CC1352P7 [TI]

具有集成式功率放大器的 SimpleLink™ Arm® Cortex®-M4F 多协议低于 1GHz 和 2.4GHz 无线 MCU;
CC1352P7
型号: CC1352P7
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成式功率放大器的 SimpleLink™ Arm® Cortex®-M4F 多协议低于 1GHz 和 2.4GHz 无线 MCU

放大器 无线 功率放大器
文件: 总72页 (文件大小:3343K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CC1352P7  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
CC1352P7 具有集成功率放大器的  
SimpleLink™ 高性能多频带无线MCU  
SimpleLink™ TI 15.4-stack  
6LoWPAN  
专有系统  
1 特性  
无线微处理器  
• 功能强大48MHz Arm® Cortex®-M4F 处理器  
704KB 闪存程序存储器  
256KB ROM用于协议和库函数  
8KB 高速缓SRAM  
• 具有奇偶校验功能144KB 超低泄SRAM可  
实现高度可靠运行  
高性能无线电  
-121dBm2.5kbps 远距离模式下)  
-110dBm50kbps802.15.4868MHz )  
-104dBm在低功Bluetooth® 125kbps )  
• 高+20dBm 的输出功率具有温度补偿  
法规遵从性  
• 双频Sub-1GHz 2.4GHz 运行  
• 动态多协议管理(DMM) 驱动程序  
• 可编程无线电包括2-(G)FSK4-(G)FSK、  
MSKOOK、低功Bluetooth® 5.2IEEE  
802.15.4 PHY MAC 的支持  
• 适用于符合以下标准的系统:  
ETSI EN 300 220 接收器类1.5 2EN 300  
328EN 303 131EN 303 204EN 300 440  
2 3  
• 支持无线升(OTA)  
FCC CFR47 15 部分  
超低功耗传感器控制器  
ARIB STD-T108 STD-T66  
• 具4KB SRAM 的自MCU  
• 采样、存储和处理传感器数据  
• 快速唤醒进入低功耗运行  
MCU 外设  
• 数字外设可连接至任GPIO  
• 四32 位或八16 位通用计时器  
12 ADC200ksps8 通道  
8 DAC  
• 软件定义外设电容式触控、流量计、LCD  
低功耗  
• 两个比较器  
• 可编程电流源  
• 两UART、两SSII2CI2S  
• 实时时(RTC)  
• 集成温度和电池监控器  
MCU 功耗:  
2.63mA 有源模式CoreMark  
55μA/MHzCoreMark )  
0.8μA 待机模式RTC144KB RAM  
0.1μA 关断模式引脚唤醒  
信息安全机制  
• 超低功耗传感器控制器功耗:  
2MHz 模式下25.2μA  
24MHz 模式下701μA  
• 无线电功耗:  
AES 128 256 位加密加速计  
ECC RSA 公钥硬件加速器  
SHA2 加速器包括SHA-512 的全套装)  
• 真随机数发生(TRNG)  
RX5.4mA868MHz 条件下)  
RX6.4mA2.4GHz 条件下)  
TX21mA+10dBm 2.4GHz 条件下)  
TX24.9mA+14dBm 868MHz 条件  
)  
TX64mA+20dBm 915MHz 条件下)  
TX101mA+20dBm 2.4GHz 条件下)  
开发工具和软件  
LP-CC1352P7 开发套件  
SimpleLink™ CC13xx CC26xx 软件开发套件  
(SDK)  
• 用于简单无线电配置SmartRF™ Studio  
• 用于构建低功耗检测应用Sensor Controller  
Studio  
无线协议支持  
SysConfig 系统配置工具  
ThreadZigbee®Matter  
• 低功Bluetooth® 5.2  
Wi-SUN®  
工作温度范围  
• 片上降压直流/直流转换器  
1.8V 3.8V 单电源电压  
-40°C +105°C  
mioty®  
Amazon Sidewalk  
线M-Bus  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SWRS251  
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
封装  
– 防火安烟雾和热量探测器气体检测仪以  
火警控制面板  
零售自动化  
7mm × 7mm RGZ VQFN48 (26 GPIO)  
• 符RoHS 标准的封装  
– 零售自动化和支付应电子货架标签便携  
POS 终端  
个人电子产品  
2 应用  
电网基础设施  
射频远程控制  
– 智能仪电表水表燃气表热量分配表  
– 电网通无线通信  
智能扬声器智能显示器机顶盒  
游戏电子玩具和机器人玩具  
可穿戴设备非医用智能追踪器智能服装  
智能手表  
– 电动汽车充电基础设交流充电站  
– 其他替代能能量收集  
楼宇自动化  
• 无线模块  
– 楼宇安全系运动检测器门窗传感器玻  
璃破裂探测器紧急按钮电子智能锁IP 网  
络摄像头  
HVAC 恒温器环境传感器HVAC 控  
制器  
无线第三方模块包括低功耗蓝牙Thread、  
ZigbeeMatterWi-SUN®Amazon  
Sidewalkmioty® 和多协议  
无线通信模块  
3 说明  
SimpleLinkCC1352P7 器件是一款多协议、多频带 Sub-1GHz 2.4GHz 无线微控制器 (MCU)支持以下协  
ThreadZigbee®、低功耗 Bluetooth® 5.2IEEE 802.15.4g、支持 IPv6 的智能对象 (6LoWPAN)mioty®、  
Wi-SUN®、专有系统包括 TI 15.4-StackSub-1GHz 2.4GHz))和通过动态多协议管理(DMM) 驱动程序  
实现的并发多协议。CC1352P7 基于 Arm® Cortex® M4F 主处理器针对电网基础设施楼宇自动化零售自动  
个人电子产品医疗应用中的低功耗无线通信和高级传感功能进行了优化。  
CC1352P7 具有由 Arm® Cortex®-M0 驱动的软件定义无线电支持多个物理层和射频标准。 CC1352P7 支持在  
287MHz 351MHz359MHz 527MHz861MHz 1054MHz1076MHz 1315MHz 以及 2360MHz 至  
2500MHz 频带内运行。通过动态多协议管理(DMM) 驱动程序可在运行时完成 PHY 和频带切换。CC1352P7  
具有高效的内置 PA2.4GHz 频带中 TX 支持 +10dBm (21mA) +20dBm (101mA) 的输出功率在  
Sub-1GHz 频带TX +20dBm (64mA) 的输出功率。  
在保持 144KB RAM CC1352P7 具有 0.9μA 的低待机电流。除了 Cortex® M4F 主处理器该器件还具有能  
够实现快速唤醒功能的自主式超低功耗传感器控制器 CPU。例如传感器控制器能够在系统电流为 1µA 时进行  
1Hz ADC 采样。  
CC1352P7 具有SER软错误率FIT时基故障可延长运行寿命。SRAM 奇偶校验功能始终开启可更  
大程度地降低因潜在辐射事件导致的损坏风险。许多客户对产品生命周期的要求为 10 15 年或者更久为了达  
到这一目标TI 制定了产品生命周期政策对产品的寿命和供货连续性作出承诺。  
CC1352P7 器件是 SimpleLink™ MCU 平台的一部分包括 Wi-Fi®、低功耗 Bluetooth®ThreadZigbeeWi-  
SUN®Amazon Sidewalkmioty®Sub-1GHz MCU 和主机 MCUCC1352P7 是可扩展产品系列闪存为  
32KB 704KB的一部分具有引脚对引脚兼容的封装选项。通用 SimpleLink™ CC13xx CC26xx 软件开发  
(SDK) SysConfig 系统配置工具支持产品系列中各器件之间的迁移。SDK 随附了丰富的软件栈、应用示例  
SimpleLinkAcademy 培训课程。有关更多信息请查看无线连接。  
器件信息  
器件型号(1)  
CC1352P74T0RGZR  
封装尺寸标称值)  
封装  
VQFN (48)  
7.00mm × 7.00mm  
(1) 如需所有可用器件的最新器件、封装和订购信息请参阅11 中的“封装选项附录”或访TI 网站。  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
3.1 功能方框图  
RF Core  
cJTAG  
Main CPU  
256KB  
ROM  
ADC  
ADC  
Arm® Cortex®-M4F  
Processor  
704KB  
Flash  
Digital PLL  
with 8KB  
Cache  
DSP Modem  
16KB  
SRAM  
48 MHz  
Arm® Cortex®-M0  
Processor  
144KB  
SRAM  
with Parity  
ROM  
General Hardware Peripherals and Modules  
Sensor Interface  
I2C and I2S  
4× 32-bit Timers  
2× SSI (SPI)  
Watchdog Timer  
TRNG  
ULP Sensor Controller  
8-bit DAC  
2× UART  
12-bit ADC, 200 ks/s  
32 ch. µDMA  
31 GPIOs  
2x Low-Power Comparator  
SPI-I2C Digital Sensor IF  
Temperature and  
Battery Monitor  
AES-256, SHA2-512  
ECC, RSA  
Constant Current Source  
RTC  
Time-to-Digital Converter  
LDO, Clocks, and References  
Optional DC/DC Converter  
4KB SRAM  
3-1. CC1352P7 方框图  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: CC1352P7  
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
Table of Contents  
7.18 Timing and Switching Characteristics..................... 24  
7.19 Peripheral Characteristics.......................................28  
7.20 Typical Characteristics............................................34  
8 Detailed Description......................................................47  
8.1 Overview...................................................................47  
8.2 System CPU............................................................. 47  
8.3 Radio (RF Core)........................................................48  
8.4 Memory.....................................................................50  
8.5 Sensor Controller......................................................50  
8.6 Cryptography............................................................ 52  
8.7 Timers....................................................................... 53  
8.8 Serial Peripherals and I/O.........................................54  
8.9 Battery and Temperature Monitor............................. 54  
8.10 µDMA......................................................................54  
8.11 Debug......................................................................54  
8.12 Power Management................................................55  
8.13 Clock Systems........................................................ 56  
8.14 Network Processor..................................................56  
9 Application, Implementation, and Layout................... 57  
9.1 Reference Designs................................................... 57  
9.2 Junction Temperature Calculation.............................58  
10 Device and Documentation Support..........................59  
10.1 Device Nomenclature..............................................59  
10.2 Tools and Software................................................. 59  
10.3 Documentation Support.......................................... 62  
10.4 支持资源..................................................................62  
10.5 Trademarks.............................................................62  
10.6 Electrostatic Discharge Caution..............................63  
10.7 术语表..................................................................... 63  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 2  
3 说明................................................................................... 2  
3.1 功能方框图..................................................................3  
4 Revision History.............................................................. 4  
5 Device Comparison.........................................................5  
6 Terminal Configuration and Functions..........................6  
6.1 Pin Diagram RGZ Package (Top View)..................6  
6.2 Signal Descriptions RGZ Package.........................7  
6.3 Connections for Unused Pins and Modules................8  
7 Specifications.................................................................. 9  
7.1 Absolute Maximum Ratings........................................ 9  
7.2 ESD Ratings............................................................... 9  
7.3 Recommended Operating Conditions.........................9  
7.4 Power Supply and Modules...................................... 10  
7.5 Power Consumption - Power Modes........................ 10  
7.6 Power Consumption - Radio Modes......................... 11  
7.7 Nonvolatile (Flash) Memory Characteristics............. 11  
7.8 Thermal Resistance Characteristics......................... 12  
7.9 RF Frequency Bands................................................12  
7.10 861 MHz to 1054 MHz - Receive (RX)....................13  
7.11 861 MHz to 1054 MHz - Transmit (TX) .................. 16  
7.12 861 MHz to 1054 MHz - PLL Phase Noise  
Wideband Mode.......................................................... 17  
7.13 861 MHz to 1054 MHz - PLL Phase Noise  
Narrowband Mode.......................................................18  
7.14 Bluetooth Low Energy - Receive (RX).................... 18  
7.15 Bluetooth Low Energy - Transmit (TX)....................21  
7.16 Zigbee and Thread - IEEE 802.15.4-2006 2.4  
GHz (OQPSK DSSS1:8, 250 kbps) - RX.................... 22  
7.17 Zigbee and Thread - IEEE 802.15.4-2006 2.4  
Information.................................................................... 64  
GHz (OQPSK DSSS1:8, 250 kbps) - TX.....................23  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
November 2021  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
5 Device Comparison  
5-1. Device Family Overview  
FLASH  
(KB)  
RAM  
(KB)  
DEVICE  
RADIO SUPPORT  
GPIO  
PACKAGE SIZE  
RGZ (7-mm × 7-mm VQFN48)  
RHB (5 mm × 5 mm VQFN32)  
RSM (4 mm × 4 mm VQFN32)  
Sub-1 GHz  
Wireless M-Bus  
CC1310  
32-128  
16-20  
10-30  
Sub-1 GHz  
Wi-SUN®  
Amazon Sidewalk  
Wireless M-Bus  
CC1312R  
CC1352P  
352-704  
80-144  
30  
26  
RGZ (7-mm × 7-mm VQFN48)  
RGZ (7-mm × 7-mm VQFN48)  
Multiprotocol  
Sub-1 GHz  
Wi-SUN®  
Amazon Sidewalk  
Wireless M-Bus  
Bluetooth 5.2 Low Energy  
Zigbee  
352-704  
80-144  
Thread  
2.4 GHz proprietary FSK-based formats  
+20-dBm high-power amplifier  
Multiprotocol  
Sub-1 GHz  
Wi-SUN®  
Wireless M-Bus  
Bluetooth 5.2 Low Energy  
Zigbee  
CC1352R  
352  
80  
28  
RGZ (7-mm × 7-mm VQFN48)  
Thread  
2.4 GHz proprietary FSK-based formats  
Bluetooth 5.2 Low Energy  
2.4 GHz proprietary FSK-based formats  
CC2642R  
352  
352  
80  
80  
31  
31  
RGZ (7-mm × 7-mm VQFN48)  
RTC (7-mm × 7-mm VQFN48)  
CC2642R-Q1  
Bluetooth 5.2 Low Energy  
Multiprotocol  
Bluetooth 5.2 Low Energy  
Zigbee  
CC2652R  
352-704  
352  
80-144  
80  
31  
31  
RGZ (7-mm × 7-mm VQFN48)  
RGZ (7-mm × 7-mm VQFN48)  
Thread  
2.4 GHz proprietary FSK-based formats  
Multiprotocol  
Bluetooth 5.2 Low Energy  
Zigbee  
CC2652RB  
Thread  
Multiprotocol  
Bluetooth 5.2 Low Energy  
Zigbee  
CC2652P  
352-704  
80-144  
26  
RGZ (7-mm × 7-mm VQFN48)  
Thread  
2.4 GHz proprietary FSK-based formats  
+19.5-dBm high-power amplifier  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: CC1352P7  
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
6 Terminal Configuration and Functions  
6.1 Pin Diagram RGZ Package (Top View)  
RF_P_2_4GHZ  
RF_N_2_4GHZ  
RF_P_SUB_1GHZ  
RF_N_SUB_1GHZ  
TX_20DBM_P  
1
2
3
4
5
6
7
8
9
36 DIO_23  
35 RESET_N  
34 VDDS_DCDC  
33 DCDC_SW  
32 DIO_22  
TX_20DBM_N  
31 DIO_21  
RX_TX  
X32K_Q1  
X32K_Q2  
30 DIO_20  
29 DIO_19  
28 DIO_18  
DIO_5 10  
DIO_6 11  
DIO_7 12  
27 DIO_17  
26 DIO_16  
25 JTAG_TCKC  
6-1. RGZ (7-mm × 7-mm) Pinout, 0.5-mm Pitch (Top View)  
The following I/O pins marked in 6-1 in bold have high-drive capabilities:  
Pin 10, DIO_5  
Pin 11, DIO_6  
Pin 12, DIO_7  
Pin 24, JTAG_TMSC  
Pin 26, DIO_16  
Pin 27, DIO_17  
The following I/O pins marked in 6-1 in italics have analog capabilities:  
Pin 36, DIO_23  
Pin 37, DIO_24  
Pin 38, DIO_25  
Pin 39, DIO_26  
Pin 40, DIO_27  
Pin 41, DIO_28  
Pin 42, DIO_29  
Pin 43, DIO_30  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
6.2 Signal Descriptions RGZ Package  
6-1. Signal Descriptions RGZ Package  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
33  
23  
10  
11  
12  
14  
15  
16  
17  
18  
19  
20  
21  
26  
27  
28  
29  
30  
31  
32  
36  
37  
38  
39  
40  
41  
42  
43  
DCDC_SW  
DCOUPL  
DIO_5  
Power  
Power  
Output from internal DC/DC converter(1)  
For decoupling of internal 1.27 V regulated digital-supply (2)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Digital  
GPIO, high-drive capability  
DIO_6  
Digital  
GPIO, high-drive capability  
DIO_7  
Digital  
GPIO, high-drive capability  
DIO_8  
Digital  
GPIO  
DIO_9  
Digital  
GPIO  
DIO_10  
DIO_11  
DIO_12  
DIO_13  
DIO_14  
DIO_15  
DIO_16  
DIO_17  
DIO_18  
DIO_19  
DIO_20  
DIO_21  
DIO_22  
DIO_23  
DIO_24  
DIO_25  
DIO_26  
DIO_27  
DIO_28  
DIO_29  
DIO_30  
EGP  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO, JTAG_TDO, high-drive capability  
GPIO, JTAG_TDI, high-drive capability  
GPIO  
Digital  
Digital  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital or Analog  
Digital or Analog  
GND  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
GPIO, analog capability  
Ground exposed ground pad(3)  
JTAG TMSC, high-drive capability  
JTAG TCKC  
24  
25  
35  
I/O  
I
JTAG_TMSC  
JTAG_TCKC  
RESET_N  
Digital  
Digital  
I
Digital  
Reset, active low. No internal pullup resistor  
Positive 2.4-GHz RF input signal to LNA during RX  
Positive 2.4-GHz RF output signal from PA during TX  
RF_P_2_4GHZ  
1
2
3
4
RF  
RF  
RF  
RF  
Negative 2.4-GHz RF input signal to LNA during RX  
Negative 2.4-GHz RF output signal from PA during TX  
RF_N_2_4GHZ  
Positive Sub-1 GHz RF input signal to LNA during RX  
Positive Sub-1 GHz RF output signal from PA during TX  
RF_P_SUB_1GHZ  
RF_N_SUB_1GHZ  
Negative Sub-1 GHz RF input signal to LNA during RX  
Negative Sub-1 GHz RF output signal from PA during TX  
RX_TX  
7
5
6
RF  
RF  
RF  
Optional bias pin for the RF LNA  
TX_20DBM_P  
TX_20DBM_N  
Positive Sub-1 GHz or 2.4-GHz high-power TX signal  
Negative Sub-1 GHz or 2.4-GHz high-power TX signal  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: CC1352P7  
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
6-1. Signal Descriptions RGZ Package (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
Internal supply, must be powered from the internal DC/DC  
converter or the internal LDO(2) (4) (6)  
VDDR  
45  
Power  
Power  
Internal supply, must be powered from the internal DC/DC  
converter or the internal LDO(2) (5) (6)  
VDDR_RF  
48  
VDDS  
44  
13  
22  
34  
46  
47  
8
Power  
Power  
Power  
Power  
Analog  
Analog  
Analog  
Analog  
1.8-V to 3.8-V main chip supply(1)  
1.8-V to 3.8-V DIO supply(1)  
VDDS2  
VDDS3  
1.8-V to 3.8-V DIO supply(1)  
VDDS_DCDC  
X48M_N  
X48M_P  
X32K_Q1  
X32K_Q2  
1.8-V to 3.8-V DC/DC converter supply  
48-MHz crystal oscillator pin 1  
48-MHz crystal oscillator pin 2  
32-kHz crystal oscillator pin 1  
32-kHz crystal oscillator pin 2  
9
(1) For more details, see technical reference manual listed in 10.3.  
(2) Do not supply external circuitry from this pin.  
(3) EGP is the only ground connection for the device. Good electrical connection to device ground on printed circuit board (PCB) is  
imperative for proper device operation.  
(4) If internal DC/DC converter is not used, this pin is supplied internally from the main LDO.  
(5) If internal DC/DC converter is not used, this pin must be connected to VDDR for supply from the main LDO.  
(6) Output from internal DC/DC and LDO is trimmed to 1.68 V.  
6.3 Connections for Unused Pins and Modules  
6-2. Connections for Unused Pins  
PREFERRED  
FUNCTION  
SIGNAL NAME  
PIN NUMBER  
ACCEPTABLE PRACTICE(1)  
PRACTICE(1)  
1012  
1421  
2632  
3643  
GPIO  
DIO_n  
NC or GND  
NC  
X32K_Q1  
8
9
32.768-kHz crystal  
NC or GND  
NC  
X32K_Q2  
DCDC_SW  
VDDS_DCDC  
33  
34  
NC  
NC  
DC/DC converter(2)  
VDDS  
VDDS  
(1) NC = No connect  
(2) When the DC/DC converter is not used, the inductor between DCDC_SW and VDDR can be removed. VDDR and VDDR_RF must still  
be connected and the 22 uF DCDC capacitor must be kept on the VDDR net.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
 
 
 
 
 
