CC2620F128RGZR [TI]

具有 128kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M3 Zigbee® RF4CE 无线 MCU | RGZ | 48 | -40 to 85;
CC2620F128RGZR
型号: CC2620F128RGZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 128kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M3 Zigbee® RF4CE 无线 MCU | RGZ | 48 | -40 to 85

无线 闪存
文件: 总54页 (文件大小:3048K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
CC2620 SimpleLink™ ZigBee® RF4CE 无线 MCU  
1 器件概述  
1.1 特性  
1
微控制器  
外部系统  
强大的 ARM® Cortex®-M3  
– EEMBC CoreMark®评分:142  
高达 48MHz 的时钟速度  
片上内部 DC-DC 转换器  
极少的外部组件  
无缝集成 SimpleLink™CC2590 CC2592 范围  
扩展器  
– 128KB 系统内可编程闪存  
– ROM 中的 TI-RTOS 和 蓝牙®软件  
低功耗  
宽电源电压范围  
高达 28KB 系统 SRAM,其中 20KB 为超低泄漏  
静态随机存取存储器 (SRAM)  
– 8KB SRAM,适用于缓存或系统 RAM 使用  
– 2 引脚 cJTAG JTAG 调试  
支持无线升级 (OTA)  
正常工作电压:1.8V 3.8V  
外部稳压器模式:1.7V 1.95V  
有源模式 RX5.9mA  
有源模式 TX (0dBm)6.1mA  
有源模式 TX (+5dBm)9.1mA  
有源模式 MCU61µA/MHz  
有源模式 MCU48.5 CoreMark/mA  
超低功耗传感器控制器  
可独立于系统其余部分自主运行  
– 16 位架构  
– 2KB 超低泄漏代码和数据 SRAM  
高效代码尺寸架构,只读存储器 (ROM) 中装载驱动  
程序、IEEE 802.15.4 MAC、 和引导加载程序  
有源模式传感器控制器:  
0.4mA + 8.2μA/MHz  
待机电流:1.1μARTC 运行,RAM/CPU 保  
持)  
封装符合 RoHS 标准  
关断电流:100nA(发生外部事件时唤醒)  
射频 (RF) 部分  
– 4mm × 4mm RSM VQFN32 封装(10 个  
GPIO)  
– 7mm × 7mm RGZ VQFN48 封装(31 个  
GPIO)  
– 2.4GHz RF 收发器,符合 IEEE 802.15.4 PHY  
MAC  
外设  
出色的接收器灵敏度(–100dBm)、可选择性和阻  
断性能  
所有数字外设引脚均可连接任意 GPIO  
– 105dB 的链路预算  
最高达 +5dBm 的可编程输出功率  
单端或差分 RF 接口  
四个通用定时器模块  
8 × 16 位或 4 × 32 位,均采用脉宽调制  
(PWM))  
– 12 位模数转换器 (ADC)200MSPS8 通道模  
拟多路复用器  
适用于符合各项全球射频规范的系统  
– ETSI EN 300 328(欧洲)  
– EN 300 440 2 类(欧洲)  
– FCC CFR47 15 部分(美国)  
– ARIB STD-T66(日本)  
工具和开发环境  
持续时间比较器  
超低功耗模拟比较器  
可编程电流源  
– UART  
– 2 个同步串行接口 (SSI)SPIMICROWIRE 和  
TI)  
功能全面的低成本开发套件  
针对不同 RF 配置的多种参考设计  
数据包监听器 PC 软件  
– Sensor Controller Studio  
– RemoTI™Target Emulator  
– SmartRF™Studio  
– SmartRF Flash Programmer2  
– IAR Embedded Workbench®(用于 ARM)  
– Code Composer Studio™  
– CCS Cloud  
– I2C  
– I2S  
实时时钟 (RTC)  
– AES-128 安全模块  
真随机数发生器 (TRNG)  
– 1015 31 GPIO,具体取决于所用封装选  
支持八个电容感测按钮  
集成温度传感器  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SWRS178  
 
 
 
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
1.2 应用  
遥控  
DVD  
机顶盒  
互联网电视 (OTT)  
消费类电子产品  
HID 应用  
电视 (TV)  
媒体播放器  
1.3 说明  
CC2620 器件是一款无线微控制器 (MCU),主要适用于 ZigBee®RF4CE 远程控制 应用,涉及控制器和目标  
节点。  
此器件属于 SimpleLink™ CC26xx 系列中的经济高效型超低功耗 2.4GHz RF 器件。它具有极低的有源 RF  
MCU 电流以及低功耗模式流耗,可确保卓越的电池使用寿命,适合小型纽扣电池供电以及在能源采集型  
应用中 使用。  
SimpleLink Bluetooth 低功耗 CC2620 器件含有一个 32 ARM® Cortex®-M3 内核(与主处理器工作频率  
同为 48MHz),并且具有丰富的外设功能集,其中包括一个独特的超低功耗传感器控制器。此传感器控制  
器非常适合连接外部传感器,还适合用于在系统其余部分处于睡眠模式的情况下自主收集模拟和数字数据。  
因此,CC2620 器件成为 ZigBee RF4CE 远程控制的理想选择, 支持 语音、运动控制、RF-IR 混合远程控  
制以及电容触控式 qwerty 键盘和 STB/目标节点。  
CC2620 无线 MCU 的电源和时钟管理以及无线系统需要采用特定配置并由软件处理才能正确运行,这已在  
TI-RTOS 中实现。TI 建议将此软件框架应用于针对器件的全部应用程序开发过程。完整的 TI-RTOS 和器件  
驱动程序以源代码形式免费提供,下载地址:www.ti.com。  
IEEE 802.15.4 MAC 嵌入在 ROM 中,并在 ARM® Cortex®-M0 处理器上单独运行。此架构可改善整体系统  
性能和功耗,并释放闪存以供应用。  
此器件的软件协议栈支持包括 ZigBee RF4CE 协议栈 (RemoTI),可从 www.ti.com.cn 免费获取。  
器件信息(1)  
封装  
产品型号  
封装尺寸(标称值)  
7.00mm x 7.00mm  
4.00mm x 4.00mm  
CC2620F128RGZ  
CC2620F128RSM  
VQFN (48)  
VQFN (32)  
(1) 详细信息请参见 9。  
2
器件概述  
版权 © 2015–2016, Texas Instruments Incorporated  
 
 
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
1.4 功能框图  
1-1给出了 CC2620 器件的框图。  
中的功能框图  
SimpleLink CC26xx Wireless MCU  
RF Core  
cJTAG  
Main CPU:  
ROM  
ADC  
ADC  
ARM  
Cortex-M3  
128-KB  
Flash  
Digital PLL  
DSP modem  
8-KB  
cache  
Up to 48 MHz  
61 µA/MHz  
4-KB  
SRAM  
ARM  
Cortex-M0  
20-KB  
SRAM  
ROM  
General Peripherals / Modules  
Sensor Controller  
2
4× 32-bit Timers  
I C  
Sensor Controller Engine  
UART  
I2S  
2× SSI (SPI, µW, TI)  
Watchdog Timer  
12-bit ADC, 200 ks/s  
2× Comparator  
10 / 14 / 15 / 31 GPIOs  
AES  
TRNG  
2
SPI-I C Digital Sensor IF  
Temp. / Batt. Monitor  
Constant Current Source  
32 ch. µDMA  
RTC  
Time-to-digital Converter  
2-KB SRAM  
DC-DC Converter  
Copyright © 2016, Texas Instruments Incorporated  
1-1. 方框图  
版权 © 2015–2016, Texas Instruments Incorporated  
器件概述  
3
 
