CC2545RGZT [TI]

2.4GHz 射频超值系列 SoC,具有 32kB 闪存、31 GPIO、I2C、SPI 和 UART | RGZ | 48 | -40 to 85;
CC2545RGZT
型号: CC2545RGZT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2.4GHz 射频超值系列 SoC,具有 32kB 闪存、31 GPIO、I2C、SPI 和 UART | RGZ | 48 | -40 to 85

射频 闪存
文件: 总32页 (文件大小:2707K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CC2545  
www.ti.com.cn  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
针对 2.4GHz 射频 (RF) 应用的片上系统  
1
特性  
微控制器  
具有代码预取功能的高性能和低功耗 8051  
微控制器内核  
射频 (RF) 部分  
单片 2.4GHz RF 收发器和微控制器 (MCU)  
32KB 闪存程序内存  
支持 250kbps500kbps1Mbps 2Mbps  
数据速率  
1KB SRAM  
支持硬件调试  
出色的链路预算,无需外部前端即可实现长距离  
通信  
扩展基带自动化,包括自动确认和地址解码  
高达 4dBm 的可编程输出功率  
外设  
出色的接收器灵敏度(2Mbps 时为 -  
90Bm256kbps 时为 -9dBm)  
可访问所有内存区域和外设的两个通道 DMA  
通用定时器(1 16 位,2 8 位)  
无线电定时器,40 位  
红外 (IR) 生成电路  
适用于符合世界范围内的射频标准的系  
统:ETSI EN 300 328 EN 300 440 2 类  
(欧洲),FCC CFR47 15 部分(美国),和  
ARIB STD-T66(日本)  
几个振荡器:  
32MHz 晶体振荡器 (XOSC)  
16MHz RC 振荡器 (RCOSC)  
32kHz XOSC  
精确的接收到的信号强度指示器 (RSSI) 功能  
布局  
极少的外部组件  
32MHz RCOSC  
适用于单层印刷电路板 (PCB) 应用的引脚引线  
具有捕捉功能的 32kHz 睡眠定时器  
提供参考设计  
高级加密标准 (AES) 安全协处理器  
48 引脚 7mm x 7mm 四方扁平无引线  
(QFN)31 个通用 I/O 引脚)封装  
通用异步收发器 (UART) / 串行外设接口 (SPI) /  
串行接口  
2
低功率  
31 个通用 I/O 引脚(3 x 20mA 驱动强度,剩  
余的引脚有 4mA 的驱动强度)  
激活模式 RX 最佳性能:20.8mA  
激活模式 TX (0dBm)26.3mA  
安全装置定时器  
功率模式 15µs 唤醒):235µA  
功率模式 2(睡眠定时器打开):0.9µA  
功率模式 3(外部中断):0.4µA  
宽电源电压范围(2V 3.6V)  
真随机数生成器  
模数转换器 (ADC) 和模拟比较器  
应用范围  
在所有功率模式下的完全 RAM 和寄存器保持  
私有的 2.4 GHz 系统  
人机接口器件(键盘、鼠标)  
消费类电子产品  
空白  
空白  
空白  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
版权 © 2012, Texas Instruments Incorporated  
English Data Sheet: SWRS106  
 