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
MAX UNIT  
VDDS(3)  
Supply voltage  
4.1  
V
V
V
Voltage on any digital pin(4)  
VDDS + 0.3, max 4.1  
Voltage on crystal oscillator pins, X32K_Q1, X32K_Q2, X48M_N and X48M_P  
Voltage scaling enabled  
VDDR + 0.3, max 2.25  
VDDS  
Vin  
Voltage on ADC input  
Voltage scaling disabled, internal reference  
Voltage scaling disabled, VDDS as reference  
1.49  
V
VDDS / 2.9  
Input level, Sub-1 GHz RF pins (RF_P_SUB_1GHZ and RF_N_SUB_1GHZ)  
Input level, 2.4 GHz RF pins (RF_P_2_4GHZ and RF_N_2_4GHZ)  
Storage temperature  
10  
5
dBm  
dBm  
°C  
Tstg  
150  
40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to ground, unless otherwise noted.  
(3) VDDS_DCDC, VDDS2 and VDDS3 must be at the same potential as VDDS.  
(4) Including analog capable DIOs.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
V
Human body model (HBM), per ANSI/ESDA/JEDEC JS001(1)  
Charged device model (CDM), per JESD22-C101(2)  
All pins  
All pins  
VESD  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
105  
115  
3.8  
UNIT  
°C  
Operating ambient temperature(1) (3)  
40  
Operating junction temperature(1) (3)  
°C  
40  
Operating supply voltage (VDDS)  
1.8  
2.1  
V
Operating supply voltage (VDDS), boost mode  
VDDR = 1.95 V  
3.8  
V
+14 dBm RF output sub-1 GHz power amplifier  
Rising supply voltage slew rate  
Falling supply voltage slew rate(2)  
0
0
100  
20  
mV/µs  
mV/µs  
(1) Operation at or near maximum operating temperature for extended durations will result in a reduction in lifetime.  
(2) For small coin-cell batteries, with high worst-case end-of-life equivalent source resistance, a 22-µF VDDS input capacitor must be used  
to ensure compliance with this slew rate.  
(3) For thermal resistance characteristics refer to 7.8.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: CC1352P7  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.4 Power Supply and Modules  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
1.1 - 1.55  
1.77  
MAX  
UNIT  
VDDS Power-on-Reset (POR) threshold  
V
V
V
V
VDDS Brown-out Detector (BOD) (1)  
Rising threshold  
Rising threshold  
Falling threshold  
VDDS Brown-out Detector (BOD), before initial boot (2)  
VDDS Brown-out Detector (BOD) (1)  
1.70  
1.75  
(1) For boost mode (VDDR =1.95 V), TI drivers software initialization will trim VDDS BOD limits to maximum (approximately 2.0 V)  
(2) Brown-out Detector is trimmed at initial boot, value is kept until device is reset by a POR reset or the RESET_N pin  
7.5 Power Consumption - Power Modes  
When measured on the CC1352-P7EM-XD7793-XD24-PA9093 reference design with Tc = 25 °C, VDDS = 3.6 V with DC/DC  
enabled unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
TYP  
UNIT  
Core Current Consumption  
Reset. RESET_N pin asserted or VDDS below power-on-reset threshold  
Shutdown. No clocks running, no retention  
110  
110  
Reset and Shutdown  
nA  
RTC running, CPU, 144KB RAM and (partial) register retention.  
RCOSC_LF  
0.8  
0.7  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
Standby  
RTC running, CPU, 64KB RAM and (partial) register retention.  
without cache retention RCOSC_LF  
RTC running, CPU, 144KB RAM and (partial) register retention  
XOSC_LF  
0.9  
Icore  
RTC running, CPU, 144KB RAM and (partial) register retention.  
RCOSC_LF  
1.9  
Standby  
with cache retention  
RTC running, CPU, 144KB RAM and (partial) register retention.  
XOSC_LF  
2.0  
Supply Systems and RAM powered  
RCOSC_HF  
Idle  
590  
2.63  
MCU running CoreMark at 48 MHz  
RCOSC_HF  
Active  
Peripheral Current Consumption  
Peripheral power  
domain  
Delta current with domain enabled  
Delta current with domain enabled  
39  
2.6  
89  
Serial power domain  
RF Core  
Delta current with power domain enabled,  
clock enabled, RF core idle  
µDMA  
Timers  
Delta current with clock enabled, module is idle  
Delta current with clock enabled, module is idle(3)  
Delta current with clock enabled, module is idle  
Delta current with clock enabled, module is idle  
Delta current with clock enabled, module is idle(2)  
Delta current with clock enabled, module is idle(1)  
Delta current with clock enabled, module is idle  
Delta current with clock enabled, module is idle  
Delta current with clock enabled, module is idle  
57  
97  
Iperi  
µA  
I2C  
9.2  
22  
I2S  
SSI  
50  
UART  
110  
16  
CRYPTO (AES)  
PKA  
TRNG  
59  
20  
Sensor Controller Engine Consumption  
Active mode  
ISCE  
24 MHz, infinite loop  
2 MHz, infinite loop  
701  
µA  
Low-power mode  
25.2  
(1) Only one UART running  
(2) Only one SSI running  
(3) Only one GPTimer running  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
 
 
 
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.6 Power Consumption - Radio Modes  
When measured on the CC1352-P7EM-XD7793-XD24-PA9093 reference design with Tc = 25 °C, VDDS = 3.6 V with DC/DC  
enabled unless otherwise noted.  
High power PA connected to VDDS unless otherwise noted.  
Using boost mode (increasing VDDR up to 1.95 V), will increase system current by 15% (does not apply to TX +14 dBm  
setting where this current is already included).  
Relevant Icore and Iperi currents are included in below numbers.  
PARAMETER  
TEST CONDITIONS  
TYP UNIT  
Radio receive current, 868 MHz  
5.4  
7.1  
mA  
mA  
Radio receive current, 2.44 GHz  
(Bluetooth Low Energy)  
VDDS = 3.0 V  
0 dBm output power setting  
868 MHz  
8.0  
14.3  
24.9  
7.5  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Radio transmit current  
Sub-1 GHz PA  
+10 dBm output power setting  
868 MHz  
Radio transmit current  
Boost mode, Sub-1 GHz PA  
+14 dBm output power setting  
868 MHz  
Radio transmit current  
2.4 GHz PA (Bluetooth Low Energy)  
0 dBm output power setting, VDDS = 3.0 V  
+5 dBm output power setting  
Radio transmit current  
9.8  
2.4 GHz PA (Bluetooth Low Energy) 2440 MHz, VDDS = 3.0 V  
Radio transmit current  
High-power PA  
Transmit (TX), +20 dBm output power setting  
915 MHz, VDDS = 3.3 V  
64  
Radio transmit current  
High-power PA(1)  
Transmit (TX), +20 dBm output power setting  
2440 MHz (Bluetooth Low Energy), VDDS = 3.0 V  
101  
Radio transmit current  
High-power PA, 10 dBm  
configuration(2)  
Transmit (TX), +10 dBm output power setting  
2440 MHz (Bluetooth Low Energy), VDDS = 3.0 V  
21  
mA  
(1) Measured on the CC1352-P7EM-XD7793-XD24-PA24 reference design.  
(2) Measured on the CC1352-P7EM-XD7793-XD24-PA24_10dBm reference design.  
7.7 Nonvolatile (Flash) Memory Characteristics  
Over operating free-air temperature range and VDDS = 3.0 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Flash sector size  
8
KB  
Supported flash erase cycles before failure, single-bank(1) (5)  
Supported flash erase cycles before failure, single sector(2)  
30  
60  
k Cycles  
k Cycles  
Maximum number of write operations per row before sector  
erase(3)  
Write  
Operations  
83  
Years at 105  
°C  
Flash retention  
105 °C  
11.4  
Flash sector erase current  
Average delta current  
Zero cycles  
9.5  
10  
mA  
ms  
ms  
mA  
µs  
Flash sector erase time(4)  
30k cycles  
4000  
Flash write current  
Flash write time(4)  
Average delta current, 4 bytes at a time  
4 bytes at a time  
5.2  
21.6  
(1) A full bank erase is counted as a single erase cycle on each sector. If both flash banks are always cycled simultaneously they can be  
cycled 30K times each. Alternatively, the banks can be cycled a total of 30K times, e.g. the main bank X times and the second bank Y  
times (X+Y=30K)  
(2) Up to 4 customer-designated sectors can be individually erased an additional 30k times beyond the baseline bank limitation of 30k  
cycles  
(3) Each wordline is 2048 bits (or 256 bytes) wide. This limitation corresponds to sequential memory writes of 4 (3.1) bytes minimum per  
write over a whole wordline. If additional writes to the same wordline are required, a sector erase is required once the maximum  
number of write operations per row is reached.  
(4) This number is dependent on Flash aging and increases over time and erase cycles  
(5) Aborting flash during erase or program modes is not a safe operation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: CC1352P7  
 
 
 
 
 
 
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.8 Thermal Resistance Characteristics  
PACKAGE  
RGZ  
(VQFN)  
THERMAL METRIC(1)  
UNIT  
48 PINS  
23.7  
13.0  
7.7  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W(2)  
°C/W(2)  
°C/W(2)  
°C/W(2)  
°C/W(2)  
°C/W(2)  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJT  
7.6  
ψJB  
RθJC(bot)  
1.9  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) °C/W = degrees Celsius per watt.  
7.9 RF Frequency Bands  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
MIN  
2360  
1076  
861  
TYP  
MAX  
UNIT  
2500  
1315  
1054  
527  
Frequency bands  
MHz  
431  
359  
439  
287  
351  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
 
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.10 861 MHz to 1054 MHz - Receive (RX)  
Measured on the CC1352-P7EM-XD7793-XD24-PA9093 reference design with Tc = 25 °C, VDDS = 3.6 V with  
DC/DC enabled and high power PA connected to VDDS unless otherwise noted.  
All measurements are performed at the antenna input with a combined RX and TX path, except for high power PA which is  
measured at a dedicated antenna connection. All measurements are performed conducted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
General Parameters  
Digital channel filter programmable receive  
bandwidth  
4
4000  
kHz  
Data rate step size  
1.5  
< -57  
< -47  
bps  
dBm  
dBm  
Spurious emissions 25 MHz to 1 GHz  
Spurious emissions 1 GHz to 13 GHz  
868 MHz  
Conducted emissions measured according to ETSI EN 300 220  
802.15.4, 50 kbps, ±25 kHz deviation, 2-GFSK, 100 kHz RX Bandwidth  
Sensitivity  
BER = 102, 868 MHz  
BER = 102, 868 MHz  
BER = 102, 868 MHz(1)  
BER = 102, 868 MHz(1)  
BER = 102, 868 MHz(1)  
BER = 102, 868 MHz(1)  
BER = 102, 868 MHz(1)  
BER = 102, 868 MHz(1)  
dBm  
dBm  
dB  
110  
10  
Saturation limit  
Selectivity, ±200 kHz  
Selectivity, ±400 kHz  
Blocking, ±1 MHz  
Blocking, ±2 MHz  
Blocking, ±5 MHz  
Blocking, ±10 MHz  
44  
49  
dB  
58  
dB  
62  
dB  
70  
dB  
78  
dB  
Image rejection (image compensation  
enabled)  
BER = 102, 868 MHz(1)  
39  
dB  
RSSI dynamic range  
RSSI accuracy  
Starting from the sensitivity limit  
95  
±3  
dB  
dB  
Starting from the sensitivity limit across the given dynamic range  
802.15.4, 100 kbps, ±25 kHz deviation, 2-GFSK, 137 kHz RX Bandwidth  
Sensitivity 100 kbps  
Selectivity, ±200 kHz  
Selectivity, ±400 kHz  
Co-channel rejection  
868 MHz, 1% PER, 127 byte payload  
-103  
38  
dBm  
dB  
868 MHz, 1% PER, 127 byte payload. Wanted signal at -96 dBm  
868 MHz, 1% PER, 127 byte payload. Wanted signal at -96 dBm  
868 MHz, 1% PER, 127 byte payload. Wanted signal at -79 dBm  
45  
dB  
-9  
dB  
802.15.4, 200 kbps, ±50 kHz deviation, 2-GFSK, 311 kHz RX Bandwidth  
Sensitivity  
Sensitivity  
BER = 102, 868 MHz  
BER = 102, 915 MHz  
dBm  
dBm  
103  
103  
BER = 102, 915 MHz. Wanted signal 3 dB above sensitivity  
limit.  
Selectivity, ±400 kHz  
Selectivity, ±800 kHz  
Blocking, ±2 MHz  
44  
49  
57  
69  
dB  
dB  
dB  
dB  
BER = 102, 915 MHz. Wanted signal 3 dB above sensitivity  
limit.  
BER = 102, 915 MHz. Wanted signal 3 dB above sensitivity  
limit.  
BER = 102, 915 MHz. Wanted signal 3 dB above sensitivity  
limit.  
Blocking, ±10 MHz  
802.15.4, 500 kbps, ±190 kHz deviation, 2-GFSK, 655 kHz RX Bandwidth  
Sensitivity 500 kbps  
Selectivity, ±1 MHz  
Selectivity, ±2 MHz  
Co-channel rejection  
916 MHz, 1% PER, 127 byte payload  
-95  
35  
47  
-9  
dBm  
dB  
916 MHz, 1% PER, 127 byte payload. Wanted signal at -88 dBm  
916 MHz, 1% PER, 127 byte payload. Wanted signal at -88 dBm  
916 MHz, 1% PER, 127 byte payload. Wanted signal at -71 dBm  
dB  
dB  
SimpleLink™ Long Range 2.5 kbps or 5 kbps (20 ksym/s, 2-GFSK, ±5 kHz Deviation, FEC (Half Rate), DSSS = 1:2 or 1:4, 34 kHz RX Bandwidth  
Sensitivity  
2.5 kbps, BER = 102, 868 MHz  
5 kbps, BER = 102, 868 MHz  
2.5 kbps, BER = 102, 868 MHz  
2.5 kbps, BER = 102, 868 MHz(1)  
2.5 kbps, BER = 102, 868 MHz(1)  
2.5 kbps, BER = 102, 868 MHz(1)  
2.5 kbps, BER = 102, 868 MHz(1)  
-121  
-119  
10  
dBm  
dBm  
dBm  
dB  
Sensitivity  
Saturation limit  
Selectivity, ±100 kHz  
Selectivity, ±200 kHz  
Selectivity, ±300 kHz  
Blocking, ±1 MHz  
49  
50  
dB  
51  
dB  
63  
dB  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: CC1352P7  
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.10 861 MHz to 1054 MHz - Receive (RX) (continued)  
Measured on the CC1352-P7EM-XD7793-XD24-PA9093 reference design with Tc = 25 °C, VDDS = 3.6 V with  
DC/DC enabled and high power PA connected to VDDS unless otherwise noted.  
All measurements are performed at the antenna input with a combined RX and TX path, except for high power PA which is  
measured at a dedicated antenna connection. All measurements are performed conducted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Blocking, ±2 MHz  
2.5 kbps, BER = 102, 868 MHz(1)  
69  
dB  
dB  
dB  
Blocking, ±5 MHz  
Blocking, ±10 MHz  
2.5 kbps, BER = 102, 868 MHz(1)  
2.5 kbps, BER = 102, 868 MHz(1)  
79  
88  
Image rejection (image compensation  
enabled)  
2.5 kbps, BER = 102, 868 MHz(1)  
47  
dB  
RSSI dynamic range  
RSSI accuracy  
Starting from the sensitivity limit  
108  
±3  
dB  
dB  
Starting from the sensitivity limit across the given dynamic range  
OOK, 4.8 kbps, 39 kHz RX Bandwidth  
Sensitivity  
BER = 102, 868 MHz  
BER = 102, 915 MHz  
-114  
-114  
dBm  
dBm  
Sensitivity  
Narrowband, 9.6 kbps ±2.4 kHz deviation, 2-GFSK, 868 MHz, 17.1 kHz RX Bandwidth  
Sensitivity  
1% BER  
-117  
41  
dBm  
dB  
1% BER. Wanted signal 3 dB above the ETSI reference  
sensitivity limit (-104.6 dBm). Interferer ±20 kHz  
Adjacent Channel Rejection  
1% BER. Wanted signal 3 dB above the ETSI reference  
sensitivity limit (-104.6 dBm). Interferer ±40 kHz  
Alternate Channel Rejection  
Blocking, ±1 MHz  
42  
65  
69  
85  
dB  
dB  
dB  
dB  
1% BER. Wanted signal 3 dB above the ETSI reference  
sensitivity limit (-104.6 dBm).  
1% BER. Wanted signal 3 dB above the ETSI reference  
sensitivity limit (-104.6 dBm).  
Blocking, ±2 MHz  
1% BER. Wanted signal 3 dB above the ETSI reference  
sensitivity limit (-104.6 dBm).  
Blocking, ±10 MHz  
1 Mbps, ±350 kHz deviation, 2-GFSK, 2.2 MHz RX Bandwidth  
Sensitivity  
Sensitivity  
BER = 102, 868 MHz  
BER = 102, 915 MHz  
-97  
-97  
dBm  
dBm  
BER = 102, 915 MHz. Wanted signal 3 dB above sensitivity  
limit.  
Blocking, +2 MHz  
Blocking, -2 MHz  
Blocking, +10 MHz  
44  
27  
59  
54  
dB  
dB  
dB  
dB  
BER = 102, 915 MHz. Wanted signal 3 dB above sensitivity  
limit.  
BER = 102, 915 MHz. Wanted signal 3 dB above sensitivity  
limit.  
BER = 102, 915 MHz. Wanted signal 3 dB above sensitivity  
limit.  
Blocking, -10 MHz  
Wi-SUN, 2-GFSK  
Sensitivity  
50 kbps, ±12.5 kHz deviation, 2-GFSK, 866.6 MHz, 68 kHz RX  
BW, 10% PER, 250 byte payload  
-107  
30  
dBm  
dB  
50 kbps, ±12.5 kHz deviation, 2-GFSK, 68 kHz RX Bandwidth,  
866.6 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±100 kHz, 50 kbps, ±12.5 kHz  
deviation, 2-GFSK, 866.6 MHz  
50 kbps, ±12.5 kHz deviation, 2-GFSK, 68 kHz RX Bandwidth,  
866.6 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±200 kHz, 50 kbps, ±12.5 kHz  
deviation, 2-GFSK, 866.6 MHz  
36  
-107  
34  
dB  
dBm  
dB  
50 kbps, ±25 kHz deviation, 2-GFSK, 98 kHz RX Bandwidth,  
918.2 MHz, 10% PER, 250 byte payload  
Sensitivity  
50 kbps, ±25 kHz deviation, 2-GFSK, 98 kHz RX Bandwidth,  
918.2 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±200 kHz, 50 kbps, ±25 kHz  
deviation, 2-GFSK, 918.2 MHz  
50 kbps, ±25 kHz deviation, 2-GFSK, 98 kHz RX Bandwidth,  
918.2 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±400 kHz, 50 kbps, ±25 kHz  
deviation, 2-GFSK, 918.2 MHz  
41  
dB  
100 kbps, ±25 kHz deviation, 2-GFSK, 866.6 MHz, 135 kHz RX  
BW, 10% PER, 250 byte payload  
Sensitivity  
-104  
dBm  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: CC1352P7  
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.10 861 MHz to 1054 MHz - Receive (RX) (continued)  
Measured on the CC1352-P7EM-XD7793-XD24-PA9093 reference design with Tc = 25 °C, VDDS = 3.6 V with  
DC/DC enabled and high power PA connected to VDDS unless otherwise noted.  
All measurements are performed at the antenna input with a combined RX and TX path, except for high power PA which is  
measured at a dedicated antenna connection. All measurements are performed conducted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
100 kbps, ±25 kHz deviation, 2-GFSK, 135 kHz RX Bandwidth,  
866.6 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±200 kHz, 100 kbps, ±25 kHz  
deviation, 2-GFSK, 866.6 MHz  
37  
dB  
100 kbps, ±25 kHz deviation, 2-GFSK, 135 kHz RX Bandwidth,  
866.6 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±400 kHz, 100 kbps, ±25 kHz  
deviation, 2-GFSK, 866.6 MHz  
45  
-102  
40  
dB  
dBm  
dB  
100 kbps, ±50 kHz deviation, 2-GFSK, 920.9 MHz, 196 kHz RX  
BW, 10% PER, 250 byte payload  
Sensitivity  
100 kbps, ±50 kHz deviation, 2-GFSK, 196 kHz RX Bandwidth,  
920.9 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±400 kHz, 100 kbps, ±50 kHz  
deviation, 2-GFSK, 920.9 MHz  
100 kbps, ±50 kHz deviation, 2-GFSK, 196 kHz RX Bandwidth,  
920.9 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±800 kHz, 100 kbps, ±50 kHz  
deviation, 2-GFSK, 920.9 MHz  
49  
-99  
41  
dB  
dBm  
dB  
150 kbps, ±37.5 kHz deviation, 2-GFSK, 920.9 MHz, 273 kHz RX  
BW, 10% PER, 250 byte payload  
Sensitivity  
150 kbps, ±37.5 kHz deviation, 2-GFSK, 273 kHz RX Bandwidth,  
920.9 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±400 kHz, 150 kbps, ±37.5 kHz  
deviation, 2-GFSK, 920.9 MHz  
150 kbps, ±37.5 kHz deviation, 2-GFSK, 273 kHz RX Bandwidth,  
920.9 MHz, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±800 kHz, 150 kbps, ±37.5 kHz  
deviation, 2-GFSK, 920.9 MHz  
47  
-99  
42  
dB  
dBm  
dB  
200 kbps, ±50 kHz deviation, 2-GFSK, 918.4 MHz, 273 kHz RX  
BW, 10% PER, 250 byte payload  
Sensitivity  
200 kbps, ±50 kHz deviation, 2-GFSK, 273 kHz RX  
Bandwidth, 918.4 MHz, 10% PER, 250 byte payload. Wanted  
signal 3 dB above sensitivity level  
Selectivity, ±400 kHz, 200 kbps, ±50 kHz  
deviation, 2-GFSK, 918.4 MHz  
200 kbps, ±50 kHz deviation, 2-GFSK, 273 kHz RX  
Bandwidth, 918.4 MHz, 10% PER, 250 byte payload. Wanted  
signal 3 dB above sensitivity level  
Selectivity, ±800 kHz, 200 kbps, ±50 kHz  
deviation, 2-GFSK, 918.4 MHz  
49  
-99  
45  
dB  
dBm  
dB  
200 kbps, ±100 kHz deviation, 2-GFSK, 920.8 MHz, 273 kHz RX  
BW, 10% PER, 250 byte payload  
Sensitivity  
200 kbps, ±100 kHz deviation, 2-GFSK, 273 kHz RX  
Bandwidth, 920.8 MHz,, 10% PER, 250 byte payload. Wanted  
signal 3 dB above sensitivity level  
Selectivity, ±600 kHz, 200 kbps, ±100 kHz  
deviation, 2-GFSK, 920.8 MHz  
200 kbps, ±100 kHz deviation, 2-GFSK, 273 kHz RX  
Bandwidth, 920.8 MHz,, 10% PER, 250 byte payload. Wanted  
signal 3 dB above sensitivity level  
Selectivity, ±1200 kHz, 200 kbps, ±100 kHz  
deviation, 2-GFSK, 920.8 MHz  
52  
-97  
42  
dB  
dBm  
dB  
300 kbps, ±75 kHz deviation, 2-GFSK, 917.6 MHz, 498 kHz RX  
BW, 10% PER, 250 byte payload  
Sensitivity  
300 kbps, ±75 kHz deviation, 2-GFSK, 498 kHz RX Bandwidth,  
917.6 MHz,, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±600 kHz, 300 kbps, ±75 kHz  
deviation, 2-GFSK, 917.6 MHz  
300 kbps, ±75 kHz deviation, 2-GFSK, 498 kHz RX Bandwidth,  
917.6 MHz,, 10% PER, 250 byte payload. Wanted signal 3 dB  
above sensitivity level  
Selectivity, ±1200 kHz, 300 kbps, ±75 kHz  
deviation, 2-GFSK, 917.6 MHz  
47  
dB  
(1) Wanted signal 3 dB above the reference sensitivity limit according to ETSI EN 300 220 v. 3.1.1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: CC1352P7  
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.11 861 MHz to 1054 MHz - Transmit (TX)  
Measured on the CC1352-P7EM-XD7793-XD24-PA9093 reference design with Tc = 25°C, VDDS = 3.6 V with  
DC/DC enabled and high power PA connected to VDDS unless otherwise noted.  
All measurements are performed at the antenna input with a combined RX and TX path, except for high power PA which is  
measured at a dedicated antenna connection. All measurements are performed conducted. (1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
General parameters  
VDDR = 1.95 V  
Minimum supply voltage (VDDS ) for boost  
mode is 2.1 V  
Max output power, boost mode Sub-1 GHz PA(2)  
14  
dBm  
868 MHz and 915 MHz  
Max output power, Sub-1 GHz PA(2)  
868 MHz and 915 MHz  
13  
20  
34  
6
dBm  
dBm  
dB  
915 MHz  
VDDS = 3.3V  
Max output power, High power PA  
Output power programmable range Sub-1 GHz PA  
868 MHz and 915 MHz  
Output power programmable range  
High power PA  
868 MHz and 915 MHz  
VDDS = 3.3V  
dB  
+10 dBm setting  
Output power variation over temperature Sub-1 GHz PA  
Over recommended temperature operating  
range  
±2  
dB  
dB  
+14 dBm setting  
Over recommended temperature operating  
range  
Output power variation over temperature Boost mode, Sub-1 GHz  
PA  
±1.5  
Spurious emissions and harmonics  
+14 dBm setting  
ETSI restricted bands  
< -54  
< -36  
< -30  
< -56  
< -52  
< -50  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Spurious emissions  
30 MHz to 1 GHz  
(excluding harmonics)  
+14 dBm setting  
ETSI outside restricted bands  
Sub-1 GHz PA, 868 MHz  
(3)  
1 GHz to 12.75 GHz  
(outside ETSI restricted bands)  
+14 dBm setting  
measured in 1 MHz bandwidth (ETSI)  
30 MHz to 88 MHz  
(within FCC restricted bands)  
+14 dBm setting  
+14 dBm setting  
+14 dBm setting  
88 MHz to 216 MHz  
(within FCC restricted bands)  
Spurious emissions out-  
216 MHz to 960 MHz  
of-band  
(within FCC restricted bands)  
Sub-1 GHz PA, 915 MHz  
(3)  
960 MHz to 2390 MHz and above  
2483.5 MHz (within FCC restricted  
band)  
+14 dBm setting  
<-42  
dBm  
1 GHz to 12.75 GHz  
(outside FCC restricted bands)  
+14 dBm setting  
< -40  
< -55  
< -52  
< -49  
dBm  
dBm  
dBm  
dBm  
30 MHz to 88 MHz  
(within FCC restricted bands)  
+20 dBm setting, VDDS = 3.3 V  
+20 dBm setting, VDDS = 3.3 V  
+20 dBm setting, VDDS = 3.3 V  
88 MHz to 216 MHz  
(within FCC restricted bands)  
Spurious emissions out-  
216 MHz to 960 MHz  
of-band  
(within FCC restricted bands)  
High power PA, 915  
MHz(3) (4)  
960 MHz to 2390 MHz and above  
2483.5 MHz (within FCC restricted  
band)  
+20 dBm setting, VDDS = 3.3 V  
+20 dBm setting, VDDS = 3.3 V  
< -41  
< -20  
dBm  
dBm  
1 GHz to 12.75 GHz  
(outside FCC restricted bands)  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.11 861 MHz to 1054 MHz - Transmit (TX) (continued)  
Measured on the CC1352-P7EM-XD7793-XD24-PA9093 reference design with Tc = 25°C, VDDS = 3.6 V with  
DC/DC enabled and high power PA connected to VDDS unless otherwise noted.  
All measurements are performed at the antenna input with a combined RX and TX path, except for high power PA which is  
measured at a dedicated antenna connection. All measurements are performed conducted. (1)  
PARAMETER  
TEST CONDITIONS  
+14 dBm setting  
MIN  
TYP  
MAX UNIT  
Below 710 MHz  
(ARIB T-108)  
< -36  
dBm  
710 MHz to 900 MHz  
(ARIB T-108)  
+14 dBm setting  
+14 dBm setting  
+14 dBm setting  
+14 dBm setting  
+14 dBm setting  
< -55  
< -55  
< -55  
< -45  
< -30  
dBm  
dBm  
dBm  
dBm  
dBm  
900 MHz to 915 MHz  
(ARIB T-108)  
Spurious emissions out-  
of-band  
Sub-1 GHz PA, 920.6/928  
930 MHz to 1000 MHz  
(ARIB T-108)  
MHz (3)  
1000 MHz to 1215 MHz  
(ARIB T-108)  
Above 1215 MHz  
(ARIB T-108)  
+14 dBm setting, 868 MHz  
< -30  
< -30  
< -30  
< -42  
< -30  
< -30  
< -30  
< -42  
< -30  
< -42  
< -30  
< -42  
Second harmonic  
Third harmonic  
Fourth harmonic  
Fifth harmonic  
dBm  
dBm  
dBm  
dBm  
+14 dBm setting, 915 MHz  
+14 dBm setting, 868 MHz  
+14 dBm setting, 915 MHz  
Harmonics  
Sub-1 GHz PA  
+14 dBm setting, 868 MHz  
+14 dBm setting, 915 MHz  
+14 dBm setting, 868 MHz  
+14 dBm setting, 915 MHz  
Second harmonic  
Third harmonic  
Fourth harmonic  
Fifth harmonic  
+20 dBm setting, VDDS = 3.3 V, 915 MHz  
+20 dBm setting, VDDS = 3.3 V, 915 MHz  
+20 dBm setting, VDDS = 3.3 V, 915 MHz  
+20 dBm setting, VDDS = 3.3 V, 915 MHz  
dBm  
dBm  
dBm  
dBm  
Harmonics  
High power PA  
Adjacent Channel Power  
Adjacent channel power, Adjacent channel, 20 kHz offset. 9.6  
regular 14 dBm PA kbps, h=0.5  
12.5 dBm setting. 868.3 MHz. 14 kHz channel  
BW  
-23  
-29  
dBm  
dBm  
Alternate channel power, Alternate channel, 40 kHz offset. 9.6  
regular 14 dBm PA kbps, h=0.5  
12.5 dBm setting. 868.3 MHz. 14 kHz channel  
BW  
(1) Some combinations of frequency, data rate and modulation format requires use of external crystal load capacitors for regulatory  
compliance. More details can be found in the device errata.  
(2) Output power is dependent on RF match. For dual-band devices in the CC13X2 platform, output power might be slightly reduced  
depending on RF layout trade-offs.  
(3) Suitable for systems targeting compliance with EN 300 220, EN 303 131, EN 303 204, FCC CFR47 Part 15, ARIB STD-T108.  
(4) Spurious emissions increase for supply voltages below 2.2 V. As such, care must be taken to ensure regulatory requirements are met  
when operating at low supply voltage levels. An alternative is to use the Sub-1 GHz PA below 2.2 V.  
7.12 861 MHz to 1054 MHz - PLL Phase Noise Wideband Mode  
When measured on the CC1352-P7EM-XD7793-XD24-PA9093 reference design with Tc = 25 °C, VDDS = 3.0 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
±10 kHz offset  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
75  
±100 kHz offset  
±200 kHz offset  
±400 kHz offset  
±1000 kHz offset  
±2000 kHz offset  
±10000 kHz offset  
98  
106  
113  
122  
129  
140  
Phase noise in the 868- and 915-MHz bands  
20 kHz PLL loop bandwidth  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: CC1352P7  
 
