memory  
Fast code execution permits slower processor clock or increases sleep mode time  
Harvard architecture characterized by separate buses for instruction and data  
Efficient processor core, system, and memories  
Hardware division and fast digital-signal-processing oriented multiply accumulate  
Saturating arithmetic for signal processing  
Deterministic, high-performance interrupt handling for time-critical applications  
Enhanced system debug with extensive breakpoint and trace capabilities  
Serial wire trace reduces the number of pins required for debugging and tracing  
Migration from the ARM7™ processor family for better performance and power efficiency  
Optimized for single-cycle flash memory use  
Ultra-low-power consumption with integrated sleep modes  
1.25 DMIPS per MHz  
6.4 RF Core  
The RF core contains an ARM Cortex-M0 processor that interfaces the analog RF and base-band  
circuitries, handles data to and from the system side, and assembles the information bits in a given packet  
structure. The RF core offers a high-level, command-based API to the main CPU.  
The RF core can autonomously handle the time-critical aspects of the radio protocols (802.15.4 RF4CE  
and ZigBee, Bluetooth low energy) thus offloading the main CPU and leaving more resources for the user  
application.  
The RF core has a dedicated 4-KB SRAM block and runs initially from separate ROM memory. The ARM  
Cortex-M0 processor is not programmable by customers.  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
25  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
6.5 Sensor Controller  
The Sensor Controller contains circuitry that can be selectively enabled in standby mode. The peripherals  
in this domain may be controlled by the Sensor Controller Engine, which is a proprietary power-optimized  
CPU. This CPU can read and monitor sensors or perform other tasks autonomously, thereby significantly  
reducing power consumption and offloading the main Cortex-M3 CPU.  
The Sensor Controller is set up using a PC-based configuration tool, called Sensor Controller Studio, and  
typical use cases may be (but are not limited to):  
Analog sensors using integrated ADC  
Digital sensors using GPIOs and bit-banged I2C or SPI  
UART communication for sensor reading or debugging  
Capacitive sensing  
Waveform generation  
Pulse counting  
Keyboard scan  
Quadrature decoder for polling rotation sensors  
Oscillator calibration  
The peripherals in the Sensor Controller include the following:  
The low-power clocked comparator can be used to wake the device from any state in which the  
comparator is active. A configurable internal reference can be used with the comparator. The output of  
the comparator can also be used to trigger an interrupt or the ADC.  
Capacitive sensing functionality is implemented through the use of a constant current source, a time-  
to-digital converter, and a comparator. The continuous time comparator in this block can also be used  
as a higher-accuracy alternative to the low-power clocked comparator. The Sensor Controller will take  
care of baseline tracking, hysteresis, filtering and other related functions.  
The ADC is a 12-bit, 200-ksamples/s ADC with eight inputs and a built-in voltage reference. The ADC  
can be triggered by many different sources, including timers, I/O pins, software, the analog  
comparator, and the RTC.  
The Sensor Controller also includes a SPI/I2C digital interface.  
The analog modules can be connected to up to eight different GPIOs.  
The peripherals in the Sensor Controller can also be controlled from the main application processor.  
26  
Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
Table 6-1 lists the GPIOs that are connected to the Sensor Controller.  
Table 6-1. GPIOs Connected to the Sensor Controller(1)  
ANALOG CAPABLE  
16.9 × 11 MOH DIO NUMBER  
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
14  
13  
12  
11  
9
10  
8
7
4
3
2
1
0
(1) Up to 13 pins can be connected to the Sensor Controller. Up to eight  
of these pins can be connected to analog modules  
6.6 Memory  
The flash memory provides nonvolatile storage for code and data. The flash memory is in-system  
programmable.  
The SRAM (static RAM) can be used for both storage of data and execution of code and is split into two  
4-KB blocks and two 6-KB blocks. Retention of the RAM contents in standby mode can be enabled or  
disabled individually for each block to minimize power consumption. In addition, if flash cache is disabled,  
the 8KB of cache can be used as a general-purpose RAM.  
The ROM provides preprogrammed embedded TI-RTOS kernel, Driverlib and lower layer protocol stack  
software (802.15.4 MAC and Bluetooth low energy Controller). The ROM also contains a bootloader that  
can be used to reprogram the device using SPI or UART.  
6.7 Debug  
The on-chip debug support is done through a dedicated cJTAG (IEEE 1149.7) or JTAG (IEEE 1149.1)  
interface.  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
27  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
 
