BQ76200 [TI]

高侧 N 沟道 FET 驱动器;
BQ76200
型号: BQ76200
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高侧 N 沟道 FET 驱动器

驱动 驱动器
文件: 总28页 (文件大小:1591K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
bq76200  
ZHCSED8 NOVEMBER 2015  
bq76200 高压电池组前端充电/放电高侧 NFET 驱动器  
1 特性  
3 说明  
1
CHG DSG 高侧 N 沟道金属氧化物半导体  
bq76200 器件是一款低功耗、高侧 N 沟道系统。 高侧  
(NMOS) 场效应晶体管 (FET) 驱动器,可控制电池  
保护快速 FET 导通和关断次数  
保护可防止系统的接地引脚断开连接,同时允许电池组  
与主机系统之间进行持续通信。 该器件的附加 P 沟道  
FET 控制功能支持对深度耗尽型电池进行低电流预充  
电,其 PACK+ 电压监控控制功能支持主机感测  
PACK+ 电压。  
预充电 P 沟道场效应晶体管 (PFET) 驱动器(用于  
为显著耗尽的电池组进行限流预充电)  
独立的数字使能充/放电控制  
所需外部组件最少  
独立的使能输入允许单独导通和关断 CHG DSG  
FET,从而提供灵活的电池系统实施方案。  
基于可扩展外部电容的电荷泵,适用于不同范围内  
的并行 FET  
耐受高压(绝对最高电压为 100V)  
使能电池组电压感测的内部开关  
支持通用和独立的充/放电路径配置  
bq76200 器件可与配套的模拟前端器件搭配使用,例  
bq76920/30/40 系列、3 节至 15 节电池模拟前端监  
控以及主机微控制器或专用的充电状态 (SOC) 跟踪电  
量监测计器件。  
设计为直接与 bq76940bq76930 bq76920 电  
池监控器搭配使用  
电流消耗:  
器件信息(1)  
部件号  
封装  
封装尺寸(标称值)  
正常模式:40μA  
5.00mm × 4.40mm ×  
1.00mm  
关断模式:< 10µA(最大值)  
bq76200  
TSSOP (16)  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
2 应用  
电动自行车 (eBike)、电动踏板车 (eScooter) 和电  
动摩托车 (eMotorcycles)  
储能系统和不间断电源 (UPS)  
便携式医疗系统  
无线基站电池系统  
铅酸 (PbA) 备用电池  
12V 48V 电池组  
简化电路原理图  
1 M  
t!/Y+  
10 Mꢀ  
10 Mꢀ  
bq76200  
VDDCP  
CHG  
NC  
100 ꢀ  
100 ꢀ  
470 nF  
BAT  
NC  
PCHG  
NC  
0.01 µF  
CHG_EN  
CP_EN  
DSG_EN  
DSG  
PACK  
From AFE  
or  
MCU  
PMON_EN PACKDIV  
PCHG_EN  
0.01 µF  
VSS  
Ra  
Rb  
To ADC  
t!/Y-  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSC16  
 
 
 
bq76200  
ZHCSED8 NOVEMBER 2015  
www.ti.com.cn  
目录  
7.3 Feature Description................................................... 9  
7.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
8.1 Application Information............................................ 12  
8.2 Typical Applications ................................................ 17  
Power Supply Recommendations...................... 19  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 6  
6.7 Typical Characteristics ............................................. 7  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 9  
8
9
10 Layout................................................................... 19  
10.1 Layout Guidelines ................................................. 19  
10.2 Layout Example .................................................... 19  
11 器件和文档支持 ..................................................... 21  
11.1 文档支持................................................................ 21  
11.2 社区资源................................................................ 21  
11.3 ....................................................................... 21  
11.4 静电放电警告......................................................... 21  
11.5 Glossary................................................................ 21  
12 机械、封装和可订购信息....................................... 21  
7
4 修订历史记录  
日期  
修订版本  
注释  
2015 11 月  
*
最初发布版本  
2
Copyright © 2015, Texas Instruments Incorporated  
 