 
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.13 861 MHz to 1054 MHz - PLL Phase Noise Narrowband Mode  
When measured on the CC1352-P7EM-XD7793-XD24-PA9093 reference design with Tc = 25 °C, VDDS = 3.0 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
±10 kHz offset  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
95  
±100 kHz offset  
±200 kHz offset  
±400 kHz offset  
±1000 kHz offset  
±2000 kHz offset  
±10000 kHz offset  
94  
95  
Phase noise in the 868- and 915-MHz bands  
150 kHz PLL loop bandwith  
104  
119  
129  
140  
7.14 Bluetooth Low Energy - Receive (RX)  
Measured on the CC1352-P7EM-XD7793-XD24-PA24 reference design with Tc = 25 °C, VDDS = 3.0 V, fRF= 2440 MHz with  
DC/DC enabled and high power PA connected to VDDS unless otherwise noted.  
All measurements are performed at the antenna input with a combined RX and TX path, except for high power PA which is  
measured at a dedicated antenna connection. All measurements are performed conducted.  
PARAMETER  
125 kbps (LE Coded)  
Receiver sensitivity  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Differential mode. BER = 103  
dBm  
dBm  
104  
Receiver saturation  
Differential mode. BER = 103  
>5  
Difference between the incoming carrier frequency and  
the internally generated carrier frequency  
Frequency error tolerance  
Data rate error tolerance  
Data rate error tolerance  
Co-channel rejection(1)  
Selectivity, ±1 MHz(1)  
Selectivity, ±2 MHz(1)  
Selectivity, ±3 MHz(1)  
Selectivity, ±4 MHz(1)  
Selectivity, ±6 MHz(1)  
Selectivity, ±7 MHz  
kHz  
ppm  
ppm  
dB  
> (300 / 300)  
> (320 / 240)  
> (125 / 100)  
1.5  
Difference between incoming data rate and the internally  
generated data rate (37-byte packets)  
Difference between incoming data rate and the internally  
generated data rate (255-byte packets)  
Wanted signal at 79 dBm, modulated interferer in  
channel, BER = 103  
Wanted signal at 79 dBm, modulated interferer at ±1  
8 / 4.5(2)  
dB  
MHz, BER = 103  
Wanted signal at 79 dBm, modulated interferer at ±2  
44 / 37(2)  
46 / 44(2)  
44 / 46(2)  
48 / 44(2)  
51 / 45(2)  
37  
dB  
MHz, BER = 103  
Wanted signal at 79 dBm, modulated interferer at ±3  
dB  
MHz, BER = 103  
Wanted signal at 79 dBm, modulated interferer at ±4  
dB  
MHz, BER = 103  
Wanted signal at 79 dBm, modulated interferer at ±6  
dB  
MHz, BER = 103  
Wanted signal at 79 dBm, modulated interferer at ±7  
dB  
MHz, BER = 103  
Wanted signal at 79 dBm, modulated interferer at  
Selectivity, Image frequency(1)  
dB  
image frequency, BER = 103  
Note that Image frequency + 1 MHz is the Co- channel –  
1 MHz. Wanted signal at 79 dBm, modulated interferer  
at ±1 MHz from image frequency, BER = 103  
Selectivity, Image frequency ±1  
MHz(1)  
4.5 / 44 (2)  
dB  
RSSI Range  
89  
±4  
dB  
dB  
RSSI Accuracy (+/-)  
500 kbps (LE Coded)  
Receiver sensitivity  
Receiver saturation  
Differential mode. BER = 103  
Differential mode. BER = 103  
dBm  
dBm  
100  
> 5  
Difference between the incoming carrier frequency and  
the internally generated carrier frequency  
Frequency error tolerance  
Data rate error tolerance  
kHz  
> (300 / 300)  
> (450 / 450)  
Difference between incoming data rate and the internally  
generated data rate (37-byte packets)  
ppm  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.14 Bluetooth Low Energy - Receive (RX) (continued)  
Measured on the CC1352-P7EM-XD7793-XD24-PA24 reference design with Tc = 25 °C, VDDS = 3.0 V, fRF= 2440 MHz with  
DC/DC enabled and high power PA connected to VDDS unless otherwise noted.  
All measurements are performed at the antenna input with a combined RX and TX path, except for high power PA which is  
measured at a dedicated antenna connection. All measurements are performed conducted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Difference between incoming data rate and the internally  
generated data rate (255-byte packets)  
Data rate error tolerance  
ppm  
> (150 / 175)  
Wanted signal at 72 dBm, modulated interferer in  
Co-channel rejection(1)  
Selectivity, ±1 MHz(1)  
Selectivity, ±2 MHz(1)  
Selectivity, ±3 MHz(1)  
Selectivity, ±4 MHz(1)  
Selectivity, ±6 MHz(1)  
Selectivity, ±7 MHz  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
3.5  
8 / 4(2)  
channel, BER = 103  
Wanted signal at 72 dBm, modulated interferer at ±1  
MHz, BER = 103  
Wanted signal at 72 dBm, modulated interferer at ±2  
43 / 35(2)  
46 / 46(2)  
45 / 47(2)  
46 / 45(2)  
49 / 45(2)  
35  
MHz, BER = 103  
Wanted signal at 72 dBm, modulated interferer at ±3  
MHz, BER = 103  
Wanted signal at 72 dBm, modulated interferer at ±4  
MHz, BER = 103  
Wanted signal at 72 dBm, modulated interferer at ±6  
MHz, BER = 103  
Wanted signal at 72 dBm, modulated interferer at ±7  
MHz, BER = 103  
Wanted signal at 72 dBm, modulated interferer at  
Selectivity, Image frequency(1)  
image frequency, BER = 103  
Note that Image frequency + 1 MHz is the Co- channel –  
1 MHz. Wanted signal at 72 dBm, modulated interferer  
at ±1 MHz from image frequency, BER = 103  
Selectivity, Image frequency ±1  
MHz(1)  
4 / 46(2)  
dB  
RSSI Range  
90  
±4  
dB  
dB  
RSSI Accuracy (+/-)  
1 Mbps (LE 1M)  
Receiver sensitivity  
Receiver saturation  
Differential mode. BER = 103  
Differential mode. BER = 103  
dBm  
dBm  
97  
> 5  
Difference between the incoming carrier frequency and  
the internally generated carrier frequency  
Frequency error tolerance  
Data rate error tolerance  
Co-channel rejection(1)  
Selectivity, ±1 MHz(1)  
kHz  
ppm  
dB  
> (350 / 350)  
> (650 / 750)  
6  
Difference between incoming data rate and the internally  
generated data rate (37-byte packets)  
Wanted signal at 67 dBm, modulated interferer in  
channel, BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±1  
7 / 4(2)  
dB  
MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±2  
Selectivity, ±2 MHz(1)  
39 / 33(2)  
36 / 40(2)  
36 / 45(2)  
40  
dB  
MHz,BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±3  
Selectivity, ±3 MHz(1)  
dB  
MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±4  
Selectivity, ±4 MHz(1)  
dB  
MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±5  
Selectivity, ±5 MHz or more(1)  
Selectivity, image frequency(1)  
dB  
MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at  
33  
dB  
image frequency, BER = 103  
Note that Image frequency + 1 MHz is the Co- channel –  
1 MHz. Wanted signal at 67 dBm, modulated interferer  
at ±1 MHz from image frequency, BER = 103  
Selectivity, image frequency  
±1 MHz(1)  
4 / 41(2)  
dB  
Out-of-band blocking(3)  
Out-of-band blocking  
Out-of-band blocking  
Out-of-band blocking  
30 MHz to 2000 MHz  
2003 MHz to 2399 MHz  
2484 MHz to 2997 MHz  
3000 MHz to 12.75 GHz  
dBm  
dBm  
dBm  
dBm  
10  
18  
12  
2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: CC1352P7  
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.14 Bluetooth Low Energy - Receive (RX) (continued)  
Measured on the CC1352-P7EM-XD7793-XD24-PA24 reference design with Tc = 25 °C, VDDS = 3.0 V, fRF= 2440 MHz with  
DC/DC enabled and high power PA connected to VDDS unless otherwise noted.  
All measurements are performed at the antenna input with a combined RX and TX path, except for high power PA which is  
measured at a dedicated antenna connection. All measurements are performed conducted.  
PARAMETER  
Intermodulation  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Wanted signal at 2402 MHz, 64 dBm. Two interferers  
at 2405 and 2408 MHz respectively, at the given power  
level  
dBm  
42  
Spurious emissions,  
30 to 1000 MHz  
dBm  
dBm  
Measurement in a 50-Ωsingle-ended load.  
Measurement in a 50-Ωsingle-ended load.  
< 59  
< 47  
Spurious emissions,  
1 to 12.75 GHz  
RSSI dynamic range  
RSSI accuracy  
70  
±4  
dB  
dB  
2 Mbps (LE 2M)  
Differential mode. Measured at SMA connector, BER =  
103  
Receiver sensitivity  
dBm  
dBm  
kHz  
ppm  
dB  
91  
> 5  
Differential mode. Measured at SMA connector, BER =  
103  
Receiver saturation  
Difference between the incoming carrier frequency and  
the internally generated carrier frequency  
Frequency error tolerance  
Data rate error tolerance  
Co-channel rejection(1)  
> (500 / 500)  
> (700 / 750)  
7  
Difference between incoming data rate and the internally  
generated data rate (37-byte packets)  
Wanted signal at 67 dBm, modulated interferer in  
channel,BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±2  
MHz, Image frequency is at 2 MHz, BER = 103  
Selectivity, ±2 MHz(1)  
8 / 4(2)  
36 / 34(2)  
37 / 36(2)  
4
dB  
dB  
dB  
dB  
Wanted signal at 67 dBm, modulated interferer at ±4  
Selectivity, ±4 MHz(1)  
MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at ±6  
Selectivity, ±6 MHz(1)  
MHz, BER = 103  
Wanted signal at 67 dBm, modulated interferer at  
Selectivity, image frequency(1)  
image frequency, BER = 103  
Note that Image frequency + 2 MHz is the Co-channel.  
Wanted signal at 67 dBm, modulated interferer at ±2  
MHz from image frequency, BER = 103  
Selectivity, image frequency  
±2 MHz(1)  
7 / 36(2)  
dB  
Out-of-band blocking(3)  
Out-of-band blocking  
Out-of-band blocking  
Out-of-band blocking  
30 MHz to 2000 MHz  
2003 MHz to 2399 MHz  
2484 MHz to 2997 MHz  
3000 MHz to 12.75 GHz  
dBm  
dBm  
dBm  
dBm  
16  
21  
15  
12  
Wanted signal at 2402 MHz, 64 dBm. Two interferers  
at 2408 and 2414 MHz respectively, at the given power  
level  
Intermodulation  
dBm  
38  
RSSI Range  
60  
±4  
dB  
dB  
RSSI Accuracy (+/-)  
(1) Numbers given as I/C dB  
(2) X / Y, where X is +N MHz and Y is N MHz  
(3) Excluding one exception at Fwanted / 2, per Bluetooth Specification  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.15 Bluetooth Low Energy - Transmit (TX)  
Measured on the CC1352-P7EM-XD7793-XD24-PA24 reference design with Tc = 25 °C, VDDS = 3.0 V, fRF= 2440 MHz with  
DC/DC enabled and high power PA connected to VDDS unless otherwise noted.  
All measurements are performed at the antenna input with a combined RX and TX path, except for high power PA which is  
measured at a dedicated antenna connection. All measurements are performed conducted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
General Parameters  
Max output power,  
high power PA  
20  
6
dBm  
dB  
Differential mode, delivered to a single-ended 50 Ωload through a balun  
Differential mode, delivered to a single-ended 50 Ωload through a balun  
Output power  
programmable range  
high power PA  
Max output power,  
high power PA, 10  
dBm configuration(3)  
10.5  
5
dBm  
dB  
Differential mode, delivered to a single-ended 50 Ωload through a balun  
Differential mode, delivered to a single-ended 50 Ωload through a balun  
Output power  
programmable range  
high power PA, 10  
dBm configuration(3)  
Max output power, 2.4  
GHz PA  
5
dBm  
dB  
Differential mode, delivered to a single-ended 50 Ωload through a balun  
Differential mode, delivered to a single-ended 50 Ωload through a balun  
Output power  
programmable range,  
2.4 GHz PA  
26  
Spurious emissions and harmonics  
f < 1 GHz, outside restricted bands  
< -36  
< -55  
-37  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Spurious emissions,  
f < 1 GHz, restricted bands FCC  
f > 1 GHz, including harmonics  
Second harmonic  
high-power PA(1)  
+20 dBm setting  
-35  
Harmonics,  
high-power PA(2)  
Third harmonic  
-42  
f < 1 GHz, outside restricted bands  
f < 1 GHz, restricted bands ETSI  
f < 1 GHz, restricted bands FCC,  
f > 1 GHz, including harmonics  
Second harmonic  
< -36  
< -54  
< -55  
-41  
Spurious emissions,  
high-power PA, 10  
dBm configuration(1)  
(3)  
+10 dBm setting(3)  
Harmonics,  
< -42  
high-power PA, 10  
dBm configuration(3)  
Third harmonic  
< -42  
dBm  
f < 1 GHz, outside restricted bands  
f < 1 GHz, restricted bands ETSI  
f < 1 GHz, restricted bands FCC  
f > 1 GHz, including harmonics  
Second harmonic  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
< 36  
< 54  
< 55  
< 42  
< 42  
< 42  
Spurious emissions,  
2.4 GHz PA  
+5 dBm setting  
Harmonics,  
2.4 GHz PA  
Third harmonic  
(1) To ensure margins for passing FCC band edge requirements at 2483.5 MHz, a lower than maximum output-power setting may be  
required when operating at the upper Bluetooth Low Energy channel(s).  
(2) To ensure margins for passing FCC requirements for harmonic emission, a reduction of maximum output-power may be required.  
(3) Measured on the CC1352-P7EM-XD7793-XD24-PA24_10dbm reference design.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: CC1352P7  
 