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
6.8 Power Management  
To minimize power consumption, the CC2650MODA device supports a number of power modes and  
power-management features (see Table 6-2).  
Table 6-2. Power Modes  
SOFTWARE-CONFIGURABLE POWER MODES  
RESET PIN  
HELD  
MODE  
ACTIVE  
IDLE  
Off  
STANDBY  
Off  
SHUTDOWN  
CPU  
Active  
Off  
Off  
Off  
Off  
Flash  
On  
Available  
On  
Off  
SRAM  
On  
On  
Off  
Off  
Radio  
Available  
Available  
On  
Off  
Off  
Off  
Supply System  
Current  
Wake-up time to CPU active(1)  
Register retention  
SRAM retention  
On  
Duty Cycled  
1 µA  
Off  
Off  
1.45 mA + 31 µA/MHz  
550 µA  
14 µs  
Full  
0.15 µA  
1015 µs  
No  
0.1 µA  
1015 µs  
No  
151 µs  
Partial  
Full  
Full  
Full  
Full  
No  
No  
XOSC_HF or  
RCOSC_HF  
XOSC_HF or  
RCOSC_HF  
High-speed clock  
Low-speed clock  
Off  
Off  
Off  
Off  
Off  
XOSC_LF or  
RCOSC_LF  
XOSC_LF or  
RCOSC_LF  
XOSC_LF or  
RCOSC_LF  
Peripherals  
Available  
Available  
Available  
Available  
Available  
Active  
Available  
Available  
Available  
Available  
Available  
Active  
Off  
Available  
Available  
Available  
Available  
Duty Cycled(2)  
Active  
Off  
Off  
Off  
Off  
Sensor Controller  
Wake up on RTC  
Off  
Off  
Wake up on pin edge  
Wake up on reset pin  
Brown Out Detector (BOD)  
Power On Reset (POR)  
Available  
Available  
Off  
Off  
Available  
N/A  
Active  
Active  
Active  
N/A  
(1) Not including RTOS overhead  
(2) The Brown Out Detector is disabled between recharge periods in STANDBY. Lowering the supply voltage below the BOD threshold  
between two recharge periods while in STANDBY may cause the BOD to lock the device upon wake-up until a Reset or POR releases  
it. To avoid this, TI recommends that STANDBY mode is avoided if there is a risk that the supply voltage (VDD) may drop below the  
specified operating voltage range. For the same reason, it is also good practice to ensure that a power cycling operation, such as a  
battery replacement, triggers a Power-on-reset by ensuring that the VDD decoupling network is fully depleted before applying supply  
voltage again (for example, inserting new batteries).  
In active mode, the application Cortex-M3 CPU is actively executing code. Active mode provides normal  
operation of the processor and all of the peripherals that are currently enabled. The system clock can be  
any available clock source (see Table 6-2).  
In idle mode, all active peripherals can be clocked, but the Application CPU core and memory are not  
clocked and no code is executed. Any interrupt event will bring the processor back into active mode.  
In standby mode, only the always-on domain (AON) is active. An external wake event, RTC event, or  
sensor-controller event is required to bring the device back to active mode. MCU peripherals with retention  
do not need to be reconfigured when waking up again, and the CPU continues execution from where it  
went into standby mode. All GPIOs are latched in standby mode.  
In shutdown mode, the device is turned off entirely, including the AON domain and the Sensor Controller.  
The I/Os are latched with the value they had before entering shutdown mode. A change of state on any  
I/O pin, defined as a wake from Shutdown pin, wakes up the device and functions as a reset trigger. The  
CPU can differentiate between a reset in this way, a reset-by-reset pin, or a power-on-reset by reading the  
reset status register. The only state retained in this mode is the latched I/O state and the flash memory  
contents.  
28  
Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
 