CC2545  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
www.ti.com.cn  
这些装置包含有限的内置 ESD 保护。  
存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。  
说明  
CC2545 是一款经优化的针对数据速率高达 2Mbps 且使用低物料清单成本制造的片上系统 (SoC) 解决方案。  
CC2545 将处于领先地位的 RF 收发器的出色性能与一个单周期 8051 兼容 CPU32KB 系统内可编程闪存存储  
器,高达 1KB RAM31 个通用 I/O 引脚与很多其它功能强大的特性组合在一起。 CC2545 有高效的功率模  
式(RAM 和寄存器保持电流低于 1μA),这使得它非常适合应用于要求超低功耗的低占空比系统。 运行模式间较  
短的转换时间进一步确保了低能耗。  
CC2545 CC2541/CC2543/CC2544 兼容。 它采用带有 SPI/UART/I2C 接口的 7mm x 7mm QFN48 封装。 供  
货时,CC2545 带有由德州仪器 (TI) 提供的完整参考设计。  
此器件针对无线消费类产品和人机接口器件 (HID) 应用。 CC2545 专为诸如无线键盘等的外设器件而设计。  
方框图请见7。  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Supply voltage VDD  
Voltage on any digital pin  
Input RF level  
TEST CONDITIONS  
MIN  
–0.3  
–0.3  
MAX  
UNIT  
V
All supply pins must have the same voltage  
3.9  
VDD+0.3 <= 3.9  
V
10  
dBm  
°C  
Storage temperature range  
–40  
125  
All pads, according to human-body model, JEDEC  
STD 22, method A114 (HBM)  
2000  
750  
V
V
ESD(2)  
According to charged-device model, JEDEC STD  
22, method C101 (CDM)  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) CAUTION: ESD sensitive device. Precaution should be used when handing the device in order to prevent permanent damage.  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
TEST CONDITIONS  
MIN  
–40  
2.0  
MAX  
85  
UNIT  
°C  
Operating ambient temperature range, TA  
Operating supply voltage VDD  
All supply pins must have same voltage  
3.6  
V
2
提交文档反馈意见  
版权 © 2012, Texas Instruments Incorporated  
CC2545  
www.ti.com.cn  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
ELECTRICAL CHARACTERISTICS  
Measured on Texas Instruments CC2545EM reference design with TA = 25°C and VDD = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
2 Mbps, GFSK, 320-kHz deviation  
MIN  
TYP  
MAX  
UNIT  
RX mode, no peripherals active, low MCU activity  
20.8  
26.3  
30.2  
3
mA  
mA  
mA  
mA  
mA  
TX mode, 0-dBm output power, no peripherals active, low MCU activity  
TX mode, 5-dBm output power, no peripherals active, low MCU activity  
Active mode, 16-MHz RCOSC, Low MCU activity  
Active mode, 32-MHz clock frequency, low MCU activity  
6
Power mode 0, CPU clock halted, all peripherals on, no clock division, 32-  
MHz crystal selected  
4.5  
3
mA  
mA  
I core– Core current  
consumption  
Power mode 0, CPU clock halted, all peripherals on, clock division at max  
(Limits max speed in peripherals except radio), 32-MHz crystal selected  
Power mode 1. Digital regulator ON; 16-MHz RCOSC and 32-MHz crystal  
oscillator OFF; 32.753-kHz RCOSC, POR, BOD, and sleep timer active;  
RAM and register retention  
235  
µA  
Power mode 2. Digital regulator OFF, 16 MHz RCOSC and 32 MHz  
crystal oscillator OFF; 32.753 kHz RCOSC, POR and sleep timer active;  
RAM and register retention  
0.9  
0.4  
µA  
µA  
Power mode 3. Digital regulator OFF, no clocks, POR active; RAM and  
register retention  
Timer 1 (16-bit). Timer running, 32-MHz XOSC used  
Radio timer(40 bit). Timer running, 32-MHz XOSC used  
Timer 3 (8-bit). Timer running, 32-MHz XOSC used  
Timer 4 (8-bit). Timer running, 32-MHz XOSC used  
Sleep timer. Including 32.753-kHz RCOSC  
90  
90  
60  
70  
0.6  
µA  
µA  
µA  
µA  
µA  
I peri– Peripheral  
current consumption  
(Adds to core  
current Icore for each  
peripheral unit  
activated)  
GENERAL CHARACTERISTICS  
Measured on Texas Instruments CC2545EM reference design with TA = 25°C and VDD = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
WAKE-UP AND TIMING  
Digital regulator on, 16-MHz RCOSC and 32-MHz crystal  
oscillator off. Start-up of 16-MHz RCOSC.  
Power mode 1 Active  
5
µs  
µs  
µs  
Digital regulator off, 16 MHz RCOSC and 32 MHz crystal  
oscillator off. Start-up of regulator and 16 MHz RCOSC.  
Power mode 2 or 3 Active  
130  
500  
Crystal ESR = 16 Ω. Initially running on 16-MHz RCOSC, with  
32-MHz XOSC OFF.  
Active TX or RX  
With 32-MHz XOSC initially ON.  
RCOSC, with 32MHz XOSC OFF.  
180  
130  
µs  
µs  
RX/TX turnaround  
RADIO PART  
RF frequency range  
Programmable in 1-MHz steps  
2379  
2496  
MHz  
2 Mbps, GFSK 320-kHz deviation  
2-Mbps, GFSK 500 kHz deviation  
1-Mbps, GFSK 250 kHz deviation  
1-Mbps, GFSK 160 kHz deviation  
500 kbps, MSK  
Data rates and modulation  
formats  
250 kbps, MSK  
250 kbps, GSK 160 kHz deviation  
版权 © 2012, Texas Instruments Incorporated  
提交文档反馈意见  
3
CC2545  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
www.ti.com.cn  
RF RECEIVE SECTION  
Measured on Texas Instruments CC2545EM reference design with TA = 25°C, VDD = 3 V, and fC = 2440 MHz, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
2 Mbps, GFSK, 320-kHz DEVIATION, 0.1% BER  
Receiver sensitivity  
–86  
–8  
dBm  
dBm  
dB  
Saturation  
Co-channel rejection  
Wanted signal at –67 dBm  
±2-MHz offset, wanted signal at –67 dBm  
–13  
–1  
In-band blocking rejection  
±4-MHz offset, wanted signal at –67 dBm  
>±6-MHz offset, wanted signal at –67 dBm  
34  
dB  
38  
1-MHz resolution. Wanted signal at –67 dBm, f < 2 GHz  
Two exception frequencies with poorer performance  
–32  
–38  
–12  
1-MHz resolution. Wanted signal at –67 dBm, 2 GHz > f < 3 GHz  
Two exception frequencies with poorer performance  
Out-of-band blocking rejection  
dBm  
1-MHz resolution. Wanted signal at –67 dBm, f > 3GHz  
Two exception frequencies with poorer performance  
Wanted signal at –64 dBm, 1st interferer is CW, 2nd interferer is GFSK-  
modulated signal. Offsets of interferers are:  
6 and 12 MHz  
Intermodulation  
–43  
dBm  
8 and 16 MHz  
10 and 20 MHz  
Including both initial tolerance and drift. Sensitivity better than –70 dBm.  
250 byte payload.  
Frequency error tolerance(1)  
Symbol rate error tolerance(2)  
–300  
–120  
300 kHz  
120 ppm  
Sensitivity better than -70 dBm. 250 byte payload.  
2 Mbps, GFSK, 500 kHz DEVIATION, 0.1% BER  
Receiver sensitivity  
–90  
–3  
dBm  
dBm  
dB  
Saturation  
Co-channel rejection  
Wanted signal at –67 dBm  
–10  
–3  
±2 MHz offset, wanted signal at –67 dBm  
±4 MHz offset, wanted signal at –67 dBm  
>±6 MHz offset, wanted signal at –67 dBm  
dB  
In-band blocking rejection  
36  
dB  
44  
dB  
Including both initial tolerance and drift. Sensitivity better than –70 dBm.  
250 byte payload.  
Frequency error tolerance(1)  
Symbol rate error tolerance(2)  
–300  
–120  
300 kHz  
120 ppm  
Sensitivity better than -70 dBm. 250 byte payload.  
1 Mbps, GFSK, 250 kHz DEVIATION, 0.1% BER  
Receiver sensitivity  
–94  
6
dBm  
dBm  
dB  
Saturation  
Co-channel rejection  
Wanted signal at –67 dBm  
–7  
0
±1 MHz offset, wanted signal –67 dBm  
±2 MHz offset, wanted signal –67 dBm  
±3 MHz offset, wanted signal –67 dBm  
>±5 MHz offset, wanted signal –67 dBm  
30  
34  
38  
In-band blocking rejection  
dB  
Including both initial tolerance and drift. Sensitivity better than –70 dBm.  
250 byte payload.  
Frequency error tolerance  
Symbol rate error tolerance  
–250  
-80  
250 kHz  
80 ppm  
Sensitivity better than –70 dBm. 250 byte payload.  
(1) Difference between center frequency of the received RF signal and local oscillator frequency  
(2) Difference between incoming symbol rate and the internally generated symbol rate  
4
提交文档反馈意见  
版权 © 2012, Texas Instruments Incorporated  
CC2545  
www.ti.com.cn  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
RF RECEIVE SECTION (接下页)  
Measured on Texas Instruments CC2545EM reference design with TA = 25°C, VDD = 3 V, and fC = 2440 MHz, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
1 Mbps, GFSK, 160 kHz DEVIATION, 0.1% BER  
Receiver sensitivity  
–91  
6
dBm  
dBm  
dB  
Saturation  
Co-channel rejection  
Wanted signal at –67 dBm  
±1 MHz offset, wanted signal at –67 dBm  
–8  
2
±2 MHz offset, wanted signal at –67 dBm  
±3 MHz offset, wanted signal at –67 dBm  
>±5 MHz offset, wanted signal at –67 dBm  
Including both initial tolerance and drift, Sensitivity better than –67 dBm  
Maximum packet length  
28  
33  
36  
In band blocking rejection  
dB  
Frequency error tolerance  
Symbol rate error tolerance  
500 kbps, MSK, 0.1% BER  
Receiver sensitivity  
–250  
–80  
250 kHz  
80 ppm  
–98  
6
dBm  
dBm  
dB  
Saturation  
Co-channel rejection  
Wanted signal at –67 dBm  
–5  
21  
32  
33  
±1 MHz offset, wanted signal at –67 dBm  
±2 MHz offset, wanted signal at –67 dBm  
>±2 MHz offset, wanted signal at –67 dBm  
Including both initial tolerance and drift, Sensitivity better than –67dBm  
Maximum packet length  
In band blocking rejection  
dB  
Frequency error tolerance  
Symbol rate error tolerance  
–150  
–60  
150 kHz  
60 ppm  
250 kbps, GFSK, 160 kHz DEVIATION , 0.1% BER  
Receiver sensitivity  
Saturation  
–98  
6
dBm  
dBm  
dB  
Co-channel rejection  
Wanted signal at –67 dBm  
–2  
22  
32  
32  
±1 MHz offset, wanted signal at –67 dBm  
±2 MHz offset, wanted signal at –67 dBm  
>±2 MHz offset, wanted signal at –67 dBm  
Including both initial tolerance and drift, Sensitivity better than –67 dBm  
Maximum packet length  
In-band blocking rejection  
dB  
Frequency error tolerance  
Symbol rate error tolerance  
250 kbps, MSK, 0.1% BER  
Receiver sensitivity  
–150  
–60  
150 kHz  
60 ppm  
–98  
6
dBm  
dBm  
dB  
Saturation  
Co-channel rejection  
Wanted signal at –67 dBm  
–5  
21  
32  
33  
±1 MHz offset, wanted signal at –67 dBm  
±2 MHz offset, wanted signal at –67 dBm  
>2 MHz offset, wanted signal at –67 dBm  
Including both initial tolerance and drift, Sensitivity better than –67 dBm  
Maximum packet length  
In-band blocking rejection  
dB  
Frequency error tolerance  
Symbol rate error tolerance  
ALL RATES/FORMATS  
–150  
–60  
150 kHz  
60 ppm  
Spurious emission in RX.  
Conducted measurement  
f < 1 GHz  
f > 1 GHz  
–67  
–60  
dBm  
dBm  
Spurious emission in RX.  
Conducted measurement  
版权 © 2012, Texas Instruments Incorporated  
提交文档反馈意见  
5
CC2545  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
www.ti.com.cn  
RF TRANSMIT SECTION  
Measured on Texas Instruments CC2545EM reference design with TA = 25°C, VDD = 3.0 V, and fC = 2440 MHz, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Delivered to a single-ended 50-Ω load through a balun using  
maximum recommended output power setting.  
Output power, maximum setting  
5
dBm  
Delivered to a single-ended 50-Ω load through a balun using  
minimum recommended output power setting.  
Output power, minimum setting  
–20  
dBm  
Programmable output power range Delivered to a single-ended 50-Ω load through a balun.  
25  
dB  
f < 1 GHz  
–46  
–44  
dBm  
dBm  
Spurious emission in TX.  
Conducted measurement  
f > 1 GHz  
Suitable for Systems Targeting Compliance With Worldwide Radio Frequency Regulations: ETSI EN  
300 328 and EN 300 440 Class 2 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan)  
Use a simple LC filter (1.6nH and 1.8pF in parallel to ground) to pass ETSI conducted requirements below 1GHz  
in restricted bands. For radiated measurements low antenna gain for these frequencies (depending on antenna  
design) can achieve the same attenuation of these low frequency components (see EM reference design).  
32-MHz CRYSTAL OSCILLATOR  
Measured on Texas Instruments CC2545EM reference design with TA = 25°C, VDD = 3.0 V, unless otherwise noted.  
PARAMETER  
Crystal frequency  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
32  
MHz  
250 kbps and 500 kbps data rates  
1 Mbps data rate  
2 Mbps data rate  
–30  
–40  
–60  
30  
40  
60  
Crystal frequency accuracy  
requirement  
ppm  
Equivalent series resistance  
Crystal shunt capacitance  
Crystal load capacitance  
Start-up time  
6
1
60  
7
Ω
pF  
pF  
ms  
10  
16  
0.25  
The crystal oscillator must be in power down for a guard time  
before it is used again. This requirement is valid for all modes of  
operation. The need for power-down guard time can vary with  
crystal type and load.  
Power-down guard time  
3
ms  
32.768-kHz CRYSTAL OSCILLATOR  
Measured on Texas Instruments CC2545EM reference design with TA = 25°C, VDD = 3.0 V, unless otherwise noted.  
PARAMETER  
Crystal frequency  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
32.768  
kHz  
Crystal frequency accuracy  
requirement(1)  
-100  
+100  
ppm  
Equivalent series resistance  
Crystal shunt capacitance  
Crystal load capacitance  
Start-up time  
40  
0.9  
12  
130  
2
Ω
pF  
pF  
s
16  
0.4  
(1) Crystal frequency accuracy requirement is highly dependent on application. Higher accuracy enables more accurate duty-cycling which  
in turn will reduce current consumption. The chip can handle much less accurate crystals.  
6
提交文档反馈意见  
版权 © 2012, Texas Instruments Incorporated  
CC2545  
www.ti.com.cn  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
32-kHz RC OSCILLATOR  
Measured on Texas Instruments CC2545EM reference design with TA = 25°C, VDD = 3.0 V, unless otherwise noted.  
PARAMETER  
Calibrated frequency  
TEST CONDITIONS  
MIN  
TYP  
32.753  
±0.2%  
0.4  
MAX  
UNIT  
kHz  
Frequency accuracy after calibration  
Temperature coefficient  
Supply-voltage coefficient  
Calibration time  
%/ºC  
%/V  
ms  
3
2
16-MHz RC OSCILLATOR  
Measured on Texas Instruments CC2545EM reference design with TA = 25°C, VDD = 3.0 V, unless otherwise noted.  
PARAMETER  
Calibrated frequency  
TEST CONDITIONS  
MIN  
TYP  
16  
MAX  
UNIT  
MHz  
Uncalibrated frequency accuracy  
Frequency accuracy after calibration  
Start-up time  
±18%  
±0.6%  
10  
µs  
µs  
Initial calibration time  
50  
RSSI CHARACTERISTICS  
Measured on Texas Instruments CC2545EM reference design with TA = 25°C, VDD = 3 V, unless otherwise noted.  
2Mbps, GFSK, 320-kHz Deviation, 0.1% BER and 2 Mbps, GFSK, 500-kHz Deviation, 0.1% BER  
Reduced gain by AC algorithm  
High gain by AGC algorithm  
Reduced gain by AGC algorithm  
High gain by AGC algorithm  
64  
64  
79  
99  
±3  
1
RSSI range(1)  
RSSI offset(1)  
dB  
dBm  
Absolute uncalibrated accuracy(1)  
Step size (LSB value)  
All Other Rates/Formats  
RSSI range(1)  
dB  
dB  
64  
99  
±3  
1
dB  
dBm  
dB  
RSSI offset(1)  
Absolute uncalibrated accuracy  
Step size (LSB value)  
dB  
(1) Assuming CC2545 EM reference design. Other RF designs give an offset from the reported value.  
FREQUENCY SYNTHESIZER CHARACTERISTICS  
Measured on Texas Instruments CC2545EM reference design with TA = 25°C, VDD = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
At ±1 MHz from carrier  
MIN  
TYP  
–112  
–119  
–122  
MAX  
UNIT  
Phase noise, unmodulated carrier At ±3 MHz from carrier  
At ±5 MHz from carrier  
dBc/Hz  
版权 © 2012, Texas Instruments Incorporated  
提交文档反馈意见  
7
CC2545  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
www.ti.com.cn  
ANALOG TEMPERATURE SENSOR  
Measured on Texas Instruments CC2545EM reference design with TA = 25°C, VDD = 3.0 V unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1480  
4.5  
1
MAX  
UNIT  
12-bit  
/ 0.1ºC  
/ 0.1V  
ºC  
Output  
Temperature coefficient  
Voltage coefficient  
Measured using integrated ADC, internal band-gap  
voltage reference, and maximum resolution  
Initial accuracy without calibration  
Accuracy using 1-point calibration  
Current consumption when enabled  
±10  
±5  
ºC  
0.5  
mA  
COMPARATOR CHARACTERISTICS  
TA = 25°C, VDD = 3 V. All measurement results are obtained using the CC2545 reference designs, post-calibration.  
PARAMETER  
Common-mode maximum voltage  
Common-mode minimum voltage  
Input offset voltage  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
VDD  
–0.3  
1
V
mV  
µV/°C  
mV/V  
nA  
Offset vs temperature  
Offset vs operating voltage  
Supply current  
16  
4
230  
0.15  
Hysteresis  
mV  
8
提交文档反馈意见  
版权 © 2012, Texas Instruments Incorporated  
 