bq76200  
www.ti.com.cn  
ZHCSED8 NOVEMBER 2015  
5 Pin Configuration and Functions  
PW Package  
16-pin TSSOP  
Top View  
VDDCP  
BAT  
1
2
3
4
5
6
7
8
16  
15  
14  
CHG  
NC  
NC  
PCHG  
CHG_EN  
CP_EN  
13 NC  
DSG  
12  
11  
DSG_EN  
PMON_EN  
PCHG_EN  
PACK  
10 PACKDIV  
9
VSS  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
BAT  
CHG(2)  
NO.  
2
I/O  
P
O
I
Top of battery stack  
16  
4
Gate drive for charge FET  
Charge FET enable  
CHG_EN(3)  
CP_EN(3)  
5
I
Charge pump enable (internally logic ORed with CHG_EN and DSG_EN  
signals)  
DSG(2)  
DSG_EN(3)  
NC  
12  
O
I
Gate drive for discharge FET  
6
Discharge FET enable  
3, 13, 15  
P
O
O
I
No connect. Leave the pin floating  
Analog input from PACK+ terminal  
PACK voltage after internal switch (connect to MCU ADC via resistor divider).  
Gate drive for pre-charge FET  
PACK  
11  
10  
14  
8
PACKDIV(2)  
PCHG(2)  
PCHG_EN(3)  
PMON_EN(3)  
Pre-charge FET enable  
7
I
Pack monitor enable (allows connection of internal switch between PACK  
and PACKDIV)  
VDDCP  
VSS  
1
9
O
P
Charge pump output. Connect a capacitor to BAT pin. Do not load this pin.  
Ground reference  
(1) P = Power Connection, O = Digital Output, AI = Analog Input, I = Digital Input, I/OD = Digital Input/Output  
(2) Leave the pin float if function is not used.  
(3) Recommended to connect the pin to ground if function is not used.  
Copyright © 2015, Texas Instruments Incorporated  
3
bq76200  
ZHCSED8 NOVEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–40  
MAX  
100  
15  
UNIT  
V
BAT, PACK (both under charge pump disabled condition)  
Input voltage range, VIN  
CHG_EN, DSG_EN, PCHG_EN, PMON_EN, CP_EN(2)  
CHG, DSG, PCHG, PACKDIV, VDDCP  
Functional Temperature  
V
Output voltage range, VO  
TFUNC  
100  
110  
150  
V
°C  
°C  
Storage temperature, Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The enable inputs need to be current limited with max current not exceeding 5 mA.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-  
001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification  
JESD22-C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Typical values stated where TA = 25°C and VBAT = 48.8 V, Min/Max values stated where TA = –40°C to 85°C and BAT = 8 V  
to 75 V (unless otherwise noted)  
MIN  
8
NOM  
MAX  
75  
UNIT  
V
VBAT  
Battery cell input supply voltage range  
VPACK  
VIN  
CVDDCP  
TOPR  
Charger/Load voltage range  
0
75  
V
Input voltage range CHG_EN, DSG_EN, PCHG_EN, PMON_EN, CP_EN  
Capacitor Between VDDCP and BAT  
0
14  
V
470  
nF  
°C  
Operating free-range temperature  
–40  
85  
6.4 Thermal Information  
TSSOP (PW)  
16 PINS  
106.8  
41.5  
THERMAL METRIC(1)  
UNIT  
RθJA, High K  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
51.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
3.8  
ψJB  
51.3  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
bq76200  
www.ti.com.cn  
ZHCSED8 NOVEMBER 2015  
6.5 Electrical Characteristics  
Typical values stated at TA = 25°C and V(BAT) = 48 V. MIN/MAX values stated with TA = –40°C to 85°C and V(BAT) = 8 to 75 V  
unless otherwise noted.  
PARAMETER  
DESCRIPTION  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
SUPPLY AND LEAKAGE CURRENT  
C(VDDCP) = 470 nF, V(BAT) = V(PACK)  
CL = 10 nF  
,
I(BAT)  
Ishut  
NORMAL mode current(1)  
40  
6
50  
µA  
µA  
Sum of current into BAT and  
PACK pin  
Shutdown Mode, PACK = 0 V, BAT = 8 V  
9.5  
CHARGE PUMP  
V(VDDCP)  
Charge pump voltage  
No Load, CP_EN = hi, V(VDDCP) – V(BAT)  
9
14  
V
Charge pump start up time from C(VDDCP) = 470 nF, 10% to 90% of  
tCPON  
100  
ms  
zero volt  
V(VDDCP)  
INPUT ENABLE CONTROL SIGNALS  
Digital low input level for  
VIL  
CHG_EN, DSG_EN,  
0.6  
V
PCHG_EN, CP_EN, PMON_EN  
Digital high input level for  
CHG_EN, DSG_EN,  
PCHG_EN, CP_EN, PMON_EN  
VIH  
1.2  
0.6  
V
RPD  
Internal Pull down  
VIN = 5 V  
1
4
MΩ  
CHARGE FET DRIVER  
CL = 10 nF, CHG_EN = Hi, V(BAT)  
V(PACK), V(CHG) – V(BAT)  
=
V(CHGFETON)  
R(CHGFETON)  
R(CHGFETOFF)  
CHG gate drive voltage (on)  
9
12  
1.1  
0.3  
14  
V
V(VDDCP) – V(BAT) = 12 V, CHG_EN = Hi,  
V(BAT) = V(PACK)  
CHG FET driver on resistance  
CHG FET driver off resistance  
kΩ  
kΩ  
V(VDDCP) – V(BAT) = 12 V, CHG_EN = Lo,  
V(BAT) = V(PACK)  
DISCHARGE FET DRIVER  
CL = 10 nF, DSG_EN = Hi, V(BAT)  
V(PACK), V(DSG) – V(PACK)  
=
V(DSGFETON)  
R(DSGFETON)  
R(DSGFETOFF)  
DSG gate drive voltage (on)  
9
12  
3.5  
1
14  
V
V(VDDCP) – V(BAT) = 12 V, DSG_EN = Hi,  
V(BAT) = V(PACK)  
DSG FET driver on resistance  
DSG FET driver off resistance  
kΩ  
kΩ  
V(VDDCP) – V(BAT) = 12 V, DSG_EN = Lo,  
V(BAT) = V(PACK)  
PRECHARGE FET DRIVER  
V(PACK) > 17 V, V(BAT) < V(PACK), V(PACK)  
V(PCHG)  
V(PCHGFETON)  
PCHG gate drive voltage (on)  
5
12  
14  
V
PACK MONITOR (PACK_DIV)  
On resistance of internal FET  
R(PMONFET)  
(R between PACK and  
PACKDIV)  
PMON_EN = hi  
1.5  
2.5  
3.5  
kΩ  
(1) NORMAL mode is defined as CHG_EN = Hi, DSG_EN = Hi, CP_EN = Hi, PCHG_EN = Lo, PMON_EN = Lo. Current value is averaged  
out over time.  
版权 © 2015, Texas Instruments Incorporated  
5
bq76200  
ZHCSED8 NOVEMBER 2015  
www.ti.com.cn  
6.6 Timing Requirements  
Parameter  
Description  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
CL = 10 nF, (20% of CHG_EN from Lo  
to Hi) to (80% of V(CHGFETON)), CP_EN =  
Hi, (CP is already on)  
CHG on rise time + propagation  
delay  
tCHGFETON  
27  
7
45  
20  
µs  
CL= 10 nF, (80% of CHG_EN from Hi to  
Lo) to (20% of V(CHGFETON)) , CHG_EN  
= Hi to Lo  
CHG off fall time + progation  
delay  
tCHGFETOFF  
tPROP _CHG  
tDSGFETON  
µs  
µs  
µs  
CL= 10 nF, CP_EN = Hi, (CP is already  
on), see timing diagram  
CHG EN to CHG output  
0.5  
24  
CL = 10 nF, (20% of DSG_EN from Lo  
to Hi) to (80% of V(DSGFETON)), CP_EN =  
Hi, (CP is already on)  
DSG on rise time + propagation  
delay  
50  
20  
DSG off fall time + propagation CL = 10 nF, (80% of DSG_EN from Hi to  
tDSGFETOFF  
tPROP_DSG  
tPCHGOFF  
7
0.5  
30  
µs  
µs  
µs  
µs  
µs  
µs  
delay  
Lo) to (20% of V(DSGFETON))  
DSG EN to DSG output  
propagation delay  
CL= 10 nF, CP_EN = Hi, (CP already  