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.16 Zigbee and Thread - IEEE 802.15.4-2006 2.4 GHz (OQPSK DSSS1:8, 250 kbps) - RX  
Measured on the CC1352-P7EM-XD7793-XD24-PA24 reference design with Tc = 25 °C, VDDS = 3.0 V, fRF= 2440 MHz with  
DC/DC enabled and high power PA connected to VDDS unless otherwise noted.  
All measurements are performed at the antenna input with a combined RX and TX path, except for high power PA which is  
measured at a dedicated antenna connection. All measurements are performed conducted.  
PARAMETER  
General Parameters  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Receiver sensitivity  
Receiver saturation  
PER = 1%  
PER = 1%  
dBm  
dBm  
99  
> 5  
Wanted signal at 82 dBm, modulated interferer at ±5 MHz,  
PER = 1%  
Adjacent channel rejection  
Alternate channel rejection  
36  
57  
dB  
dB  
Wanted signal at 82 dBm, modulated interferer at ±10  
MHz, PER = 1%  
Wanted signal at 82 dBm, undesired signal is IEEE  
802.15.4 modulated channel, stepped through all channels  
2405 to 2480 MHz, PER = 1%  
Channel rejection, ±15 MHz or more  
59  
dB  
Blocking and desensitization,  
5 MHz from upper band edge  
Wanted signal at 97 dBm (3 dB above the sensitivity  
level), CW jammer, PER = 1%  
57  
62  
62  
65  
59  
59  
63  
65  
dB  
dB  
Blocking and desensitization,  
10 MHz from upper band edge  
Wanted signal at 97 dBm (3 dB above the sensitivity  
level), CW jammer, PER = 1%  
Blocking and desensitization,  
20 MHz from upper band edge  
Wanted signal at 97 dBm (3 dB above the sensitivity  
level), CW jammer, PER = 1%  
dB  
Blocking and desensitization,  
50 MHz from upper band edge  
Wanted signal at 97 dBm (3 dB above the sensitivity  
level), CW jammer, PER = 1%  
dB  
Blocking and desensitization,  
5 MHz from lower band edge  
Wanted signal at 97 dBm (3 dB above the sensitivity  
level), CW jammer, PER = 1%  
dB  
Blocking and desensitization,  
10 MHz from lower band edge  
Wanted signal at 97 dBm (3 dB above the sensitivity  
level), CW jammer, PER = 1%  
dB  
Blocking and desensitization,  
20 MHz from lower band edge  
Wanted signal at 97 dBm (3 dB above the sensitivity  
level), CW jammer, PER = 1%  
dB  
Blocking and desensitization,  
50 MHz from lower band edge  
Wanted signal at 97 dBm (3 dB above the sensitivity  
level), CW jammer, PER = 1%  
dB  
Spurious emissions, 30 MHz to 1000  
MHz  
dBm  
dBm  
ppm  
ppm  
Measurement in a 50-single-ended load  
Measurement in a 50-single-ended load  
66  
53  
Spurious emissions, 1 GHz to 12.75  
GHz  
Difference between the incoming carrier frequency and the  
internally generated carrier frequency  
Frequency error tolerance  
Symbol rate error tolerance  
> 350  
> 1000  
Difference between incoming symbol rate and the internally  
generated symbol rate  
RSSI dynamic range  
RSSI accuracy  
95  
±4  
dB  
dB  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.17 Zigbee and Thread - IEEE 802.15.4-2006 2.4 GHz (OQPSK DSSS1:8, 250 kbps) - TX  
Measured on the CC1352-P7EM-XD7793-XD24-PA24 reference design with Tc = 25 °C, VDDS = 3.0 V, fRF= 2440 MHz with  
DC/DC enabled and high power PA connected to VDDS unless otherwise noted.  
All measurements are performed at the antenna input with a combined RX and TX path, except for high power PA which is  
measured at a dedicated antenna connection. All measurements are performed conducted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
General Parameters  
Max output power, high  
power PA  
20  
6
dBm  
dB  
Differential mode, delivered to a single-ended 50-Ωload through a balun  
Differential mode, delivered to a single-ended 50-Ωload through a balun  
Output power  
programmable range,  
high power PA  
Max output power, high  
power PA, 10 dBm  
configuration(4)  
10.5  
5
dBm  
dB  
Differential mode, delivered to a single-ended 50-Ωload through a balun  
Differential mode, delivered to a single-ended 50-Ωload through a balun  
Output power  
programmable range,  
high power PA, 10 dBm  
configuration(4)  
Max output power, 2.4  
GHz PA  
5
dBm  
dB  
Differential mode, delivered to a single-ended 50-Ωload through a balun  
Differential mode, delivered to a single-ended 50-Ωload through a balun  
Output power  
programmable range,  
2.4 GHz PA  
26  
Spurious emissions and harmonics  
f < 1 GHz, outside restricted  
< -39  
dBm  
bands  
Spurious emissions,  
high-power PA(2)  
f < 1 GHz, restricted bands FCC  
f > 1 GHz, including harmonics  
Second harmonic  
< -49  
-40  
dBm  
dBm  
dBm  
dBm  
+20 dBm setting  
-35  
Harmonics,  
high-power PA(3)  
Third harmonic  
-42  
f < 1 GHz, outside restricted  
bands  
< -36  
dBm  
Spurious emissions,  
high-power PA, 10 dBm  
configuration(2) (4)  
f < 1 GHz, restricted bands ETSI  
f < 1 GHz, restricted bands FCC  
f > 1 GHz, including harmonics  
Second harmonic  
< -47  
< -55  
-42  
dBm  
dBm  
dBm  
dBm  
+10 dBm setting(4)  
Harmonics,  
< -42  
high-power PA, 10 dBm  
configuration(4)  
Third harmonic  
< -42  
< -36  
dBm  
dBm  
f < 1 GHz, outside restricted  
bands  
Spurious emissions,  
2.4 GHz PA (1)  
f < 1 GHz, restricted bands ETSI  
f < 1 GHz, restricted bands FCC  
f > 1 GHz, including harmonics  
Second harmonic  
< -47  
< -55  
dBm  
dBm  
dBm  
dBm  
dBm  
+5 dBm setting  
< 42  
< -42  
Harmonics,  
2.4 GHz PA  
Third harmonic  
< -42  
IEEE 802.15.4-2006 2.4 GHz (OQPSK DSSS1:8, 250 kbps)  
Error vector magnitude,  
+20 dBm setting  
2
2
2
%
%
%
high power PA  
Error vector magnitude,  
high power PA, 10 dBm  
+10 dBm setting  
+5 dBm setting  
configuration(4)  
Error vector magnitude,  
2.4-GHz PA  
(1) To ensure margins for passing FCC band edge requirements at 2483.5 MHz, a lower than maximum output-power setting or less than  
100% duty cycle may be used when operating at 2480 MHz.  
(2) To ensure margins for passing FCC band edge requirements at 2483.5 MHz, a lower than maximum output-power setting or less than  
100% duty cycle may be used when operating at the upper 802.15.4 channel(s).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: CC1352P7  
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
(3) To ensure margins for passing FCC requirements for harmonic emission, duty cycling may be required.  
(4) Measured on the CC1352-P7EM-XD7793-XD24-PA24_10dbm reference design.  
7.18 Timing and Switching Characteristics  
7.18.1 Reset Timing  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
RESET_N low duration  
1
µs  
7.18.2 Wakeup Timing  
Measured over operating free-air temperature with VDDS = 3.0 V (unless otherwise noted). The times listed here do not  
include software overhead.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
850 - 4000  
850 - 4000  
165  
MAX  
UNIT  
MCU, Reset to Active(1)  
µs  
µs  
µs  
µs  
µs  
MCU, Shutdown to Active(1)  
MCU, Standby to Active  
MCU, Active to Standby  
MCU, Idle to Active  
39  
15  
(1) The wakeup time is dependent on remaining charge on VDDR capacitor when starting the device, and thus how long the device has  
been in Reset or Shutdown before starting up again. The wake up time increases with a higher capacitor value.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.18.3 Clock Specifications  
7.18.3.1 48 MHz Crystal Oscillator (XOSC_HF)  
Measured on a Texas Instruments reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.(1)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Crystal frequency  
48  
MHz  
Equivalent series resistance  
6 pF < CL 9 pF  
ESR  
ESR  
20  
60  
80  
Ω
Equivalent series resistance  
5 pF < CL 6 pF  
Ω
Motional inductance, relates to the load capacitance that is used for the crystal (CL  
in Farads)(5)  
2
LM  
CL  
< 3 × 1025 / CL  
H
Crystal load capacitance(4)  
Start-up time(2)  
5
7(3)  
9
pF  
µs  
200  
(1) Probing or otherwise stopping the crystal while the DC/DC converter is enabled may cause permanent damage to the device.  
(2) Start-up time using the TI-provided power driver. Start-up time may increase if driver is not used.  
(3) On-chip default connected capacitance including reference design parasitic capacitance. Connected internal capacitance is changed  
through software in the Customer Configuration section (CCFG).  
(4) Adjustable load capacitance is integrated into the device. External load capacitors are required for systems targeting compliance with  
certain regulations. See the device errata for further details.  
(5) The crystal manufacturer's specification must satisfy this requirement for proper operation.  
7.18.3.2 48 MHz RC Oscillator (RCOSC_HF)  
Measured on a Texas Instruments reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
MIN  
TYP  
MAX  
UNIT  
MHz  
%
Frequency  
48  
Uncalibrated frequency accuracy  
Calibrated frequency accuracy(1)  
Start-up time  
±1  
±0.25  
5
%
µs  
(1) Accuracy relative to the calibration source (XOSC_HF)  
7.18.3.3 2 MHz RC Oscillator (RCOSC_MF)  
Measured on a Texas Instruments reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
MIN  
TYP  
MAX  
UNIT  
MHz  
µs  
Calibrated frequency  
Start-up time  
2
5
7.18.3.4 32.768 kHz Crystal Oscillator (XOSC_LF)  
Measured on a Texas Instruments reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
MIN  
TYP  
32.768  
30  
MAX  
UNIT  
kHz  
kΩ  
Crystal frequency  
ESR  
CL  
Equivalent series resistance  
Crystal load capacitance  
100  
12  
6
7(1)  
pF  
(1) Default load capacitance using TI reference designs including parasitic capacitance. Crystals with different load capacitance may be  
used.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: CC1352P7  
 
 
 
 
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.18.3.5 32 kHz RC Oscillator (RCOSC_LF)  
Measured on a Texas Instruments reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
MIN  
TYP  
MAX  
UNIT  
Frequency  
32.8  
kHz  
Calibrated  
RTC  
Calibrated periodically against XOSC_HF(2)  
±600(3)  
50  
ppm  
variation(1)  
Temperature coefficient  
ppm/°C  
(1) When using RCOSC_LF as source for the low frequency system clock (SCLK_LF), the accuracy of the SCLK_LF-derived Real Time  
Clock (RTC) can be improved by measuring RCOSC_LF relative to XOSC_HF and compensating for the RTC tick speed. This  
functionality is available through the TI-provided Power driver.  
(2) TI driver software calibrates the RTC every time XOSC_HF is enabled.  
(3) Some device's variation can exceed 1000 ppm. Further calibration will not improve variation.  
7.18.4 Synchronous Serial Interface (SSI) Characteristics  
7.18.4.1 Synchronous Serial Interface (SSI) Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
PARAMETER  
SSIClk cycle time  
MIN  
TYP  
MAX  
UNIT  
NO.  
S1  
tclk_per  
tclk_high  
tclk_low  
12  
65024  
System Clocks (2)  
tclk_per  
S2(1)  
S3(1)  
SSIClk high time  
SSIClk low time  
0.5  
0.5  
tclk_per  
(1) Refer to SSI timing diagrams 7-1, 7-2 and 7-3.  
(2) When using the TI-provided Power driver, the SSI system clock is always 48 MHz.  
S1  
S2  
SSIClk  
S3  
SSIFss  
SSITx  
MSB  
LSB  
SSIRx  
4 to 16 bits  
7-1. SSI Timing for TI Frame Format (FRF = 01), Single Transfer Timing Measurement  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
 
 
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
S2  
S1  
SSIClk  
SSIFss  
SSITx  
SSIRx  
S3  
MSB  
LSB  
8-bit control  
0
MSB  
LSB  
4 to 16 bits output data  
7-2. SSI Timing for MICROWIRE Frame Format (FRF = 10), Single Transfer  
S1  
S2  
SSIClk  
(SPO = 0)  
S3  
SSIClk  
(SPO = 1)  
SSITx  
(Master)  
MSB  
LSB  
SSIRx  
(Slave)  
MSB  
LSB  
SSIFss  
7-3. SSI Timing for SPI Frame Format (FRF = 00), With SPH = 1  
7.18.5 UART  
7.18.5.1 UART Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
UART rate  
2.89  
MBaud  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: CC1352P7  
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.19 Peripheral Characteristics  
7.19.1 ADC  
7.19.1.1 Analog-to-Digital Converter (ADC) Characteristics  
Tc = 25 °C, VDDS = 3.0 V and voltage scaling enabled, unless otherwise noted.(1)  
Performance numbers require use of offset and gain adjustments in software by TI-provided ADC drivers.  
PARAMETER  
Input voltage range  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
0
VDDS  
12  
Bits  
ksps  
LSB  
LSB  
LSB  
LSB  
Sample Rate  
200  
Offset  
Internal 4.3 V equivalent reference(2)  
±2  
±7  
Gain error  
Internal 4.3 V equivalent reference(2)  
DNL(4)  
INL  
Differential nonlinearity  
Integral nonlinearity  
>1  
±4  
Internal 4.3 V equivalent reference(2), 200 kSamples/s,  
9.6 kHz input tone  
9.8  
Internal 4.3 V equivalent reference(2), 200 kSamples/s,  
9.6 kHz input tone, DC/DC enabled  
9.8  
10.1  
11.1  
VDDS as reference, 200 kSamples/s, 9.6 kHz input tone  
ENOB  
Effective number of bits  
Bits  
Internal reference, voltage scaling disabled,  
32 samples average, 200 kSamples/s, 300 Hz input tone  
Internal reference, voltage scaling disabled,  
11.3  
11.6  
14-bit mode, 200 kSamples/s, 600 Hz input tone (5)  
Internal reference, voltage scaling disabled,  
15-bit mode, 200 kSamples/s, 150 Hz input tone (5)  
Internal 4.3 V equivalent reference(2), 200 kSamples/s,  
9.6 kHz input tone  
65  
70  
72  
THD  
Total harmonic distortion  
VDDS as reference, 200 kSamples/s, 9.6 kHz input tone  
dB  
dB  
dB  
Internal reference, voltage scaling disabled,  
32 samples average, 200 kSamples/s, 300 Hz input tone  
Internal 4.3 V equivalent reference(2), 200 kSamples/s,  
9.6 kHz input tone  
60  
63  
68  
Signal-to-noise  
and  
distortion ratio  
SINAD,  
SNDR  
VDDS as reference, 200 kSamples/s, 9.6 kHz input tone  
Internal reference, voltage scaling disabled,  
32 samples average, 200 kSamples/s, 300 Hz input tone  
Internal 4.3 V equivalent reference(2), 200 kSamples/s,  
9.6 kHz input tone  
70  
73  
75  
SFDR  
Spurious-free dynamic range VDDS as reference, 200 kSamples/s, 9.6 kHz input tone  
Internal reference, voltage scaling disabled,  
32 samples average, 200 kSamples/s, 300 Hz input tone  
Conversion time  
Serial conversion, time-to-output, 24 MHz clock  
Internal 4.3 V equivalent reference(2)  
VDDS as reference  
50  
0.40  
0.57  
Clock Cycles  
Current consumption  
Current consumption  
mA  
mA  
Equivalent fixed internal reference (input voltage scaling  
enabled). For best accuracy, the ADC conversion should be  
initiated through the TI-RTOS API in order to include the gain/  
offset compensation factors stored in FCFG1  
Reference voltage  
4.3(2) (3)  
V
Fixed internal reference (input voltage scaling disabled). For  
best accuracy, the ADC conversion should be initiated through  
the TI-RTOS API in order to include the gain/offset  
compensation factors stored in FCFG1. This value is derived  
from the scaled value (4.3 V) as follows:  
Reference voltage  
1.48  
V
Vref = 4.3 V × 1408 / 4095  
Reference voltage  
Reference voltage  
VDDS as reference, input voltage scaling enabled  
VDDS as reference, input voltage scaling disabled  
VDDS  
V
V
VDDS /  
2.82(3)  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.19.1.1 Analog-to-Digital Converter (ADC) Characteristics (continued)  
Tc = 25 °C, VDDS = 3.0 V and voltage scaling enabled, unless otherwise noted.(1)  
Performance numbers require use of offset and gain adjustments in software by TI-provided ADC drivers.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
200 kSamples/s, voltage scaling enabled. Capacitive input,  
Input impedance depends on sampling frequency and sampling  
time  
Input impedance  
>1  
MΩ  
(1) Using IEEE Std 1241-2010 for terminology and test methods  
(2) Input signal scaled down internally before conversion, as if voltage range was 0 to 4.3 V  
(3) Applied voltage must be within Absolute Maximum Ratings at all times  
(4) No missing codes  
(5) ADC_output = Σ(4n samples ) >> n, n = desired extra bits  
7.19.2 DAC  
7.19.2.1 Digital-to-Analog Converter (DAC) Characteristics  
Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
General Parameters  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
8
Bits  
Any load, any VREF, pre-charge OFF, DAC charge-pump ON  
1.8  
2.0  
3.8  
3.8  
External Load(4), any VREF, pre-charge OFF, DAC charge-pump  
OFF  
VDDS  
Supply voltage  
V
Any load, VREF = DCOUPL, pre-charge ON  
Buffer ON (recommended for external load)  
Buffer OFF (internal load)  
2.6  
16  
16  
3.8  
250  
FDAC  
Clock frequency  
kHz  
1000  
VREF = VDDS, buffer OFF, internal load  
VREF = VDDS, buffer ON, external capacitive load = 20 pF(3)  
13  
13.8  
20  
Voltage output settling time  
1 / FDAC  
External capacitive load  
External resistive load  
Short circuit current  
200  
400  
pF  
MΩ  
µA  
10  
VDDS = 3.8 V, DAC charge-pump OFF  
VDDS = 3.0 V, DAC charge-pump ON  
VDDS = 3.0 V, DAC charge-pump OFF  
VDDS = 2.0 V, DAC charge-pump ON  
VDDS = 2.0 V, DAC charge-pump OFF  
VDDS = 1.8 V, DAC charge-pump ON  
VDDS = 1.8 V, DAC charge-pump OFF  
50.8  
51.7  
53.2  
48.7  
70.2  
46.3  
88.9  
Max output impedance Vref =  
VDDS, buffer ON, CLK 250  
kHz  
ZMAX  
kΩ  
Internal Load - Continuous Time Comparator / Low Power Clocked Comparator  
VREF = VDDS,  
load = Continuous Time Comparator or Low Power Clocked  
Comparator  
FDAC = 250 kHz  
Differential nonlinearity  
Differential nonlinearity  
±1  
DNL  
LSB(1)  
VREF = VDDS,  
load = Continuous Time Comparator or Low Power Clocked  
Comparator  
±1.2  
FDAC = 16 kHz  
VREF = VDDS = 3.8 V  
±0.64  
±0.81  
±1.27  
±3.43  
±2.88  
±2.37  
VREF = VDDS= 3.0 V  
Offset error(2)  
Load = Continuous Time  
Comparator  
VREF = VDDS = 1.8 V  
LSB(1)  
VREF = DCOUPL, pre-charge ON  
VREF = DCOUPL, pre-charge OFF  
VREF = ADCREF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: CC1352P7  
 