CC2545  
www.ti.com.cn  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
ADC CHARACTERISTICS  
TA = 25°C and VDD = 3 V  
PARAMETER  
TEST CONDITIONS  
VDD is voltage on AVDD5 pin  
VDD is voltage on AVDD5 pin  
MIN  
0
TYP  
MAX  
VDD  
VDD  
VDD  
UNIT  
V
Input voltage  
External reference voltage  
0
V
External reference voltage differential VDD is voltage on AVDD5 pin  
0
V
Input resistance, signal  
Full-scale signal(1)  
Simulated using 4-MHz clock speed  
Peak-to-peak, defines 0 dBFS  
197  
2.97  
5.7  
kΩ  
V
Single-ended input, 7-bit setting  
Single-ended input, 9-bit setting  
7.5  
Single-ended input, 10-bit setting  
Single-ended input, 12-bit setting  
Differential input, 7-bit setting  
9.3  
10.3  
6.5  
ENOB(1)  
Effective number of bits  
bits  
Differential input, 9-bit setting  
8.3  
Differential input, 10-bit setting  
10  
Differential input, 12-bit setting  
11.5  
9.7  
10-bit setting, clocked by RCOSC  
12-bit setting, clocked by RCOSC  
7-bit setting, both single and differential  
Single ended input, 12-bit setting, –6 dBFS(1)  
Differential input, 12-bit setting, –6 dBFS(1)  
Single-ended input, 12-bit setting(1)  
Differential input, 12-bit setting(1)  
Single-ended input, 12-bit setting, –6 dBFS(1)  
Differential input, 12-bit setting, –6 dBFS(1)  
10.9  
0–20  
–75.2  
–86.6  
70.2  
79.3  
78.8  
88.9  
Useful power bandwidth  
Total harmonic distortion  
kHz  
dB  
THD  
Signal to nonharmonic ratio  
dB  
dB  
Differential input, 12-bit setting, 1-kHz sine  
(0 dBFS), limited by ADC resolution  
CMRR  
Common-mode rejection ratio  
Crosstalk  
>84  
>84  
Single ended input, 12-bit setting, 1-kHz sine  
(0 dBFS), limited by ADC resolution  
dB  
Offset  
Midscale  
–3  
0.68%  
0.05  
0.9  
mV  
Gain error  
12-bit setting, mean(1)  
12-bit setting, maximum(1)  
12-bit setting, mean(1)  
DNL  
INL  
Differential nonlinearity  
Integral nonlinearity  
LSB  
LSB  
4.6  
12-bit setting, maximum(1)  
12-bit setting, mean, clocked by RCOSC  
12-bit setting, max, clocked by RCOSC  
Single ended input, 7-bit setting(1)  
Single ended input, 9-bit setting(1)  
Single ended input, 10-bit setting(1)  
Single ended input, 12-bit setting(1)  
Differential input, 7-bit setting(1)  
Differential input, 9-bit setting(1)  
Differential input, 10-bit setting(1)  
Differential input, 12-bit setting(1)  
7-bit setting  
13.3  
10  
29  
35.4  
46.8  
57.5  
66.6  
40.7  
51.6  
61.8  
70.8  
20  
SINAD  
(–THD+N)  
Signal-to-noise-and-distortion  
dB  
9-bit setting  
36  
Conversion time  
μs  
10-bit setting  
68  
12-bit setting  
132  
(1) Measured with 300-Hz sine-wave input and VDD as reference.  
版权 © 2012, Texas Instruments Incorporated  
提交文档反馈意见  
9
CC2545  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
www.ti.com.cn  
ADC CHARACTERISTICS (接下页)  
TA = 25°C and VDD = 3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.2  
4
MAX  
UNIT  
mA  
Power consumption  
Internal reference VDD coefficient  
mV/V  
Internal reference temperature  
coefficient  
0.4  
mV/10°C  
V
Internal reference voltage  
1.15  
DC CHARACTERISTICS  
Measured on Texas Instruments CC2545EM reference design with TA = 25°C, VDD = 3.0 V, unless otherwise noted.(1)  
PARAMETER  
Logic-0 input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
0.5  
Logic-1 input voltage  
2.5  
–50  
–50  
V
Logic-0 input current  
50  
50  
nA  
nA  
kΩ  
V
Logic-1 input current  
I/O pin pullup and pulldown resistors  
Logic-0 output voltage 4-mA pins  
Logic-1 output voltage 4-mA pins  
Logic-0 output voltage 20-mA pins  
Logic-1 output voltage, 20-mA pins  
20  
Output load 4 mA  
Output load 4 mA  
0.5  
0.5  
2.4  
2.4  
V
Output load 20 mA  
Output load 20 mA  
V
V
(1) Note that only two of the three 20-mA pins can drive in the same direction at the same time, and toggle at the same time.  
CONTROL INPUT AC CHARACTERISTICS  
TA = –40°C to 85°C, VDD = 2 V to 3.6 V.  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
The undivided system clock is 32 MHz when crystal oscillator is used.  
The undivided system clock is 16 MHz when calibrated 16-MHz RC  
oscillator is used.  
System clock, fSYSCLK  
tSYSCLK = 1/ fSYSCLK  
16  
32  
MHz  
See item 1, 1. This is the shortest pulse that is recognized as a  
complete reset pin request. Note that shorter pulses may be  
recognized but do not lead to complete reset of all modules within the  
chip.  
RESET_N low duration  
Interrupt pulse duration  
1
µs  
ns  
See item 2, 1.This is the shortest pulse that is recognized as an  
interrupt request.  
20  
RESET_N  
1
2
Px.n  
T0299-01  
1. Control Input AC Characteristics  
10  
提交文档反馈意见  
版权 © 2012, Texas Instruments Incorporated  
 