on), see timing Diagram  
PCHG turn off time +  
propagation delay  
CL = 1 nF, (20% of PCHG_EN from Hi  
55  
55  
to Lo) to (80% of V(PCHGFETON)  
)
PCHG turn on time +  
propagation delay  
CL = 1 nF, (80% of PCHG_EN from Lo  
tPCHGON  
34  
to Hi) to (20% of V(PCHGFETON)  
CL = 1 nF  
)
PCH_EN to PCHG propagation  
delay  
tPROP_PCHG  
tPROP_PMON  
0.5  
0.5  
PMON_EN and PACKDIV =  
PACK propagation delay  
80%  
CHG_EN/  
DSG_EN/  
20%  
80%  
CHG/  
DSG/  
20%  
Tprop  
Tprop  
TFETON  
TFETOFF  
1. Timing Characteristics - ( CP assumed to be already On)  
6
版权 © 2015, Texas Instruments Incorporated  
bq76200  
www.ti.com.cn  
ZHCSED8 NOVEMBER 2015  
6.7 Typical Characteristics  
36  
34  
32  
30  
28  
26  
24  
22  
7
6.5  
6
Min  
Average  
Max  
Min  
Average  
Max  
5.5  
5
4.5  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
Temperature (èC)  
Temperature (èC)  
D001  
D002  
2. Normal Mode Current Vs Battery  
3. Shutdown Mode Current vs Battery  
1.75  
11.5  
11.25  
11  
-40èC  
25èC  
105èC  
Min  
Average  
Max  
1.5  
1.25  
1
10.75  
10.5  
10.25  
10  
0.75  
0.5  
9.75  
9.5  
0
2
4
6
8
10  
12  
14  
16  
-50  
-25  
0
25  
50  
75  
100  
Input Voltage (V)  
Temperature (èC)  
D003  
D0041  
4. Input Pin Voltage for Internal Pull-Down Resistance  
5. CHG/DSG FET On Voltage vs Temperature  
(Rpd)  
16  
Min  
Average  
Max  
14  
12  
10  
8
6
-50  
-25  
0
25  
50  
75  
100  
Temperature (èC)  
D005  
6. PCHG On Voltage vs Temperature  
版权 © 2015, Texas Instruments Incorporated  
7
bq76200  
ZHCSED8 NOVEMBER 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The bq76200 device is a low-power, high-side, N-Channel MOSFET driver for battery-pack protection systems,  
allowing a low-side battery-protection system to be implemented into a high-side protection system.  
High-side charge/discharge FETs offer a huge advantage versus their low-side counterparts; with high-side  
implementation, a system-side processor can always communicate with the monitor or micro-controller (MCU)  
within the battery pack, regardless of whether the FETs are on or off — this is not easily supported in a low-side  
switching architecture due to the lack of a shared ground reference. One key benefit of an ever-present  
communication link is the ability to read out critical pack parameters despite safety faults, thereby enabling the  
system to assess pack conditions before determining if normal operation may resume.  
The device allows independent control on charging and discharge via the digital enable pins. The device has  
integrated charge pump which is enabled by the CP_EN pin. The enable inputs, CHG_EN, DSG_EN, and  
PCHG_EN control the CHG, DSG, and PCHG FET gate drivers, respectively. The enable inputs can be  
connected to low-side FET driver outputs of an Analog Front End (AFE) such as Texas Instruments bq769x0  
series, a general purpose microcontroller, or dedicated battery pack controller such as the bq783xx series.  
In normal mode, the AFE or MCU enables the CHG_EN and DSG_EN, turning on the CHG and DSG FET  
drivers to connect the battery power to the PACK+ terminal. When a fault is detected by the AFE or the  
microcontroller, it can disable the CHG_EN and/or DSG_EN to open the charge or discharge path for protection.  
Note that when either the CHG_EN or DSG_EN is enabled, the charge pump will be automatically enabled even  
if the CP_EN is in the disable state. It is recommended to enable the charge pump via CP_EN pin during system  
start-up to avoid adding the tCPON time into the FET switching time during normal operation.  
A lower charging current is usually applied to a deeply depleted battery pack. The bq76200 PCHG_EN input  
provides an option to implement a P-Channel MOSFET pre-charge path (current-limited path) in the battery pack.  
An AFE usually provides individual cell voltages and/or battery stack voltage measurements, but it is not  
necessary to have PACK+ voltage measurement. The bq76200 PMON_EN pin, when enabled, will connect the  
PACK+ voltage onto the PACKDIV pin, which is connected to an external resistor divider to scale down the  
PACK+ voltage. This scaled down PACK+ voltage can be connected to a microcontroller's ADC input for voltage  
measurement. The system can use this information for charger detection or to implement advanced charging  
control.  
For safety purposes, all the enable inputs are internally pulled down. If the AFE or microcontroller is turned off, or  
if the PCB trace is damaged, the internal pull down of the enable inputs will keep CHG, DSG, PCHG in an off  
state and the PACK+ voltage does not switch onto the PACKDIV pin.  
8
版权 © 2015, Texas Instruments Incorporated  
bq76200  
www.ti.com.cn  
ZHCSED8 NOVEMBER 2015  
7.2 Functional Block Diagram  
BAT  
PACK  
PACKDIV  
Vcommon  
UVLO  
Reference  
PMON_EN  
CHG_EN  
CHG  
Charge  
Pump  
CP_EN  
VDDCP  
DSG  
I/O  
DSG_EN  
Vcommon  
PCHG  
PCHG_EN  
VSS  
7. Functional Block Diagram  
7.3 Feature Description  
7.3.1 Charge Pump Control  
The bq76200 device has an integrated charge pump. A minimum of 470-nF capacitor is required on the V(VDDCP)  
pin to the BAT pin to ensure proper function of the charge pump. If the V(VDDCP) capacitor is disconnected, a  
residual voltage could reside at the CHG and/or DSG output if CHG_EN and/or DSG_EN are enabled. Such a  
fault condition can put the external FETs in high Rdson state and result in FET damage.  
版权 © 2015, Texas Instruments Incorporated  
9
bq76200  
ZHCSED8 NOVEMBER 2015  
www.ti.com.cn  
Feature Description (接下页)  
The V(VDDCP) capacitor can be scaled up to support more FETs in parallel (such as high-total FET-gate  
capacitance) than the value specified in the electrical characteristics table. A higher VDDCP capacitance results  
in longer tCPON time. See the Application Information section for more information. Note that probing the VDDCP  
pin may increase the loading on the charge pump and result in lower measurement value than the V(VDDCP)  
specification. Using higher impedance probe can reduce such effect on the measurement.  