 
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
内容  
1
器件概.................................................... 1  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 2  
1.3 说明 ................................................... 2  
1.4 功能框图 .............................................. 3  
修订历史记录............................................... 5  
Device Comparison ..................................... 6  
3.1 Related Products ..................................... 6  
Terminal Configuration and Functions.............. 7  
4.1 Pin Diagram – RGZ Package ........................ 7  
4.2 Signal Descriptions – RGZ Package ................. 8  
4.3 Pin Diagram – RSM Package....................... 10  
4.4 Signal Descriptions – RSM Package ............... 11  
Specifications ........................................... 12  
5.1 Absolute Maximum Ratings......................... 12  
5.2 ESD Ratings ........................................ 12  
5.3 Recommended Operating Conditions............... 12  
5.4 Power Consumption Summary...................... 13  
5.5 General Characteristics ............................. 13  
5.20 Thermal Resistance Characteristics ................ 21  
5.21 Timing Requirements ............................... 22  
5.22 Switching Characteristics ........................... 22  
5.23 Typical Characteristics .............................. 23  
Detailed Description ................................... 27  
6.1 Overview ............................................ 27  
6.2 Functional Block Diagram........................... 27  
6.3 Main CPU ........................................... 28  
6.4 RF Core ............................................. 28  
6.5 Sensor Controller ................................... 29  
6.6 Memory.............................................. 30  
6.7 Debug ............................................... 30  
6.8 Power Management................................. 31  
6.9 Clock Systems ...................................... 32  
6.10 General Peripherals and Modules .................. 32  
6.11 Voltage Supply Domains............................ 33  
6.12 System Architecture................................. 33  
Application, Implementation, and Layout ......... 34  
7.1 Application Information.............................. 34  
6
2
3
4
5
7
8
5.6  
IEEE 802.15.4 (Offset Q-PSK DSSS, 250 kbps) –  
RX ................................................... 14  
IEEE 802.15.4 (Offset Q-PSK DSSS, 250 kbps) –  
TX ................................................... 14  
7.2  
4 × 4 External Single-ended (4XS) Application  
Circuit ............................................... 36  
5.7  
器件和文档支持 .......................................... 38  
8.1 器件命名规则 ........................................ 38  
8.2 工具与软件 .......................................... 39  
8.3 文档支............................................. 40  
8.4 德州仪器 (TI) 低功耗射频网站....................... 40  
8.5 低功耗射频电子新闻简报 ............................ 40  
8.6 社区资............................................. 40  
8.7 其他信............................................. 41  
8.8 商标.................................................. 41  
8.9 静电放电警告 ........................................ 41  
8.10 出口管制提示 ........................................ 41  
8.11 Glossary ............................................. 41  
机械、封装和可订购信息................................ 41  
9.1 封装信............................................. 41  
5.8 24-MHz Crystal Oscillator (XOSC_HF) ............. 15  
32.768-kHz Crystal Oscillator (XOSC_LF).......... 15  
5.9  
5.10 48-MHz RC Oscillator (RCOSC_HF) ............... 16  
5.11 32-kHz RC Oscillator (RCOSC_LF)................. 16  
5.12 ADC Characteristics................................. 16  
5.13 Temperature Sensor ................................ 17  
5.14 Battery Monitor...................................... 17  
5.15 Continuous Time Comparator....................... 17  
5.16 Low-Power Clocked Comparator ................... 18  
5.17 Programmable Current Source ..................... 18  
5.18 Synchronous Serial Interface (SSI) ................ 18  
5.19 DC Characteristics .................................. 20  
9
4
内容  
版权 © 2015–2016, Texas Instruments Incorporated  
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from January 20, 2016 to July 5, 2016  
Page  
已添加 分离 VDDS 电源轨特性 ..................................................................................................... 1  
Added option for up to 80-Ω ESR when CL is 6 pF or lower .................................................................. 15  
Added tolerance for RCOSC_LF and RTC accuracy content ................................................................ 16  
Added Figure 5-20, Supply Current vs Temperature .......................................................................... 24  
Changes from December 2, 2015 to January 19, 2016  
Page  
Updated the Soc ADC internal voltage reference specification in Section 5.12 ........................................... 16  
Moved all SSI parameters to Section 5.18 ...................................................................................... 18  
Added 0-dBm setting to the TX Current Consumption vs Supply Voltage (VDDS) graph ................................ 23  
Changed Figure 5-11, Receive Mode Current vs Supply Voltage (VDDS) ................................................. 23  
已更改 8.3中列出的勘误表...................................................................................................... 40  
Changes from February 22, 2015 to December 2, 2015  
Page  
Removed RHB package option from CC2620 .................................................................................... 6  
Added motional inductance recommendation to the 24-MHz XOSC table ................................................. 15  
Added SPI timing parameters ..................................................................................................... 18  
Added VOH and VOL min and max values for 4-mA and 8-mA load ....................................................... 20  
Added min and max values for VIH and VIL .................................................................................... 21  
Added IEEE 802.15.4 Sensitivity vs Channel Frequency...................................................................... 23  
Added RF Output Power vs Channel Frequency ............................................................................... 23  
Added Figure 5-11, Receive Mode Current vs Supply Voltage (VDDS) ..................................................... 23  
Changed Figure 5-19, SoC ADC ENOB vs Sampling Frequency (Input Frequency = FS / 10) .......................... 24  
Clarified Brown Out Detector status and functionality in the Power Modes table. ......................................... 31  
Added application circuit schematics and layout for 5XD and 4XS .......................................................... 34  
Copyright © 2015–2016, Texas Instruments Incorporated  
修订历史记录  
5
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
3 Device Comparison  
Table 3-1. Device Family Overview  
Device  
PHY Support  
Flash (KB) RAM (KB)  
GPIO  
Package(1)  
CC2640F128xxx  
CC2650F128xxx  
CC2630F128xxx  
CC2620F128xxx  
Bluetooth low energy (Normal)  
Multi-Protocol(2)  
128  
128  
128  
128  
20  
20  
20  
20  
31, 15, 10  
31, 15, 10  
31, 15, 10  
31, 10  
RGZ, RHB, RSM  
RGZ, RHB, RSM  
RGZ, RHB, RSM  
RGZ, RSM  
IEEE 802.15.4 Zigbee(/6LoWPAN)  
IEEE 802.15.4 (RF4CE)  
(1) Package designator replaces the xxx in device name to form a complete device name, RGZ is 7-mm × 7-mm VQFN48, RHB is  
5-mm × 5-mm VQFN32, RSM is 4-mm × 4-mm VQFN32, and YFV is 2.7-mm × 2.7-mm DSBGA.  
(2) The CC2650 device supports all PHYs and can be reflashed to run all the supported standards.  
3.1 Related Products  
Wireless Connectivity  
The wireless connectivity portfolio offers a wide selection of low-power RF solutions suitable  
for a broad range of applications. The offerings range from fully customized solutions to turn  
key offerings with pre-certified hardware and software (protocol).  
Sub-1 GHz  
Long-range, low-power wireless connectivity solutions are offered in a wide range of  
Sub-1 GHz ISM bands.  
Companion Products  
Review products that are frequently purchased or used in conjunction with this product.  
SimpleLink™ CC2650 Wireless MCU LaunchPad™ Kit  
The CC2650 LaunchPad™ development kit brings easy Bluetooth® low energy connectivity  
to the LaunchPad kit ecosystem with the SimpleLink ultra-low power CC26xx family of  
devices. This LaunchPad kit also supports development for multi-protocol support for the  
SimpleLink multi-standard CC2650 wireless MCU and the rest of CC26xx family of products:  
CC2630 wireless MCU for ZigBee®/6LoWPAN and CC2640 wireless MCU for Bluetooth low  
energy.  
Reference Designs for CC2620  
TI Designs Reference Design Library is a robust reference design library spanning analog,  
embedded processor and connectivity. Created by TI experts to help you jump-start your  
system design, all TI Designs include schematic or block diagrams, BOMs, and design files  
to speed your time to market. Search and download designs at ti.com/tidesigns.  
6
Device Comparison  
Copyright © 2015–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
4 Terminal Configuration and Functions  
4.1 Pin Diagram – RGZ Package  
DIO_24 37  
DIO_25 38  
DIO_26 39  
DIO_27 40  
DIO_28 41  
DIO_29 42  
DIO_30 43  
VDDS 44  
24 JTAG_TMSC  
23 DCOUPL  
22 VDDS3  
21 DIO_15  
20 DIO_14  
19 DIO_13  
18 DIO_12  
17 DIO_11  
16 DIO_10  
15 DIO_9  
VDDR 45  
X24M_N 46  
X24M_P 47  
VDDR_RF 48  
14 DIO_8  
13 VDDS2  
Figure 4-1. RGZ Package  
48-Pin VQFN  
(7-mm × 7-mm) Pinout, 0.5-mm Pitch  
I/O pins marked in Figure 4-1 in bold have high-drive capabilities; they are the following:  
Pin 10, DIO_5  
Pin 11, DIO_6  
Pin 12, DIO_7  
Pin 24, JTAG_TMSC  
Pin 26, DIO_16  
Pin 27, DIO_17  
I/O pins marked in Figure 4-1 in italics have analog capabilities; they are the following:  
Pin 36, DIO_23  
Pin 37, DIO_24  
Pin 38, DIO_25  
Pin 39, DIO_26  
Pin 40, DIO_27  
Pin 41, DIO_28  
Pin 42, DIO_29  
Pin 43, DIO_30  
Copyright © 2015–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
7
Submit Documentation Feedback  
Product Folder Links: CC2620  
 
 
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
4.2 Signal Descriptions – RGZ Package  
Table 4-1. Signal Descriptions – RGZ Package  
NAME  
NO.  
33  
23  
5
TYPE  
DESCRIPTION  
Output from internal DC-DC(1)  
1.27-V regulated digital-supply decoupling capacitor(2)  
DCDC_SW  
DCOUPL  
DIO_0  
Power  
Power  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
GPIO, Sensor Controller  
DIO_1  
6
GPIO, Sensor Controller  
DIO_2  
7
GPIO, Sensor Controller  
DIO_3  
8
GPIO, Sensor Controller  
DIO_4  
9
GPIO, Sensor Controller  
DIO_5  
10  
11  
12  
14  
15  
16  
17  
18  
19  
20  
21  
26  
27  
28  
29  
30  
31  
32  
36  
37  
38  
39  
40  
41  
42  
43  
24  
25  
35  
GPIO, Sensor Controller, high-drive capability  
DIO_6  
GPIO, Sensor Controller, high-drive capability  
DIO_7  
GPIO, Sensor Controller, high-drive capability  
DIO_8  
GPIO  
DIO_9  
GPIO  
DIO_10  
DIO_11  
DIO_12  
DIO_13  
DIO_14  
DIO_15  
DIO_16  
DIO_17  
DIO_18  
DIO_19  
DIO_20  
DIO_21  
DIO_22  
DIO_23  
DIO_24  
DIO_25  
DIO_26  
DIO_27  
DIO_28  
DIO_29  
DIO_30  
JTAG_TMSC  
JTAG_TCKC  
RESET_N  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO, JTAG_TDO, high-drive capability  
GPIO, JTAG_TDI, high-drive capability  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital I/O  
Digital I/O  
Digital input  
JTAG TMSC, high-drive capability  
JTAG TCKC  
Reset, active-low. No internal pullup.  
Positive RF input signal to LNA during RX  
Positive RF output signal to PA during TX  
RF_P  
RF_N  
1
2
RF I/O  
RF I/O  
Negative RF input signal to LNA during RX  
Negative RF output signal to PA during TX  
VDDR  
45  
48  
44  
Power  
Power  
Power  
1.7-V to 1.95-V supply, typically connect to output of internal DC-DC(2)(3)  
1.7-V to 1.95-V supply, typically connect to output of internal DC-DC(2)(4)  
1.8-V to 3.8-V main chip supply(1)  
VDDR_RF  
VDDS  
(1) For more details, see the technical reference manual (listed in 8.3).  
(2) Do not supply external circuitry from this pin.  
(3) If internal DC-DC is not used, this pin is supplied internally from the main LDO.  
(4) If internal DC-DC is not used, this pin must be connected to VDDR for supply from the main LDO.  
8
Terminal Configuration and Functions  
Copyright © 2015–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
Table 4-1. Signal Descriptions – RGZ Package (continued)  
NAME  
NO.  
13  
22  
34  
3
TYPE  
Power  
DESCRIPTION  
VDDS2  
1.8-V to 3.8-V DIO supply(1)  
1.8-V to 3.8-V DIO supply(1)  
1.8-V to 3.8-V DC-DC supply  
32-kHz crystal oscillator pin 1  
32-kHz crystal oscillator pin 2  
VDDS3  
Power  
VDDS_DCDC  
X32K_Q1  
X32K_Q2  
X24M_N  
X24M_P  
EGP  
Power  
Analog I/O  
Analog I/O  
Analog I/O  
Analog I/O  
Power  
4
46  
47  
24-MHz crystal oscillator pin 1  
24-MHz crystal oscillator pin 2  
Ground – Exposed Ground Pad  
Copyright © 2015–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
4.3 Pin Diagram – RSM Package  
DIO_8 25  
DIO_9 26  
16 DIO_4  
15 DIO_3  
VDDS 27  
14 JTAG_TCKC  
13 JTAG_TMSC  
12 DCOUPL  
11 VDDS2  
VDDR 28  
VSS 29  
X24M_N 30  
X24M_P 31  
VDDR_RF 32  
10 DIO_2  
9
DIO_1  
Figure 4-2. RSM Package  
32-Pin VQFN  
(4-mm × 4-mm) Pinout, 0.4-mm Pitch  
I/O pins marked in Figure 4-2 in bold have high-drive capabilities; they are as follows:  
Pin 8, DIO_0  
Pin 9, DIO_1  
Pin 10, DIO_2  
Pin 13, JTAG_TMSC  
Pin 15, DIO_3  
Pin 16, DIO_4  
I/O pins marked in Figure 4-2 in italics have analog capabilities; they are as follows:  
Pin 22, DIO_5  
Pin 23, DIO_6  
Pin 24, DIO_7  
Pin 25, DIO_8  
Pin 26, DIO_9  
10  
Terminal Configuration and Functions  
Copyright © 2015–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2620  
 