CC2545  
www.ti.com.cn  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
SPI AC CHARACTERISTICS  
TA = –40°C to 85°C, VDD = 2 V to 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
250  
250  
TYP MAX UNIT  
Master, RX and TX  
Slave, RX and TX  
Master  
t1  
SCK period  
ns  
SCK duty cycle  
50%  
Master  
63  
63  
63  
63  
SSN low to SCK, 2  
and 3  
t2  
t3  
ns  
Slave  
Master  
SCK to SSN high  
ns  
Slave  
t4  
t5  
t6  
t7  
MOSI early out  
MOSI late out  
MISO setup  
Master, load = 10 pF  
Master, load = 10 pF  
Master  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
90  
10  
MISO hold  
Master  
SCK duty cycle  
MOSI setup  
Slave  
50%  
t10  
t11  
t8  
Slave  
35  
10  
MOSI hold  
Slave  
MISO early out  
MISO late out  
Slave, load = 10 pF  
Slave, load = 10 pF  
Master, TX only  
Master, RX and TX  
Slave, RX only  
Slave, RX and TX  
0
95  
8
t9  
4
Operating frequency  
MHz  
8
4
SCK  
t2  
t3  
SSN  
t4  
t5  
MOSI  
D0  
X
D1  
t6  
t7  
MISO  
X
D0  
X
T0478-01  
2. SPI Master AC Characteristics  
版权 © 2012, Texas Instruments Incorporated  
提交文档反馈意见  
11  
 