The charge pump is controlled by CP_EN and also OR'ed with the CHG_EN and DSG_EN inputs. This means  
by enabling CHG_EN or DSG_EN alone, the charge pump will automatically turn on even if the CP_EN pin is  
disabled. The PCHG_EN controls the PCHG pin, which is a P-channel FET driver and does not require the  
function of the charge pump. The charge pump is turned off by default. When CP_EN is high, the charge pump  
turns on regardless of the status of the CHG_EN and DSG_EN inputs.  
When CP_EN is enabled, the charge pump voltage starts to ramp up. Once the voltage is above an internal  
UVLO level, about 9-V typical above VBAT, the charge pump is considered on. The charge pump voltage should  
continuously ramp to the V(VDDCP) level. If the CHG_EN and/or DSG_EN is enabled, the CHG and/or DSG  
voltage will starts to turn on after the charge pump voltage is above the UVLO level, and ramp up along the  
charge pump voltage to the V(VDDCP) level. Otherwise, the CHG and DSG do not turn on if the charge pump  
voltage fails to ramp up above UVLO. For example, if the C(VDDCP) is not scaled properly to support the number  
of FETs in parallel, the heavy loading would prevent the charge pump to ramp up above UVLO. CHG and DSG  
would not be turned on in this case.  
When CHG_EN and/or DSG_EN is enabled after the charge pump is fully turned on, the CHG_EN-enable to  
CHG-on delay (or DSG_EN-enable to DSG-on delay) is simply the sum of (tprop + FET rise time). A system  
configuration example for this scenario will be connecting the CP_EN to the host MCU, enable CP_EN at system  
start-up and keep the CP_EN enabled during normal operation. This is the recommended configuration, because  
the charge pump ramp-up time, tCPON, becomes part of the system start-up time and does not add onto the FET  
switch delay during normal operation.  
If CP_EN is not used (it is highly recommended to connect the CP_EN to ground), the charge pump on- and off-  
state is controlled by CHG_EN or DSG_EN. The CHG or DSG output will only be on after the charge-pump  
voltage is ramped up above UVLO. This means the CHG_EN-enable to CHG-on delay (or DSG_EN-enable to  
DSG-on delay) will be (tCPON + tprop + FET rise time).  
The charge pump is turned off when CP_EN AND CHG_EN AND DSG_EN signals are all low. The charge pump  
is not actively driven low and the voltage on the V(VDDCP) capacitor bleeds off passively. If any of the CP_EN,  
CHG_EN, or DSG_EN signals is switched high again while the V(VDDCP) capacitor is still bleeding off its charge,  
the charge pump start up time, tCPON, will be shorter.  
7.3.2 Pin Enable Controls  
The bq76200 has four digital enable inputs that control the state of associated output signals as defined in the  
following table. The VIH and VIL levels of these enable pins are low enough to work with most MCUs. At the  
same times, the pins have high enough tolerant to allow direct control from an AFE FET driver. This gives  
system maker a flexible option to architect the battery pack configuration.  
INPUT PIN  
CHG_EN  
ASSOCIATED OUTPUT PIN  
DESCRIPTION  
Charge FET control  
Discharge FET control  
Pre-charge FET control  
Pack monitor control  
CHG  
DSG  
DSG_EN  
PCHG_EN  
PMON_EN  
PCHG  
PACKDIV  
10  
版权 © 2015, Texas Instruments Incorporated  
bq76200  
www.ti.com.cn  
ZHCSED8 NOVEMBER 2015  
7.3.2.1 External Control of CHG and DSG Output Drivers  
The CHG_EN and DSG_EN pins provide direct control of the CHG and DSG FET driver. 1 summarizes the  
CHG and DSG statute with respect to the CP_EN, CHG_EN and DSG_EN inputs.  
1. CHG and DSG with Respect to CP_EN, CHG_EN, and DSG_EN  
CP_EN  
CHG_EN  
DSG_EN  
CHARGE PUMP  
CHG  
OFF (default)  
OFF  
DSG  
OFF (default)  
ON  
Lo (default)  
Lo (default)  
Lo (default)  
OFF (default)  
Lo  
Lo  
Lo  
Hi  
Hi  
Hi  
Hi  
Lo  
Hi  
Hi  
Lo  
Lo  
Hi  
Hi  
Hi  
Lo  
Hi  
Lo  
Hi  
Lo  
Hi  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
ON  
ON  
OFF  
OFF  
OFF  
ON  
ON  
OFF  
ON  
ON  
7.3.2.2 External Control of PCHG Output Driver  
The PCHG output driver is designed to drive a P-channel FET and is controlled by the PCHG_EN pin. The  
PCHG driver provides an option to implement a separate charging path with a P-channel FET to charge the  
battery when the cells are deeply depleted. A resistor should be added in series to the P-channel pre-charge  
FET to limit the charging current. A pre-charge current is usually at or less than 1/20 of the normal charge  
current if the charger does not support lower current pre-charge. Refer to the battery cell specification from the  
cell manufacturer charging for the appropriate current limit.  
PCHG_EN  
Lo (default)  
Hi  
PCHG  
OFF (default)  
ON  
7.3.2.3 Pack Monitor Enable  
The bq76200 device provides an internal-switch control to post the PACK+ voltage on to the PACKDIV pin. A  
resistor divider can be connected to the PACKDIV pin externally to divide down the PACK+ voltage into a  
measurable range of an MCU. The PMON_EN controls the internal switch between PACK pin and PACKDIV pin.  
The internal switch has an on resistance of R(PMONFET). The external resistor divider for PACKDIV pin should be  
selected to avoid exceeding the absolute maximum of the PACKDIV pin and should also keep the loading current  
< 500 µA. If this function is not used, the PACKDIV pin should leave floating. To reduce power consumption, the  
PMON_EN should be enabled only when PACK+ voltage measurement is needed.  
PMON_EN  
Lo (default)  
Hi  
PACKDIV  
DISABLED (default)  
ENABLED  
7.4 Device Functional Modes  
In NORMAL mode, the bq76200 charge pump is turned on by enabling either CP_EN, CHG_EN, or DSG_EN.  
In this mode, typically the CHG and DSG outputs are driven to V(BAT) + V(VDDCP)  
.
In SHUTDOWN mode, the bq76200 is completely powered down. When CHG_EN, DSG_EN, and CP_EN are  
driven low, the device enters SHUTDOWN mode, and the outputs are driven low.  
DEVICE MODES  
NORMAL  
SHUTDOWN  
CONDITION  
CHG_EN = Hi, DSG_EN = Hi, CP_EN = Hi, PCHG_EN = don't care, PMON_EN = don't care  
CHG_EN = Lo, DSG_EN = Lo, CP_EN = Lo, PCHG_EN = Lo, PMON_EN = Lo  
版权 © 2015, Texas Instruments Incorporated  
11  
 