 
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.19.2.1 Digital-to-Analog Converter (DAC) Characteristics (continued)  
Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
±0.78  
±0.77  
±3.46  
±3.44  
±4.70  
±4.11  
±1.53  
±1.71  
±2.10  
±6.00  
±3.85  
±5.84  
±2.92  
±3.06  
±3.91  
±7.84  
±4.06  
±6.94  
0.03  
MAX  
UNIT  
VREF = VDDS= 3.8 V  
VREF = VDDS = 3.0 V  
VREF = VDDS= 1.8 V  
Offset error(2)  
Load = Low Power Clocked  
Comparator  
LSB(1)  
VREF = DCOUPL, pre-charge ON  
VREF = DCOUPL, pre-charge OFF  
VREF = ADCREF  
VREF = VDDS = 3.8 V  
VREF = VDDS = 3.0 V  
Max code output voltage  
variation(2)  
Load = Continuous Time  
Comparator  
VREF = VDDS= 1.8 V  
LSB(1)  
VREF = DCOUPL, pre-charge ON  
VREF = DCOUPL, pre-charge OFF  
VREF = ADCREF  
VREF = VDDS= 3.8 V  
VREF =VDDS= 3.0 V  
Max code output voltage  
variation(2)  
Load = Low Power Clocked  
Comparator  
VREF = VDDS= 1.8 V  
LSB(1)  
VREF = DCOUPL, pre-charge ON  
VREF = DCOUPL, pre-charge OFF  
VREF = ADCREF  
VREF = VDDS = 3.8 V, code 1  
VREF = VDDS = 3.8 V, code 255  
VREF = VDDS= 3.0 V, code 1  
VREF = VDDS= 3.0 V, code 255  
VREF = VDDS= 1.8 V, code 1  
VREF = VDDS = 1.8 V, code 255  
VREF = DCOUPL, pre-charge OFF, code 1  
VREF = DCOUPL, pre-charge OFF, code 255  
VREF = DCOUPL, pre-charge ON, code 1  
VREF = DCOUPL, pre-charge ON, code 255  
VREF = ADCREF, code 1  
3.62  
0.02  
2.86  
0.01  
Output voltage range(2)  
Load = Continuous Time  
Comparator  
1.71  
V
0.01  
1.21  
1.27  
2.46  
0.01  
VREF = ADCREF, code 255  
1.41  
VREF = VDDS = 3.8 V, code 1  
VREF = VDDS= 3.8 V, code 255  
VREF = VDDS= 3.0 V, code 1  
VREF = VDDS= 3.0 V, code 255  
VREF = VDDS = 1.8 V, code 1  
VREF = VDDS = 1.8 V, code 255  
VREF = DCOUPL, pre-charge OFF, code 1  
VREF = DCOUPL, pre-charge OFF, code 255  
VREF = DCOUPL, pre-charge ON, code 1  
VREF = DCOUPL, pre-charge ON, code 255  
VREF = ADCREF, code 1  
0.03  
3.61  
0.02  
2.85  
0.01  
Output voltage range(2)  
Load = Low Power Clocked  
Comparator  
1.71  
V
0.01  
1.21  
1.27  
2.46  
0.01  
VREF = ADCREF, code 255  
1.41  
External Load  
VREF = VDDS, FDAC = 250 kHz  
VREF = DCOUPL, FDAC = 250 kHz  
VREF = ADCREF, FDAC = 250 kHz  
VREF = VDDS, FDAC = 250 kHz  
±1  
±2  
±1  
±1  
INL  
Integral nonlinearity  
LSB(1)  
LSB(1)  
DNL  
Differential nonlinearity  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: CC1352P7  
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.19.2.1 Digital-to-Analog Converter (DAC) Characteristics (continued)  
Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
±0.40  
±0.50  
±0.75  
±1.55  
±1.30  
±1.10  
±1.00  
±1.00  
±1.00  
±3.45  
±2.10  
±1.90  
0.03  
MAX  
UNIT  
VREF = VDDS= 3.8 V  
VREF = VDDS= 3.0 V  
VREF = VDDS = 1.8 V  
Offset error  
LSB(1)  
VREF = DCOUPL, pre-charge ON  
VREF = DCOUPL, pre-charge OFF  
VREF = ADCREF  
VREF = VDDS= 3.8 V  
VREF = VDDS= 3.0 V  
VREF = VDDS= 1.8 V  
Max code output voltage  
variation  
LSB(1)  
VREF = DCOUPL, pre-charge ON  
VREF = DCOUPL, pre-charge OFF  
VREF = ADCREF  
VREF = VDDS = 3.8 V, code 1  
VREF = VDDS = 3.8 V, code 255  
VREF = VDDS = 3.0 V, code 1  
VREF = VDDS= 3.0 V, code 255  
VREF = VDDS= 1.8 V, code 1  
VREF = VDDS = 1.8 V, code 255  
VREF = DCOUPL, pre-charge OFF, code 1  
VREF = DCOUPL, pre-charge OFF, code 255  
VREF = DCOUPL, pre-charge ON, code 1  
VREF = DCOUPL, pre-charge ON, code 255  
VREF = ADCREF, code 1  
3.61  
0.02  
2.85  
0.02  
Output voltage range  
Load = Low Power Clocked  
Comparator  
1.71  
V
0.02  
1.20  
1.27  
2.46  
0.02  
VREF = ADCREF, code 255  
1.42  
(1) 1 LSB (VREF 3.8 V/3.0 V/1.8 V/DCOUPL/ADCREF) = 14.10 mV/11.13 mV/6.68 mV/4.67 mV/5.48 mV  
(2) Includes comparator offset  
(3) A load > 20 pF will increases the settling time  
(4) Keysight 34401A Multimeter  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: CC1352P7  
 
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.19.3 Temperature and Battery Monitor  
7.19.3.1 Temperature Sensor  
Measured on a Texas Instruments reference design with Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
°C  
Resolution  
Accuracy  
Accuracy  
2
-40 °C to 0 °C  
0 °C to 105 °C  
±4.0  
±2.5  
3.6  
°C  
°C  
Supply voltage coefficient(1)  
°C/V  
(1) The temperature sensor is automatically compensated for VDDS variation when using the TI-provided temperature driver.  
7.19.3.2 Battery Monitor  
Measured on a Texas Instruments reference design with Tc = 25 °C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mV  
V
Resolution  
Range  
25  
1.8  
3.8  
Integral nonlinearity (max)  
Accuracy  
23  
22.5  
-32  
-1  
mV  
mV  
mV  
%
VDDS = 3.0 V  
Offset error  
Gain error  
7.19.4 Comparators  
7.19.4.1 Low-Power Clocked Comparator  
Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Input voltage range  
Clock frequency  
0
VDDS  
V
SCLK_LF  
Using internal DAC with VDDS as reference voltage,  
DAC code = 0 - 255  
Internal reference voltage(1)  
Offset  
0.024 - 2.865  
V
Measured at VDDS / 2, includes error from internal DAC  
±5  
1
mV  
Clock  
Cycle  
Decision time  
Step from 50 mV to 50 mV  
(1) The comparator can use an internal 8 bits DAC as its reference. The DAC output voltage range depends on the reference voltage  
selected. See #none#  
7.19.4.2 Continuous Time Comparator  
Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
Input voltage range(1)  
Offset  
0
VDDS  
Measured at VDDS / 2  
±5  
0.70  
8.0  
mV  
µs  
Decision time  
Step from 10 mV to 10 mV  
Current consumption  
Internal reference  
µA  
(1) The input voltages can be generated externally and connected throughout I/Os or an internal reference voltage can be generated using  
the DAC  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.19.5 Current Source  
7.19.5.1 Programmable Current Source  
Tc = 25 °C, VDDS = 3.0 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.25 - 20  
0.25  
MAX UNIT  
Current source programmable output range (logarithmic  
range)  
µA  
µA  
Resolution  
7.19.6 GPIO  
7.19.6.1 GPIO DC Characteristics  
Measurements CBSed to PG2.1:  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TA = 25 °C, VDDS = 1.8 V  
GPIO VOH at 8 mA load  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 1  
1.56  
0.24  
1.59  
0.21  
73  
V
V
GPIO VOL at 8 mA load  
GPIO VOH at 4 mA load  
V
GPIO VOL at 4 mA load  
IOCURR = 1  
V
GPIO pullup current  
Input mode, pullup enabled, Vpad = 0 V  
Input mode, pulldown enabled, Vpad = VDDS  
IH = 1, transition voltage for input read as 0 1  
IH = 1, transition voltage for input read as 1 0  
µA  
µA  
V
GPIO pulldown current  
19  
GPIO low-to-high input transition, with hysteresis  
GPIO high-to-low input transition, with hysteresis  
1.08  
0.73  
V
IH = 1, difference between 0 1  
and 1 0 points  
GPIO input hysteresis  
0.35  
V
TA = 25 °C, VDDS = 3.0 V  
GPIO VOH at 8 mA load  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 2, high-drive GPIOs only  
IOCURR = 1  
2.59  
0.42  
2.63  
0.40  
V
V
V
V
GPIO VOL at 8 mA load  
GPIO VOH at 4 mA load  
GPIO VOL at 4 mA load  
IOCURR = 1  
TA = 25 °C, VDDS = 3.8 V  
GPIO pullup current  
Input mode, pullup enabled, Vpad = 0 V  
282  
110  
µA  
µA  
V
GPIO pulldown current  
Input mode, pulldown enabled, Vpad = VDDS  
IH = 1, transition voltage for input read as 0 1  
IH = 1, transition voltage for input read as 1 0  
GPIO low-to-high input transition, with hysteresis  
GPIO high-to-low input transition, with hysteresis  
1.97  
1.55  
V
IH = 1, difference between 0 1  
and 1 0 points  
GPIO input hysteresis  
TA = 25 °C  
0.42  
V
Lowest GPIO input voltage reliably interpreted as a  
High  
VIH  
0.8*VDDS  
V
Highest GPIO input voltage reliably interpreted as a  
Low  
VIL  
0.2*VDDS  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: CC1352P7  
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.20 Typical Characteristics  
All measurements in this section are done with Tc = 25 °C and VDDS = 3.0 V, unless otherwise noted. See 7.3  
for device limits. Values exceeding these limits are for reference only.  
7.20.1 MCU Current  
Active Current vs. VDDS  
Standby Current vs. Temperature  
144 kB RAM retention, no Cache Retention, RTC On  
SCLK_LF = 32 kHz XOSC  
Running CoreMark, SCLK_HF = 48 MHz RCOSC  
6
5.5  
5
8
7
6
5
4
3
2
1
0
4.5  
4
3.5  
3
2.5  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
Temperature [oC]  
Voltage [V]  
7-4. Active Mode (MCU) Current vs. Supply Voltage (VDDS)  
7-5. Standby Mode (MCU) Current vs. Temperature  
7.20.2 RX Current  
RX Current vs. Temperature  
RX Current vs. Temperature  
50 kbps, 868.3 MHz, VDSS = 3.6 V  
Bluetooth Low Energy 1 Mbps, 2.44 GHz  
7
6.8  
6.6  
6.4  
6.2  
6
7.5  
7.4  
7.3  
7.2  
7.1  
7
6.9  
6.8  
6.7  
6.6  
6.5  
6.4  
6.3  
6.2  
6.1  
6
5.8  
5.6  
5.4  
5.2  
5
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
Temperature [oC]  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
Temperature [C]  
7-7. RX Current vs. Temperature (Bluetooth Low Energy 1  
7-6. RX Current vs. Temperature (50 kbps, 868.3 MHz, VDDS  
Mbps, 2.44 GHz)  
= 3.6 V)  
RX Current vs. VDSS  
RX Current vs. VDDS  
50 kbps, 868.3 MHz  
Bluetooth Low Energy 1 Mbps, 2.44 GHz  
11  
10.5  
10  
9.5  
9
11.5  
11  
10.5  
10  
9.5  
9
8.5  
8
8.5  
8
7.5  
7
7.5  
7
6.5  
6
6.5  
6
5.5  
5.5  
5
5
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
Voltage [V]  
Voltage [V]  
7-8. RX Current vs. Supply Voltage (VDDS) (50 kbps, 868.3  
7-9. RX Current vs. Supply Voltage (VDDS) (Bluetooth Low  
MHz)  
Energy 1 Mbps, 2.44 GHz)  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.20.3 TX Current  
TX Current vs. Temperature  
50 kbps, 868.3 MHz, +10 dBm, VDDS = 3.6 V  
TX Current vs. Temperature  
50 kbps, 915 MHz, +20 dBm PA, VDDS = 3.3 V  
18  
17.7  
17.4  
17.1  
16.8  
16.5  
16.2  
15.9  
15.6  
15.3  
15  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
+20 dBm  
+19 dBm  
+18 dBm  
+17 dBm  
+16 dBm  
+15 dBm  
+14 dBm  
14.7  
14.4  
14.1  
13.8  
13.5  
13.2  
12.9  
12.6  
12.3  
12  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110  
Temperature [°C]  
Temperature [°C]  
D015  
D016  
7-10. TX Current vs. Temperature (50 kbps, 868.3 MHz, VDDS  
7-11. TX Current vs. Temperature (50 kbps, 915 MHz, VDDS =  
= 3.6 V)  
3.3 V)  
TX Current vs. Temperature  
TX Current vs. Temperature  
Bluetooth Low Energy 1 Mbps, 2.44 GHz, 0 dBm  
Bluetooth Low Energy 1 Mbps, 2.44 GHz, +20 dBm PA  
8
7.8  
7.6  
7.4  
7.2  
7
150  
+20 dBm  
140  
130  
120  
110  
100  
90  
+19 dBm  
+18 dBm  
+17 dBm  
+16 dBm  
+15 dBm  
+14 dBm  
6.8  
6.6  
6.4  
6.2  
6
80  
70  
60  
50  
40  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
Temperature [oC]  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
Temperature [°C]  
7-12. TX Current vs. Temperature (Bluetooth Low Energy 1  
7-13. TX Current vs. Temperature (Bluetooth Low Energy 1  
Mbps, 2.44 GHz)  
Mbps, 2.44 GHz, VDDS = 3.3 V)  
TX Current vs. Temperature  
TX Current vs. VDDS  
50 kbps, 868.3 MHz, +10 dBm  
Bluetooth Low Energy 1 Mbps, 2.44 GHz, + 10 dBm PA  
26  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
+ 10 dBm  
+ 9 dBm  
+ 8 dBm  
+ 7 dBm  
+ 6 dBm  
24  
22  
20  
18  
16  
14  
12  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
Temperature [C]  
1.8 1.9  
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
3
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8  
Voltage [V]  
D022  
7-14. TX Current vs. Temperature (250 kbps, 2.44 GHz, +10  
dBm PA)  
7-15. TX Current vs. Supply Voltage (VDDS) (50 kbps, 868.3  
MHz)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: CC1352P7  
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.20.3 TX Current (continued)  
TX Current vs. VDDS  
TX Current vs. VDDS  
50 kbps, 915 MHz, +20 dBm PA  
Bluetooth Low Energy 1 Mbps, 2.44 GHz, 0 dBm  
12  
11.5  
11  
70  
+20 dBm  
+19 dBm  
65  
+18 dBm  
+17 dBm  
10.5  
10  
60  
+16 dBm  
+15 dBm  
55  
+14 dBm  
9.5  
9
50  
45  
40  
35  
30  
25  
8.5  
8
7.5  
7
6.5  
6
5.5  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
Voltage [V]  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
Voltage [V]  
7-17. TX Current vs. Supply Voltage (VDDS) (Bluetooth Low  
D023  
Energy 1 Mbps, 2.44 GHz)  
7-16. TX Current vs. Supply Voltage (VDDS) (50 kbps, 915  
MHz)  
TX Current vs. VDDS  
TX Current vs. VDDS  
Bluetooth Low Energy 1 Mbps, 2.44 GHz, +20 dBm PA  
Bluetooth Low Energy 1 Mbps 2.44GHz, + 10 dBm PA  
130  
45  
+20 dBm  
+19 dBm  
+18 dBm  
+17 dBm  
+16 dBm  
+15 dBm  
+14 dBm  
+ 10 dBm  
+ 9 dBm  
+ 8 dBm  
+ 7 dBm  
+ 6 dBm  
125  
120  
115  
110  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
40  
35  
30  
25  
20  
15  
10  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
1.8 1.9  
2
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8  
Voltage [V]  
Voltage [V]  
7-19. TX Current vs. Supply Voltage (VDDS) (250 kbps, 2.44  
7-18. TX Current vs. Supply Voltage (VDDS) (Bluetooth Low  
GHz, +10 dBm PA)  
Energy 1 Mbps, 2.44 GHz, +20 dBm PA)  
7-1. Typical TX Current and Output Power  
CC1352P7 at 868 MHz, VDDS = 3.6 V (1) (Measured on CC1352P-7EM-XD7793-XD24-PA9093)  
txPower  
0x013F1  
0xB224  
0x895E  
0x669A  
0x3E92  
0x3EDC  
0x2CD8  
0x26D4  
0x20D1  
0x1CCE  
0x16CD  
0x14CB  
0x12CA  
TX Power Setting (SmartRF Studio)  
Typical Output Power [dBm]  
Typical Current Consumption [mA]  
14  
12.5  
12  
11  
10  
9
13.6  
11.9  
11.5  
10.6  
9.7  
24  
17  
16  
15  
14  
13  
12  
11  
10  
10  
9
8.9  
8
8.3  
7
7.4  
6
6.3  
5
4.8  
4
4.2  
3
2.8  
8
2
1.9  
8
1
Boost mode enabled. VDDR regulated to 1.95 V.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.20.3 TX Current (continued)  
7-1. Typical TX Current and Output Power (continued)  
CC1352P7 at 868 MHz, VDDS = 3.6 V (1) (Measured on CC1352P-7EM-XD7793-XD24-PA9093)  
txPower  
0x12C9  
0x10C8  
0x0AC4  
0x0AC2  
0x06C1  
0x04C0  
TX Power Setting (SmartRF Studio)  
Typical Output Power [dBm]  
Typical Current Consumption [mA]  
1
1.0  
8
7
6
5
5
4
0
-0.1  
-5  
-6.8  
-10  
-15  
-20  
-13.3  
-18.5  
-22.0  
(1) Internal regulated voltage powers the PA, therefore the output power is not affected by variation in VDDS voltage.  
7-2. Typical TX Current and Output Power  
CC1352P7 at 915 MHz, VDDS = 3.3 V (1) (Measured on CC1352P-7EM-XD7793-XD24-PA9093)  
txPower  
0x1B8ED2  
0x448CF  
0x48022  
0x2661C  
0x5618  
TX Power Setting (SmartRF Studio)  
Typical Output Power [dBm]  
Typical Current Consumption [mA]  
20  
19  
18  
17  
16  
15  
14  
20.4  
19.3  
17.8  
16.8  
15.9  
14.9  
13.7  
65  
55  
45  
41  
37  
33  
30  
0x4812  
0x380D  
(1) VDDS powers the PA, therefore the output power is affected by variation in VDDS voltage.  
7-3. Typical TX Current and Output Power  
CC1352P7 at 2.4 GHz, VDDS = 3.3 V (1) (Measured on CC1352-7PEM-XD7793-XD24-PA24)  
txPower  
0x3F75F5  
0x3F61E2  
0x3047E0  
0x1B4FE5  
0x1B39DE  
0x1B2FDA  
0x1B27D6  
TX Power Setting (SmartRF Studio)  
Typical Output Power [dBm]  
Typical Current Consumption [mA]  
20  
19  
18  
17  
16  
15  
14  
19.6  
18.3  
17.4  
16.3  
15.2  
14.3  
13.2  
102  
86  
79  
71  
63  
58  
52  
(1) VDDS powers the PA, therefore the output power is affected by variation in VDDS voltage.  
7-4. Typical TX Current and Output Power  
CC1352P7 at 2.4 GHz, VDDS = 3.0 V (1) (Measured on CC1352-7PEM-XD7793-XD24-PA24_10dBm)  
txPower  
0x103F5F  
0x10335A  
0x143661  
0x144F2A  
0x144F26  
0x144722  
TX Power Setting (SmartRF Studio)  
Typical Output Power [dBm]  
Typical Current Consumption [mA]  
10  
9
10.7  
9.6  
8.5  
7.6  
6.6  
5.4  
21  
19  
19  
17  
16  
15  
8
7
6
5
(1) Internal regulated voltage powers the PA, therefore the output power is not affected by variation in VDDS voltage.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: CC1352P7  
 