CC2545  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
www.ti.com.cn  
SCK  
t2  
t3  
SSN  
t8  
t9  
MISO  
D0  
X
D1  
t10  
t11  
MOSI  
X
D0  
X
T0479-01  
3. SPI Slave AC Characteristics  
DEBUG INTERFACE AC CHARACTERISTICS  
TA = –40°C to 85°C, VDD = 2 V to 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
12  
UNIT  
MHz  
ns  
fclk_dbg  
Debug clock frequency (see 4)  
Allowed high pulse on clock (see 4)  
Allowed low pulse on clock (see 4)  
t1  
t2  
35  
35  
ns  
EXT_RESET_N low to first falling edge on debug  
clock (see 5)  
t3  
t4  
t5  
167  
83  
ns  
ns  
ns  
Falling edge on clock to EXT_RESET_N high (see  
5)  
EXT_RESET_N high to first debug command (see  
5)  
83  
t6  
t7  
t8  
Debug data setup (see 6)  
Debug data hold (see 6)  
Clock-to-data delay (see 6)  
2
4
ns  
ns  
ns  
Load = 10 pF  
30  
Time  
DEBUG_CLK  
P2_2  
t1  
t2  
1/fclk_dbg  
T0436-01  
4. Debug Clock – Basic Timing  
12  
提交文档反馈意见  
版权 © 2012, Texas Instruments Incorporated  
 
CC2545  
www.ti.com.cn  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
Time  
DEBUG_CLK  
P2_2  
RESET_N  
t3  
t4  
t5  
T0437-01  
5. Debug Enable Timing  
Time  
DEBUG_CLK  
P2_2  
DEBUG_DATA  
(to CC2545)  
P2_1  
DEBUG_DATA  
(from CC2545)  
P2_1  
t6  
t7  
t8  
T0438-03  
6. Data Setup and Hold Timing  
TIMER INPUTS AC CHARACTERISTICS  
TA = –40°C to 85°C, VDD = 2 V to 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Synchronizers determine the shortest input pulse that can be  
recognized. The synchronizers operate at the current system  
clock rate (16 MHz or 32 MHz).  
Input capture pulse duration  
1.5  
tSYSCLK  
版权 © 2012, Texas Instruments Incorporated  
提交文档反馈意见  
13  
CC2545  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
www.ti.com.cn  
DEVICE INFORMATION  
PIN DESCRIPTIONS  
CC2545  
RTC Package  
(Top View)  
40 39 38 37  
48 47 46 45 44 43 42 41  
1
2
P3_3  
P3_2  
36  
35  
34  
33  
32  
31  
P1_6/ XOSC32K_Q2  
RBIAS  
VDD  
3
P3_1  
P3_0  
4
VDD  
5
VSS  
P2_3  
P2_2  
P2_1  
P2_0  
P0_7  
6
VSS  
RF_N  
7
30  
29  
28  
RF_P  
VSS  
Ground Pad  
8
9
VDD  
10  
11  
12  
27  
26  
25  
XOSC_Q2  
XOSC_Q1  
VDD  
P0_6  
P0_5  
P0_4  
17 18 19 20 21 22 23 24  
13 14 15 16  
P0145-01  
(1) NOTE: The exposed ground pad must be connected to a solid ground plane; this is the main ground connection for  
the chip.  
1. Pin Description Table  
NAME  
P3_3  
P3_2  
P3_1  
P3_0  
P2_3  
P2_2  
P2_1  
P2_0  
P0_7  
P0_6  
P0_5  
P0_4  
P0_3  
PIN  
1
PIN TYPE  
DESCRIPTION  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Port 3.3  
Port 3.2  
Port 3.1  
Port 3.0  
Port 2.3  
Port 2.2  
Port 2.1  
Port 2.0  
Port 0.7  
Port 0.6  
Port 0.5  
Port 0.4  
Port 0.3  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
提交文档反馈意见  
版权 © 2012, Texas Instruments Incorporated  
 