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
The Sensor Controller is an autonomous processor that can control the peripherals in the Sensor  
Controller independently of the main CPU, which means that the main CPU does not have to wake up, for  
example, to execute an ADC sample or poll a digital sensor over SPI. The main CPU saves both current  
and wake-up time that would otherwise be wasted. The Sensor Controller Studio enables the user to  
configure the sensor controller and choose which peripherals are controlled and which conditions wake up  
the main CPU.  
6.9 Clock Systems  
The CC2650MODA device supports two external and two internal clock sources.  
A 24-MHz crystal is required as the frequency reference for the radio. This signal is doubled internally to  
create a 48-MHz clock.  
The 32-kHz crystal is optional. Bluetooth low energy requires a slow-speed clock with better than  
±500-ppm accuracy if the device is to enter any sleep mode while maintaining a connection. The internal  
32-kHz RC oscillator can in some use cases be compensated to meet the requirements. The low-speed  
crystal oscillator is designed for use with a 32-kHz watch-type crystal.  
The internal high-speed oscillator (48 MHz) can be used as a clock source for the CPU subsystem.  
The internal low-speed oscillator (32.768 kHz) can be used as a reference if the low-power crystal  
oscillator is not used.  
The 32-kHz clock source can be used as external clocking reference through GPIO.  
6.10 General Peripherals and Modules  
The I/O controller controls the digital I/O pins and contains multiplexer circuitry to allow a set of peripherals  
to be assigned to I/O pins in a flexible manner. All digital I/Os are interrupt and wake-up capable, have a  
programmable pullup and pulldown function and can generate an interrupt on a negative or positive edge  
(configurable). When configured as an output, pins can function as either push-pull or open-drain. Five  
GPIOs have high-drive capabilities (marked in bold in Section 4).  
The SSIs are synchronous serial interfaces that are compatible with SPI, MICROWIRE, and TI's  
synchronous serial interfaces. The SSIs support both SPI master and slave up to 4 MHz.  
The UART implements a universal asynchronous receiver/transmitter function. It supports flexible baud-  
rate generation up to a maximum of 3 Mbps.  
Timer 0 is a general-purpose timer module (GPTM), which provides two 16-bit timers. The GPTM can be  
configured to operate as a single 32-bit timer, dual 16-bit timers or as a PWM module.  
Timer 1, Timer 2, and Timer 3 are also GPTMs. Each of these timers is functionally equivalent to Timer 0.  
In addition to these four timers, the RF core has its own timer to handle timing for RF protocols; the RF  
timer can be synchronized to the RTC.  
The I2C interface is used to communicate with devices compatible with the I2C standard. The I2C interface  
is capable of 100-kHz and 400-kHz operation, and can serve as both I2C master and I2C slave.  
The TRNG module provides a true, nondeterministic noise source for the purpose of generating keys,  
initialization vectors (IVs), and other random number requirements. The TRNG is built on 24 ring  
oscillators that create unpredictable output to feed a complex nonlinear combinatorial circuit.  
The watchdog timer is used to regain control if the system fails due to a software error after an external  
device fails to respond as expected. The watchdog timer can generate an interrupt or a reset when a  
predefined time-out value is reached.  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
29  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
The device includes a direct memory access (µDMA) controller. The µDMA controller provides a way to  
offload data transfer tasks from the Cortex-M3 CPU, allowing for more efficient use of the processor and  
the available bus bandwidth. The µDMA controller can perform transfer between memory and peripherals.  
The µDMA controller has dedicated channels for each supported on-chip module and can be programmed  
to automatically perform transfers between peripherals and memory as the peripheral is ready to transfer  
more data. Some features of the µDMA controller include the following (this is not an exhaustive list):  
Highly flexible and configurable channel operation of up to 32 channels  
Transfer modes: memory-to-memory, memory-to-peripheral, peripheral-to-memory, and peripheral-to-  
peripheral  
Data sizes of 8, 16, and 32 bits  
The AON domain contains circuitry that is always enabled, except in Shutdown mode (where the digital  
supply is off). This circuitry includes the following:  
The RTC can be used to wake the device from any state where it is active. The RTC contains three  
compare and one capture registers. With software support, the RTC can be used for clock and  
calendar operation. The RTC is clocked from the 32-kHz RC oscillator or crystal. The RTC can also be  
compensated to tick at the correct frequency even when the internal 32-kHz RC oscillator is used  
instead of a crystal.  
The battery monitor and temperature sensor are accessible by software and give a battery status  
indication as well as a coarse temperature measure.  
6.11 System Architecture  
Depending on the product configuration, CC26xx can function either as a Wireless Network Processor  
(WNP—an IC running the wireless protocol stack, with the application running on a separate MCU), or as  
a System-on-Chip (SoC), with the application and protocol stack running on the ARM Cortex-M3 core  
inside the device.  
In the first case, the external host MCU communicates with the device using SPI or UART. In the second  
case, the application must be written according to the application framework supplied with the wireless  
protocol stack.  
6.12 Certification  
The CC2650MODA module is certified to the standards listed in Table 6-3 (with IDs where applicable).  
Table 6-3. CC2650MODA List of Certifications  
REGULATORY BODY  
SPECIFICATION  
Part 15C:2015 + MPE FCC 1.1307 RF Exposure (Bluetooth)  
Part 15C:2015 + MPE FCC 1.1307 RF Exposure (802.15.4)  
RSS-102 (MPE) and RSS-247 (Bluetooth)  
RSS-102 (MPE) and RSS-247 (IEEE 802.15.4)  
EN 300 328 V2.1.1 (Bluetooth)  
ID (IF APPLICABLE)  
FCC (USA)  
FCC ID: ZAT26M1  
IC (Canada)  
ID: 451H-26M1  
EN 300 328 V2.1.1 (802.15.4)  
EN 62479:2010 (MPE)  
Draft EN 301 489-1 V2.2.0 (2017-03)  
Draft EN 301 489-1 V3.2.0 (2017-03)  
EN 55024:2010 + A1:2015  
ETSI/CE (Europe)  
EN 55032:2015 + AC:2016-07  
EN 60950-1:2006/A11:2009/A1:2010/A12:2011/A2:2013  
ARIB STD-T66  
No: 201-160413/00  
D 16 0093 201/00  
Japan MIC  
JATE  
30  
Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
 