bq76200  
ZHCSED8 NOVEMBER 2015  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The bq76200 device is a high-side NMOS FET driver with integrated charge pump. The device can convert a  
low-side battery protection system into a high-side protection system, allowing the battery monitor device or  
battery MCU to always maintain communication to the host system regardless if the protection FETs are on or  
off. The device provides independent enables to control charge and discharge of a battery pack.  
The following section highlights several recommended implementations when using this device. A detail bq76200  
Application Note, SLVA729, is available at www.ti.com.  
8.1.1 Recommended System Implementation  
8.1.1.1 The bq76200 is a Slave Device  
The bq76200 is a FET driver. It controls the output pins (CHG, DSG, PCHG, and PACKDIV) according to the  
input pin (CHG_EN, DSG_EN, PCHG_EN, CP_EN, and PMON_EN) status. The device does not validate if the  
inputs should or should not be turned on or off. For example, if both CHG_EN and PCHG_EN are enabled,  
bq76200 will turn on both CHG and PCHG simultaneously, enabling two charging paths to the system. The  
system designer should avoid undesirable enable combination via schematic, AFE, or host MCU implementation.  
8.1.1.2 Flexible Control via AFE or via MCU  
The bq76200 device has simple-logic input pins (CHG_EN, DSG_EN, PCHG_EN, CP_EN, and PMON_EN) that  
can accept a control signal from any MCU I/O. At the same time, the input pins are designed to tolerate high  
voltage signal such as the FET driver output from an AFE. This flexibility allows a mix of control input driving  
from AFE and/or MCU to optimize the system design.  
For example, it is recommended to control the CP_EN pin via MCU which the system can turn on the charge  
pump at system start-up, excluding the extra FET delay due to charge pump voltage ramping. On the other hand,  
the CHG_EN and DSG_EN can be driven by the AFE FET driver output, especially if the AFE has hardware  
protection features (such as the bq76920/30/40 family), to optimize the FET reaction time.  
All the input pins have internal pull-down resistor. The outputs are default to be off if any of the input pins are at  
high-Z state.  
8.1.1.3 Scalable VDDCP Capacitor to Support Multiple FETs in Parallel  
The bq76200 requires a minimum 470-nF capacitor to be connected between the VDDCP pin and BAT pin in  
order to turn on the integrated charge pump. The Electrical Characteristics Specification of this document  
specified the device performance based on 10 nF loading with 470-nF VDDCP capacitor. The loading  
capacitance varies with FET choices, number of FETs in use, and in parallel and simultaneous switching versus  
sequential switching of CHG and DSG FET.  
The more FETs that are in parallel, the higher the loading capacitance. Similarly, simultaneously switching of the  
CHG and DSG FET loads down the charge pump more than sequentially switching both FETs. Eventually, the  
loading capacitance can exceed the supported range of a 470-nF VDDCP capacitor. A > 470-nF VDDCP  
capacitor can be used to support higher-loading capacitance.  
12  
版权 © 2015, Texas Instruments Incorporated  
bq76200  
www.ti.com.cn  
ZHCSED8 NOVEMBER 2015  
Application Information (接下页)  
t!/Y+  
bq76200  
VDDCP  
CHG  
NC  
100  
CVDDCP  
BAT  
NC  
PCHG  
NC  
0.01 µF  
CHG_EN  
CP_EN  
DSG_EN  
DSG  
PACK  
PMON_EN PACKDIV  
PCHG_EN  
VSS  
t!/Y-  
8. Scale CVDDCP to Support Multiple FETs in Parallel (Partial Schematic Shown)  
Based on test results, 470-nF VDDCP capacitor can support up to approximately 30-nF loading capacitance.  
Using a 470-nF/20-nF ratio (to include some design margin), a 2.1-µF VCCDP capacitor can support up to ~90  
nF loading capacitance. Note that a larger VDDCP capacitor increases the charge pump start up time; a higher  
loading capacitance increases the FET on and off time. System designers should test across the operation range  
to ensure the design margin and system performance. Refer to the bq76200 Application note for more test  
results.  
Also notice that any damage or disconnection of the VDDCP capacitor during operation can leave a residual  
voltage on the FET driver output if the inputs are enabled. This can result in putting the external FETs in a high-  
Rdson state and cause FET damage.  
8.1.1.4 Pre-Charge and Pre-Discharge Support  
For a deeply depleted battery pack, a much lower charging current, for example, a C/10 rate, is usually used to  
pre-charge the battery cells. This allows the passivating layer of the cell to be recovered slowly (the passivating  
layer might be dissolved in the deep discharge state).  
The bq76200 has a PCHG output to drive an external P-channel FET to support battery pre-charge. In this  
scenario, the external P-channel FET is placed in parallel with the CHG FET and a power resistor can be  