CC2545  
www.ti.com.cn  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
1. Pin Description Table (接下页)  
NAME  
P0_2  
PIN  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
PIN TYPE  
DESCRIPTION  
Digital I/O  
Port 0.2  
Port 0.1  
Port 0.0  
Port 2.7  
Port 2.6  
Port 2.5  
Port 2.4  
P0_1  
Digital I/O  
P0_0  
Digital I/O  
P2_7  
Digital I/O  
P2_6  
Digital I/O  
P2_5  
Digital I/O  
P2_4  
Digital I/O  
VDD  
Power (analog)  
Digital input  
Digital I/O / Debug  
Digital I/O / Debug  
Power (analog)  
Analog I/O  
2-V-3.6V analog power-supply connection  
Reset, active-low  
RESET_N  
P1_4/DC  
P1_3/DD  
VDD  
Port 1.4/Debug  
Port 1.3/Debug  
2-V-3.6V analog power-supply connection  
32-MHz crystal oscillator pin 1or external-clock input  
32-MHz crystal oscillator pin 2  
2-V-3.6V analog power-supply connection  
Connect to ground  
XOSC_Q1  
XOSC_Q2  
VDD  
Analog I/O  
Power (analog)  
Unused pin  
RF I/O  
VSS  
RF_P  
Positive RF input signal to LNA during RX  
Positive RF output signal from PA during TX  
RF_N  
31  
RF I/O  
Negative RF input signal to LNA during RX  
Negative RF output signal from PA during TX  
VSS  
VDD  
32  
33  
34  
35  
36  
Unused pin  
Connect to ground  
Power (analog)  
Power (analog)  
Analog I/O  
2-V-3.6V analog power-supply connection  
2-V-3.6V analog power-supply connection  
External precision bias resistor for reference current  
Port 1.6/32.768-kHz XOSC  
VDD  
RBIAS  
P1_6/  
XOSC32K_  
Q2  
Digital I/O / Analog I/O  
P1_5/  
XOSC32k_  
Q1  
37  
Digital I/O / Analog I/O  
Port 1.5/32.768-kHz XOSC  
P1_2  
P1_1  
P1_0  
VDD  
38  
39  
40  
41  
42  
Digital I/O  
Port 1.2, 20mA  
Digital I/O  
Port 1.1, 20mA  
Digital I/O  
Port 1.0, 20mA  
Power (analog)  
Power (digital)  
2-V-3.6V analog power-supply connection  
DCPL1  
1.8-V digital power-supply decoupling. Do not use for supplying external  
circuits.  
VDD  
VSS  
43  
44  
45  
46  
47  
48  
Power (analog)  
Unused pin  
Digital I/O  
2-V-3.6V analog power-supply connection  
Connect to ground  
Port 3.7  
P3_7  
P3_6  
P3_5  
P3_4  
VSS  
Digital I/O  
Port 3.6  
Digital I/O  
Port 3.5  
Digital I/O  
Port 3.4  
Ground Pad Ground  
Must be connected to solid ground as this is the main ground connection  
for the chip. See Pinout Diagram.  
版权 © 2012, Texas Instruments Incorporated  
提交文档反馈意见  
15  
CC2545  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
www.ti.com.cn  
BLOCK DIAGRAM  
A block diagram of the CC2545 is shown in 7. The modules can be roughly divided into one of three  
categories: CPU-related modules; modules related to power, test, and clock distribution; and radio-related  
modules. In the following subsections, a short description of each module is given. See CC2543/44/45 User's  
Guide (SWRU283) for more details.  
POWER ON RESET  
BROWN OUT  
RESET_N  
RESET  
WATCHDOG TIMER  
VDD(2.0 -3.6 V)  
DCOUPL  
CHIP VOLTAGE  
REGULATOR  
ON -  
XOSC_Q2  
XOSC_Q1  
32 MHz  
CRYSTAL OSC  
CLOCK MUX &  
CALIBRATION  
32.768 kHz  
CRYSTAL OSC  
SLEEP TIMER  
P3_7  
P3_6  
P3_5  
P3_4  
P3_3  
P3_2  
P3_1  
P3_0  
DEBUG  
INTERFACE  
HIGH SPEED  
RC-OSC  
32 kHz  
RC- OSC  
POWER MG.TCONTROLLER  
PDATA  
RAM  
SRAM  
XRAM  
IRAM  
SFR  
8051 CPU  
CORE  
MEMORY  
ARBITRATOR  
FLASH  
FLASH  
P2_7  
P2_6  
P2_5  
P2_4  
P2_3  
P2_2  
P2_1  
P2_0  
UNIFIED  
DMA  
FLASH CTRL  
IRQ  
CTRL  
ANALOG COMPARATOR  
FIFOCTRL  
SRAM  
ROM  
PSEUDO  
RANDOM  
NUMBER  
RADIO  
REGISTERS  
P1_6  
P1_5  
P1_4  
P1_3  
P1_2  
P1_1  
P1_0  
GENERATOR  
Link Layer Engine  
AES  
ENCRYPTION  
&
DS ADC  
AUDIO / DC  
DECRYPTION  
DEMODULATOR  
MODULATOR  
P0_7  
P0_6  
P0_5  
P0_4  
P0_3  
P0_2  
P0_1  
P0_0  
USART 0  
RECEIVE  
TRANSMIT  
I2C  
TIMER1 (16-bit)  
TIMER 2  
(RADIO TIMER)  
SDA  
SCL  
_
RF P RF N  
_
TIMER 3 (8-bit)  
TIMER 4 (8-bit)  
DIGITAL  
ANALOG  
MIXED  
7. CC2545 Block Diagram  
16  
提交文档反馈意见  
版权 © 2012, Texas Instruments Incorporated  
 