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
4.4 Signal Descriptions – RSM Package  
Table 4-2. Signal Descriptions – RSM Package  
NAME  
NO.  
TYPE  
DESCRIPTION  
Output from internal DC-DC.(1). Tie to ground for external regulator mode  
(1.7-V to 1.95-V operation)  
DCDC_SW  
18  
Power  
DCOUPL  
DIO_0  
12  
8
Power  
1.27-V regulated digital-supply decoupling capacitor(2)  
GPIO, Sensor Controller, high-drive capability  
GPIO, Sensor Controller, high-drive capability  
GPIO, Sensor Controller, high-drive capability  
GPIO, High-drive capability, JTAG_TDO  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
DIO_1  
9
DIO_2  
10  
15  
16  
22  
23  
24  
25  
26  
13  
14  
21  
DIO_3  
DIO_4  
GPIO, High-drive capability, JTAG_TDI  
DIO_5  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
Digital/Analog I/O GPIO, Sensor Controller, Analog  
DIO_6  
DIO_7  
DIO_8  
DIO_9  
JTAG_TMSC  
JTAG_TCKC  
RESET_N  
Digital I/O  
Digital I/O  
JTAG TMSC  
JTAG TCKC  
Digital Input  
Reset, active-low. No internal pullup.  
Negative RF input signal to LNA during RX  
Negative RF output signal to PA during TX  
RF_N  
RF_P  
2
1
RF I/O  
RF I/O  
Positive RF input signal to LNA during RX  
Positive RF output signal to PA during TX  
RX_TX  
VDDR  
4
RF I/O  
Power  
Power  
Power  
Power  
Optional bias pin for the RF LNA  
28  
32  
27  
11  
1.7-V to 1.95-V supply, typically connect to output of internal DC-DC.(2)(3)  
1.7-V to 1.95-V supply, typically connect to output of internal DC-DC(2)(4)  
1.8-V to 3.8-V main chip supply(1)  
VDDR_RF  
VDDS  
VDDS2  
1.8-V to 3.8-V GPIO supply(1)  
1.8-V to 3.8-V DC-DC supply. Tie to ground for external regulator mode  
(1.7-V to 1.95-V operation).  
VDDS_DCDC  
VSS  
19  
Power  
Power  
3, 7, 17, 20,  
29  
Ground  
X32K_Q1  
X32K_Q2  
X24M_N  
X24M_P  
EGP  
5
6
Analog I/O  
Analog I/O  
Analog I/O  
Analog I/O  
Power  
32-kHz crystal oscillator pin 1  
32-kHz crystal oscillator pin 2  
24-MHz crystal oscillator pin 1  
24-MHz crystal oscillator pin 2  
Ground – Exposed Ground Pad  
30  
31  
(1) See technical reference manual (listed in 8.3) for more details.  
(2) Do not supply external circuitry from this pin.  
(3) If internal DC-DC is not used, this pin is supplied internally from the main LDO.  
(4) If internal DC-DC is not used, this pin must be connected to VDDR for supply from the main LDO.  
Copyright © 2015–2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
5 Specifications  
5.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
MAX UNIT  
VDDR supplied by internal DC-DC regulator or  
internal GLDO. VDDS_DCDC connected to VDDS on  
PCB.  
Supply voltage (VDDS, VDDS2,  
and VDDS3)  
–0.3  
4.1  
V
Supply voltage (VDDS(3) and  
VDDR)  
External regulator mode (VDDS and VDDR pins  
connected on PCB)  
–0.3  
2.25  
V
Voltage on any digital pin(4)(5)  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
VDDSx + 0.3, max 4.1  
V
V
Voltage on crystal oscillator pins, X32K_Q1, X32K_Q2, X24M_N and X24M_P  
Voltage scaling enabled  
VDDR + 0.3, max 2.25  
VDDS  
1.49  
Voltage on ADC input (Vin)  
Voltage scaling disabled, internal reference  
Voltage scaling disabled, VDDS as reference  
V
VDDS / 2.9  
5
Input RF level  
Tstg  
dBm  
°C  
Storage temperature  
–40  
150  
(1) All voltage values are with respect to ground, unless otherwise noted.  
(2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(3) In external regulator mode, VDDS2 and VDDS3 must be at the same potential as VDDS.  
(4) Including analog-capable DIO.  
(5) Each pin is referenced to a specific VDDSx (VDDS, VDDS2 or VDDS3). For a pin-to-VDDS mapping table, see Table 6-3.  
5.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS001(1)  
All pins  
±2500  
VESD  
Electrostatic discharge  
V
RF pins  
±750  
±750  
Charged device model (CDM), per JESD22-C101(2)  
Non-RF pins  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
5.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX UNIT  
Ambient temperature  
–40  
85  
°C  
Operating supply  
voltage (VDDS and  
VDDR), external  
regulator mode  
For operation in 1.8-V systems  
(VDDS and VDDR pins connected on PCB, internal DC-DC cannot be used)  
1.7  
1.95  
V
Operating supply  
voltage VDDS  
1.8  
1.8  
3.8  
3.8  
V
V
Operating supply  
voltages VDDS2 and  
VDDS3  
For operation in battery-powered and 3.3-V systems  
(internal DC-DC can be used to minimize power consumption)  
VDDS < 2.7 V  
Operating supply  
voltages VDDS2 and  
VDDS3  
VDDS 2.7 V  
1.9  
3.8  
V
12  
Specifications  
Copyright © 2015–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2620  
 
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
5.4 Power Consumption Summary  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V with internal DC-DC converter, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
100  
150  
1.1  
MAX  
UNIT  
Reset. RESET_N pin asserted or VDDS below  
Power-on-Reset threshold  
nA  
Shutdown. No clocks running, no retention  
Standby. With RTC, CPU, RAM and (partial)  
register retention. RCOSC_LF  
Standby. With RTC, CPU, RAM and (partial)  
register retention. XOSC_LF  
1.3  
2.8  
Standby. With Cache, RTC, CPU, RAM and  
(partial) register retention. RCOSC_LF  
µA  
Icore  
Core current consumption  
Standby. With Cache, RTC, CPU, RAM and  
(partial) register retention. XOSC_LF  
3.0  
Idle. Supply Systems and RAM powered.  
550  
1.45 mA +  
31 µA/MHz  
Active. Core running CoreMark  
(1)  
Radio RX  
5.9  
6.1  
6.1  
9.1  
Radio RX(2)  
Radio TX, 0-dBm output power(1)  
Radio TX, 5-dBm output power(2)  
mA  
Peripheral Current Consumption (Adds to core current Icore for each peripheral unit activated)(3)  
Peripheral power domain  
Serial power domain  
Delta current with domain enabled  
Delta current with domain enabled  
20  
13  
µA  
µA  
Delta current with power domain enabled, clock  
enabled, RF core idle  
RF Core  
237  
µA  
µDMA  
Timers  
I2C  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
Delta current with clock enabled, module idle  
130  
113  
12  
µA  
µA  
µA  
µA  
µA  
µA  
Iperi  
I2S  
36  
SSI  
93  
UART  
164  
(1) Single-ended RF mode is optimized for size and power consumption. Measured on CC2650EM-4XS.  
(2) Differential RF mode is optimized for RF performance. Measured on CC2650EM-5XD.  
(3) Iperi is not supported in Standby or Shutdown.  
5.5 General Characteristics  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
FLASH MEMORY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Supported flash erase cycles before  
failure  
100  
k Cycles  
Flash page/sector erase current  
Flash page/sector size  
Flash write current  
Flash page/sector erase time(1)  
Flash write time(1)  
Average delta current  
12.6  
4
mA  
KB  
mA  
ms  
µs  
Average delta current, 4 bytes at a time  
8.15  
8
4 bytes at a time  
8
(1) This number is dependent on Flash aging and will increase over time and erase cycles.  
Copyright © 2015–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
13  
Product Folder Links: CC2620  
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
5.6 IEEE 802.15.4 (Offset Q-PSK DSSS, 250 kbps) – RX  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Differential mode. Measured at the CC2650EM-5XD  
SMA connector, PER = 1%  
Receiver sensitivity  
–100  
dBm  
Single-ended mode. Measured on CC2650EM-4XS,  
at the SMA connector, PER = 1%  
Receiver sensitivity  
–97  
+4  
dBm  
dBm  
dB  
Measured at the CC2650EM-5XD SMA connector,  
PER = 1%  
Receiver saturation  
Wanted signal at –82 dBm, modulated interferer at  
±5 MHz, PER = 1%  
Adjacent channel rejection  
Alternate channel rejection  
39  
Wanted signal at –82 dBm, modulated interferer at  
±10 MHz, PER = 1%  
52  
dB  
Wanted signal at –82 dBm, undesired signal is IEEE  
802.15.4 modulated channel, stepped through all  
channels 2405 to 2480 MHz, PER = 1%  
Channel rejection, ±15 MHz or  
more  
57  
dB  
Blocking and desensitization,  
5 MHz from upper band edge  
Wanted signal at –97 dBm (3 dB above the  
sensitivity level), CW jammer, PER = 1%  
64  
64  
65  
68  
63  
63  
65  
67  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Blocking and desensitization,  
10 MHz from upper band edge  
Wanted signal at –97 dBm (3 dB above the  
sensitivity level), CW jammer, PER = 1%  
Blocking and desensitization,  
20 MHz from upper band edge  
Wanted signal at –97 dBm (3 dB above the  
sensitivity level), CW jammer, PER = 1%  
Blocking and desensitization,  
50 MHz from upper band edge  
Wanted signal at –97 dBm (3 dB above the  
sensitivity level), CW jammer, PER = 1%  
Blocking and desensitization,  
–5 MHz from lower band edge  
Wanted signal at –97 dBm (3 dB above the  
sensitivity level), CW jammer, PER = 1%  
Blocking and desensitization,  
–10 MHz from lower band edge  
Wanted signal at –97 dBm (3 dB above the  
sensitivity level), CW jammer, PER = 1%  
Blocking and desensitization,  
–20 MHz from lower band edge  
Wanted signal at –97 dBm (3 dB above the  
sensitivity level), CW jammer, PER = 1%  
Blocking and desensitization,  
–50 MHz from lower band edge  
Wanted signal at –97 dBm (3 dB above the  
sensitivity level), CW jammer, PER = 1%  
Conducted measurement in a 50-Ω single-ended  
load. Suitable for systems targeting compliance with  
EN 300 328, EN 300 440 class 2, FCC CFR47, Part  
15 and ARIB STD-T-66  
Spurious emissions, 30 MHz to  
1000 MHz  
–71  
–62  
dBm  
dBm  
Conducted measurement in a 50 single-ended  
load. Suitable for systems targeting compliance with  
EN 300 328, EN 300 440 class 2, FCC CFR47, Part  
15 and ARIB STD-T-66  
Spurious emissions, 1 GHz to  
12.75 GHz  
Difference between the incoming carrier frequency  
and the internally generated carrier frequency  
Frequency error tolerance  
Symbol rate error tolerance  
>200  
ppm  
ppm  
Difference between incoming symbol rate and the  
internally generated symbol rate  
>1000  
RSSI dynamic range  
RSSI accuracy  
100  
±4  
dB  
dB  
5.7 IEEE 802.15.4 (Offset Q-PSK DSSS, 250 kbps) – TX  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output power, highest setting  
Delivered to a single-ended 50-Ω load through a balun  
5
dBm  
Measured on CC2650EM-4XS, delivered to a single-  
ended 50-Ω load  
Output power, highest setting  
2
dBm  
dBm  
Output power, lowest setting  
Error vector magnitude  
Delivered to a single-ended 50-Ω load through a balun  
–21  
2%  
At maximum output power  
14  
Specifications  
Copyright © 2015–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
IEEE 802.15.4 (Offset Q-PSK DSSS, 250 kbps) – TX (continued)  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
f < 1 GHz, outside restricted bands  
f < 1 GHz, restricted bands ETSI  
f < 1 GHz, restricted bands FCC  
f > 1 GHz, including harmonics  
MIN  
TYP  
–43  
–65  
–76  
–46  
MAX  
UNIT  
dBm  
Spurious emission conducted  
measurement  
Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328  
and EN 300 440 Class 2 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan)  
5.8 24-MHz Crystal Oscillator (XOSC_HF)  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
60  
UNIT  
Ω
ESR Equivalent series resistance(2)  
ESR Equivalent series resistance(2)  
6 pF < CL 9 pF  
5 pF < CL 6 pF  
20  
80  
Ω
Relates to load capacitance  
(CL in Farads)  
LM Motional inductance(2)  
< 1.6 × 10–24 / CL  
H
2
CL Crystal load capacitance(2)  
Crystal frequency(2)(3)  
Crystal frequency tolerance(2)(4)  
Start-up time(3)(5)  
5
9
pF  
MHz  
ppm  
µs  
24  
–40  
40  
150  
(1) Probing or otherwise stopping the XTAL while the DC-DC converter is enabled may cause permanent damage to the device.  
(2) The crystal manufacturer's specification must satisfy this requirement  
(3) Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V  
(4) Includes initial tolerance of the crystal, drift over temperature, ageing and frequency pulling due to incorrect load capacitance. As per  
IEEE 802.15.4 specification.  
(5) Kick-started based on a temperature and aging compensated RCOSC_HF using precharge injection.  
5.9 32.768-kHz Crystal Oscillator (XOSC_LF)  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
Crystal frequency(1)  
ESR Equivalent series resistance(1)  
CL Crystal load capacitance(1)  
TEST CONDITIONS  
MIN  
TYP  
32.768  
30  
MAX  
UNIT  
kHz  
kΩ  
100  
12  
6
pF  
(1) The crystal manufacturer's specification must satisfy this requirement  
Copyright © 2015–2016, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
5.10 48-MHz RC Oscillator (RCOSC_HF)  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
48  
MAX  
UNIT  
Frequency  
MHz  
Uncalibrated frequency accuracy  
Calibrated frequency accuracy(1)  
Start-up time  
±1%  
±0.25%  
5
µs  
(1) Accuracy relative to the calibration source (XOSC_HF).  
5.11 32-kHz RC Oscillator (RCOSC_LF)  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
Calibrated frequency(1)  
Temperature coefficient  
TEST CONDITIONS  
MIN  
TYP  
32.8  
50  
MAX  
UNIT  
kHz  
ppm/°C  
(1) The frequency accuracy of the Real Time Clock (RTC) is not directly dependent on the frequency accuracy of the 32-kHz RC Oscillator.  
The RTC can be calibrated to an accuracy within ±500 ppm of 32.768 kHz by measuring the frequency error of RCOSC_LF relative to  
XOSC_HF and compensating the RTC tick speed. The procedure is explained in Running Bluetooth® Low Energy on CC2640 Without  
32 kHz Crystal.  
5.12 ADC Characteristics  
Tc = 25°C, VDDS = 3.0 V and voltage scaling enabled, unless otherwise noted.(1)  
PARAMETER  
Input voltage range  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
0
VDDS  
V
12  
Bits  
ksps  
LSB  
LSB  
LSB  
LSB  
Sample rate  
200  
Offset  
Internal 4.3-V equivalent reference(2)  
Internal 4.3-V equivalent reference(2)  
2
2.4  
>–1  
±3  
Gain error  
DNL(3) Differential nonlinearity  
INL(4)  
Integral nonlinearity  
Internal 4.3-V equivalent reference(2), 200 ksps,  
9.6-kHz input tone  
9.8  
10  
ENOB  
Effective number of bits VDDS as reference, 200 ksps, 9.6-kHz input tone  
Bits  
dB  
dB  
dB  
Internal 1.44-V reference, voltage scaling disabled,  
32 samples average, 200 ksps, 300-Hz input tone  
Internal 4.3-V equivalent reference(2), 200 ksps,  
9.6-kHz input tone  
11.1  
–65  
–69  
–71  
THD  
Total harmonic distortion VDDS as reference, 200 ksps, 9.6-kHz input tone  
Internal 1.44-V reference, voltage scaling disabled,  
32 samples average, 200 ksps, 300-Hz input tone  
Internal 4.3-V equivalent reference(2), 200 ksps,  
60  
63  
69  
9.6-kHz input tone  
Signal-to-noise  
and  
Distortion ratio  
SINAD,  
SNDR  
VDDS as reference, 200 ksps, 9.6-kHz input tone  
Internal 1.44-V reference, voltage scaling disabled,  
32 samples average, 200 ksps, 300-Hz input tone  
Internal 4.3-V equivalent reference(2), 200 ksps,  
9.6-kHz input tone  
67  
72  
73  
Spurious-free dynamic  
range  
SFDR  
VDDS as reference, 200 ksps, 9.6-kHz input tone  
Internal 1.44-V reference, voltage scaling disabled,  
32 samples average, 200 ksps, 300-Hz input tone  
(1) Using IEEE Std 1241™-2010 for terminology and test methods.  
(2) Input signal scaled down internally before conversion, as if voltage range was 0 to 4.3 V.  
(3) No missing codes. Positive DNL typically varies from +0.3 to +3.5, depending on device (see Figure 5-21).  
(4) For a typical example, see Figure 5-22.  
16  
Specifications  
Copyright © 2015–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2620  
 