connected in series of the P-channel FET to limit the charging current during the pre-charge state. The MCU can  
be used to control the PCHG_EN pin to determine the entry and exit of the pre-charge mode.  
版权 © 2015, Texas Instruments Incorporated  
13  
bq76200  
ZHCSED8 NOVEMBER 2015  
www.ti.com.cn  
Application Information (接下页)  
Rpchg  
t!/Y+  
bq76200  
VDDCP  
CHG  
NC  
100  
470 nF  
0.01 µF  
BAT  
NC  
PCHG  
NC  
CHG_EN  
CP_EN  
DSG_EN  
DSG  
PACK  
PMON_EN PACKDIV  
PCHG_EN  
VSS  
From MCU  
t!/Y-  
9. P-channel FET in Parallel With CHG FET for Pre-Charging (Partial Schematic Shown)  
Alternatively, the CHG pin can also be used to pre-charge a battery pack given if the charging current is  
controlled by the system (i.e. does not require external component to limit the charging current such as a smart  
charger) and the battery stack voltage is higher than minimum operation voltage of the bq76200 (i.e. the charge  
pump can start to turn on the CHG FET). PCHG should leave floating if it is not used in the application.  
The PCHG output can be used to pre-discharge a high-capacitive system. For example, a load removal can be  
one of the recovery requirements after a discharge related fault has been detected. In a high-capacitive system,  
the residual voltage at the system side can take a significant time to bleed off. This results in an additional delay  
in fault recovery. The PCHG output can be used to control an external P-channel FET placed in parallel with the  
DSG FET to pre-discharge the residual voltage in order to speed up the fault recovery process.  
14  
版权 © 2015, Texas Instruments Incorporated  
bq76200  
www.ti.com.cn  
ZHCSED8 NOVEMBER 2015  
Application Information (接下页)  
Rpdsg  
t!/Y+  
10 M  
10 Mꢀ  
bq76200  
VDDCP  
CHG  
NC  
100 ꢀ  
470 nF  
0.01 µF  
BAT  
NC  
PCHG  
NC  
CHG_EN  
CP_EN  
DSG  
PACK  
DSG_EN  
PMON_EN PACKDIV  
PCHG_EN  
VSS  
From MCU  
t!/Y-  
10. P-channel FET in Parallel with DSG FET for Pre-Discharging (Partial Schematic Shown)  
8.1.1.5 Optional External Gate Resistor  
The CHG and DSG have certain internal on and off resistance. However, an optional external gate resistor can  
be added to CHG and/or DSG FET to slow down the FET on and off timing.  
8.1.1.6 Separate Charge and Discharge paths  
In some systems, the charging current might be significantly lower than the discharge current. In such systems,  
the system designer may prefer to implement a separate charge and discharge paths in which the number of  
FET in parallel for charge and discharge can be different to reduce to BOM cost.  
版权 © 2015, Texas Instruments Incorporated  
15  
bq76200  
ZHCSED8 NOVEMBER 2015  
www.ti.com.cn  
Application Information (接下页)  
/harge  
5ischarge  
bq76200  
VDDCP  
CHG  
NC  
100  
470 nF  
BAT  
NC  
PCHG  
NC  
0.01 µF  
CHG_EN  
CP_EN  
DSG_EN  
DSG  
PACK  
PMON_EN PACKDIV  
PCHG_EN  
VSS  
t!/Y-  
11. Separate Charge and Discharge Paths (Partial Schematic Shown)  
16  
版权 © 2015, Texas Instruments Incorporated  
bq76200  
www.ti.com.cn  
ZHCSED8 NOVEMBER 2015  
8.2 Typical Applications  
1 M  
Rpchg  
10 Mꢀ  
Rgs  
Rc  
Cc  
t!/Y+  
10 Mꢀ  
Rgs  
10 Mꢀ  
Rgs  
Rc  
Cc  
Rc  
Cc  
Rc  
Cc  
Rc  
Cc  
VC10x  
Cc  
Rc  
B
Analog Front End  
VC15  
Rf  
Rc  
Cc  
470 nF  
CVDDCP  
100 ꢀ  
Rfilter  
bq76200  
100 ꢀ  
Rfilter  
VC14  
VC13  
VC12  
VC11  
VC10b  
VC10  
VC9  
BAT  
CHG  
NC  
VDDCP  
Rc  
Cc  
CAP3  
BAT  
0.01 µF  
Cfilter  
TS3  
PCHG  
NC  
NC  
Cf  
Rc  
Cc  
10k  
10k  
1 µF  
1 µF  
Rf  
Rf  
CHG_EN  
CP_EN  
DSG_EN  
DSG  
PACK  
Rc  
Cc  
VC10x  
CAP2  
A
0.01 µF  
Cfilter  
PMON_EN PACKDIV  
VC8  
TS2  
Cf  
Rc  
Cc  
PCHG_EN  
VSS  
bq76940  
VC7  
VC6  
VC5b  
VC5  
VC4  
VC3  
VC2  
VC1  
VC0  
SRP  
SRN  
ALERT  
VC5x  
Ra  
Cc  
Rc  
VC5x  
REGSRC  
REGOUT  
CAP1  
A
Rc  
Cc  
10 kΩ  
10 kꢀ  
Rc  
Cc  
TS1  
1 µF  
Cf  
1 µF  
4.7 µF  
SCL  
SDA  
VSS  
CHG  
DSG  
Rc  
Cc  
Rc  
Cc  
GPIO  
GPIO  
GPIO  
VCC  
SCL  
PUSH-BUTTON FOR BOOT  
Rc  
Cc  
ADC_IN  
µC  
SDA  
GPIO  
VSS  
Cc  
Rc  
Rb  
0.1 µF 0.1 µF 0.1 µF  
100 ꢀ  
100 ꢀ  
Rsns  
t!/Y-  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 2.  
2. Design Parameters  
PARAMETER  
EXTERNAL COMPONENT  
NOTE  
BAT and PACK Filters  
Rfilter and Cfilter  
Recommended to use 100 and 0.01 µF.  
A minimum of 470 µF is required. A higher value can be used to  
support higher-loading capacitance. See Recommended  
Implementation and bq76200 Application Note () for details.  
VDDCP capacitor  
CVDDCP  
Ra and Rb  
Rgs  
Based on the max PACK voltage of the application, calculate the  
total value of (Ra + Rb) that can keep the PACKDIV current below  
500 µA.  
PACKDIV resistor divider  
Recommended to use 10 MΩ. A different Rgs value may change the  
loading level of the charge pump. System designer should perform  
thorough system testing if a different Rgs is used.  
CHG, DSG, PCHG gate-source  
resistor  
版权 © 2015, Texas Instruments Incorporated  
17  
 