CC2545  
www.ti.com.cn  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
BLOCK DESCRIPTIONS  
CPU and Memory  
The 8051 CPU core is a single-cycle 8051-compatible core. It has three different memory access busses (SFR,  
DATA, and CODE/XDATA), a debug interface, and an 15-input extended interrupt unit.  
The memory arbiter is at the heart of the system, as it connects the CPU and DMA controller with the physical  
memories and all peripherals through the SFR bus. The memory arbiter has four memory-access points, access  
of which can map to one of three physical memories: an SRAM, flash memory, and XREG/SFR registers. It is  
responsible for performing arbitration and sequencing between simultaneous memory accesses to the same  
physical memory.  
The SFR bus is drawn conceptually in 7 as a common bus that connects all hardware peripherals to the  
memory arbiter. The SFR bus in the block diagram also provides access to the radio registers in the radio  
register bank, even though these are indeed mapped into XDATA memory space.  
The 1-KB SRAM maps to the DATA memory space and to parts of the XDATA memory spaces.  
The 18-KB/32-KB flash block provides in-circuit programmable non-volatile program memory for the device,  
and maps into the CODE and XDATA memory spaces.  
Peripherals  
Writing to the flash block is performed through a flash controller that allows page-wise erasure and 4-bytewise  
programming. See User Guide for details on the flash controller.  
A versatile two-channel DMA controller is available in the system, accesses memory using the XDATA memory  
space, and thus has access to all physical memories. Each channel (trigger, priority, transfer mode, addressing  
mode, source and destination pointers, and transfer count) is configured with DMA descriptors that can be  
located anywhere in memory. Many of the hardware peripherals (AES core, flash controller, USART, timers, etc.)  
can be used with the DMA controller for efficient operation by performing data transfers between a single SFR or  
XREG address and flash/SRAM.  
The interrupt controller services a total of 17 interrupt sources, divided into six interrupt groups, each of which  
is associated with one of four interrupt priorities. Any interrupt service request is serviced also when the device is  
in idle mode by going back to active mode. Some interrupts can also wake up the device from sleep mode (when  
in sleep mode, the device is in low-power mode PM1, PM2 or PM3).  
The debug interface implements a proprietary two-wire serial interface that is used for in-circuit debugging.  
Through this debug interface, it is possible to perform an erasure of the entire flash memory, control which  
oscillators are enabled, stop and start execution of the user program, execute supplied instructions on the 8051  
core, set code breakpoints, and single-step through instructions in the code. Using these techniques, it is  
possible to perform in-circuit debugging and external flash programming elegantly.  
The I/O controller is responsible for all general-purpose I/O pins. The CPU can configure whether peripheral  
modules control certain pins or whether they are under software control, and if so, whether each pin is configured  
as an input or output and if a pullup or pulldown resistor in the pad is connected. Each peripheral that connects  
to the I/O pins can choose between several different I/O pin locations to ensure flexibility in various applications.  
The sleep timer is an ultralow-power timer that can use either an external 32.768-kHz XOSC or an internal  
32.753-kHz RC oscillator. The sleep timer runs continuously in all operating modes. Typical applications of this  
timer are as a real-time counter or as a wake-up timer to get out of power modes 1 or 2.  
A built-in watchdog timer allows the CC2545 to reset itself if the firmware hangs. When enabled by software,  
the watchdog timer must be cleared periodically; otherwise, it resets the device when it times out.  
Timer 1 is a 16-bit timer with timer/counter/PWM functionality. It has a programmable prescaler, a 16-bit period  
value, and five individually programmable counter/capture channels, each with a 16-bit compare value. Each of  
the counter/capture channels can be used as a PWM output or to capture the timing of edges on input signals. It  
can also be configured in IR generation mode, where it counts timer 3 periods and the output is ANDed with the  
output of timer 3 to generate modulated consumer IR signals with minimal CPU interaction.  
版权 © 2012, Texas Instruments Incorporated  
提交文档反馈意见  
17  
CC2545  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
www.ti.com.cn  
Timer 2 is a 40-bit timer used by the Radio. It has a 16-bit counter with a configurable timer period and a 24-bit  
overflow counter that can be used to keep track of the number of periods that have transpired. A 40-bit capture  
register is also used to record the exact time at which a start-of-frame delimiter is received/transmitted or the  
exact time at which a packet ends. There are two 16-bit timer-compare registers and two 24-bit overflow-  
compare registers that can be used to give exact timing for start of RX or TX to the radio or general interrupts.  
Timer 3 and timer 4 are 8-bit timers with timer/counter/PWM functionality. They have a programmable prescaler,  
an 8-bit period value, and one programmable counter channel with an 8-bit compare value. Each of the counter  
channels can be used as PWM output.  
USART 0 is configurable as either an SPI master/slave or a UART. It provides double buffering on both RX and  
TX and hardware flow control and is thus well suited to high-throughput full-duplex applications. The USART has  
its own high-precision baud-rate generator, thus leaving the ordinary timers free for other uses. When configured  
as SPI slaves, the USART samples the input signal using SCK directly instead of using some oversampling  
scheme, and are thus well-suited for high data rates.  
I2C module provides a digital peripheral connection with two pins and supports both master and slave operation.  
The AES encryption/decryption core allows the user to encrypt and decrypt data using the AES algorithm with  
128-bit keys. The AES core also supports ECB, CBC, CFB, OFB, CTR, and CBC-MAC, as well as hardware  
support for CCM.  
The ultralow power analog comparator enables applications to wake up from PM2 or PM3 based on an analog  
signal. Both inputs are brought out to pins; the reference voltage must be provided externally. The comparator  
output is mapped into the digital I/O port and can be treated by the MCU as a regular digital input.  
18  
提交文档反馈意见  
版权 © 2012, Texas Instruments Incorporated  
CC2545  
www.ti.com.cn  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
TYPICAL CHARACTERISTICS  
All curves are for measurements performed at 2Mbps, GFSK, 320-kHz deviation.  
RX CURRENT  
vs  
TX CURRENT  
vs  
TEMPERATURE  
TEMPERATURE  
32  
31  
30  
29  
28  
27  
24  
3-V Supply  
TXPOWER Setting = 0xE5  
3-V Supply  
Standard Gain Setting  
−70 dBm Input  
2 Mbps, GFSK, 320 kHz deviation  
23  
22  
21  
20  
19  
−40  
−20  
0
20  
40  
60  
80  
−40  
−20  
0
20  
Temperature (°C)  
40  
60  
80  
Temperature (°C)  
G002  
G001  
8.  
9.  
RX SENSITIVITY  
vs  
TX POWER  
vs  
TEMPERATURE  
TEMPERATURE  
10  
8
−80  
−82  
−84  
−86  
−88  
−90  
3-V Supply  
3-V Supply  
Standard Gain Setting  
TXPOWER Setting = 0xE5  
2 Mbps, GFSK, 320 kHz deviation  
6
4
2
0
−40  
−20  
0
20  
40  
60  
80  
−40  
−20  
0
20  
Temperature (°C)  
40  
60  
80  
Temperature (°C)  
G004  
G003  
10.  
11.  
RX CURRENT  
vs  
TX CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
32  
31  
30  
29  
28  
27  
24  
23  
22  
21  
20  
19  
TA = 25°C  
TA = 25°C  
Standard Gain Setting  
TXPOWER Setting = 0xE5  
−70 dBm Input  
2 Mbps, GFSK, 320 kHz deviation  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
2
2.2  
2.4  
2.6  
2.8  
3
Supply Voltage (V)  
3.2  
3.4  
3.6  
Supply Voltage (V)  
G006  
G005  
12.  
13.  
版权 © 2012, Texas Instruments Incorporated  
提交文档反馈意见  
19  
CC2545  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (接下页)  
All curves are for measurements performed at 2Mbps, GFSK, 320-kHz deviation.  
RX SENSITIVITY  
vs  
TX POWER  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
10  
8
−80  
−82  
−84  
−86  
−88  
−90  
TA = 25°C  
TXPOWER Setting = 0xE5  
TA = 25°C  
Standard Gain Setting  
2 Mbps, GFSK, 320 kHz deviation  
6
4
2
0
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
2
2.2  
2.4  
2.6  
2.8  
3
Supply Voltage (V)  
3.2  
3.4  
3.6  
Supply Voltage (V)  
G008  
G007  
14.  
15.  
RX SENSITIVITY  
vs  
TX POWER  
vs  
FREQUENCY  
FREQUENCY  
10  
8
−80  
−82  
−84  
−86  
−88  
−90  
3-V Supply  
TA = 25°C  
3-V Supply  
TA = 25°C  
Standard Gain Setting  
TXPOWER Setting = 0xE5  
2 Mbps, GFSK, 320 kHz deviation  
6
4
2
0
2400  
2420  
2440  
Frequency (MHz)  
2460  
2480  
2400  
2420  
2440  
Frequency (MHz)  
2460  
2480  
G011  
G009  
16.  
17.  
RX INTERFERER REJECTION (SELECTIVITY)  
vs  
INTERFERER FREQUENCY  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
3-V Supply  
TA = 25°C  
Standard Gain Setting  
Wanted Signal at  
2440 MHz with  
−67 dBm Level  
2400  
2420  
2440  
2460  
2480  
Frequency (MHz)  
G010  
18.  
20  
提交文档反馈意见  
版权 © 2012, Texas Instruments Incorporated  
CC2545  
www.ti.com.cn  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
TYPICAL CHARACTERISTICS (接下页)  
2. Recommended Output Power Settings(1)  
TXPOWER Register Setting  
Typical Output Power (dBm)  
0xE5  
0xD5  
0xC5  
0xB5  
0xA5  
0x95  
0x85  
0x75  
0x65  
0x55  
0x45  
0x35  
0x25  
0x15  
0x05  
5
4
3
2
0
–2  
–3  
–4  
–6  
–8  
–11  
–13  
–15  
–17  
–20  
(1) Measured on Texas Instruments CC2545 EM reference design with TA = 25°C, VDD = 3 V, and fc = 2440 MHz. See SWRU283 for  
recommended register settings.  
版权 © 2012, Texas Instruments Incorporated  
提交文档反馈意见  
21  
CC2545  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
www.ti.com.cn  
APPLICATION INFORMATION  
APPLICATION INFORMATION  
Few external components are required for the operation of the CC2545. A typical application circuit is shown in  
19. For suggestions of component values other than those listed in 3, see reference design CC2545EM.  
The performance stated in this data sheet is only valid for the CC2545EM reference design. To obtain similar  
performance, the reference design should be copied as closely as possible.  
2.0V-3.6V  
Power Supply  
Optional32-kHz Crystal  
C421  
XOSC32K_Q1  
XOSC32K_Q1  
1 P3_3  
P1_6 36  
RBIAS 35  
VDD 34  
R351  
2 P3_2  
3 P3_1  
4 P3_0  
5 P2_3  
6 P2_2  
7 P2_1  
8 P2_0  
9 P0_7  
10 P0_6  
11 P0_5  
12 P0_4  
Antenna  
(50 Ohm)  
VDD 33  
VSS 32  
RF_N 31  
RF_P 30  
VSS 29  
CC2545  
DIE ATTACH PAD:  
VDD 28  
XOSC_Q2 27  
XOSC_Q1 26  
VDD 25  
C271  
C261  
Power supply decoupling capacitors are not shown  
Digital I/O not connected  
19. CC2545 Application Circuit  
3. Overview of External Components (Excluding Balun, Crystal and Supply Decoupling Capacitors)  
Component  
C421  
Description  
Value  
1 µF  
Decoupling capacitor for the internal 1.8V digital voltage  
regulator  
R351  
Precision resistor ±1%, used for internal biasing  
56 kΩ  
Input/Output Matching  
When using an unbalanced antenna such as a monopole, a balun should be used to optimize performance. The  
balun can be implemented using low-cost discrete inductors and capacitors. See reference design, CC2545EM,  
for recommended balun.  
22  
提交文档反馈意见  
版权 © 2012, Texas Instruments Incorporated  
 