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
6.12.1 Regulatory Information Europe  
Hereby, Texas Instruments Inc. declares that the radio equipment type CC2650MODA is in compliance  
with Directive 2014/53/EU.  
The full text of the EU Declaration of Conformity (DoC) is available on the CC2650MODA technical  
documents page. The compliance has been verified in the operating frequency band of 2400 MHz to  
2483.5 MHz. Developers and integrators that incorporate the CC2650MODA RF Module in any end  
products are responsible for obtaining applicable regulatory approvals for such end product.  
NOTE  
The CC2650MODA has been tested in the 2400-GHz to 2483.5-GHz ISM frequency band at  
3.3 V with a maximum peak power of 5.056-dBm EIRP across the temperature range –40°C  
to +85°C and tolerance.  
6.12.2 Federal Communications Commission Statement  
You are cautioned that changes or modifications not expressly approved by the part responsible for  
compliance could void the user’s authority to operate the equipment.  
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two  
conditions:  
1. This device may not cause harmful interference and  
2. This device must accept any interference received, including interference that may cause undesired  
operation of the device.  
FCC RF Radiation Exposure Statement:  
This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End  
users must follow the specific operating instructions for satisfying RF exposure limits. This transmitter  
must not be colocated or operating with any other antenna or transmitter.  
6.12.3 Canada, Industry Canada (IC)  
This device complies with Industry Canada licence-exempt RSS standards.  
Operation is subject to the following two conditions:  
1. This device may not cause interference, and  
2. This device must accept any interference, including interference that may cause undesired operation of  
the device  
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio  
exempts de licence  
L'exploitation est autorisée aux deux conditions suivantes:  
1. l'appareil ne doit pas produire de brouillage, et  
2. l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est  
susceptible d'en compromettre le fonctionnement.  
IC RF Radiation Exposure Statement:  
To comply with IC RF exposure requirements, this device and its antenna must not be co-located or  
operating in conjunction with any other antenna or transmitter.  
Pour se conformer aux exigences de conformité RF canadienne l'exposition, cet appareil et son antenne  
ne doivent pas étre co-localisés ou fonctionnant en conjonction avec une autre antenne ou transmetteur.  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
31  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
6.12.4 Japan (JATE ID)  
JATE ID is D 16 0093 201  
For units already sold and marked with JATE ID: D 16 0086 201, please publicize to users that the JATE  
ID: D 16 0086 201 should be read as D 16 0093 201 (for example, clients web page, by software update,  
or similar).  
6.13 End Product Labeling  
This module is designed to comply with the FCC statement, FCC ID: ZAT26M1. The host system using  
this module must display a visible label indicating the following text:  
"Contains FCC ID: ZAT26M1"  
This module is designed to comply with the IC statement, IC: 451H-26M1. The host system using this  
module must display a visible label indicating the following text:  
"Contains IC: 451H-26M1"  
6.14 Manual Information to the End User  
The OEM integrator must be aware not to provide information to the end user regarding how to install or  
remove this RF module in the user’s manual of the end product that integrates this module.  
NOTE  
Operation outside of test conditions as documented in this datasheet is not supported and  
may void TI’s warranty. Should the user choose to configure the CC2650MODA to operate  
outside of the test conditions, the device must be operated inside a protected and controlled  
environment, such as an RF shielded chamber and user must ensure compliance with  
regulatory requirements.  
The end user's manual must include all required regulatory information and warnings as shown in this  
document.  
32  
Detailed Description  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
6.15 Module Marking  
Figure 6-2 shows the marking for the SimpleLink™ CC2650MODA module.  
Figure 6-2. SimpleLink CC2650MODA Module Marking  
Table 6-4. Module Descriptions  
MARKING  
DESCRIPTION  
Model  
CC2650MODA  
LTC (lot trace code):  
Y = Year  
YMWLLLC  
M = Month  
WLLLLC = Reserved for internal use  
ZAT26M1  
FCC ID: single modular FCC grant ID  
IC: single modular IC grant ID  
451H-26M1  
MIC compliance mark  
JATE ID: Japan module grant ID  
R 201-160413  
ARIB STD-T66 ID: Japan modular grant ID  
T D160093201  
Bluetooth compliance mark  
CE compliance mark  
CE  
Copyright © 2016–2019, Texas Instruments Incorporated  
Detailed Description  
33  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
 
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
7 Application, Implementation, and Layout  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI's customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
NOTE  
TI does not recommend the use of conformal coating or similar material on the module. This  
coating can lead to localized stress on the solder connections inside the module and impact  
the module reliability. Use caution during the module assembly process to the final PCB to  
avoid the presence of foreign material inside the module.  
7.1 Application Information  
7.1.1 Typical Application Circuit  
No external components are required for the operation of the CC2650MODA device. Figure 7-1 shows the  
application circuit.  
VDDS  
U1  
DIO0  
DIO1  
DIO2  
DIO3  
DIO4  
DIO5  
DIO6  
DIO7  
DIO8  
DIO9  
DIO10  
DIO11  
DIO12  
DIO13  
DIO14  
4
5
6
7
8
11  
12  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
DIO_0  
DIO_1  
DIO_2  
DIO_3  
DIO_4  
DIO_5/JTAG_TDO  
DIO_6/JTAG_TDI  
DIO_7  
DIO_8  
DIO_9  
DIO_10  
DIO_11  
DIO_12  
DIO_13  
DIO_14  
VDDS  
VDDS  
2
24  
VDDS  
NC_2  
NC_24  
R28  
100k  
nReset  
JTAG-TCK  
JTAG-TMS  
13  
10  
9
nRESET  
JTAG_TCKC  
JTAG_TMSC  
26  
27  
28  
29  
EGP  
EGP  
EGP  
EGP  
1
3
25  
GND  
GND  
GND  
CC2650MODAMOH  
Copyright © 2016, Texas Instruments Incorporated  
Figure 7-1. CC2650MODA Application Circuit  
34  
Application, Implementation, and Layout  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
 