 
bq76200  
ZHCSED8 NOVEMBER 2015  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
1. Determine if CP_EN pin will be driven by MCU. It is highly recommended to use CP_EN to turn on the  
charge pump at system start-up. However, it is not a must to operate the bq76200 to switch on CHG and  
DSG pins. System designer should ensure the FET's turn on time is acceptable during normal operation if  
CP_EN is not enabled at system startup.  
2. Select the correct VDDCP capacitance. Scaling up the VDDCP capacitance allows support for a higher  
number of FETs in parallel. This test result of various parallel FETs versus VDDCP capacitance in the  
bq76200 application is for general reference only. System designer should always validate their design  
tolerant across operation temperature range.  
3. If the PMON_EN is used, the PACKDIV resistor divider, Ra and Rb, must be selected to satisfy (Ra+Rb) <  
500uA, AND [Rb/(Ra + Rb)] < (max ADC input range)/(max PACK+ voltage). For example, In a 48V system,  
if the max charger voltage is 50.4V and a MCU's max ADC input is 3V. To meet both (Ra + Rb) < 500uA,  
AND [Rb/(Ra + Rb)] < (3V/50.4V) requirements, the Ra value might be 100 kΩ or less and Rb value might be  
6 KΩ or less.  
4. Follow the application schematic (see Typical Applications) to connect the device.  
8.2.3 Application Curves  
CHG output reacts to the CHG_EN signal immediately. Similar  
behavior applies to DSG pin.  
CHG output reacts to the CHG_EN signal after charge pump  
startup delay. Similar behavior applies to DSG pin.  
12. CHG_EN Switched On After Charger Pump Turns  
13. CHG_EN Enabled Before Charge Pump is Turned  
On and is Stable  
On  
With 10 nF loading and no Rgs on DSG output. Note the time scale was 800ns/div. Hence, the DSG waveform above was  
basically the DSG FET fall time  
14. DSG_EN to DSG Output Propagation Delay  
18  
版权 © 2015, Texas Instruments Incorporated  
bq76200  
www.ti.com.cn  
ZHCSED8 NOVEMBER 2015  
9 Power Supply Recommendations  
The maximum recommended operation voltage on the BAT and PACK pins is 75 V. The charge pump, when it  
turns on, will add 14 V maximum voltage on top of the BAT or PACK voltage to the device, pushing the total  
device voltage to approximately 89 V.  
The bq76200 has high voltage (100 V) tolerant pins, but system designer should take into account the worse-  
case transient voltage and the maximum charge pump on voltage to determine the maximum voltage applying to  
BAT and PACK pins.  
10 Layout  
10.1 Layout Guidelines  
For the following procedure, see 15 and 16.  
1. Place CVDDCP capacitor close to the device.  
2. Place BAT and PACK RC filters close to the device.  
3. Generally, a typical system using an AFE, MCU, and bq76200 usually have a high-current ground  
trace/plane and low-current ground plane in the PCB layout. If so, the bq76200 ground should be connected  
to the low-current ground plane of the PCB layout to remove noise affecting the ENABLE signals.  
10.2 Layout Example  
PACK+  
bq76200  
CHG  
NC  
VDDCP  
BAT  
100  
CVDDCP  
NC  
PCHG  
NC  
0.01 µF  
CHG_EN  
CP_EN  
100 ꢀ  
DSG  
DSG_EN  
PMON_EN  
PCHG_EN  
PACK  
PACKDIV  
VSS  
0.01 µF  
PACK-  
Place these components close to the device pins  
15. Place CVDDCP and Filter Components Close to Device  
版权 © 2015, Texas Instruments Incorporated  
19  
 