 
 
CC2545  
www.ti.com.cn  
ZHCSAA7A JUNE 2012REVISED AUGUST 2012  
Crystal  
An external 32-MHz crystal with two loading capacitors is used for the 32-MHz crystal oscillator. The load  
capacitance seen by the 32-MHz crystal is given by:  
1
CL =  
+ Cparasitic  
1
1
+
C261 C271  
(1)  
A series resistor may be used to comply with ESR requirement.  
On-Chip 1.8-V Voltage Regulator Decoupling  
The 1.8-V on-chip voltage regulator supplies the 1.8-V digital logic. This regulator requires a decoupling capacitor  
(C421) for stable operation.  
Power-Supply Decoupling and Filtering  
Proper power-supply decoupling must be used for optimum performance. The placement and size of the  
decoupling capacitors and the power supply filtering are very important to achieve the best performance in an  
application. TI provides a compact reference design that should be followed very closely.  
spacer  
REVISION HISTORY  
Changes from Original (June 2012) to Revision A  
Page  
Deleted 产品预览标题 ........................................................................................................................................................... 1  
Changed the Temperature coefficient Unit value From: mV/°C To: / 0.1°C ......................................................................... 8  
Changed 19 .................................................................................................................................................................... 22  
版权 © 2012, Texas Instruments Incorporated  
提交文档反馈意见  
23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CC2545RGZR  
CC2545RGZT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
CC2545  
CC2545  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
CC2545RGZR  
CC2545RGZT  
RGZ  
RGZ  
VQFN  
VQFN  
48  
48  
2500  
250  
26 x 10  
26 x 10  
150  
150  
315 135.9 7620 11.8  
315 135.9 7620 11.8  
10  
10  
10.35  
10.35  
Pack Materials-Page 1  
GENERIC PACKAGE VIEW  
RTC 48  
7 x 7, 0.5 mm pitch  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224601/A  
www.ti.com  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
A
7.1  
6.9  
B
(0.1) TYP  
7.1  
6.9  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
PIN 1 INDEX AREA  
(0.45) TYP  
CHAMFERED LEAD  
CORNER LEAD OPTION  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 5.5  
5.15±0.1  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
SEE SIDE WALL  
DETAIL  
SYMM  
2X  
5.5  
1
36  
0.30  
0.18  
PIN1 ID  
(OPTIONAL)  
48X  
48  
37  
SYMM  
0.1  
C A B  
C
0.5  
0.3  
48X  
0.05  
SEE LEAD OPTION  
4219044/D 02/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
5.15)  
SYMM  
(
48X (0.6)  
37  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(1.26)  
2X  
(1.065)  
(R0.05)  
TYP  
25  
12  
21X (Ø0.2) VIA  
TYP  
24  
13  
2X (1.065)  
2X (1.26)  
2X (5.5)  
LAND PATTERN EXAMPLE  
SCALE: 15X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219044/D 02/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
SYMM  
(
1.06)  
37  
48X (0.6)  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(0.63)  
2X  
(1.26)  
(R0.05)  
TYP  
25  
12  
24  
13  
2X  
(1.26)  
2X (0.63)  
2X (5.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
67% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219044/D 02/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

CC2550

Single Chip Low Cost Low Power RF Transmitter
TI

CC2550-RTR1

Single Chip Low Cost Low Power RF Transmitter
TI

CC2550-RTY1

Single Chip Low Cost Low Power RF Transmitter
TI

CC2550EMK

Single Chip Low Cost Low Power RF Transmitter
TI

CC2550RSTG3

Low Cost 2.4 GHz Transmitter Designed for Low-Power Wireless Applications in 2.4 GHz ISM Band 16-VQFN -40 to 85
TI

CC2550RSTR

Low-Cost Low-Power 2.4 GHz RF Transmitter
TI

CC2550RTK

Single Chip Low Cost Low Power RF Transmitter
TI

CC2550RTKR

Single Chip Low Cost Low Power RF Transmitter
TI

CC2550_06

Single Chip Low Cost Low Power RF Transmitter
TI

CC2550_11

Low-Cost Low-Power 2.4 GHz RF Transmitter
TI

CC2560

Bluetooth? Wireless Kit
TI

CC2560-PAN1315

Bluetooth® v2.1 Enhanced Data Rate (EDR) Module
TI