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
7.2 Layout  
7.2.1 Layout Guidelines  
Use the following guidelines to lay out the CC2650MODA device:  
The module must be placed close to the edge of the PCB.  
TI recommends leaving copper clearance on all PCB layers underneath the antenna area, as shown in  
Figure 7-2 and Figure 7-3.  
TI recommends using a generous amount of ground vias to stitch together the ground planes on  
different layers. Several ground vias should be placed close to the exposed ground pads of the  
module.  
No external decoupling is required.  
The reset line should have an external pullup resistor unless the line is actively driven. Placement of  
this component is not critical.  
TI recommends leaving a clearance in the top-side copper plane underneath the RF test pads.  
Figure 7-2. Top Layer  
Figure 7-3. Bottom Layer  
Copyright © 2016–2019, Texas Instruments Incorporated  
Application, Implementation, and Layout  
35  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
 
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
8 Environmental Requirements and Specifications  
8.1 PCB Bending  
The PCB follows IPC-A-600J for PCB twist and warpage < 0.75% or 7.5 mil per inch.  
8.2 Handling Environment  
8.2.1 Terminals  
The product is mounted with motherboard through land-grid array (LGA). To prevent poor soldering, do  
not make skin contact with the LGA portion.  
8.2.2 Falling  
The mounted components will be damaged if the product falls or is dropped. Such damage may cause the  
product to malfunction.  
8.3 Storage Condition  
8.3.1 Moisture Barrier Bag Before Opened  
A moisture barrier bag must be stored in a temperature of less than 30°C with humidity under 85% RH.  
The calculated shelf life for the dry-packed product will be 12 months from the date the bag is sealed.  
8.3.2 Moisture Barrier Bag Open  
Humidity indicator cards must be blue, < 30%.  
8.4 Baking Conditions  
Products require baking before mounting if:  
Humidity indicator cards read > 30%  
Temp < 30°C, humidity < 70% RH, over 96 hours  
Baking condition: 90°C, 12 to 24 hours  
Baking times: 1 time  
36  
Environmental Requirements and Specifications  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
8.5 Soldering and Reflow Condition  
Heating method: Conventional convection or IR convection  
Temperature measurement: Thermocouple d = 0.1 mm to 0.2 mm CA (K) or CC (T) at soldering  
portion or equivalent method  
Solder paste composition: Sn/3.0 Ag/0.5 Cu  
Allowable reflow soldering times: 2 times based on the reflow soldering profile (see Figure 8-1)  
Temperature profile: Reflow soldering will be done according to the temperature profile  
(see Figure 8-1)  
Figure 8-1. Temperature Profile for Evaluation of Solder Heat Resistance of a Component  
(at Solder Joint)  
Table 8-1. Temperature Profile  
Profile Elements  
Convection or IR(1)  
235 to 240°C typical (260°C maximum)  
Peak temperature range  
Pre-heat / soaking (150 to 200°C)  
Time above melting point  
Time with 5°C to peak  
Ramp up  
60 to 120 seconds  
60 to 90 seconds  
30 seconds maximum  
< 3°C / second  
Ramp down  
< -6°C / second  
(1) For details, refer to the solder paste manufacturer's recommendation.  
NOTE  
TI does not recommend the use of conformal coating or similar material on the SimpleLink™  
module. This coating can lead to localized stress on the solder connections inside the  
module and impact the module reliability. Use caution during the module assembly process  
to the final PCB to avoid the presence of foreign material inside the module.  
版权 © 2016–2019, Texas Instruments Incorporated  
Environmental Requirements and Specifications  
37  
提交文档反馈意见  
产品主页链接: CC2650MODA  
 