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.20.3 TX Current (continued)  
7-5. Typical TX Current and Output Power  
CC1352P7 at 2.4 GHz, VDDS = 3.0 V (1) (Measured on CC1352-7PEM-XD7793-XD24-PA24)  
txPower  
0x762E  
0x8220  
0x5617  
0x3E66  
0x3261  
0x2C5D  
0x1899  
0x1695  
0x1693  
0x0CD4  
0x0AD3  
0x0AD0  
0x06CD  
0x04CA  
0x04C8  
TX Power Setting (SmartRF Studio)  
Typical Output Power [dBm]  
Typical Current Consumption [mA]  
5
4
4.7  
3.7  
10  
9
8
8
8
7
6
6
6
5
5
5
5
5
4
3
2.8  
2
1.9  
1
0.9  
0
0.0  
-3  
-5  
-6  
-9  
-10  
-12  
-15  
-18  
-20  
-3.1  
-4.9  
-6.0  
-9.1  
-9.8  
-11.9  
-14.6  
-17.8  
-20.4  
(1) Internal regulated voltage powers the PA, therefore the output power is not affected by variation in VDDS voltage.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.20.4 RX Performance  
Sensitivity vs. Frequency  
50 kbps  
Sensitivity vs. Frequency  
50 kbps  
-105  
-106  
-107  
-108  
-109  
-110  
-111  
-112  
-113  
-114  
-115  
-105  
-106  
-107  
-108  
-109  
-110  
-111  
-112  
-113  
-114  
-115  
863  
864  
865  
866  
867  
868  
869  
870  
900  
903  
906  
909  
912  
915  
918  
921  
924  
927  
930  
Frequency [MHz]  
Frequency [MHz]  
D026  
D027  
7-20. Sensitivity vs. Frequency (50 kbps, 868 MHz)  
7-21. Sensitivity vs. Frequency (50 kbps, 915 MHz)  
Sensitivity vs. Frequency  
IEEE 802.15.4 (OQPSK DSSS1:8, 250 kbps)  
Sensitivity vs. Frequency  
Bluetooth Low Energy 1 Mbps, 2.44 GHz  
-95  
-96  
-92  
-93  
-94  
-95  
-96  
-97  
-98  
-99  
-97  
-98  
-99  
-100  
-101  
-102  
-103  
-104  
-105  
-100  
-101  
-102  
2.4  
2.408 2.416 2.424 2.432 2.44 2.448 2.456 2.464 2.472 2.48  
2.4  
2.408  
2.416  
2.424  
2.432  
2.44  
2.448  
2.456  
2.464  
2.472  
2.48  
Frequency [GHz]  
Frequency [GHz]  
D028  
D029  
7-22. Sensitivity vs. Frequency (Bluetooth Low Energy 1  
7-23. Sensitivity vs. Frequency (250 kbps, 2.44 GHz)  
Mbps, 2.44 GHz)  
Sensitivity vs. Temperature  
50 kbps, 868.3 MHz  
Sensitivity vs. Temperature  
Bluetooth Low Energy 1 Mbps, 2.44 GHz  
-105  
-106  
-107  
-108  
-109  
-110  
-111  
-112  
-113  
-114  
-115  
-92  
-93  
-94  
-95  
-96  
-97  
-98  
-99  
-100  
-101  
-102  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
Temperature [°C]  
D030  
Temperature [°C]  
D031  
7-24. Sensitivity vs. Temperature (50 kbps, 868.3 MHz)  
7-25. Sensitivity vs. Temperature (Bluetooth Low Energy 1  
Mbps, 2.44 GHz)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: CC1352P7  
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.20.4 RX Performance (continued)  
Sensitivity vs. VDDS  
50 kbps, 868.3 MHz  
Sensitivity vs. Temperature  
IEEE 802.15.4 (OQPSK DSSS1:8, 250 kbps), 2.44 GHz  
-105  
-106  
-107  
-108  
-109  
-110  
-111  
-112  
-113  
-114  
-115  
-95  
-96  
-97  
-98  
-99  
-100  
-101  
-102  
-103  
-104  
-105  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
Temperature [°C]  
Voltage [V]  
D032  
D033  
7-26. Sensitivity vs. Temperature (250 kbps, 2.44 GHz)  
7-27. Sensitivity vs. Supply Voltage (VDDS) (50 kbps, 868.3  
MHz)  
Sensitivity vs. VDDS  
Bluetooth Low Energy 1 Mbps, 2.44 Ghz  
Sensitivity vs. VDDS  
Bluetooth Low Energy 1 Mbps, 2.44 GHz, DCDC Off  
-92  
-93  
-92  
-93  
-94  
-94  
-95  
-95  
-96  
-96  
-97  
-97  
-98  
-98  
-99  
-99  
-100  
-101  
-102  
-100  
-101  
-102  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
Voltage [V]  
Voltage [V]  
D034  
D035  
7-28. Sensitivity vs. Supply Voltage (VDDS) (Bluetooth Low  
7-29. Sensitivity vs. Supply Voltage (VDDS) (Bluetooth Low  
Energy 1 Mbps, 2.44 GHz)  
Energy 1 Mbps, 2.44 GHz, DCDC Off)  
Sensitivity vs. VDDS  
IEEE 802.15.4 (OQPSK DSSS1:8, 250 kbps), 2.44 GHz  
Selectivity vs. Frequency Offset  
50 kbps, 868.3 MHz  
-95  
-96  
80  
60  
40  
20  
0
-97  
-98  
-99  
-100  
-101  
-102  
-103  
-104  
-105  
-20  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
Frequency [MHz]  
Voltage [V]  
D038  
D036  
7-31. Selectivity vs. Frequency Offset (50 kbps, 868.3 MHz)  
7-30. Sensitivity vs. Supply Voltage (VDDS) (250 kbps, 2.44  
GHz)  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: CC1352P7  
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.20.4 RX Performance (continued)  
Packet error rate vs level and frequency offset for SLR 5 kbps.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
-20  
-40  
-60  
-80  
-100  
-120  
-30  
-20  
-10  
0
10  
20  
30  
Offset frequency [ppm]  
7-33. PER vs. Level vs. Frequency (SimpleLink™ Long  
7-32. PER vs. Level vs. Frequency (SimpleLink™ Long  
Range 5 kbps, 868 MHz)  
Range 5 kbps, 868 MHz)  
7-34. Narrowband, 9.6 kbps ±2.4 kHz deviation, 2-GFSK, 868 MHz, 17.1 kHz RX Bandwidth  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: CC1352P7  
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.20.5 TX Performance  
Output Power vs. Temperature  
50 kbps, 915 MHz, +20 dBm PA, VDDS = 3.3 V  
Output Power vs. Temperature  
50 kbps, 868.3 MHz, +14 dBm  
26  
24  
22  
20  
18  
16  
14  
12  
14  
13.8  
13.6  
13.4  
13.2  
13  
+20 dBm  
+19 dBm  
+18 dBm  
+17 dBm  
+16 dBm  
+15 dBm  
+14 dBm  
12.8  
12.6  
12.4  
12.2  
12  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
-40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Temperature [°C]  
Temperature [°C]  
D039  
D040  
7-35. Output Power vs. Temperature (50 kbps, 868.3 MHz)  
7-36. Output Power vs. Temperature (50 kbps, 915 MHz)  
Output Power vs. Temperature  
Bluetooth Low Energy 1 Mbps, 2.44 GHz, 0 dBm  
Output Power vs. Temperature  
Bluetooth Low Energy 1 Mbps, 2.44 GHz, +5 dBm  
2
1.8  
1.6  
1.4  
1.2  
1
7
6.8  
6.6  
6.4  
6.2  
6
5.8  
5.6  
5.4  
5.2  
5
0.8  
0.6  
0.4  
0.2  
0
4.8  
4.6  
4.4  
4.2  
4
-0.2  
-0.4  
-0.6  
-0.8  
-1  
3.8  
3.6  
3.4  
3.2  
3
-1.2  
-1.4  
-1.6  
-1.8  
-2  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
Temperature [°C]  
Temperature [°C]  
D042  
D041  
7-38. Output Power vs. Temperature (Bluetooth Low Energy  
7-37. Output Power vs. Temperature (Bluetooth Low Energy  
1 Mbps, 2.44 GHz, +5 dBm)  
1 Mbps, 2.44 GHz)  
Output Power vs. Temperature  
Bluetooth Low Energy 1 Mbps, 2.44 GHz, +20 dBm PA, VDDS = 3.3 V  
TX Output Power vs. Temperature  
Bluetooth Low Energy 1 Mbps, 2.44 GHz, +10 dBm  
15  
26  
+ 10 dBm  
+ 9 dBm  
+20 dBm  
+19 dBm  
14  
+ 8 dBm  
+ 7 dBm  
+ 6 dBm  
13  
12  
11  
10  
9
24  
22  
20  
18  
16  
14  
12  
+18 dBm  
+17 dBm  
+16 dBm  
+15 dBm  
+14 dBm  
8
7
6
5
4
3
2
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
Temperature [C]  
-40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Temperature [°C]  
7-40. Output Power vs. Temperature (2.44 GHz, +10 dBm PA)  
D043  
7-39. Output Power vs. Temperature (Bluetooth Low Energy  
1 Mbps, 2.44 GHz, +20 dBm PA)  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: CC1352P7  
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.20.5 TX Performance (continued)  
Output Power vs. VDDS  
50 kbps, 868.3 MHz, +14 dBm  
Output Power vs. VDDS  
50 kbps, 915 MHz, +20 dBm PA  
14  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
13.3  
13.2  
13.1  
13  
22  
20  
18  
16  
14  
12  
10  
+20 dBm  
+19 dBm  
+18 dBm  
+17 dBm  
+16 dBm  
+15 dBm  
+14 dBm  
12.9  
12.8  
12.7  
12.6  
12.5  
12.4  
12.3  
12.2  
12.1  
12  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
3
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8  
Voltage [V]  
Voltage [V]  
D045  
D044  
7-42. Output Power vs. Supply Voltage (VDDS) (50 kbps, 915  
7-41. Output Power vs. Supply Voltage (VDDS) (50 kbps,  
MHz)  
868.3 MHz)  
Output Power vs. VDDS  
Bluetooth Low Energy 1 Mbps, 2.44 GHz, 0 dBm  
Output Power vs. VDDS  
Bluetooth Low Energy 1 Mbps, 2.44 GHz, +5 dBm  
2
1.8  
1.6  
1.4  
1.2  
1
7
6.8  
6.6  
6.4  
6.2  
6
0.8  
0.6  
0.4  
0.2  
0
5.8  
5.6  
5.4  
5.2  
5
-0.2  
-0.4  
-0.6  
-0.8  
-1  
4.8  
4.6  
4.4  
4.2  
4
-1.2  
-1.4  
-1.6  
-1.8  
-2  
3.8  
3.6  
3.4  
3.2  
3
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
Voltage [V]  
Voltage [V]  
D046  
D048  
7-43. Output Power vs. Supply Voltage (VDDS) (Bluetooth  
7-44. Output Power vs. Supply Voltage (VDDS) (Bluetooth  
Low Energy 1 Mbps, 2.44 GHz)  
Low Energy 1 Mbps, 2.44 GHz, +5 dBm)  
TX Output Power vs. VDDS  
Output Power vs. VDDS  
Bluetooth Low Energy 1 Mbps, 2.44 GHz, +20 dBm PA  
Bluetooth Low Energy 1 Mbps, 2.44 GHz, +10 dBm PA  
14  
22  
+ 10 dBm  
+20 dBm  
+19 dBm  
13  
12  
11  
10  
9
+ 9 dBm  
+ 8 dBm  
+ 7 dBm  
+ 6 dBm  
+18 dBm  
20  
+17 dBm  
+16 dBm  
+15 dBm  
18  
+14 dBm  
16  
14  
12  
10  
8
7
6
5
4
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
Voltage [V]  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
7-46. Output Power vs. Supply Voltage (VDDS) (2.44 GHz, +10  
Voltage [V]  
D050  
dBm PA)  
7-45. Output Power vs. Supply Voltage (VDDS) (Bluetooth  
Low Energy 1 Mbps, 2.44 GHz, +20 dBm PA)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: CC1352P7  
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.20.5 TX Performance (continued)  
Output Power vs. Frequency  
50 kbps, +14 dBm  
Output Power vs. Frequency  
50 kbps, +14 dBm  
14  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
13.3  
13.2  
13.1  
13  
14  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
13.3  
13.2  
13.1  
13  
12.9  
12.8  
12.7  
12.6  
12.5  
12.4  
12.3  
12.2  
12.1  
12  
12.9  
12.8  
12.7  
12.6  
12.5  
12.4  
12.3  
12.2  
12.1  
12  
863  
864  
865  
866  
867  
868  
869  
870  
902 904 906 908 910 912 914 916 918 920 922 924 926 928  
Frequency [MHz]  
Frequency [MHz]  
D052  
D053  
7-47. Output Power vs. Frequency (50 kbps, 868 MHz)  
7-48. Output Power vs. Frequency (50 kbps, 915 MHz)  
Output Power vs. Frequency  
50 kbps, +20 dBm PA, VDDS = 3.3 V  
Output Power vs. Frequency  
Bluetooth Low Energy 1 Mbps, 2.44 Ghz, 0 dBm  
22  
2
1.8  
1.6  
1.4  
1.2  
1
+20 dBm  
21.6  
+17 dBm  
21.2  
20.8  
20.4  
20  
0.8  
0.6  
0.4  
0.2  
0
19.6  
19.2  
18.8  
18.4  
18  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
17.6  
17.2  
16.8  
16.4  
-1.2  
-1.4  
-1.6  
-1.8  
-2  
16  
902 904 906 908 910 912 914 916 918 920 922 924 926 928  
2.4  
2.408 2.416 2.424 2.432 2.44 2.448 2.456 2.464 2.472 2.48  
Frequency [MHz]  
D056  
Frequency [GHz]  
D058  
7-49. Output Power vs. Frequency (50 kbps, 915 MHz, VDDS  
7-50. Output Power vs. Frequency (Bluetooth Low Energy 1  
= 3.3 V)  
Mbps, 2.44 GHz)  
Output Power vs. Frequency  
Bluetooth Low Energy 1 Mbps, 2.44 Ghz, +5 dBm  
Output Power vs. Frequency  
Bluetooth Low Energy 1 Mbps, +20 dBm PA, VDDS = 3.3 V  
7
6.8  
6.6  
6.4  
6.2  
6
25  
+20 dBm  
24  
+19 dBm  
+18 dBm  
23  
+17 dBm  
+16 dBm  
+15 dBm  
+14 dBm  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
5.8  
5.6  
5.4  
5.2  
5
4.8  
4.6  
4.4  
4.2  
4
3.8  
3.6  
3.4  
3.2  
3
2.4  
2.408 2.416 2.424 2.432 2.44 2.448 2.456 2.464 2.472 2.48  
2.4  
2.408 2.416 2.424 2.432 2.44 2.448 2.456 2.464 2.472 2.48  
Frequency [GHz]  
Frequency [GHz]  
D059  
D060  
7-51. Output Power vs. Frequency (Bluetooth Low Energy 1  
7-52. Output Power vs. Frequency (Bluetooth Low Energy 1  
Mbps, 2.44 GHz, +5 dBm)  
Mbps, 2.44 GHz, +20 dBm PA)  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: CC1352P7  
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.20.5 TX Performance (continued)  
Output Power vs. Frequency  
IEEE 802.15.4 (OQPSK DSSS1:8, 250 kbps), +10 dBm PA  
14  
13  
12  
11  
10  
9
+10 dBm  
+9 dBm  
+ 8dBm  
+7 dBm  
+6 dBm  
8
7
6
5
2405  
2415  
2425  
2435  
2445  
2455  
2465  
2475 2480  
Frequency [MHz]  
7-53. Output Power vs. Frequency (250 kbps, +10 dBm PA)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: CC1352P7  
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
7.20.6 ADC Performance  
ENOB vs. Input Frequency  
ENOB vs. Sampling Frequency  
Vin = 3.0 V Sine wave, Internal reference,  
Fin = Fs / 10  
11.4  
Internal Reference, No Averaging  
Internal Unscaled Reference, 14-bit Mode  
10.2  
10.15  
10.1  
10.05  
10  
11.1  
10.8  
10.5  
10.2  
9.9  
9.95  
9.9  
9.85  
9.8  
9.6  
1
2
3
4
5
6
7 8 10  
20  
30 40 50 70 100  
200  
0.2 0.3  
0.5 0.7  
1
2
3
4
5
6 7 8 10  
20  
30 40 50 70 100  
Frequency [kHz]  
Frequency [kHz]  
D062  
D061  
7-55. ENOB vs. Sampling Frequency  
7-54. ENOB vs. Input Frequency  
INL vs. ADC Code  
Vin = 3.0 V Sine wave, Internal reference,  
200 kSamples/s  
DNL vs. ADC Code  
Vin = 3.0 V Sine wave, Internal reference,  
200 kSamples/s  
1.5  
1
2.5  
2
0.5  
0
1.5  
1
-0.5  
-1  
0.5  
0
-1.5  
-0.5  
0
0
400  
800  
1200 1600 2000 2400 2800 3200 3600 4000  
400  
800  
1200 1600 2000 2400 2800 3200 3600 4000  
ADC Code  
ADC Code  
D064  
D065  
7-56. INL vs. ADC Code  
7-57. DNL vs. ADC Code  
ADC Accuracy vs. VDDS  
Vin = 1 V, Internal reference,  
200 kSamples/s  
ADC Accuracy vs. Temperature  
Vin = 1 V, Internal reference,  
200 kSamples/s  
1.01  
1.009  
1.008  
1.007  
1.006  
1.005  
1.004  
1.003  
1.002  
1.001  
1
1.01  
1.009  
1.008  
1.007  
1.006  
1.005  
1.004  
1.003  
1.002  
1.001  
1
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
Temperature [°C]  
Voltage [V]  
D066  
D067  
7-58. ADC Accuracy vs. Temperature  
7-59. ADC Accuracy vs. Supply Voltage (VDDS)  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: CC1352P7  
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
8 Detailed Description  
8.1 Overview  
3.1 shows the core modules of the CC1352P7 device.  
8.2 System CPU  
The CC1352P7 SimpleLinkWireless MCU contains an Arm® Cortex®-M4F system CPU, which runs the  
application and the higher layers of radio protocol stacks.  
The system CPU is the foundation of a high-performance, low-cost platform that meets the system requirements  
of minimal memory implementation, and low-power consumption, while delivering outstanding computational  
performance and exceptional system response to interrupts.  
Its features include the following:  
ARMv7-M architecture optimized for small-footprint embedded applications  
Arm Thumb®-2 mixed 16- and 32-bit instruction set delivers the high performance expected of a 32-bit Arm  
core in a compact memory size  
Fast code execution permits increased sleep mode time  
Deterministic, high-performance interrupt handling for time-critical applications  
Single-cycle multiply instruction and hardware divide  
Hardware division and fast digital-signal-processing oriented multiply accumulate  
Saturating arithmetic for signal processing  
IEEE 754-compliant single-precision Floating Point Unit (FPU)  
Memory Protection Unit (MPU) for safety-critical applications  
Full debug with data matching for watchpoint generation  
Data Watchpoint and Trace Unit (DWT)  
JTAG Debug Access Port (DAP)  
Flash Patch and Breakpoint Unit (FPB)  
Trace support reduces the number of pins required for debugging and tracing  
Instrumentation Trace Macrocell Unit (ITM)  
Trace Port Interface Unit (TPIU) with asynchronous serial wire output (SWO)  
Optimized for single-cycle flash memory access  
Tightly connected to 8-KB 4-way random replacement cache for minimal active power consumption and wait  
states  
Ultra-low-power consumption with integrated sleep modes  
48 MHz operation  
1.25 DMIPS per MHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: CC1352P7  
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
8.3 Radio (RF Core)  
The RF Core is a highly flexible and future proof radio module which contains an Arm Cortex-M0 processor that  
interfaces the analog RF and base-band circuitry, handles data to and from the system CPU side, and  
assembles the information bits in a given packet structure. The RF core offers a high level, command-based API  
to the main CPU that configurations and data are passed through. The Arm Cortex-M0 processor is not  
programmable by customers and is interfaced through the TI-provided RF driver that is included with the  
SimpleLink Software Development Kit (SDK).  
The RF core can autonomously handle the time-critical aspects of the radio protocols, thus offloading the main  
CPU, which reduces power and leaves more resources for the user application. Several signals are also  
available to control external circuitry such as RF switches or range extenders autonomously.  
Dual-band and multiprotocol solutions are enabled through time-sliced access of the radio, handled  
transparently for the application through the TI-provided RF driver and dual-mode manager.  
The various physical layer radio formats are partly built as a software defined radio where the radio behavior is  
either defined by radio ROM contents or by non-ROM radio formats delivered in form of firmware patches with  
the SimpleLink SDKs. This allows the radio platform to be updated for support of future versions of standards  
even with over-the-air (OTA) updates while still using the same silicon.  
备注  
Not all combinations of features, frequencies, data rates, and modulation formats described in this  
chapter are supported. Over time, TI can enable new physical radio formats (PHYs) for the device and  
provides performance numbers for selected PHYs in the data sheet. Supported radio formats for a  
specific device, including optimized settings to use with the TI RF driver, are included in the SmartRF  
Studio tool with performance numbers of selected formats found in 7.  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
8.3.1 Proprietary Radio Formats  
The CC1352P7 radio can support a wide range of physical radio formats through a set of hardware peripherals  
combined with firmware available in the device ROM, covering various customer needs for optimizing towards  
parameters such as speed or sensitivity. This allows great flexibility in tuning the radio both to work with legacy  
protocols as well as customizing the behavior for specific application needs.  
8-1 gives a simplified overview of features of the various radio formats available in ROM. Other radio formats  
may be available in the form of radio firmware patches or programs through the Software Development Kit (SDK)  
and may combine features in a different manner, as well as add other features.  
8-1. Feature Support  
Feature  
Main 2-(G)FSK Mode  
High Data Rates  
Low Data Rates  
SimpleLink™ Long Range  
Programmable preamble,  
sync word and CRC  
Yes  
Yes  
Yes  
No  
Programmable receive  
bandwidth  
Yes  
Yes  
Yes (down to 4 kHz)  
Yes  
Data / Symbol rate(3)  
20 to 1000 kbps  
2-(G)FSK  
2 Msps  
100 ksps  
20 ksps  
2-(G)FSK  
2-(G)FSK  
4-(G)FSK  
2-(G)FSK  
4-(G)FSK  
Modulation format  
Dual Sync Word  
Carrier Sense (1) (2)  
Preamble Detection(2)  
Data Whitening  
Digital RSSI  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
CRC filtering  
1:2  
1:4  
1:8  
Direct-sequence spread  
spectrum (DSSS)  
No  
No  
No  
Forward error correction  
(FEC)  
No  
No  
No  
Yes  
Yes  
Link Quality Indicator (LQI)  
Yes  
Yes  
Yes  
(1) Carrier Sense can be used to implement HW-controlled listen-before-talk (LBT) and Clear Channel Assessment (CCA) for compliance  
with such requirements in regulatory standards. This is available through the CMD_PROP_CS radio API.  
(2) Carrier Sense and Preamble Detection can be used to implement sniff modes where the radio is duty cycled to save power.  
(3) Data rates are only indicative. Data rates outside this range may also be supported. For some specific combinations of settings, a  
smaller range might be supported.  
8.3.2 Bluetooth 5.2 Low Energy  
The RF Core offers full support for Bluetooth 5.2 Low Energy, including the high-speed 2-Mbps physical layer  
and the 500-kbps and 125-kbps long range PHYs (Coded PHY) through the TI provided Bluetooth 5.2 stack or  
through a high-level Bluetooth API. The Bluetooth 5.2 PHY and part of the controller are in radio and system  
ROM, providing significant savings in memory usage and more space available for applications.  
The new high-speed mode allows data transfers up to 2 Mbps, twice the speed of Bluetooth 4.2 and five times  
the speed of Bluetooth 4.0, without increasing power consumption. In addition to faster speeds, this mode offers  
significant improvements for energy efficiency and wireless coexistence with reduced radio communication time.  
Bluetooth 5.2 also enables unparalleled flexibility for adjustment of speed and range based on application needs,  
which capitalizes on the high-speed or long-range modes respectively. Data transfers are now possible at 2  
Mbps, enabling development of applications using voice, audio, imaging, and data logging that were not  
previously an option using Bluetooth Low Energy. With high-speed mode, existing applications deliver faster  
responses, richer engagement, and longer battery life. Bluetooth 5.2 enables fast, reliable firmware updates.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: CC1352P7  
 