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
ADC Characteristics (continued)  
Tc = 25°C, VDDS = 3.0 V and voltage scaling enabled, unless otherwise noted.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
clock-  
cycles  
Conversion time  
Serial conversion, time-to-output, 24-MHz clock  
50  
Current consumption  
Current consumption  
Internal 4.3-V equivalent reference(2)  
VDDS as reference  
0.66  
0.75  
mA  
mA  
Equivalent fixed internal reference (input voltage scaling  
enabled). For best accuracy, the ADC conversion should  
be initiated through the TIRTOS API in order to include the  
gain/offset compensation factors stored in FCFG1.  
Reference voltage  
4.3(2)(5)  
V
Fixed internal reference (input voltage scaling disabled).  
For best accuracy, the ADC conversion should be initiated  
through the TIRTOS API in order to include the gain/offset  
compensation factors stored in FCFG1. This value is  
derived from the scaled value (4.3 V) as follows:  
Vref = 4.3 V × 1408 / 4095  
Reference voltage  
1.48  
V
VDDS as reference (Also known as RELATIVE) (input  
voltage scaling enabled)  
Reference voltage  
Reference voltage  
VDDS  
V
V
VDDS as reference (Also known as RELATIVE) (input  
voltage scaling disabled)  
VDDS /  
2.82(5)  
200 ksps, voltage scaling enabled. Capacitive input, Input  
impedance depends on sampling frequency and sampling  
time  
Input impedance  
>1  
MΩ  
(5) Applied voltage must be within absolute maximum ratings (Section 5.1) at all times.  
5.13 Temperature Sensor  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
°C  
Resolution  
Range  
4
–40  
85  
°C  
Accuracy  
±5  
°C  
Supply voltage coefficient(1)  
3.2  
°C/V  
(1) Automatically compensated when using supplied driver libraries.  
5.14 Battery Monitor  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mV  
V
Resolution  
Range  
50  
1.8  
3.8  
Accuracy  
13  
mV  
5.15 Continuous Time Comparator  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
0
TYP  
MAX  
VDDS  
VDDS  
UNIT  
V
Input voltage range  
External reference voltage  
0
V
Internal reference voltage  
Offset  
DCOUPL as reference  
1.27  
3
V
mV  
mV  
µs  
Hysteresis  
<2  
Decision time  
Current consumption when enabled(1)  
Step from –10 mV to 10 mV  
0.72  
8.6  
µA  
(1) Additionally, the bias module must be enabled when running in standby mode.  
Copyright © 2015–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
17  
Product Folder Links: CC2620  
 