bq76200  
ZHCSED8 NOVEMBER 2015  
www.ti.com.cn  
Layout Example (接下页)  
Power Trace Line  
PACK+  
Low power  
ground plane  
bq76200  
bq76200 ground should connect to  
the low power ground plane of the  
PCB layout  
Battery  
cell  
stack  
comm  
AFE  
MCU  
Rsense  
PACK-  
Low power ground and high power  
ground connect here  
16. Connect bq76200 to Low Power Ground Plane on PCB Layout  
20  
版权 © 2015, Texas Instruments Incorporated  
bq76200  
www.ti.com.cn  
ZHCSED8 NOVEMBER 2015  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
如需相关文档,请参见《bq76200 FET 配置测试结果》(文献编号:SLVA729)。  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
21  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ76200PW  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
16  
16  
90  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
BQ7620B  
BQ7620B  
BQ76200PWR  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

BQ76200PW

高侧 N 沟道 FET 驱动器 | PW | 16 | -40 to 85
TI

BQ76200PWR

高侧 N 沟道 FET 驱动器 | PW | 16 | -40 to 85
TI

BQ769142

适用于锂离子、锂聚合物和磷酸铁锂电池的 3 节至 14 节串联高精度电池监控器和保护器
TI

BQ769142PFBR

适用于锂离子、锂聚合物和磷酸铁锂电池的 3 节至 14 节串联高精度电池监控器和保护器 | PFB | 48 | -40 to 85
TI

BQ76920

3 至 5 节电池锂离子和锂磷酸盐电池监视器(bq76940 系列)
TI

BQ7692000PW

3 至 5 节电池锂离子和锂磷酸盐电池监视器(bq76940 系列) | PW | 20 | -40 to 85
TI

BQ7692000PWR

3 至 5 节电池锂离子和锂磷酸盐电池监视器(bq76940 系列) | PW | 20 | -40 to 85
TI

BQ7692003PW

3 至 5 节电池锂离子和锂磷酸盐电池监视器(bq76940 系列) | PW | 20 | -40 to 85
TI

BQ7692003PWR

3 至 5 节电池锂离子和锂磷酸盐电池监视器(bq76940 系列) | PW | 20 | -40 to 85
TI

BQ7692006PW

3 至 5 节电池锂离子和锂磷酸盐电池监视器(bq76940 系列) | PW | 20 | -40 to 85
TI

BQ7692006PWR

3 至 5 节电池锂离子和锂磷酸盐电池监视器(bq76940 系列) | PW | 20 | -40 to 85
TI

BQ76925

Host Controlled Analog Front End for 3 to 6 Series Cell Lithium-Ion/ Polymer Battery
TI