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
9 器件和文档支持  
9.1 器件命名规则  
为了标明产品开发周期的各个产品阶段,TI 为所有部件号和/或日期代码添加了前缀。每个器件都具有以下  
三个前缀/标识中的一个:XP 或无(无前缀)(例如 CC2650MODA 正在批量生产,因此未分配前缀/标  
识)。  
器件开发进化流程:  
X
试验器件不一定代表最终器件的电气规范标准并且不可使用生产组装流程。  
原型器件不一定是最终芯片模型并且不一定符合最终电气标准规范。  
完全合格的芯片模型的生产版本。  
P
生产器件已进行完全特性化,并且器件的质量和可靠性已经完全论证。TI 的标准保修证书适用。  
预测显示原型器件(X 或者 P)的故障率大于标准生产器件。由于它们的预计的最终使用故障率仍未定义,  
德州仪器 (TI) 建议不要将这些器件用于任何生产系统。只有合格的产品器件将被使用。  
TI 器件的命名规则还包括一个带有器件系列名称的后缀。这个后缀表示封装类型(例如,MOH)。  
要获得 MOH 封装类型的 CC2650MODA 器件部件号,请参见本文档的封装选项附录TI 网站  
www.ti.com.cn),或者联系您的 TI 销售代表。  
CC2650 MOD  
A
MOH  
PREFIX  
PACKAGE DESIGNATOR  
X = Experimental device  
Blank = Qualified device  
MOH = 29-pin Module  
DEVICE FAMILY  
ROM version 1  
SimpleLink™ Multistandard  
Wireless MCU  
Flash = 128KB  
DEVICE  
MOD = Module  
9-1. 器件命名规则  
38  
器件和文档支持  
版权 © 2016–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: CC2650MODA  
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
9.2 工具和软件  
德州仪器 (TI) 提供大量的开发工具,其中包括评估处理器性能、生成代码、开发算法工具、以及完全集成和  
调试软件及硬件模块的工具。  
下列产品为 CC2650MODA 器件 应用:  
软件工具  
SmartRF Studio 7:  
SmartRF Studio 是一款 PC 应用程序,可帮助无线电系统设计人员评估早期设计过程的 RF-IC。  
测试无线数据包收发功能,连续波收发功能  
将相关数据写入支持的评估板或调试器,评估定制板上的 RF 性能  
可以不搭配任何硬件使用,但此时只能生成、编辑并导出无线配置设置  
可与德州仪器 (TI) CCxxxx 系列 RF-IC 的多款开发套件搭配使用  
Sensor Controller Studio:  
Sensor Controller Studio CC26xx 传感器控制器提供开发环境。此传感器控制器是 CC26xx 系列中的一  
款专用功率优化型 CPU,可独立于系统 CPU 状态自主执行简单的后台任务。  
允许使用 C 语言这类编程语言实现传感器控制器任务算法  
输出传感器控制器接口驱动程序,其中整合了生成的传感器控制器机械代码和相关定义  
通过使用集成传感器控制器任务测试和调试功能实现快速开发这有助于实现有效的传感器数据和算法验  
证可视化。  
IDE 和编译器  
Code Composer Studio:  
带有项目管理工具和编辑器的集成开发环境  
Code Composer Studio (CCS) 6.1 及更高版本内置对 CC26xx 系列器件的支持功能。  
优先支持的 XDS 调试器:XDS100v3XDS110 XDS200  
TI-RTOS 高度集成,支持 TI-RTOS 对象视图  
IAR ARM Embedded Workbench  
带有项目管理工具和编辑器的集成开发环境  
IAR EWARM 7.30.3 及更高版本内置对 CC26xx 系列器件的支持功能。  
广泛的调试器支持,支持 XDS100v3XDS200IAR I-Jet Segger J-Link  
带有项目管理工具和编辑器的集成开发环境  
适用于 TI-RTOS RTOS 插件  
有关 CC2650MODA 平台开发支持工具的完整列表,请访问德州仪器 (TI) 网站 www.ti.com.cn。有关售价和  
供货情况的信息,请联系最近的 TI 销售办事处或授权分销商。  
版权 © 2016–2019, Texas Instruments Incorporated  
器件和文档支持  
39  
提交文档反馈意见  
产品主页链接: CC2650MODA  
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
9.3 文档支持  
如需接收文档更新通知,请访问 ti.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周  
接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
以下文档对 CC2650MODA 器件进行了介绍。www.ti.com.cn 网站上提供了这些文档的副本。  
符合性声明  
CC2650MODA EU 符合性声明 (DoC)》  
勘误表  
CC2630 CC2650 SimpleLink™ 无线 MCU 勘误表》  
技术参考手册  
CC13x0CC26x0 SimpleLink™ 无线 MCU》  
应用报告  
《在 CC2650 模块 上运行独立 低功耗 Bluetooth® 应用》  
《如何认证 Bluetooth(R) 低功耗产品》  
用户指南  
CC2650 模块 BoosterPack™ 入门指南》  
白皮书  
《应该选择哪种 TI Bluetooth® 解决方案?》  
更多文献  
《借助经认证无线模块简化射频设计挑战》  
9.4 德州仪器 (TI) 低功耗射频网站  
TI 的低功耗射频网站提供所有最新产品、应用和设计笔记、FAQ 部分、新闻资讯以及活动更新。转至无线  
连接:TI SimpleLink™ 低于 1GHz 无线 MCU。  
9.5 低功耗射频电子新闻简报  
通过低功耗射频电子新闻简报,您能够了解到最新的产品、新闻稿、开发者相关新闻以及关于德州仪器 (TI)  
低功耗射频产品其它新闻和活动。低功耗射频电子新闻简报文章包含可获取更多在线信息的链接。  
访问:www.ti.com.cn/lprfnewsletter 立即注册  
40  
器件和文档支持  
版权 © 2016–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: CC2650MODA  
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
9.6 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the  
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;  
see TI's Terms of Use.  
TI E2E™ Online Community The TI engineer-to-engineer (E2E) community was created to foster  
collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge,  
explore ideas and help solve problems with fellow engineers.  
德州仪器 (TI) 嵌入式处理器 Wiki此网站的建立是为了帮助开发人员从德州仪器 (TI) 的嵌入式处理器入门并  
且也为了促进与这些器件相关的硬件和软件的总体知识的创新和增长。  
低功耗射频在线社区 TI E2E 支持社区的无线连接  
论坛、视频和博客  
射频设计帮助  
E2E 交流互动  
请点击此处加入我们。  
低功耗射频开发者网络 德州仪器 (TI) 建立了一个大型低功耗射频开发合作伙伴网络,帮助客户加快应用开  
发。此网络中包括推荐的公司、射频顾问和独立设计工作室,他们可提供一系列硬件模块产品  
和设计服务,其中包括:  
射频电路、低功耗射频和ZigBee 设计服务  
低功耗射频和 ZigBee 模块解决方案以及开发工具  
射频认证服务和射频电路制造  
如果需要有关模块、工程服务或开发工具的帮助:  
请搜索低功耗射频开发者网络查找适合的合作伙伴。  
9.7 其他信息  
德州仪器 (TI) 为汽车、工业和消费类应用中所使用的专有应用和标准无线 应用 提供各种经济实用的低功耗  
射频 解决方案。其中包括适用于 1GHz 以下频段和 2.4GHz 频段的射频收发器、射频发送器、射频前端、  
模块和片上系统以及各种软件解决方案。  
此外,德州仪器 (TI) 还提供广泛的相关支持,例如开发工具、技术文档、参考设计、应用专业技术、客户支  
持、第三方服务以及大学计划。  
低功耗射频 E2E 在线社区设有技术支持论坛并提供视频和博客,您有机会在此与全球同领域工程师交流互  
动。  
凭借丰富的供选产品解决方案、终端应用可行方案以及广泛的技术支持,德州仪器 (TI) 能够为您提供最全面  
的低功耗射频产品组合。  
9.8 商标  
IAR Embedded Workbench is a registered trademark of IAR Systems AB.  
SmartRF, Code Composer Studio, SimpleLink, Z-Stack, LaunchPad, TI-RTOS, BoosterPack, E2E are  
trademarks of Texas Instruments.  
ARM7 is a trademark of ARM Limited (or its subsidiaries).  
ARM, Cortex, Thumb are registered trademarks of ARM Limited (or its subsidiaries).  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
CoreMark is a registered trademark of Embedded Microprocessor Benchmark Consortium.  
IEEE Std 1241 is a trademark of The Institute of Electrical and Electronics Engineers, Inc.  
IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.  
ZigBee is a registered trademark of ZigBee Alliance, Inc.  
ZigBee RF4CE is a trademark of Zigbee Alliance, Inc.  