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
5.16 Low-Power Clocked Comparator  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input voltage range  
0
VDDS  
V
Clock frequency  
32  
1.49–1.51  
1.01–1.03  
0.78–0.79  
1.25–1.28  
0.63–0.65  
0.42–0.44  
0.33–0.34  
<2  
kHz  
Internal reference voltage, VDDS / 2  
Internal reference voltage, VDDS / 3  
Internal reference voltage, VDDS / 4  
Internal reference voltage, DCOUPL / 1  
Internal reference voltage, DCOUPL / 2  
Internal reference voltage, DCOUPL / 3  
Internal reference voltage, DCOUPL / 4  
Offset  
V
V
V
V
V
V
V
mV  
Hysteresis  
<5  
mV  
Decision time  
Step from –50 mV to 50 mV  
<1  
clock-cycle  
nA  
Current consumption when enabled  
362  
5.17 Programmable Current Source  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
µA  
Current source programmable output range  
Resolution  
0.25–20  
0.25  
µA  
Including current source at maximum  
programmable output  
Current consumption(1)  
23  
µA  
(1) Additionally, the bias module must be enabled when running in standby mode.  
5.18 Synchronous Serial Interface (SSI)  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
S1(1) tclk_per (SSIClk period)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
system  
clocks  
Device operating as SLAVE  
12  
65024  
S2(1) tclk_high (SSIClk high time)  
S3(1) tclk_low (SSIClk low time)  
Device operating as SLAVE  
Device operating as SLAVE  
0.5  
0.5  
tclk_per  
tclk_per  
One-way communication to SLAVE -  
Device operating as MASTER  
system  
clocks  
S1 (TX only)(1) tclk_per (SSIClk period)  
S1 (TX and RX)(1) tclk_per (SSIClk period)  
4
8
65024  
65024  
Normal duplex operation -  
Device operating as MASTER  
system  
clocks  
S2(1) tclk_high (SSIClk high time)  
S3(1) tclk_low (SSIClk low time)  
Device operating as MASTER  
Device operating as MASTER  
0.5  
0.5  
tclk_per  
tclk_per  
(1) Refer to SSI timing diagrams Figure 5-1, Figure 5-2, and Figure 5-3.  
18  
Specifications  
Copyright © 2015–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
S1  
S2  
SSIClk  
SSIFss  
S3  
SSITx  
SSIRx  
MSB  
LSB  
4 to 16 bits  
Figure 5-1. SSI Timing for TI Frame Format (FRF = 01), Single Transfer Timing Measurement  
S2  
S1  
SSIClk  
SSIFss  
SSITx  
SSIRx  
S3  
MSB  
LSB  
8-bit control  
0
MSB  
LSB  
4 to 16 bits output data  
Figure 5-2. SSI Timing for MICROWIRE Frame Format (FRF = 10), Single Transfer  
Copyright © 2015–2016, Texas Instruments Incorporated  
Specifications  
19  
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
S1  
S2  
SSIClk  
(SPO = 0)  
S3  
SSIClk  
(SPO = 1)  
SSITx  
(Master)  
MSB  
LSB  
SSIRx  
(Slave)  
MSB  
LSB  
SSIFss  
Figure 5-3. SSI Timing for SPI Frame Format (FRF = 00), With SPH = 1  
5.19 DC Characteristics  
PARAMETER  
TEST CONDITIONS  
TA = 25°C, VDDS = 1.8 V  
MIN  
1.32  
1.32  
TYP  
MAX  
UNIT  
GPIO VOH at 8-mA load  
GPIO VOL at 8-mA load  
GPIO VOH at 4-mA load  
GPIO VOL at 4-mA load  
GPIO pullup current  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 1  
1.54  
0.26  
1.58  
0.21  
71.7  
21.1  
V
V
0.32  
0.32  
V
IOCURR = 1  
V
Input mode, pullup enabled, Vpad = 0 V  
Input mode, pulldown enabled, Vpad = VDDS  
µA  
µA  
GPIO pulldown current  
GPIO high/low input transition,  
no hysteresis  
IH = 0, transition between reading 0 and reading 1  
IH = 1, transition voltage for input read as 0 1  
IH = 1, transition voltage for input read as 1 0  
0.88  
1.07  
V
V
GPIO low-to-high input transition,  
with hysteresis  
GPIO high-to-low input transition,  
with hysteresis  
0.74  
0.33  
V
V
GPIO input hysteresis  
IH = 1, difference between 0 1 and 1 0 points  
TA = 25°C, VDDS = 3.0 V  
GPIO VOH at 8-mA load  
GPIO VOL at 8-mA load  
GPIO VOH at 4-mA load  
GPIO VOL at 4-mA load  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 1  
2.68  
0.33  
2.72  
0.28  
V
V
V
V
IOCURR = 1  
TA = 25°C, VDDS = 3.8 V  
GPIO pullup current  
Input mode, pullup enabled, Vpad = 0 V  
277  
µA  
20  
Specifications  
Copyright © 2015–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
DC Characteristics (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GPIO pulldown current  
Input mode, pulldown enabled, Vpad = VDDS  
113  
µA  
GPIO high/low input transition,  
no hysteresis  
IH = 0, transition between reading 0 and reading 1  
IH = 1, transition voltage for input read as 0 1  
IH = 1, transition voltage for input read as 1 0  
1.67  
1.94  
V
V
GPIO low-to-high input transition,  
with hysteresis  
GPIO high-to-low input transition,  
with hysteresis  
1.54  
0.4  
V
V
GPIO input hysteresis  
IH = 1, difference between 0 1 and 1 0 points  
TA = 25°C  
Lowest GPIO input voltage reliably interpreted as a  
«High»  
VIH  
VIL  
0.8 VDDS(1)  
VDDS(1)  
Highest GPIO input voltage reliably interpreted as a  
«Low»  
0.2  
(1) Each GPIO is referenced to a specific VDDS pin. See the technical reference manual listed in 8.3 for more details.  
5.20 Thermal Resistance Characteristics  
NAME  
RθJA  
DESCRIPTION  
Junction-to-ambient thermal resistance  
RSM (°C/W)(1) (2)  
RGZ (°C/W)(1) (2)  
36.9  
30.3  
7.6  
29.6  
15.7  
6.2  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
PsiJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
0.3  
PsiJB  
7.4  
6.2  
RθJC(bot)  
2.1  
1.9  
(1) °C/W = degrees Celsius per watt.  
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RθJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air).  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages.  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages.  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements.  
Power dissipation of 2 W and an ambient temperature of 70ºC is assumed.  
Copyright © 2015–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
21  
Product Folder Links: CC2620  
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
5.21 Timing Requirements  
MIN  
0
NOM  
MAX  
UNIT  
mV/µs  
mV/µs  
mV/µs  
Rising supply-voltage slew rate  
100  
20  
3
Falling supply-voltage slew rate  
Falling supply-voltage slew rate, with low-power flash settings(1)  
0
No limitation for negative  
temperature gradient, or  
outside standby mode  
Positive temperature gradient in standby(2)  
5
°C/s  
µs  
CONTROL INPUT AC CHARACTERISTICS(3)  
RESET_N low duration  
1
(1) For smaller coin cell batteries, with high worst-case end-of-life equivalent source resistance, a 22-µF VDDS input capacitor (see  
Figure 7-1) must be used to ensure compliance with this slew rate.  
(2) Applications using RCOSC_LF as sleep timer must also consider the drift in frequency caused by a change in temperature (see  
Section 5.11).  
(3) TA = –40°C to +85°C, VDDS = 1.7 V to 3.8 V, unless otherwise noted.  
5.22 Switching Characteristics  
Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
WAKEUP AND TIMING  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Idle Active  
14  
151  
µs  
µs  
µs  
Standby Active  
Shutdown Active  
1015  
22  
Specifications  
Copyright © 2015–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
5.23 Typical Characteristics  
-95  
-96  
-95  
-96  
IEEE 802.15.4 5XD Sensitivity  
IEEE 802.15.4 4XS Sensitivity  
-97  
-97  
-98  
-99  
-98  
-100  
-101  
-102  
-103  
-99  
-100  
Sensitivity 4XS  
Sensitivity 5XD  
-101  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
1.8  
2.3  
2.8  
3.3  
3.8  
Temperature (èC)  
VDDS (V)  
D005  
Figure 5-4. IEEE 802.15.4 Sensitivity vs Temperature  
Figure 5-5. IEEE 802.15.4 Sensitivity vs Supply Voltage (VDDS)  
-95  
6
Sensitivity 4XS  
Sensitivity 5XD  
5
4
-96  
-97  
-98  
4XS 2-dBm Setting  
5XD 5-dBm Setting  
3
2
1
0
-99  
-100  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (èC)  
-101  
2400 2410 2420 2430 2440 2450 2460 2470 2480  
Frequency (MHz)  
D019  
Figure 5-6. IEEE 802.15.4 Sensitivity vs Channel Frequency  
Figure 5-7. TX Output Power vs Temperature  
8
7
6
5-dBm setting (5XD)  
0-dBm setting (4XS)  
5
4
3
2
6
5
4
3
2
1
1
5XD 5-dBm Setting  
4XS 2-dBm Setting  
0
-1  
0
2400 2410 2420 2430 2440 2450 2460 2470 2480  
1.8  
2.3  
2.8  
VDDS (V)  
3.3  
3.8  
Frequency (MHz)  
D021  
D003  
Figure 5-9. TX Output Power  
vs Channel Frequency  
Figure 5-8. TX Output Power vs Supply Voltage (VDDS)  
Copyright © 2015–2016, Texas Instruments Incorporated  
Specifications  
23  
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
16  
10.5  
10  
9.5  
9
4XS 0-dBm Setting  
4XS 2-dBm Setting  
5XD 5-dBm Setting  
4XS  
5XD  
15  
14  
13  
12  
11  
10  
9
8.5  
8
7.5  
7
6.5  
6
8
7
5.5  
5
6
5
4.5  
4
4
1.8  
2
2.2 2.4 2.6 2.8  
VDDS (V)  
3
3.2 3.4 3.6 3.8  
1.8  
2.05  
2.3  
2.55  
2.8  
3.05  
3.3  
3.55  
3.8  
Voltage (V)  
D015  
D016  
Figure 5-10. TX Current Consumption  
vs Supply Voltage (VDDS)  
Figure 5-11. RX Mode Current vs Supply Voltage (VDDS)  
7
12  
10  
8
5XD RX Current  
4XS RX Current  
6.8  
6.6  
6.4  
6.2  
6
6
4
5.8  
5.6  
2
5XD 5-dBm Setting  
4XS 2-dBm Setting  
0
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (èC)  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
D001  
Temperature (èC)  
D002  
Figure 5-12. RX Mode Current Consumption vs Temperature  
Figure 5-13. TX Mode Current Consumption vs Temperature  
5
3.1  
Active Mode Current  
Active Mode Current  
4.5  
4
3.05  
3
3.5  
3
2.95  
2.9  
2.5  
2
1.8  
2.85  
2.3  
2.8  
3.3  
3.8  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
VDDS (V)  
D007  
Temperature (èC)  
D006  
Figure 5-15. Active Mode (MCU Running, No Peripherals) Current  
Consumption vs Supply Voltage (VDDS)  
Figure 5-14. Active Mode (MCU Running, No Peripherals)  
Current Consumption vs Temperature  
24  
Specifications  
Copyright © 2015–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
Typical Characteristics (continued)  
1006.4  
1006.2  
1006  
11.4  
Fs= 200 kHz, No Averaging  
Fs= 200 kHz, 32 samples averaging  
11.2  
11  
10.8  
10.6  
10.4  
10.2  
10  
1005.8  
1005.6  
1005.4  
1005.2  
1005  
9.8  
9.6  
9.4  
1004.8  
200300 500 1000 2000  
5000 10000 20000  
100000  
1.8  
2.3  
2.8  
3.3  
3.8  
Input Frequency (Hz)  
VDDS (V)  
D009  
D012  
Figure 5-16. SoC ADC Effective Number of Bits vs Input  
Frequency (Internal Reference, Scaling enabled)  
Figure 5-17. SoC ADC Output vs Supply Voltage (Fixed Input,  
Internal Reference)  
10.5  
1007.5  
1007  
ENOB Internal Reference (No Averaging)  
ENOB Internal Reference (32 Samples Averaging)  
10.4  
10.3  
10.2  
10.1  
10  
1006.5  
1006  
9.9  
1005.5  
1005  
9.8  
9.7  
1004.5  
9.6  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
1k  
10k  
100k 200k  
Temperature (èC)  
Sampling Frequency (Hz)  
D013  
D009A  
Figure 5-18. SoC ADC Output vs Temperature (Fixed Input,  
Internal Reference)  
Figure 5-19. SoC ADC ENOB vs Sampling Frequency  
(Scaling enabled, input frequency = FS / 10)  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
D021  
Figure 5-20. Standby Mode Supply Current vs Temperature  
Copyright © 2015–2016, Texas Instruments Incorporated  
Specifications  
25  
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
D010  
ADC Code  
Figure 5-21. SoC ADC DNL vs ADC Code (Internal Reference)  
3
2
1
0
-1  
-2  
-3  
-4  
0
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200  
ADC Code  
D011  
Figure 5-22. SoC ADC INL vs ADC Code (Internal Reference)  
26  
Specifications  
Copyright © 2015–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
6 Detailed Description  
6.1 Overview  
The core modules of the CC26xx product family are shown in Section 6.2.  
6.2 Functional Block Diagram  
SimpleLink CC26xx Wireless MCU  
RF Core  
cJTAG  
Main CPU:  
ROM  
ADC  
ADC  
ARM  
Cortex-M3  
128-KB  
Flash  
Digital PLL  
DSP modem  
8-KB  
cache  
Up to 48 MHz  
61 µA/MHz  
4-KB  
SRAM  
ARM  
Cortex-M0  
20-KB  
SRAM  
ROM  
General Peripherals / Modules  
Sensor Controller  
2
4× 32-bit Timers  
I C  
Sensor Controller Engine  
UART  
I2S  
2× SSI (SPI, µW, TI)  
Watchdog Timer  
12-bit ADC, 200 ks/s  
2× Comparator  
10 / 14 / 15 / 31 GPIOs  
AES  
TRNG  
2
SPI-I C Digital Sensor IF  
Temp. / Batt. Monitor  
Constant Current Source  
32 ch. µDMA  
RTC  
Time-to-digital Converter  
2-KB SRAM  
DC-DC Converter  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2015–2016, Texas Instruments Incorporated  
Detailed Description  
27  
Submit Documentation Feedback  
Product Folder Links: CC2620  
 