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
8.3.3 802.15.4 (Thread, Zigbee, 6LoWPAN)  
Through a dedicated IEEE radio API, the RF Core supports the 2.4-GHz IEEE 802.15.4-2011 physical layer (2  
Mchips per second Offset-QPSK with DSSS 1:8), used in Thread, Zigbee, and 6LoWPAN protocols. The  
802.15.4 PHY and MAC are in radio and system ROM. TI also provides royalty-free protocol stacks for Thread  
and Zigbee as part of the SimpleLink SDK, enabling a robust end-to-end solution.  
8.4 Memory  
The up to 704KB nonvolatile (flash) memory provides storage for code and data. The flash memory is in-system  
programmable and erasable. The last flash memory sector must contain a Customer Configuration section  
(CCFG) that is used by boot ROM and TI provided drivers to configure the device. This configuration is done  
through the ccfg.c source file that is included in all TI provided examples.  
The ultra-low leakage system static RAM (SRAM) is split into four 32KB and one 16KB blocks and can be used  
for both storage of data and execution of code. Retention of SRAM contents in Standby power mode is enabled  
by default and included in Standby mode power consumption numbers. Parity checking for detection of bit errors  
in memory is built-in, which reduces chip-level soft errors and thereby increases reliability. System SRAM is  
always initialized to zeroes upon code execution from boot.  
To improve code execution speed and lower power when executing code from nonvolatile memory, a 4-way  
nonassociative 8-KB cache is enabled by default to cache and prefetch instructions read by the system CPU.  
The cache can be used as a general-purpose RAM by enabling this feature in the Customer Configuration Area  
(CCFG).  
There is a 4KB ultra-low leakage SRAM available for use with the Sensor Controller Engine which is typically  
used for storing Sensor Controller programs, data and configuration parameters. This RAM is also accessible by  
the system CPU. The Sensor Controller RAM is not cleared to zeroes between system resets.  
The ROM includes a TI-RTOS kernel and low-level drivers, as well as significant parts of selected radio stacks,  
which frees up flash memory for the application. The ROM also contains a serial (SPI and UART) bootloader that  
can be used for initial programming of the device.  
8.5 Sensor Controller  
The Sensor Controller contains circuitry that can be selectively enabled in both Standby and Active power  
modes. The peripherals in this domain can be controlled by the Sensor Controller Engine, which is a proprietary  
power-optimized CPU. This CPU can read and monitor sensors or perform other tasks autonomously; thereby  
significantly reducing power consumption and offloading the system CPU.  
The Sensor Controller Engine is user programmable with a simple programming language that has syntax  
similar to C. This programmability allows for sensor polling and other tasks to be specified as sequential  
algorithms rather than static configuration of complex peripheral modules, timers, DMA, register programmable  
state machines, or event routing.  
The main advantages are:  
Flexibility - data can be read and processed in unlimited manners while still ensuring ultra-low power  
2 MHz low-power mode enables lowest possible handling of digital sensors  
Dynamic reuse of hardware resources  
40-bit accumulator supporting multiplication, addition and shift  
Observability and debugging options  
Sensor Controller Studio is used to write, test, and debug code for the Sensor Controller. The tool produces C  
driver source code, which the System CPU application uses to control and exchange data with the Sensor  
Controller. Typical use cases may be (but are not limited to) the following:  
Read analog sensors using integrated ADC or comparators  
Interface digital sensors using GPIOs, SPI, UART, or I2C (UART and I2C are bit-banged)  
Capacitive sensing  
Waveform generation  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
Very low-power pulse counting (flow metering)  
Key scan  
The peripherals in the Sensor Controller include the following:  
The low-power clocked comparator can be used to wake the system CPU from any state in which the  
comparator is active. A configurable internal reference DAC can be used in conjunction with the comparator.  
The output of the comparator can also be used to trigger an interrupt or the ADC.  
Capacitive sensing functionality is implemented through the use of a constant current source, a time-to-digital  
converter, and a comparator. The continuous time comparator in this block can also be used as a higher-  
accuracy alternative to the low-power clocked comparator. The Sensor Controller takes care of baseline  
tracking, hysteresis, filtering, and other related functions when these modules are used for capacitive  
sensing.  
The ADC is a 12-bit, 200-ksamples/s ADC with eight inputs and a built-in voltage reference. The ADC can be  
triggered by many different sources including timers, I/O pins, software, and comparators.  
The analog modules can connect to up to eight different GPIOs  
Dedicated SPI master with up to 6 MHz clock speed  
The peripherals in the Sensor Controller can also be controlled from the main application processor.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: CC1352P7  
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
8.6 Cryptography  
The CC1352P7 device comes with a wide set of modern cryptography-related hardware accelerators, drastically  
reducing code footprint and execution time for cryptographic operations. It also has the benefit of being lower  
power and improves availability and responsiveness of the system because the cryptography operations runs in  
a background hardware thread.  
Together with a large selection of open-source cryptography libraries provided with the Software Development  
Kit (SDK), this allows for secure and future proof IoT applications to be easily built on top of the platform. The  
hardware accelerator modules are:  
True Random Number Generator (TRNG) module provides a true, nondeterministic noise source for the  
purpose of generating keys, initialization vectors (IVs), and other random number requirements. The TRNG is  
built on 24 ring oscillators that create unpredictable output to feed a complex nonlinear-combinatorial circuit.  
Secure Hash Algorithm 2 (SHA-2) with support for SHA224, SHA256, SHA384, and SHA512  
Advanced Encryption Standard (AES) with 128 and 256 bit key lengths  
Public Key Accelerator - Hardware accelerator supporting mathematical operations needed for elliptic  
curves up to 512 bits and RSA key pair generation up to 1024 bits.  
Through use of these modules and the TI provided cryptography drivers, the following capabilities are available  
for an application or stack:  
Key Agreement Schemes  
Elliptic curve DiffieHellman with static or ephemeral keys (ECDH and ECDHE)  
Elliptic curve Password Authenticated Key Exchange by Juggling (ECJ-PAKE)  
Signature Generation  
Elliptic curve Diffie-Hellman Digital Signature Algorithm (ECDSA)  
Curve Support  
Short Weierstrass form (full hardware support), such as:  
NIST-P224, NIST-P256, NIST-P384, NIST-P521  
Brainpool-256R1, Brainpool-384R1, Brainpool-512R1  
secp256r1  
Montgomery form (hardware support for multiplication), such as:  
Curve25519  
SHA2 based MACs  
HMAC with SHA224, SHA256, SHA384, or SHA512  
Block cipher mode of operation  
AESCCM  
AESGCM  
AESECB  
AESCBC  
AESCBC-MAC  
True random number generation  
Other capabilities, such as RSA encryption and signatures as well as Edwards type of elliptic curves such as  
Curve1174 or Ed25519, can also be implemented using the provided hardware accelerators but are not part of  
the TI SimpleLink SDK for the CC1352P7 device.  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
8.7 Timers  
A large selection of timers are available as part of the CC1352P7 device. These timers are:  
Real-Time Clock (RTC)  
A 70-bit 3-channel timer running on the 32 kHz low frequency system clock (SCLK_LF). This timer is  
available in all power modes except Shutdown. The timer can be calibrated to compensate for frequency drift  
when using the RCOSC_LF as the low frequency system clock. If an external LF clock with frequency  
different from 32.768 kHz is used, the RTC tick speed can be adjusted to compensate for this. When using  
TI-RTOS, the RTC is used as the base timer in the operating system and should thus only be accessed  
through the kernel APIs such as the Clock module. The real time clock can also be read by the Sensor  
Controller Engine to timestamp sensor data and also has dedicated capture channels. By default, the RTC  
halts when a debugger halts the device.  
General Purpose Timers (GPTIMER)  
The four flexible GPTIMERs can be used as either 4× 32 bit timers or 8× 16 bit timers, all running on up to 48  
MHz. Each of the 16- or 32-bit timers support a wide range of features such as one-shot or periodic counting,  
pulse width modulation (PWM), time counting between edges and edge counting. The inputs and outputs of  
the timer are connected to the device event fabric, which allows the timers to interact with signals such as  
GPIO inputs, other timers, DMA and ADC. The GPTIMERs are available in Active and Idle power modes.  
Sensor Controller Timers  
The Sensor Controller contains 3 timers:  
AUX Timer 0 and 1 are 16-bit timers with a 2N prescaler. Timers can either increment on a clock or on each  
edge of a selected tick source. Both one-shot and periodical timer modes are available.  
AUX Timer 2 is a 16-bit timer that can operate at 24 MHz, 2 MHz or 32 kHz independent of the Sensor  
Controller functionality. There are 4 capture or compare channels, which can be operated in one-shot or  
periodical modes. The timer can be used to generate events for the Sensor Controller Engine or the ADC, as  
well as for PWM output or waveform generation.  
Radio Timer  
A multichannel 32-bit timer running at 4 MHz is available as part of the device radio. The radio timer is  
typically used as the timing base in wireless network communication using the 32-bit timing word as the  
network time. The radio timer is synchronized with the RTC by using a dedicated radio API when the device  
radio is turned on or off. This ensures that for a network stack, the radio timer seems to always be running  
when the radio is enabled. The radio timer is in most cases used indirectly through the trigger time fields in  
the radio APIs and should only be used when the accurate 48 MHz high frequency crystal is the source of  
SCLK_HF.  
Watchdog timer  
The watchdog timer is used to regain control if the system operates incorrectly due to software errors. It is  
typically used to generate an interrupt to and reset of the device for the case where periodic monitoring of the  
system components and tasks fails to verify proper functionality. The watchdog timer runs on a 1.5 MHz clock  
rate and cannot be stopped once enabled. The watchdog timer pauses to run in Standby power mode and  
when a debugger halts the device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: CC1352P7  
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
8.8 Serial Peripherals and I/O  
The SSIs are synchronous serial interfaces that are compatible with SPI, MICROWIRE, and TI's synchronous  
serial interfaces. The SSIs support both SPI master and slave up to 4 MHz. The SSI modules support  
configurable phase and polarity.  
The UARTs implement universal asynchronous receiver and transmitter functions. They support flexible baud-  
rate generation up to a maximum of 3 Mbps.  
The I2S interface is used to handle digital audio and can also be used to interface pulse-density modulation  
microphones (PDM).  
The I2C interface is used to communicate with devices compatible with the I2C standard. The I2C interface can  
handle 100 kHz and 400 kHz operation, and can serve as both master and slave.  
The I/O controller (IOC) controls the digital I/O pins and contains multiplexer circuitry to allow a set of peripherals  
to be assigned to I/O pins in a flexible manner. All digital I/Os are interrupt and wake-up capable, have a  
programmable pullup and pulldown function, and can generate an interrupt on a negative or positive edge  
(configurable). When configured as an output, pins can function as either push-pull or open-drain. Five GPIOs  
have high-drive capabilities, which are marked in bold in 6. All digital peripherals can be connected to any  
digital pin on the device.  
For more information, see the CC13x2x7, CC26x2x7 SimpleLink™ Wireless MCU Technical Reference Manual.  
8.9 Battery and Temperature Monitor  
A combined temperature and battery voltage monitor is available in the CC1352P7 device. The battery and  
temperature monitor allows an application to continuously monitor on-chip temperature and supply voltage and  
respond to changes in environmental conditions as needed. The module contains window comparators to  
interrupt the system CPU when temperature or supply voltage go outside defined windows. These events can  
also be used to wake up the device from Standby mode through the Always-On (AON) event fabric.  
8.10 µDMA  
The device includes a direct memory access (µDMA) controller. The µDMA controller provides a way to offload  
data-transfer tasks from the system CPU, thus allowing for more efficient use of the processor and the available  
bus bandwidth. The µDMA controller can perform a transfer between memory and peripherals. The µDMA  
controller has dedicated channels for each supported on-chip module and can be programmed to automatically  
perform transfers between peripherals and memory when the peripheral is ready to transfer more data.  
Some features of the µDMA controller include the following (this is not an exhaustive list):  
Highly flexible and configurable channel operation of up to 32 channels  
Transfer modes: memory-to-memory, memory-to-peripheral, peripheral-to-memory, and  
peripheral-to-peripheral  
Data sizes of 8, 16, and 32 bits  
Ping-pong mode for continuous streaming of data  
8.11 Debug  
The on-chip debug support is done through a dedicated cJTAG (IEEE 1149.7) or JTAG (IEEE 1149.1) interface.  
The device boots by default into cJTAG mode and must be reconfigured to use 4-pin JTAG.  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
8.12 Power Management  
To minimize power consumption, the CC1352P7 supports a number of power modes and power management  
features (see 8-2).  
8-2. Power Modes  
SOFTWARE CONFIGURABLE POWER MODES  
RESET PIN  
HELD  
MODE  
ACTIVE  
Active  
On  
IDLE  
Off  
STANDBY  
Off  
SHUTDOWN  
CPU  
Off  
Off  
Off  
Off  
No  
No  
Off  
Off  
Off  
Off  
No  
No  
Flash  
Available  
On  
Off  
SRAM  
On  
Retention  
Duty Cycled  
Partial  
Full  
Supply System  
Register and CPU retention  
SRAM retention  
On  
On  
Full  
Full  
Full  
Full  
48 MHz high-speed clock  
(SCLK_HF)  
XOSC_HF or  
RCOSC_HF  
XOSC_HF or  
RCOSC_HF  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
2 MHz medium-speed clock  
(SCLK_MF)  
RCOSC_MF  
RCOSC_MF  
Available  
32 kHz low-speed clock  
(SCLK_LF)  
XOSC_LF or  
RCOSC_LF  
XOSC_LF or  
RCOSC_LF  
XOSC_LF or  
RCOSC_LF  
Peripherals  
Available  
Available  
Available  
Available  
On  
Available  
Available  
Available  
Available  
On  
Off  
Available  
Available  
Available  
On  
Off  
Off  
Off  
Off  
Off  
Off  
On  
Off  
Off  
Off  
Sensor Controller  
Wake-up on RTC  
Off  
Wake-up on pin edge  
Wake-up on reset pin  
Brownout detector (BOD)  
Power-on reset (POR)  
Watchdog timer (WDT)  
Available  
On  
On  
On  
Duty Cycled  
On  
Off  
On  
On  
Off  
Available  
Available  
Paused  
Off  
In Active mode, the application system CPU is actively executing code. Active mode provides normal operation  
of the processor and all of the peripherals that are currently enabled. The system clock can be any available  
clock source (see 8-2).  
In Idle mode, all active peripherals can be clocked, but the Application CPU core and memory are not clocked  
and no code is executed. Any interrupt event brings the processor back into active mode.  
In Standby mode, only the always-on (AON) domain is active. An external wake-up event, RTC event, or Sensor  
Controller event is required to bring the device back to active mode. MCU peripherals with retention do not need  
to be reconfigured when waking up again, and the CPU continues execution from where it went into standby  
mode. All GPIOs are latched in standby mode.  
In Shutdown mode, the device is entirely turned off (including the AON domain and Sensor Controller), and the  
I/Os are latched with the value they had before entering shutdown mode. A change of state on any I/O pin  
defined as a wake from shutdown pin wakes up the device and functions as a reset trigger. The CPU can  
differentiate between reset in this way and reset-by-reset pin or power-on reset by reading the reset status  
register. The only state retained in this mode is the latched I/O state and the flash memory contents.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: CC1352P7  
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
The Sensor Controller is an autonomous processor that can control the peripherals in the Sensor Controller  
independently of the system CPU. This means that the system CPU does not have to wake up, for example to  
perform an ADC sampling or poll a digital sensor over SPI, thus saving both current and wake-up time that would  
otherwise be wasted. The Sensor Controller Studio tool enables the user to program the Sensor Controller,  
control its peripherals, and wake up the system CPU as needed. All Sensor Controller peripherals can also be  
controlled by the system CPU.  
备注  
The power, RF and clock management for the CC1352P7 device require specific configuration and  
handling by software for optimized performance. This configuration and handling is implemented in the  
TI-provided drivers that are part of the SimpleLink™ CC13xx and CC26xx software development kit  
(SDK). Therefore, TI highly recommends using this software framework for all application  
development on the device. The complete SDK with TI-RTOS (optional), device drivers, and examples  
are offered free of charge in source code.  
8.13 Clock Systems  
The CC1352P7 device has several internal system clocks.  
The 48 MHz SCLK_HF is used as the main system (MCU and peripherals) clock. This can be driven by the  
internal 48 MHz RC Oscillator (RCOSC_HF) or an external 48 MHz crystal (XOSC_HF). Radio operation  
requires an external 48 MHz crystal.  
SCLK_MF is an internal 2 MHz clock that is used by the Sensor Controller in low-power mode and also for  
internal power management circuitry. The SCLK_MF clock is always driven by the internal 2 MHz RC Oscillator  
(RCOSC_MF).  
SCLK_LF is the 32.768 kHz internal low-frequency system clock. It can be used by the Sensor Controller for  
ultra-low-power operation and is also used for the RTC and to synchronize the radio timer before or after  
Standby power mode. SCLK_LF can be driven by the internal 32.8 kHz RC Oscillator (RCOSC_LF), a 32.768  
kHz watch-type crystal, or a clock input on any digital IO.  
When using a crystal or the internal RC oscillator, the device can output the 32 kHz SCLK_LF signal to other  
devices, thereby reducing the overall system cost.  
8.14 Network Processor  
Depending on the product configuration, the CC1352P7 device can function as a wireless network processor  
(WNP - a device running the wireless protocol stack with the application running on a separate host MCU), or as  
a system-on-chip (SoC) with the application and protocol stack running on the device's system CPU inside the  
device.  
In the first case, the external host MCU communicates with the device using SPI or UART. In the second case,  
the application must be written according to the application framework supplied with the wireless protocol stack.  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
9 Application, Implementation, and Layout  
备注  
Information in the following Applications section is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI's customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
For general design guidelines and hardware configuration guidelines, refer to CC13xx/CC26xx Hardware  
Configuration and PCB Design Considerations Application Report.  
For optimum RF performance, especially when using the high-power PA, it is important to accurately follow the  
reference design with respect to component values and layout. Failure to do so may lead to reduced RF  
performance due to balun mismatch. For the high-power PA, the amplitude- and phase balance through the  
balun must be <1 dB and <6 degrees, respectively.  
PCB stack-up is also critical for proper operation. The CC1352P7 EVMs and characterization boards are using a  
finished thickness between the top layer (RF signals) and layer 2 (ground plane) of 175 µm. It is very important  
to use the same substrate thickness, or slightly thicker, in an end product implementing the CC1352P7 device.  
9.1 Reference Designs  
The following reference designs should be followed closely when implementing designs using the CC1352P7  
device.  
Special attention must be paid to RF component placement, decoupling capacitors and DCDC regulator  
components, as well as ground connections for all of these.  
CC1352-P7EM-XD7793- The differential CC1352-P7EM-XD7793-XD24-PA9093 reference design provides  
XD24-PA9093 Design  
Files  
schematic, layout and production files for the characterization board used for deriving  
the performance number found in this document. This board includes tuning for  
915 MHz on the high-power PA output.  
CC1352-P7EM-XD7793- The differential CC1352-P7EM-XD7793-XD24-PA24 reference design provides  
XD24-PA24 Design Files schematic, layout and production files for the characterization board used for deriving  
the performance number found in this document. This board includes tuning for 20  
dBm operation at 2.4 GHz on the high-power PA output.  
CC1352-P7EM-XD7793- The differential CC1352-P7EM-XD7793-XD24-PA24_10dBm reference design  
XD24-PA24_10dBm  
Design Files  
provides schematic, layout and production files for the characterization board used for  
deriving the performance number found in this document. This board includes tuning  
for 10 dBm operation at 2.4 GHz on the high-power PA output.  
LP-CC1352P7-1 Design Detailed schematics and layouts for the multi-band CC1352P7 LaunchPad evaluation  
Files  
board featuring 868/915 MHz RF matching on the 20 dBm PA output and up to 5 dBm  
TX power at 2.4 GHz.  
LP-CC1352P7-4 Design Detailed schematics and layouts for the multi-band CC1352P7 LaunchPad evaluation  
Files  
board featuring 2.4 GHz RF matching optimized for 10 dBm operation on the 20 dBm  
PA output and up to 13 dBm TX power at 433 MHz. For evaluation of 20 dBm  
operation at 2.4 GHz the BOM can be modified as described in the schematics  
available in the Design Files.  
Sub-1 GHz  
The antenna kit allows real-life testing to identify the optimal antenna for your  
and 2.4 GHz Antenna Kit application. The antenna kit includes 16 antennas for frequencies from 169 MHz to  
for LaunchPad™  
Development  
Kit and SensorTag  
2.4 GHz, including:  
PCB antennas  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: CC1352P7  
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
Helical antennas  
Chip antennas  
Dual-band antennas for 868 MHz and 915 MHz combined with 2.4 GHz  
The antenna kit includes a JSC cable to connect to the Wireless MCU LaunchPad  
Development Kits and SensorTags.  
9.2 Junction Temperature Calculation  
This section shows the different techniques for calculating the junction temperature under various operating  
conditions. For more details, see Semiconductor and IC Package Thermal Metrics.  
There are three recommended ways to derive the junction temperature from other measured temperatures:  
1. From package temperature:  
T = ψ × P + T  
case  
(1)  
(2)  
(3)  
J
JT  
2. From board temperature:  
T = ψ × P + T  
board  
J
JB  
3. From ambient temperature:  
T = R  
× P + T  
A
J
θJA  
P is the power dissipated from the device and can be calculated by multiplying current consumption with supply  
voltage. Thermal resistance coefficients are found in 7.8.  
Example:  
Using 程式 3, the temperature difference between ambient temperature and junction temperature is  
calculated. In this example, we assume a simple use case where the radio is transmitting continuously at 20dBm  
output power. Let us assume the ambient temperature is 105 °C and the supply voltage is 3.3 V. To calculate P,  
we need to look up the current consumption for Tx at 105 °C in 7-11. From the plot, we see that the current  
consumption is 68 mA. This means that P is 3.3 V × 68 mA = 224.4 mW.  
The junction temperature is then calculated as:  
°C  
T = 23.4  
× 224.4mW + T = 5.3°C + T  
A
(4)  
W
J
A
As can be seen from the example, the junction temperature is 5.3 °C higher than the ambient temperature when  
running continuous Tx at 105 °C and, thus, well within the recommended operating conditions of 115 °C.  
For various application use cases current consumption for other modules may have to be added to calculate the  
appropriate power dissipation. For example, the MCU may be running simultaneously as the radio, peripheral  
modules may be enabled, etc. Typically, the easiest way to find the peak current consumption, and thus the peak  
power dissipation in the device, is to measure as described in Measuring CC13xx and CC26xx Current  
Consumption.  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
10 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed as follows.  
10.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to all part numbers and/or date-  
code. Each device has one of three prefixes/identifications: X, P, or null (no prefix) (for example, XCC1352P7 is  
in preview; therefore, an X prefix/identification is assigned).  
Device development evolutionary flow:  
X
P
Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
null Production version of the silicon die that is fully qualified.  
Production devices have been characterized fully, and the quality and reliability of the device have been  
demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, RGZ).  
For orderable part numbers of CC1352P7 devices in the RGZ (7-mm x 7-mm) package type, see the Package  
Option Addendum of this document, the Device Information in 3, the TI website (www.ti.com), or contact your  
TI sales representative.  
CC1352  
P
7
4
T
0
RGZ  
R
R = Large Reel  
PREFIX  
X = Experimental device  
Blank = Qualified device  
PACKAGE  
RGZ = 48-pin VQFN (Very Thin Quad Flatpack No-Lead)  
PRODUCT REVISION  
DEVICE  
SimpleLink™ Ultra-Low-Power  
Wireless MCU  
TEMPERATURE  
T = 105 C Ambient  
CONFIGURATION  
R = Regular  
P = +20 dBm PA included  
SRAM SIZE  
4 = 144kB  
FLASH SIZE  
7 = 704 kB  
10-1. Device Nomenclature  
10.2 Tools and Software  
The CC1352P7 device is supported by a variety of software and hardware development tools.  
Development Kit  
CC1352P7-1  
LaunchPad™  
Development Kit  
The CC1352P7-1 LaunchPadDevelopment Kit enables development of high-performance  
wireless applications in the 863 - 930 MHz and 2.4 GHz frequency bands that benefit from  
low-power operation. The kit features the CC1352P7 multi-band and multiprotocol SimpleLink  
Wireless MCU with an integrated High-Power Amplifier. The kit works with the LaunchPad  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: CC1352P7  
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
ecosystem, easily enabling additional functionality like sensors, display, and more. The built-  
in EnergyTracesoftware is an energy-based code analysis tool that measures and displays  
the applications energy profile and helps to optimize it for ultra-low power consumption.  
The RF configuration of the LaunchPad enables up to +20 dBm output power for 863 to  
930 MHz and +5 dBm output power for 2.4 GHz.  
CC1352P7-4  
LaunchPad™  
Development Kit  
The CC1352P7-4 LaunchPadDevelopment Kit enables development of high-performance  
wireless applications in the 433 MHz and 2.4 GHz frequency bands that benefit from low-  
power operation. The kit features the CC1352P7 dual-band and multiprotocol SimpleLink  
Wireless MCU with an integrated High Power Amplifier. The kit works with the LaunchPad  
ecosystem, easily enabling additional functionality like sensors, display, and more. The built-  
in EnergyTracesoftware is an energy-based code analysis tool that measures and displays  
the applications energy profile and helps to optimize it for ultra-low-power consumption.  
The RF configuration of the LaunchPad enables up to +13 dBm output power for 433 MHz  
and +10 dBm output power for 2.4 GHz. The LaunchPad can also be used as a development  
kit when evaluating other device family devices such as CC1312R7 for use with 433 MHz  
frequency bands or CC2652P7 for +10 dBm in the 2.4 GHz band.  
For evaluation of +20 dBm operation at 2.4 GHz the BOM can be modified as described in  
the schematics available in the Design Files.  
Software  
SimpleLink™  
CC13XX-  
CC26XX SDK  
The SimpleLink CC13xx and CC26xx Software Development Kit (SDK) provides a complete  
package for the development of wireless applications on the CC13XX / CC26XX family of  
devices. The SDK includes a comprehensive software package for the CC1352P7 device,  
including the following protocol stacks:  
Bluetooth Low Energy 4 and 5.2  
Thread (based on OpenThread)  
Zigbee 3.0  
Wi-SUN®  
TI 15.4-Stack - an IEEE 802.15.4-based star networking solution for Sub-1 GHz and  
2.4 GHz  
Proprietary RF - a large set of building blocks for building proprietary RF software  
Multiprotocol support - concurrent operation between stacks using the Dynamic Multiprotocol  
Manager (DMM)  
The SimpleLink CC13XX-CC26XX SDK is part of TIs SimpleLink MCU platform, offering a  
single development environment that delivers flexible hardware, software and tool options for  
customers developing wired and wireless applications. For more information about the  
SimpleLink MCU Platform, visit http://www.ti.com/simplelink.  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: CC1352P7  
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
Development Tools  
Code Composer  
Studio™  
Integrated  
Development  
Environment (IDE)  
Code Composer Studio is an integrated development environment (IDE) that supports TI's  
Microcontroller and Embedded Processors portfolio. Code Composer Studio comprises a  
suite of tools used to develop and debug embedded applications. It includes an optimizing  
C/C++ compiler, source code editor, project build environment, debugger, profiler, and many  
other features. The intuitive IDE provides a single user interface taking you through each  
step of the application development flow. Familiar tools and interfaces allow users to get  
started faster than ever before. Code Composer Studio combines the advantages of the  
Eclipse® software framework with advanced embedded debug capabilities from TI resulting  
in a compelling feature-rich development environment for embedded developers.  
CCS has support for all SimpleLink Wireless MCUs and includes support for EnergyTrace™  
software (application energy usage profiling). A real-time object viewer plugin is available for  
TI-RTOS, part of the SimpleLink SDK.  
Code Composer Studio is provided free of charge when used in conjunction with the XDS  
debuggers included on a LaunchPad Development Kit.  
Code Composer  
Studio™ Cloud  
IDE  
Code Composer Studio (CCS) Cloud is a web-based IDE that allows you to create, edit and  
build CCS and Energia™ projects. After you have successfully built your project, you can  
download and run on your connected LaunchPad. Basic debugging, including features like  
setting breakpoints and viewing variable values is now supported with CCS Cloud.  
IAR Embedded  
Workbench® for  
Arm®  
IAR Embedded Workbench® is a set of development tools for building and debugging  
embedded system applications using assembler, C and C++. It provides a completely  
integrated development environment that includes a project manager, editor, and build tools.  
IAR has support for all SimpleLink Wireless MCUs. It offers broad debugger support,  
including XDS110, IAR I-jetand Segger J-Link. A real-time object viewer plugin is  
available for TI-RTOS, part of the SimpleLink SDK. IAR is also supported out-of-the-box on  
most software examples provided as part of the SimpleLink SDK.  
A 30-day evaluation or a 32 KB size-limited version is available through iar.com.  
SmartRF™ Studio  
SmartRF™ Studio is a Windows® application that can be used to evaluate and configure  
SimpleLink Wireless MCUs from Texas Instruments. The application will help designers of  
RF systems to easily evaluate the radio at an early stage in the design process. It is  
especially useful for generation of configuration register values and for practical testing and  
debugging of the RF system. SmartRF Studio can be used either as a standalone  
application or together with applicable evaluation boards or debug probes for the RF device.  
Features of the SmartRF Studio include:  
Link tests - transmit and receive packets between nodes  
Antenna and radiation tests - set the radio in continuous wave TX and RX states  
Export radio configuration code for use with the TI SimpleLink SDK RF driver  
Custom GPIO configuration for signaling and control of external switches  
Sensor Controller  
Studio  
Sensor Controller Studio is used to write, test and debug code for the Sensor Controller  
peripheral. The tool generates a Sensor Controller Interface driver, which is a set of C  
source files that are compiled into the System CPU application. These source files also  
contain the Sensor Controller binary image and allow the System CPU application to control  
and exchange data with the Sensor Controller. Features of the Sensor Controller Studio  
include:  
Ready-to-use examples for several common use cases  
Full toolchain with built-in compiler and assembler for programming in a C-like  
programming language  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: CC1352P7  
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
Provides rapid development by using the integrated sensor controller task testing and  
debugging functionality, including visualization of sensor data and verification of  
algorithms  
CCS UniFlash  
CCS UniFlash is a standalone tool used to program on-chip flash memory on TI MCUs.  
UniFlash has a GUI, command line, and scripting interface. CCS UniFlash is available free  
of charge.  
10.2.1 SimpleLink™ Microcontroller Platform  
The SimpleLink microcontroller platform sets a new standard for developers with the broadest portfolio of wired  
and wireless Arm® MCUs (System-on-Chip) in a single software development environment. Delivering flexible  
hardware, software and tool options for your IoT applications. Invest once in the SimpleLink software  
development kit and use throughout your entire portfolio. Learn more on ti.com/simplelink.  
10.3 Documentation Support  
To receive notification of documentation updates on data sheets, errata, application notes and similar, navigate  
to the device product folder on ti.com/product/CC1352P7. In the upper right corner, click on Alert me to register  
and receive a weekly digest of any product information that has changed. For change details, review the revision  
history included in any revised document.  
The current documentation that describes the MCU, related peripherals, and other technical collateral is listed as  
follows.  
TI Resource Explorer  
TI Resource Explorer  
Software examples, libraries, executables, and documentation are available for your  
device and development board.  
Errata  
CC1352P7 Silicon  
Errata  
The silicon errata describes the known exceptions to the functional specifications for  
each silicon revision of the device and description on how to recognize a device  
revision.  
Application Reports  
All application reports for the CC1352P7 device are found on the device product folder at: ti.com/product/  
CC1352P7/#tech-docs.  
Technical Reference Manual (TRM)  
CC13x2x7, CC26x2x7 SimpleLink™  
Wireless MCU TRM  
The TRM provides a detailed description of all modules and  
peripherals available in the device family.  
10.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.5 Trademarks  
SimpleLink, LaunchPad, EnergyTrace, Code Composer Studio, and TI E2Eare trademarks of Texas  
Instruments.  
I-jetis a trademark of IAR Systems AB.  
J-Linkis a trademark of SEGGER Microcontroller Systeme GmbH.  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
 