All other trademarks are the property of their respective owners.  
版权 © 2016–2019, Texas Instruments Incorporated  
器件和文档支持  
41  
提交文档反馈意见  
产品主页链接: CC2650MODA  
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
9.9 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
9.10 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data  
(as defined by the U.S., EU, and other Export Administration Regulations) including software, or any  
controlled product restricted by other applicable national regulations, received from Disclosing party under  
this Agreement, or any direct product of such technology, to any destination to which such export or re-  
export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from  
U.S. Department of Commerce and other competent Government authorities to the extent required by  
those laws.  
9.11 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
10 机械、封装和可订购信息  
10.1 封装信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通  
知,且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
42  
机械、封装和可订购信息  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
10.2 PACKAGE OPTION ADDENDUM  
10.2.1 PACKAGING INFORMATION  
Package Package  
Package  
Qty  
Lead/Ball  
Finish  
MSL Peak  
Temp  
(1)  
(2)  
Orderable Device  
Status  
Pins  
Eco Plan  
Op Temp (°C)  
Device Marking(4) (5)  
(3)  
Type  
Drawing  
Green (RoHS & no  
Sb/Br)  
CC2650MODAMOHR  
ACTIVE  
QFM  
MOH  
29  
1200  
ENIG  
3, 250°C  
–40 to 85  
CC2650MODA  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
space  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by  
weight in homogeneous material)  
space  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
space  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device  
space  
(5) Multiple Device markings will be inside parentheses. Only on Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief  
on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third  
parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Copyright © 2016–2019, Texas Instruments Incorporated  
机械、封装和可订购信息  
43  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
www.ti.com.cn  
10.3 PACKAGE MATERIALS INFORMATION  
10.3.1 TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
All dimensions are nominal.  
Reel  
Diameter  
(mm)  
Package  
Type  
Package  
Drawing  
Reel Width  
W1 (mm)  
A0  
(mm)  
B0  
K0  
P1  
W
Pin1  
Quadrant  
Device  
Pins  
SPQ  
(mm) (mm) (mm) (mm)  
CC2650MODAMOHR  
QFM  
MOH  
29  
1200  
330  
32.5  
11.4  
17.4  
2.9  
16  
32  
Q1  
44  
机械、封装和可订购信息  
Copyright © 2016–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2650MODA  
CC2650MODA  
www.ti.com.cn  
ZHCSFF6D AUGUST 2016REVISED JULY 2019  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Package  
Package Type  
Device  
CC2650MODAMOHR  
Pins  
SPQ  
Length (mm)  
Width (mm)  
Height (mm)  
Drawing  
QFM  
MOH  
29  
1200  
352  
348  
56  
版权 © 2016–2019, Texas Instruments Incorporated  
机械、封装和可订购信息  
45  
提交文档反馈意见  
产品主页链接: CC2650MODA  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Mar-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CC2650MODAMOHR  
QFM  
MOH  
29  
1200  
330.0  
32.4  
11.4  
17.4  
2.9  
16.0  
32.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Mar-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
QFM MOH 29  
SPQ  
Length (mm) Width (mm) Height (mm)  
383.0 353.0 58.0  
CC2650MODAMOHR  
1200  
Pack Materials-Page 2  
PACKAGE OUTLINE  
MOH0029A  
QFM - 2.69 mm max height  
SCALE 1.000  
SCALE 1.000  
QUAD FLAT MODULE  
11.1  
10.9  
B
A
17.0  
16.8  
PIN 1 ID AREA  
(
10.77)  
PICK & PLACE  
NOZZLE AREA  
C
2.69 MAX  
SEATING PLANE  
6.9  
4.065±0.05  
0.45 0.05 TYP  
10  
16  
22X 1.15  
9
17  
4.125±0.05  
1.7±0.05  
28  
27  
2X  
6.9  
2X  
1.7±0.05  
1.5 0.05  
9.2  
26  
29  
PKG  
(1)  
2
1
25  
0.95  
0.85  
0.6  
0.5  
25X  
25X  
2X ( 0.7)  
1.27±0.05  
0.1  
C A B  
C
5.721  
±0.05  
0.05  
PKG  
4222814/A 04/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
MOH0029A  
QFM - 2.69 mm max height  
QUAD FLAT MODULE  
(11)  
NO TRACES, VIAS, GND PLANE  
OR SILK SCREEN SHOULD BE  
LOCATED WITHIN THIS AREA  
(8.45)  
25X (0.55)  
(R0.05) TYP  
1
25  
25X (0.9)  
PKG  
(16.9)  
(
1.5)  
(2.625)  
29  
26  
2X (6.9)  
(1.7)  
(8)  
27  
28  
(0.265)  
(1.7)  
(
0.2) VIA  
TYP  
17  
9
22X (1.15)  
10  
16  
PKG  
(10.1)  
LAND PATTERN EXAMPLE  
SCALE:7X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
PADS 26-29  
PADS 1-25  
SOLDER MASK DETAILS  
4222814/A 04/2016  
NOTES: (continued)  
3. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
MOH0029A  
QFM - 2.69 mm max height  
QUAD FLAT MODULE  
25X (0.55)  
25X (0.9)  
(R0.05) TYP  
PKG  
1
25  
PKG  
4X METAL  
ALL AROUND  
(2.625)  
26  
29  
4X  
1.383)  
(
(2X 6.9)  
(1.7)  
(8)  
28  
27  
(0.265)  
(1.7)  
17  
9
22X (1.15)  
10  
16  
(10.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA  
PADS 26-29: 85%  
SCALE:10X  
4222814/A 04/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