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
6.3 Main CPU  
The SimpleLink CC2620 Wireless MCU contains an ARM Cortex-M3 (CM3) 32-bit CPU, which runs the  
application and the higher layers of the protocol stack.  
The CM3 processor provides a high-performance, low-cost platform that meets the system requirements  
of minimal memory implementation, and low-power consumption, while delivering outstanding  
computational performance and exceptional system response to interrupts.  
CM3 features include the following:  
32-bit ARM Cortex-M3 architecture optimized for small-footprint embedded applications  
Outstanding processing performance combined with fast interrupt handling  
ARM Thumb®-2 mixed 16- and 32-bit instruction set delivers the high performance expected of a 32-bit  
ARM core in a compact memory size usually associated with 8- and 16-bit devices, typically in the  
range of a few kilobytes of memory for microcontroller-class applications:  
Single-cycle multiply instruction and hardware divide  
Atomic bit manipulation (bit-banding), delivering maximum memory use and streamlined peripheral  
control  
Unaligned data access, enabling data to be efficiently packed into memory  
Fast code execution permits slower processor clock or increases sleep mode time  
Harvard architecture characterized by separate buses for instruction and data  
Efficient processor core, system, and memories  
Hardware division and fast digital-signal-processing oriented multiply accumulate  
Saturating arithmetic for signal processing  
Deterministic, high-performance interrupt handling for time-critical applications  
Enhanced system debug with extensive breakpoint and trace capabilities  
Serial wire trace reduces the number of pins required for debugging and tracing  
Migration from the ARM7™ processor family for better performance and power efficiency  
Optimized for single-cycle flash memory use  
Ultralow-power consumption with integrated sleep modes  
1.25 DMIPS per MHz  
6.4 RF Core  
The RF Core contains an ARM Cortex-M0 processor that interfaces the analog RF and base-band  
circuitries, handles data to and from the system side, and assembles the information bits in a given packet  
structure. The RF core offers a high level, command-based API to the main CPU.  
The RF core is capable of autonomously handling the time-critical aspects of the radio protocols (802.15.4  
RF4CE) thus offloading the main CPU and leaving more resources for the user application.  
The RF core has a dedicated 4-KB SRAM block and runs initially from separate ROM memory. The ARM  
Cortex-M0 processor is not programmable by customers.  
28  
Detailed Description  
Copyright © 2015–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
6.5 Sensor Controller  
The Sensor Controller contains circuitry that can be selectively enabled in standby mode. The peripherals  
in this domain may be controlled by the Sensor Controller Engine, which is a proprietary power-optimized  
CPU. This CPU can read and monitor sensors or perform other tasks autonomously, thereby significantly  
reducing power consumption and offloading the main CM3 CPU. The GPIOs that can be connected to the  
Sensor Controller are listed in Table 6-1.  
The Sensor Controller is set up using a PC-based configuration tool, called Sensor Controller Studio, and  
potential use cases may be (but are not limited to):  
Analog sensors using integrated ADC  
Digital sensors using GPIOs, bit-banged I2C, and SPI  
UART communication for sensor reading or debugging  
Capacitive sensing  
Waveform generation  
Pulse counting  
Keyboard scan  
Quadrature decoder for polling rotation sensors  
Oscillator calibration  
NOTE  
Texas Instruments provides application examples for some of these use cases, but not for all  
of them.  
The peripherals in the Sensor Controller include the following:  
The low-power clocked comparator can be used to wake the device from any state in which the  
comparator is active. A configurable internal reference can be used in conjunction with the comparator.  
The output of the comparator can also be used to trigger an interrupt or the ADC.  
Capacitive sensing functionality is implemented through the use of a constant current source, a time-  
to-digital converter, and a comparator. The continuous time comparator in this block can also be used  
as a higher-accuracy alternative to the low-power clocked comparator. The Sensor Controller will take  
care of baseline tracking, hysteresis, filtering and other related functions.  
The ADC is a 12-bit, 200-ksamples/s ADC with eight inputs and a built-in voltage reference. The ADC  
can be triggered by many different sources, including timers, I/O pins, software, the analog  
comparator, and the RTC.  
The Sensor Controller also includes a SPI–I2C digital interface.  
The analog modules can be connected to up to eight different GPIOs.  
The peripherals in the Sensor Controller can also be controlled from the main application processor.  
Copyright © 2015–2016, Texas Instruments Incorporated  
Detailed Description  
29  
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
Table 6-1. GPIOs Connected to the Sensor Controller(1)  
7 × 7 RGZ  
DIO NUMBER  
4 × 4 RSM  
DIO NUMBER  
ANALOG CAPABLE  
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
30  
29  
28  
27  
26  
25  
24  
23  
7
9
8
7
6
5
2
1
0
6
5
4
3
2
1
0
(1) Depending on the package size, up to 16 pins can be connected to the Sensor Controller. Up to 8 of  
these pins can be connected to analog modules.  
6.6 Memory  
The flash memory provides nonvolatile storage for code and data. The flash memory is in-system  
programmable.  
The SRAM (static RAM) can be used for both storage of data and execution of code and is split into two  
4-KB blocks and two 6-KB blocks. Retention of the RAM contents in standby mode can be enabled or  
disabled individually for each block to minimize power consumption. In addition, if flash cache is disabled,  
the 8-KB cache can be used as a general-purpose RAM.  
The ROM provides preprogrammed embedded TI RTOS kernel, Driverlib and lower layer protocol stack  
software (802.15.4 MAC). It also contains a bootloader that can be used to reprogram the device using  
SPI or UART.  
6.7 Debug  
The on-chip debug support is done through a dedicated cJTAG (IEEE 1149.7) or JTAG (IEEE 1149.1)  
interface.  
30  
Detailed Description  
Copyright © 2015–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
6.8 Power Management  
To minimize power consumption, the CC2620 device supports a number of power modes and power  
management features (see Table 6-2).  
Table 6-2. Power Modes  
SOFTWARE CONFIGURABLE POWER MODES  
RESET PIN  
HELD  
MODE  
ACTIVE  
IDLE  
Off  
STANDBY  
Off  
SHUTDOWN  
CPU  
Active  
Off  
Off  
Off  
Off  
Flash  
On  
Available  
On  
Off  
SRAM  
On  
On  
Off  
Off  
Radio  
Available  
Available  
On  
Off  
Off  
Off  
Supply System  
Current  
Wake-up Time to CPU Active(1)  
Register Retention  
SRAM Retention  
On  
Duty Cycled  
1 µA  
Off  
Off  
1.45 mA + 31 µA/MHz  
550 µA  
14 µs  
Full  
0.15 µA  
1015 µs  
No  
0.1 µA  
1015 µs  
No  
151 µs  
Partial  
Full  
Full  
Full  
Full  
No  
No  
XOSC_HF or  
RCOSC_HF  
XOSC_HF or  
RCOSC_HF  
High-Speed Clock  
Low-Speed Clock  
Off  
Off  
Off  
Off  
Off  
XOSC_LF or  
RCOSC_LF  
XOSC_LF or  
RCOSC_LF  
XOSC_LF or  
RCOSC_LF  
Peripherals  
Available  
Available  
Available  
Available  
Available  
Active  
Available  
Available  
Available  
Available  
Available  
Active  
Off  
Available  
Available  
Available  
Available  
Duty Cycled(2)  
Active  
Off  
Off  
Off  
Off  
Sensor Controller  
Wake up on RTC  
Off  
Off  
Wake up on Pin Edge  
Wake up on Reset Pin  
Brown Out Detector (BOD)  
Power On Reset (POR)  
Available  
Available  
Off  
Off  
Available  
N/A  
Active  
Active  
Active  
N/A  
(1) Not including RTOS overhead  
(2) The Brown Out Detector is disabled between recharge periods in STANDBY. Lowering the supply voltage below the BOD threshold  
between two recharge periods while in STANDBY may cause the BOD to lock the device upon wake-up until a Reset/POR releases it.  
To avoid this, it is recommended that STANDBY mode is avoided if there is a risk that the supply voltage (VDDS) may drop below the  
specified operating voltage range. For the same reason, it is also good practice to ensure that a power cycling operation, such as a  
battery replacement, triggers a Power-on-reset by ensuring that the VDDS decoupling network is fully depleted before applying supply  
voltage again (for example, inserting new batteries).  
In active mode, the application CM3 CPU is actively executing code. Active mode provides normal  
operation of the processor and all of the peripherals that are currently enabled. The system clock can be  
any available clock source (see Table 6-2).  
In idle mode, all active peripherals can be clocked, but the Application CPU core and memory are not  
clocked and no code is executed. Any interrupt event will bring the processor back into active mode.  
In standby mode, only the always-on domain (AON) is active. An external wake-up event, RTC event, or  
sensor-controller event is required to bring the device back to active mode. MCU peripherals with retention  
do not need to be reconfigured when waking up again, and the CPU continues execution from where it  
went into standby mode. All GPIOs are latched in standby mode.  
In shutdown mode, the device is turned off entirely, including the AON domain and the Sensor Controller.  
The I/Os are latched with the value they had before entering shutdown mode. A change of state on any  
I/O pin defined as a wake-up from Shutdown pin wakes up the device and functions as a reset trigger. The  
CPU can differentiate between a reset in this way, a reset-by-reset pin, or a power-on-reset by reading the  
reset status register. The only state retained in this mode is the latched I/O state and the Flash memory  
contents.  
Copyright © 2015–2016, Texas Instruments Incorporated  
Detailed Description  
31  
Submit Documentation Feedback  
Product Folder Links: CC2620  
 