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
Wi-SUN® and mioty® are registered trademarks of Wi-SUN Alliance Inc.  
Zigbee® is a registered trademark of Zigbee Alliance Inc.  
Bluetooth® is a registered trademark of Bluetooth SIG Inc.  
Arm Thumb® is a registered trademark of Arm Limited (or its subsidiaries).  
Eclipse® is a registered trademark of Eclipse Foundation.  
IAR Embedded Workbench® is a registered trademark of IAR Systems AB.  
Windows® is a registered trademark of Microsoft Corporation.  
所有商标均为其各自所有者的财产。  
10.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: CC1352P7  
 
 
CC1352P7  
www.ti.com.cn  
ZHCSO54A MAY 2021 REVISED NOVEMBER 2021  
11 Mechanical, Packaging, and Orderable Information  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: CC1352P7  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-May-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CC1352P74T0RGZR  
ACTIVE  
VQFN  
RGZ  
48  
2500 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 105  
CC1352  
P74  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Jan-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CC1352P74T0RGZR  
VQFN  
RGZ  
48  
2500  
330.0  
16.4  
7.3  
7.3  
1.1  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Jan-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RGZ 48  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
CC1352P74T0RGZR  
2500  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
A
7.1  
6.9  
B
(0.1) TYP  
7.1  
6.9  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
PIN 1 INDEX AREA  
(0.45) TYP  
CHAMFERED LEAD  
CORNER LEAD OPTION  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 5.5  
5.15±0.1  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
SEE SIDE WALL  
DETAIL  
SYMM  
2X  
5.5  
1
36  
0.30  
0.18  
PIN1 ID  
(OPTIONAL)  
48X  
48  
37  
SYMM  
0.1  
C A B  
C
0.5  
0.3  
48X  
0.05  
SEE LEAD OPTION  
4219044/D 02/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
5.15)  
SYMM  
(
48X (0.6)  
37  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(1.26)  
2X  
(1.065)  
(R0.05)  
TYP  
25  
12  
21X (Ø0.2) VIA  
TYP  
24  
13  
2X (1.065)  
2X (1.26)  
2X (5.5)  
LAND PATTERN EXAMPLE  
SCALE: 15X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219044/D 02/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
SYMM  
(
1.06)  
37  
48X (0.6)  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(0.63)  
2X  
(1.26)  
(R0.05)  
TYP  
25  
12  
24  
13  
2X  
(1.26)  
2X (0.63)  
2X (5.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
67% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219044/D 02/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

CC1352P74T0RGZR

具有集成式功率放大器的 SimpleLink™ Arm® Cortex®-M4F 多协议低于 1GHz 和 2.4GHz 无线 MCU | RGZ | 48 | -40 to 105
TI

CC1352R

具有 352kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M4F 多协议低于 1GHz 和 2.4GHz 无线 MCU
TI

CC1352R1F3RGZR

具有 352kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M4F 多协议低于 1GHz 和 2.4GHz 无线 MCU | RGZ | 48 | -40 to 105
TI

CC1352R1F3RGZT

具有 352kB 闪存的 SimpleLink™ 32 位 Arm Cortex-M4F 多协议低于 1GHz 和 2.4GHz 无线 MCU | RGZ | 48 | -40 to 105
TI

CC137-101-JBW

Fixed Resistor, Carbon Composition, 1W, 100ohm, 500V, 5% +/-Tol, 1500ppm/Cel, Through Hole Mount, AXIAL LEADED, ROHS COMPLIANT
RCD

CC137-101-JTW

Fixed Resistor, Carbon Composition, 1W, 100ohm, 500V, 5% +/-Tol, 1500ppm/Cel, Through Hole Mount, AXIAL LEADED, ROHS COMPLIANT
RCD

CC137-102-JBW

Fixed Resistor, Carbon Composition, 1W, 1000ohm, 500V, 5% +/-Tol, 1500ppm/Cel, Through Hole Mount, AXIAL LEADED, ROHS COMPLIANT
RCD

CC137-105-JBW

Fixed Resistor, Carbon Composition, 1W, 1000000ohm, 500V, 5% +/-Tol, 1500ppm/Cel, Through Hole Mount, AXIAL LEADED, ROHS COMPLIANT
RCD

CC137-110-JBW

Fixed Resistor, Carbon Composition, 1W, 11ohm, 500V, 5% +/-Tol, 1500ppm/Cel, Through Hole Mount, AXIAL LEADED, ROHS COMPLIANT
RCD

CC137-130-JBW

Fixed Resistor, Carbon Composition, 1W, 13ohm, 500V, 5% +/-Tol, 1500ppm/Cel, Through Hole Mount, AXIAL LEADED, ROHS COMPLIANT
RCD

CC137-132-JAW

Fixed Resistor, Carbon Composition, 1W, 1300ohm, 500V, 5% +/-Tol, 1500ppm/Cel, Through Hole Mount, AXIAL LEADED, ROHS COMPLIANT
RCD

CC137-134-JBW

Fixed Resistor, Carbon Composition, 1W, 130000ohm, 500V, 5% +/-Tol, 1500ppm/Cel, Through Hole Mount, AXIAL LEADED, ROHS COMPLIANT
RCD