CC2650MODAMOHR

具有 128kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M3 多协议 2.4GHz 无线模块 | MOH | 29 | -40 to 85
TI

CC2651P3

具有 352kB 闪存的 SimpleLink™ 32 位 Arm® Cortex®-M4 单协议 2.4GHz 无线 MCU
TI

CC2651P31T0RGZR

具有 352kB 闪存的 SimpleLink™ 32 位 Arm® Cortex®-M4 单协议 2.4GHz 无线 MCU | RGZ | 48 | -40 to 105
TI

CC2651P31T0RKPR

具有 352kB 闪存的 SimpleLink™ 32 位 Arm® Cortex®-M4 单协议 2.4GHz 无线 MCU | RKP | 40 | -40 to 105
TI

CC2651R3

具有 352kB 闪存的 SimpleLink™ 32 位 Arm® Cortex®-M4 单协议 2.4GHz 无线 MCU
TI

CC2651R31T0RGZR

具有 352kB 闪存的 SimpleLink™ 32 位 Arm® Cortex®-M4 单协议 2.4GHz 无线 MCU | RGZ | 48 | -40 to 105
TI

CC2651R31T0RKPR

具有 352kB 闪存的 SimpleLink™ 32 位 Arm® Cortex®-M4 单协议 2.4GHz 无线 MCU | RKP | 40 | -40 to 105
TI

CC2651R3SIPA

具有集成天线的 SimpleLink™ 多协议 2.4GHz 无线系统级封装模块
TI

CC2651R3SIPAT0MOUR

具有集成天线的 SimpleLink™ 多协议 2.4GHz 无线系统级封装模块 | MOU | 50 | -40 to 105
TI

CC2652P

CC2652R7 SimpleLink™ Multiprotocol 2.4 GHz Wireless MCU
TI

CC2652P1FRGZR

CC2652P SimpleLink™ Multiprotocol 2.4 GHz Wireless MCU With Integrated Power Amplifier
TI

CC2652P7

具有集成式功率放大器的 SimpleLink™ Arm® Cortex®-M4F 多协议 2.4GHz 无线 MCU、704kB 闪存
TI