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
The Sensor Controller is an autonomous processor that can control the peripherals in the Sensor  
Controller independently of the main CPU, which means that the main CPU does not have to wake up, for  
example, to execute an ADC sample or poll a digital sensor over SPI. The main CPU saves both current  
and wake-up time that would otherwise be wasted. The Sensor Controller Studio enables the user to  
configure the sensor controller and choose which peripherals are controlled and which conditions wake up  
the main CPU.  
6.9 Clock Systems  
The CC2620 supports two external and two internal clock sources.  
A 24-MHz crystal is required as the frequency reference for the radio. This signal is doubled internally to  
create a 48-MHz clock.  
The 32-kHz crystal is optional. The low-speed crystal oscillator is designed for use with a 32-kHz watch-  
type crystal.  
The internal high-speed oscillator (48-MHz) can be used as a clock source for the CPU subsystem.  
The internal low-speed oscillator (32.768-kHz) can be used as a reference if the low-power crystal  
oscillator is not used.  
The 32-kHz clock source can be used as external clocking reference through GPIO.  
6.10 General Peripherals and Modules  
The I/O controller controls the digital I/O pins and contains multiplexer circuitry to allow a set of peripherals  
to be assigned to I/O pins in a flexible manner. All digital I/Os are interrupt and wake-up capable, have a  
programmable pullup and pulldown function and can generate an interrupt on a negative or positive edge  
(configurable). When configured as an output, pins can function as either push-pull or open-drain. Five  
GPIOs have high drive capabilities (marked in bold in Section 4).  
The SSIs are synchronous serial interfaces that are compatible with SPI, MICROWIRE, and Texas  
Instruments synchronous serial interfaces. The SSIs support both SPI master and slave up to 4 MHz.  
The UART implements a universal asynchronous receiver/transmitter function. It supports flexible baud-  
rate generation up to a maximum of 3 Mbps .  
Timer 0 is a general-purpose timer module (GPTM), which provides two 16-bit timers. The GPTM can be  
configured to operate as a single 32-bit timer, dual 16-bit timers or as a PWM module.  
Timer 1, Timer 2, and Timer 3 are also GPTMs. Each of these timers is functionally equivalent to Timer 0.  
In addition to these four timers, the RF core has its own timer to handle timing for RF protocols; the RF  
timer can be synchronized to the RTC.  
The I2C interface is used to communicate with devices compatible with the I2C standard. The I2C interface  
is capable of 100-kHz and 400-kHz operation, and can serve as both I2C master and I2C slave.  
The TRNG module provides a true, nondeterministic noise source for the purpose of generating keys,  
initialization vectors (IVs), and other random number requirements. The TRNG is built on 24 ring  
oscillators that create unpredictable output to feed a complex nonlinear combinatorial circuit.  
The watchdog timer is used to regain control if the system fails due to a software error after an external  
device fails to respond as expected. The watchdog timer can generate an interrupt or a reset when a  
predefined time-out value is reached.  
32  
Detailed Description  
Copyright © 2015–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
The device includes a direct memory access (µDMA) controller. The µDMA controller provides a way to  
offload data transfer tasks from the CM3 CPU, allowing for more efficient use of the processor and the  
available bus bandwidth. The µDMA controller can perform transfer between memory and peripherals. The  
µDMA controller has dedicated channels for each supported on-chip module and can be programmed to  
automatically perform transfers between peripherals and memory as the peripheral is ready to transfer  
more data. Some features of the µDMA controller include the following (this is not an exhaustive list):  
Highly flexible and configurable channel operation of up to 32 channels  
Transfer modes:  
Memory-to-memory  
Memory-to-peripheral  
Peripheral-to-memory  
Peripheral-to-peripheral  
Data sizes of 8, 16, and 32 bits  
The AON domain contains circuitry that is always enabled, except for in Shutdown (where the digital  
supply is off). This circuitry includes the following:  
The RTC can be used to wake the device from any state where it is active. The RTC contains three  
compare and one capture registers. With software support, the RTC can be used for clock and  
calendar operation. The RTC is clocked from the 32-kHz RC oscillator or crystal. The RTC can also be  
compensated to tick at the correct frequency even when the internal 32-kHz RC oscillator is used  
instead of a crystal.  
The battery monitor and temperature sensor are accessible by software and give a battery status  
indication as well as a coarse temperature measure.  
6.11 Voltage Supply Domains  
The CC2620 device can interface to two or three different voltage domains depending on the package  
type. On-chip level converters ensure correct operation as long as the signal voltage on each input/output  
pin is set with respect to the corresponding supply pin (VDDS, VDDS2 or VDDS3). lists the pin-to-VDDS  
mapping.  
Table 6-3. Pin Function to VDDS Mapping Table  
Package  
VQFN 7 × 7 (RGZ)  
VQFN 5 × 5 (RHB)  
VQFN 4 × 4 (RSM)  
DIO 23–30  
Reset_N  
DIO 7–14  
Reset_N  
DIO 5–9  
Reset_N  
VDDS(1)  
VDDS2  
VDDS3  
DIO 0–6  
JTAG  
DIO 0–4  
JTAG  
DIO 0–11  
DIO 12–22  
JTAG  
N/A  
N/A  
(1) VDDS_DCDC must be connected to VDDS on the PCB.  
6.12 System Architecture  
Depending on the product configuration, CC26xx can function either as a Wireless Network Processor  
(WNP—an IC running the wireless protocol stack, with the application running on a separate MCU), or as  
a System-on-Chip (SoC), with the application and protocol stack running on the ARM CM3 core inside the  
device.  
In the first case, the external host MCU communicates with the device using SPI or UART. In the second  
case, the application must be written according to the application framework supplied with the wireless  
protocol stack.  
Copyright © 2015–2016, Texas Instruments Incorporated  
Detailed Description  
33  
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
7 Application, Implementation, and Layout  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI's customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
7.1 Application Information  
Very few external components are required for the operation of the CC2620 device. This section provides  
some general information about the various configuration options when using the CC2620 in an  
application, and then shows two examples of application circuits with schematics and layout. This is only a  
small selection of the many application circuit examples available as complete reference designs from the  
product folder on www.ti.com.  
Figure 7-1 shows the various RF front-end configuration options. The RF front end can be used in  
differential- or single-ended configurations with the options of having internal or external biasing. These  
options allow for various trade-offs between cost, board space, and RF performance. Differential operation  
with external bias gives the best performance while single-ended operation with internal bias gives the  
least amount of external components and the lowest power consumption. Reference designs exist for  
each of these options.  
Red = Not necessary if internal bias is used  
6.8 pF  
!ntenna  
(50 hꢀm)  
Pin 3 (RXTX)  
2.4 nH  
1 pF  
To VDDR  
pins  
Pin 2 (RF N)  
Pin 1 (RF P)  
2 nH  
1 pF  
2 nH  
6.2œ6.8 nH  
2.4œ2.7 nH  
10µF  
12 pC  
Optional  
inductor.  
Only  
needed for  
DCDC  
Differential  
operation  
1 pF  
10µH  
operation  
!ntenna  
(50 hꢀm)  
Red = Not necessary if internal bias is used  
CC26xx  
Pin 2 (RF N)  
DCDC_SW  
Pin 3/4 (RXTX)  
Pin 2 (RF N)  
Pin 1 (RF P)  
15 nH  
(GND exposed die  
attached pad)  
Pin 1 (RF P)  
2 nH  
VDDS_DCDC  
input  
decoupling  
10µFœ22µF  
Single ended  
operation  
12 pC  
1.2 pF  
1.2 pF  
!ntenna  
(50 hꢀm)  
Red = Not necessary if internal bias is used  
Pin 3 (RXTX)  
15 nH  
24MHz  
XTAL  
2 nH  
Pin 2 (RF N)  
(Load caps  
on chip)  
12 pC  
1.2 pF  
1.2 pF  
Single ended  
operation with 2  
antennas  
!ntenna  
(50 hꢀm)  
15 nH  
2 nH  
Pin 1 (RF P)  
12 pC  
1.2 pF  
1.2 pF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 7-1. CC2620 Application Circuit  
34  
Application, Implementation, and Layout  
Copyright © 2015–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2620  
 
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
Figure 7-2 shows the various supply voltage configuration options. Not all power supply decoupling  
capacitors or digital I/Os are shown. Exact pin positions will vary between the different package options.  
For a detailed overview of power supply decoupling and wiring, see the TI reference designs and the  
CC26xx technical reference manual (8.3).  
Internal DC-DC Regulator  
Internal LDO Regulator  
External Regulator  
To All VDDR Pins  
To All VDDR Pins  
1.7 Vœ1.95 V to All VDDR- and VDDS Pins Except VDDS_DCDC  
9xt.  
wegulator  
10 F  
10 F  
2.2 F  
VDDS  
VDDS  
VDDS  
VDDS  
10 H  
CC26xx  
CC26xx  
CC26xx  
DCDC_SW Pin  
Pin 3/4 (RXTX)  
Pin 2 (RF N)  
Pin 1 (RF P)  
NC  
Pin 3/4 (RXTX)  
Pin 2 (RF N)  
Pin 1 (RF P)  
DCDC_SW Pin  
Pin 3/4 (RXTX)  
Pin 2 (RF N)  
Pin 1 (RF P)  
(GND Exposed Die  
Attached Pad)  
(GND Exposed Die  
Attached Pad)  
(GND Exposed Die  
Attached Pad)  
VDDS_DCDC Pin  
VDDS_DCDC Pin  
VDDS_DCDC Pin  
VDDS_DCDC  
Input Decoupling  
10 Fœ22 F  
VDDS_DCDC  
Input Decoupling  
10 Fœ22 F  
24-MHz XTAL  
(Load Caps  
on Chip)  
24-MHz XTAL  
(Load Caps on Chip)  
24-MHz XTAL  
(Load Caps on Chip)  
1.8 Vœ3.8 V  
1.8 Vœ3.8 V  
to All VDDS Pins  
Supply Voltage  
To All VDDS Pins  
Copyright © 2016, Texas Instruments Incorporated  
Figure 7-2. Supply Voltage Configurations  
Copyright © 2015–2016, Texas Instruments Incorporated  
Application, Implementation, and Layout  
35  
Submit Documentation Feedback  
Product Folder Links: CC2620  
 
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
7.2 4 × 4 External Single-ended (4XS) Application Circuit  
VDD_EB  
VDDR  
VDDS  
VDDS Decoupling Capacitors  
VDDR Decoupling Capacitors  
FL1  
L1  
Pin 11  
Pin 27  
Pin 19  
Pin 28  
Pin 32  
DCDC_SW  
2
1
1
2
BLM18HE152SN1  
10 µH  
C2  
C5  
10 µF  
C8  
C10  
C16  
100 nF  
C6  
C3  
100 nF  
C4  
C9  
DNM  
100 nF  
10 µF  
DNM  
100 nF  
100 nF  
Place L1 and  
C8 close to pin 18  
VDDS  
VDDR  
U1  
DIO_0  
27  
8
9
DIO_0  
DIO_1  
DIO_2  
DIO_3  
DIO_4  
DIO_5  
DIO_6  
DIO_7  
DIO_8  
DIO_9  
VDDS  
RF_N used for RX biasing.  
DIO_1  
DIO_2  
11  
19  
28  
32  
VDDS2  
VDDS_DCDC  
VDDR  
10  
15  
16  
22  
23  
24  
25  
26  
L21 may be removed at the  
cost of 1 dB degraded  
sensitivity  
DIO_3/JTAG_TDO  
DIO_4/JTAG_TDI  
DIO_5  
50-Ω  
Antenna  
VDDS  
VDDR  
DCDC_SW  
DIO_6  
18  
DCDC_SW  
DIO_7  
R1  
100 k  
DIO_8  
L21  
1 2  
4
DIO_9  
RX/TX  
RF_N  
RF_P  
C14  
nRESET  
2
1
L12  
15 nH  
nRESET  
RF_P  
1
2
21  
14  
13  
RESET_N  
JTAG_TCK  
JTAG_TMS  
JTAG_TCKC  
JTAG_TMSC  
2 nH  
C12  
C13  
12 pF  
X24M_P  
X24M_N  
31  
30  
C20  
X24M_P  
X24M_N  
12  
1.2 pF  
1.2 pF  
100 nF  
DCOUPL  
6
5
3
7
X32K_Q2  
X32K_Q1  
VSS  
VSS  
VSS  
VSS  
VSS  
EGP  
C19  
1 µF  
17  
20  
29  
33  
CC26XX_4X4  
Y2  
24 MHz  
Y1  
32.768 kHz  
1
3
C22  
DNM  
C23  
DNM  
C17  
12 pF  
C18  
2
4
12 pF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 7-3. 4 × 4 External Single-ended (4XS) Application Circuit  
36  
Application, Implementation, and Layout  
Copyright © 2015–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC2620  
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
7.2.1 Layout  
Figure 7-4. 4 × 4 External Single-ended (4XS) Layout  
版权 © 2015–2016, Texas Instruments Incorporated  
Application, Implementation, and Layout  
37  
提交文档反馈意见  
产品主页链接: CC2620  
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
8 器件和文档支持  
8.1 器件命名规则  
为了标明产品开发周期的各个产品阶段,TI 为所有预生产部件号或日期代码标记分配了前缀。每个器件都具  
有以下三个前缀/标识中的一个:XP 或无(无前缀)(例如 CC2620 正在批量生产,因此未分配前缀/标  
识)。  
器件开发进化流程:  
X
试验器件不一定代表最终器件的电气规范标准并且不可使用生产组装流程。  
原型器件不一定是最终芯片模型并且不一定符合最终电气标准规范。  
完全合格的芯片模型的生产版本。  
P
生产器件已进行完全特性化,并且器件的质量和可靠性已经完全论证。TI 的标准保修证书适用。  
预测显示原型器件(X 或者 P)的故障率大于标准生产器件。由于它们的预计的最终使用故障率仍未定义,  
德州仪器 (TI) 建议不要将这些器件用于任何生产系统。只有合格的生产器件将被使用。  
TI 器件的命名规则也包括一个带有器件系列名称的后缀。这个后缀表示封装类型(例如,RSM)。  
要获得 CC2620 器件(采用 RSM RGZ 封装类型)的订购部件号,请参见本文档的封装选项附录(访问  
TI 网站 www.ti.com),或者联系您的 TI 销售代表。  
yyy (R/T)  
CC26 xx F128  
PREFIX  
X = Experimental device  
Blank = Qualified device  
R = Large Reel  
T = Small Reel  
DEVICE FAMILY  
SimpleLink™ Multistandard  
Wireless MCU  
DEVICE  
PACKAGE DESIGNATOR  
RGZ = 48-pin VQFN (Very Thin Quad Flatpack No-Lead)  
RHB = 32-pin VQFN (Very Thin Quad Flatpack No-Lead)  
RSM = 32-pin VQFN (Very Thin Quad Flatpack No-Lead)  
20 = RF4CE  
30 = Zigbee  
40 = Bluetooth  
50 = Multi-Protocol  
ROM version 1  
Flash = 128KB  
8-1. 器件命名规则  
38  
器件和文档支持  
版权 © 2015–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: CC2620  
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
8.2 工具与软件  
德州仪器 (TI) 提供大量的开发工具,其中包括评估处理器性能、生成代码、开发算法工具、以及完全集成和  
调试软件及硬件模块的工具。  
以下产品支持开发 CC2620 器件 应用的开发提供支持:  
软件工具:  
SmartRF Studio 7:  
SmartRF Studio 是一款 PC 应用程序,可帮助无线电系统设计人员评估早期设计过程的 RF-IC。  
测试无线数据包收发功能,连续波收发功能  
将相关数据写入支持的评估板或调试器,评估定制板上的 RF 性能  
可以不搭配任何硬件使用,但此时只能生成、编辑并导出无线配置设置  
可与德州仪器 (TI) CCxxxx 系列 RF-IC 的多款开发套件搭配使用  
Sensor Controller Studio:  
Sensor Controller Studio CC26xx 传感器控制器提供开发环境。此传感器控制器是 CC26xx 系列中的一  
款专用功率优化型 CPU,可独立于系统 CPU 状态自主执行简单的后台任务。  
允许使用 C 语言这类编程语言实现传感器控制器任务算法  
输出传感器控制器接口驱动程序,其中整合了生成的传感器控制器机械代码和相关定义  
通过使用集成传感器控制器任务测试和调试功能实现快速开发这有助于实现有效的传感器数据和算法验  
证可视化。  
IDE 和编译器:  
Code Composer Studio:  
带有项目管理工具和编辑器的集成开发环境  
Code Composer Studio (CCS) 7.0 及更高版本内置对 CC26xx 系列器件的支持功能  
优先支持的 XDS 调试器:XDS100v3XDS110 XDS200  
TI-RTOS 高度集成,支持 TI-RTOS 对象视图  
IAR ARM Embedded Workbench  
带有项目管理工具和编辑器的集成开发环境  
IAR EWARM 7.80.1 及更高版本内置对 CC26xx 系列器件的支持功能  
广泛的调试器支持,支持 XDS100v3XDS200IAR I-Jet Segger J-Link  
带有项目管理工具和编辑器的集成开发环境  
适用于 TI-RTOS RTOS 插件  
要获取有关 CC2620 平台的开发支持工具的完整列表,请访问德州仪器 (TI) 网站 www.ti.com。有关定价和  
购买信息,请联系最近的 TI 销售办事处或授权分销商。  
版权 © 2015–2016, Texas Instruments Incorporated  
器件和文档支持  
39  
提交文档反馈意见  
产品主页链接: CC2620  
CC2620  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
www.ti.com.cn  
8.3 文档支持  
如需接收文档更新通知,请访问 ti.com 网站上的器件产品文件夹 (CC2620)。点击右上角的提醒我 (Alert  
me) 注册后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订  
历史记录。  
下面列出了描述 CC2620 器件、相关外设和其他技术材料的最新文档。  
技术参考手册  
CC13xxCC26xx SimpleLink™ 无线 MCU 技术参考手册》  
空白  
勘误  
CC2620 SimpleLink™ 无线 MCU 勘误表》  
8.4 德州仪器 (TI) 低功耗射频网站  
德州仪器 (TI) 的低功耗射频网站提供所有最新产品、应用和设计笔记、FAQ 部分、新闻资讯以及活动更  
新。请访问 www.ti.com.cn/lprf。  
8.5 低功耗射频电子新闻简报  
通过低功耗射频电子新闻简报,您能够了解到最新的产品、新闻稿、开发者相关新闻以及关于德州仪器 (TI)  
低功耗射频产品其它新闻和活动。低功耗射频电子新闻简报文章包含可获取更多在线信息的链接。  
访问:www.ti.com.cn/lprfnewsletter 立即注册  
8.6 社区资源  
下列链接提供到 TI 社区资源的连接。 链接的内容由各个分销商按照原样提供。 这些内容并不构成 TI 技术  
规范和标准且不一定反映 TI 的观点;请见 TI 使用条款。  
TI E2E™ Online Community The TI engineer-to-engineer (E2E) community was created to foster  
collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge,  
explore ideas and help solve problems with fellow engineers.  
TI 嵌入式处理器维基网页 德州仪器 (TI) 嵌入式处理器维基网站。此网站的建立是为了帮助开发人员从德州  
仪器 (TI) 的嵌入式处理器入门并且也为了促进与这些器件相关的硬件和软件的总体知识的创新  
和增长。  
低功耗射频在线社区 TI E2E 支持社区的无线连接部门  
论坛、视频和博客  
射频设计帮助  
E2E 交流互动  
请点击此处加入我们。  
低功耗射频开发者网络 德州仪器 (TI) 建立了一个大型低功耗射频开发合作伙伴网络,帮助客户加快应用开  
发。此网络中包括推荐的公司、射频顾问和独立设计工作室,他们可提供一系列硬件模块产品  
和设计服务,其中包括:  
射频电路、低功耗射频和ZigBee 设计服务  
低功耗射频和 ZigBee 模块解决方案以及开发工具  
射频认证服务和射频电路制造  
如果需要有关模块、工程服务或开发工具的帮助:  
请搜索低功耗射频开发者网络查找适合的合作伙伴。www.ti.com.cn/lprfnetwork  
40  
器件和文档支持  
版权 © 2015–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: CC2620  
CC2620  
www.ti.com.cn  
ZHCSEU2C FEBRUARY 2015REVISED JULY 2016  
8.7 其他信息  
德州仪器 (TI) 为汽车、工业和消费类应用中所使用的专有应用和标准无线 应用 提供各种经济实用的低功耗  
射频 解决方案。其中包括适用于 1GHz 以下频段和 2.4GHz 频段的射频收发器、射频发送器、射频前端和  
片上系统以及各种软件解决方案。  
此外,德州仪器 (TI) 还提供广泛的相关支持,例如开发工具、技术文档、参考设计、应用专业技术、客户支  
持、第三方服务以及大学计划。  
低功耗射频 E2E 在线社区设有技术支持论坛并提供视频和博客,您有机会在此与全球同领域工程师交流互  
动。  
凭借丰富的供选产品解决方案、可实现的最终应用以及广泛的技术支持,德州仪器 (TI) 能够为您提供最全面  
的低功耗射频产品组合。  
8.8 商标  
SimpleLink, RemoTI, SmartRF, Code Composer Studio, LaunchPad, E2E are trademarks of Texas  
Instruments.  
ARM7 is a trademark of ARM Limited (or its subsidiaries).  
ARM, Cortex, ARM Thumb are registered trademarks of ARM Limited (or its subsidiaries).  
蓝牙 is a registered trademark of Bluetooth SIG, Inc.  
CoreMark is a registered trademark of Embedded Microprocessor Benchmark Consortium.  
IAR Embedded Workbench is a registered trademark of IAR Systems AB.  
IEEE Std 1241 is a trademark of Institute of Electrical and Electronics Engineers, Incorporated.  
ZigBee is a registered trademark of ZigBee Alliance, Inc.  
All other trademarks are the property of their respective owners.  
8.9 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
8.10 出口管制提示  
接收方同意:如果美国或其他适用法律限制或禁止将通过非披露义务的披露方获得的任何产品或技术数据  
(其中包括软件)(见美国、欧盟和其他出口管理条例之定义)、或者其他适用国家条例限制的任何受管制  
产品或此项技术的任何直接产品出口或再出口至任何目的地,那么在没有事先获得美国商务部和其他相关政  
府机构授权的情况下,接收方不得在知情的情况下,以直接或间接的方式将其出口。  
8.11 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
9 机械、封装和可订购信息  
9.1 封装信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知  
且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015–2016, Texas Instruments Incorporated  
机械、封装和可订购信息  
41  
提交文档反馈意见  
产品主页链接: CC2620  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CC2620F128RGZR  
CC2620F128RGZT  
CC2620F128RSMR  
CC2620F128RSMT  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
48  
48  
32  
32  
2500 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
250 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
250 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
CC2620  
F128  
ACTIVE  
ACTIVE  
ACTIVE  
RGZ  
CC2620  
F128  
RSM  
CC2620  
F128  
RSM  
CC2620  
F128  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CC2620F128RGZR  
CC2620F128RGZR  
CC2620F128RGZT  
CC2620F128RGZT  
CC2620F128RSMR  
CC2620F128RSMR  
CC2620F128RSMT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
RSM  
RSM  
RSM  
48  
48  
48  
48  
32  
32  
32  
2500  
2500  
250  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
180.0  
16.4  
16.4  
16.4  
16.4  
12.4  
12.4  
12.4  
7.3  
7.3  
7.3  
7.3  
1.1  
1.1  
12.0  
12.0  
12.0  
12.0  
8.0  
16.0  
16.0  
16.0  
16.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
7.3  
7.3  
1.1  
250  
7.3  
7.3  
1.1  
3000  
3000  
250  
4.25  
4.25  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
1.15  
8.0  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CC2620F128RGZR  
CC2620F128RGZR  
CC2620F128RGZT  
CC2620F128RGZT  
CC2620F128RSMR  
CC2620F128RSMR  
CC2620F128RSMT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
RSM  
RSM  
RSM  
48  
48  
48  
48  
32  
32  
32  
2500  
2500  
250  
367.0  
367.0  
210.0  
210.0  
367.0  
346.0  
210.0  
367.0  
367.0  
185.0  
185.0  
367.0  
346.0  
185.0  
38.0  
35.0  
35.0  
35.0  
35.0  
33.0  
35.0  
250  
3000  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
A
7.1  
6.9  
B
(0.1) TYP  
7.1  
6.9  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
PIN 1 INDEX AREA  
(0.45) TYP  
CHAMFERED LEAD  
CORNER LEAD OPTION  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 5.5  
5.15±0.1  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
SEE SIDE WALL  
DETAIL  
SYMM  
2X  
5.5  
1
36  
0.30  
0.18  
PIN1 ID  
(OPTIONAL)  
48X  
48  
37  
SYMM  
0.1  
C A B  
C
0.5  
0.3  
48X  
0.05  
SEE LEAD OPTION  
4219044/D 02/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
5.15)  
SYMM  
(
48X (0.6)  
37  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(1.26)  
2X  
(1.065)  
(R0.05)  
TYP  
25  
12  
21X (Ø0.2) VIA  
TYP  
24  
13  
2X (1.065)  
2X (1.26)  
2X (5.5)  
LAND PATTERN EXAMPLE  
SCALE: 15X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219044/D 02/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
SYMM  
(
1.06)  
37  
48X (0.6)  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(0.63)  
2X  
(1.26)  
(R0.05)  
TYP  
25  
12  
24  
13  
2X  
(1.26)  
2X (0.63)  
2X (5.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
67% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219044/D 02/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
RSM 32  
4 x 4, 0.4 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224982/A  
www.ti.com  
PACKAGE OUTLINE  
RSM0032B  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
B
4.1  
3.9  
A
0.45  
0.25  
0.25  
0.15  
PIN 1 INDEX AREA  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
4.1  
3.9  
(0.1)  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.8 0.05  
2X 2.8  
(0.2) TYP  
4X (0.45)  
28X 0.4  
9
16  
SEE SIDE WALL  
DETAIL  
8
17  
EXPOSED  
THERMAL PAD  
2X  
SYMM  
33  
2.8  
24  
0.25  
32X  
1
SEE TERMINAL  
DETAIL  
0.15  
0.1  
C A B  
25  
32  
PIN 1 ID  
(OPTIONAL)  
0.05  
SYMM  
0.45  
0.25  
32X  
4219108/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.8)  
SYMM  
32  
25  
32X (0.55)  
1
32X (0.2)  
24  
(
0.2) TYP  
VIA  
(1.15)  
SYMM  
33  
(3.85)  
28X (0.4)  
17  
8
(R0.05)  
TYP  
9
16  
(1.15)  
(3.85)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219108/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSM0032B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.715)  
4X ( 1.23)  
(R0.05) TYP  
25  
32  
32X (0.55)  
1
24  
32X (0.2)  
(0.715)  
(3.85)  
33  
SYMM  
28X (0.4)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(3.85)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 33:  
77% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219108/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY