BQ34210IPWRQ1 [TI]

通过汽车级认证的单节电池系统侧 CEDV 电量监测计 | PW | 14 | -40 to 85;
BQ34210IPWRQ1
型号: BQ34210IPWRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

通过汽车级认证的单节电池系统侧 CEDV 电量监测计 | PW | 14 | -40 to 85

电池 光电二极管
文件: 总23页 (文件大小:1294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
bq34210-Q1  
ZHCSGI9 AUGUST 2017  
用于极少放电型电池的 bq34210-Q1 汽车 1 芯  
系统侧 CEDV 电量监测计  
1 特性  
3 说明  
1
符合汽车 AEC-Q100 3 级标准  
bq34210-Q1 1 芯系统侧 CEDV 电量监测计为 eCall 系  
统和电力故障期间的备用不间断电源 (UPS) 等极少放  
电型 应用 (其中电池可能在其寿命中的大部分时间一  
直连接到充电电源,直到需要时才断开连接)中的 1  
芯电池提供电量监测和放电结束 (EOS) 确定功能。  
bq34210-Q1 电量监测计支持多种电池化学物质,包括  
锂离子、磷酸铁锂和镍氢。  
1 芯电池电量监测计支持锂离子、磷酸铁锂和镍氢  
电池(3 芯)化学物质  
位于系统板上  
由具有集成低压降稳压器 (LDO) 的电池直接供  
支持低值外部感测电阻器 (10m)  
从主机学习负载使能 (LEN)  
电量监测功能使用电压、电流和温度数据以及补偿放电  
结束电压 (CEDV) 技术来提供荷电状态 (SOC) 和运行  
状况 (SOH) 数据。该器件的 EOS 确定功能会在电池  
性能下降并在接近其使用寿命终点时发出警报。  
超低功耗:正常模式下为 50µA,睡眠模式下为  
9µA  
支持替换电池  
精准的放电结束 (EOS) 确定功能,适用于极少放电  
型应用中的 电池  
使用 bq34210-Q1 电量监测计进行电池电量监测时,  
只需将其连接至可拆卸电池组或嵌入式电池管理系统的  
PACK+ (P+) PACK- (P-)。  
用于 1 芯电池的 CEDV 电量监测计,可提供:  
荷电状态 (SOC)  
续航时间 (TTE)  
运行状况 (SOH)  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
高侧和低侧电流感应选项  
bq34210-Q1  
PW (14)  
5.00mm x 4.40mm x 1.00mm  
内部温度传感器或外部热敏电阻器  
微控制器外设接口支持:  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
400kHz I2C™串行接口  
简化原理图  
针对 SOC、电池电量、温度故障和充电/放电状  
态的可配置中断(警报)  
PACK+  
Learning  
Load  
LEN  
2 应用  
ALERT  
eCall 系统  
SDA  
SCL  
ALERT  
NC  
2
I C  
远程信息处理备用系统  
不间断电源 (UPS) 备用系统  
应急电池电源模块  
VSS  
TS  
NC  
NC  
REG18  
NC  
SRP  
SRN  
NC  
Sense  
Resistor  
2.2 µF  
REGIN  
1 µF  
PACK  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSCG1  
 
 
 
bq34210-Q1  
ZHCSGI9 AUGUST 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
7
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 8  
7.3 Feature Description................................................... 8  
7.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
8.1 Application Information............................................ 12  
8.2 Typical Applications ................................................ 12  
Power Supply Recommendation........................ 14  
9.1 Power Supply Decoupling....................................... 14  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Supply Current .......................................................... 4  
6.6 Digital Input and Output DC Characteristics............. 4  
8
9
10 Layout................................................................... 15  
10.1 Layout Guidelines ................................................. 15  
10.2 Layout Example .................................................... 15  
11 器件和文档支持 ..................................................... 17  
11.1 器件支持................................................................ 17  
11.2 文档支持................................................................ 17  
11.3 社区资源................................................................ 17  
11.4 ....................................................................... 17  
11.5 静电放电警告......................................................... 17  
11.6 Glossary................................................................ 17  
12 机械、封装和可订购信息....................................... 17  
6.7 LDO Regulator, Wake-up, and Auto-Shutdown DC  
Characteristics ........................................................... 5  
6.8 LDO Regulator, Wake-up, and Auto-Shutdown AC  
Characteristics ........................................................... 5  
6.9 ADC (Temperature and Cell Measurement)  
Characteristics ........................................................... 5  
6.10 Integrating ADC (Coulomb Counter) Characteristics  
................................................................................... 5  
6.11 I2C-Compatible Interface Communication Timing... 6  
6.12 SHUTDOWN and WAKE-UP Timing ...................... 7  
6.13 Typical Characteristics............................................ 7  
4 修订历史记录  
日期  
修订版本  
注意  
2017 8 月  
*
初始发行版  
2
Copyright © 2017, Texas Instruments Incorporated  
 
bq34210-Q1  
www.ti.com.cn  
ZHCSGI9 AUGUST 2017  
5 Pin Configuration and Functions  
S !  
S(#  
1
'
)
"
,
3
1"  
1)  
1'  
11  
1/  
2
!#$%&  
*(  
+SS  
&S  
*(  
*(  
%$-1.  
*(  
S%0  
S%*  
*(  
%$-4*  
.
*56 65 789:;  
Pin Functions  
NUMBER  
NAME  
SDA  
TYPE  
IO(1)  
IO  
DESCRIPTION  
Open drain slave I2C serial communication data line. Use with a 10-kΩ pullup resistor (typical).  
Slave I2C serial communication clock input. Use with a 10-kΩ pullup resistor (typical).  
Device ground  
1
2
3
5
7
SCL  
VSS  
P
REG18  
REGIN  
P
Capacitor required for the 1.8-V integrated LDO. Decouple with 2.2-µF ceramic capacitor to VSS.  
Battery voltage input and integrated LDO input. Decouple with 1-µF ceramic capacitor to VSS.  
P
Analog input pin connected to the internal coulomb-counter peripheral for integrating a small voltage between  
SRP and SRN where the voltage at SRN will be lower than SRP during a charging event  
9
SRN  
SRP  
AI  
AI  
Analog input pin connected to the internal coulomb-counter peripheral for integrating a small voltage between  
SRP and SRN where the voltage at SRP will be higher than SRN during a charging event  
10  
Pack thermistor voltage sense (use 103AT-type thermistor). Disable TS with a 10-kΩ resistor to VSS. Do not  
leave floating.  
12  
14  
TS  
ALERT  
NC  
AI  
IO  
Open drain ALERT output, requires a pullup resistor (typical 10 kΩ). Used as an input to exit SHUTDOWN mode  
4, 6, 8,  
11, 13  
NC  
No internal connection  
(1) IO = Digital input-output, AI = Analog input, P = Power connection, NC = No internal connection  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VREGIN  
VSR  
REGIN pin input voltage range  
–0.3  
6
V
VREGIN  
0.3  
+
SRP and SRN pins input voltage range  
–0.3  
V
Differential voltage across SRP and SRN. ABS(SRP – SRN)  
REG18 LDO output for capacitor only (not a supply pin)  
Open-drain IO pins (SDA, SCL)  
–0.3  
–0.3  
–0.3  
–0.3  
2
2
6
6
V
V
V
V
VREG18  
VIOD  
VALERT  
Open Drain Output / Control Input (ALERT)  
REG18 +  
0.3  
VAI  
TA  
TS  
–0.3  
V
Operating free-air temperature range  
–40  
–65  
85  
°C  
°C  
Storage temperature, Tstg  
150  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
Copyright © 2017, Texas Instruments Incorporated  
3
bq34210-Q1  
ZHCSGI9 AUGUST 2017  
www.ti.com.cn  
6.2 ESD Ratings  
VALUE  
±1500  
±250  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
V(ESD)  
V
discharge  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
TA = 30°C and VREGIN = 3.6 V (unless otherwise noted)  
MIN NOM  
MAX  
UNIT  
External input capacitor for internal  
LDO between REGIN and VSS  
(1)  
CREGIN  
1
μF  
Nominal capacitor values specified. Recommend  
a 5% ceramic X5R-type capacitor located close to  
the device.  
External output capacitor for internal  
LDO between REG18 and VSS  
(1)  
CREG18  
2.2  
μF  
External pullup voltage for open-  
drain pins (SDA, SCL, ALERT)  
(1)  
VPU  
1.62  
5.5  
V
(1) Specified by design. Not production tested.  
6.4 Thermal Information  
bq34210-Q1  
PW (TSSOP)  
14 PINS  
111.0  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
37.9  
54.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.0  
ψJB  
54.2  
RθJCbot  
n/a  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6.5 Supply Current  
TA = 30°C and VREGIN = 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
ILOAD > Sleep Current(2)  
ILOAD < Sleep Current(2)  
MIN  
TYP  
50  
9
MAX  
UNIT  
μA  
(1)  
IREGIN  
NORMAL mode current  
SLEEP mode current  
(1)  
ISLP  
μA  
Fuel gauge in host commanded  
SHUTDOWN mode.  
(1)  
ISD  
SHUTDOWN mode current  
0.6  
μA  
(LDO regulator output disabled)  
(1) Specified by design. Not production tested.  
(2) Wake Comparator disabled.  
6.6 Digital Input and Output DC Characteristics  
TA = –40°C to 85°C, typical values at TA = 30°C and VREGIN = 3.6 V (unless otherwise noted)(Force Note1)(1)  
PARAMETER  
Input voltage, high(2)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIH(OD)  
VIL  
External pullup resistor to VPU  
VPU × 0.7  
Input voltage, low(2)  
0.6  
0.6  
0.5  
–3  
V
VOL  
Output voltage, low(2)  
Output source current, high(2)  
Output sink current, low(2)  
V
IOH  
mA  
mA  
IOL(OD)  
(1) Specified by design. Not production tested.  
(2) SCL, SDA, ALERT  
4
Copyright © 2017, Texas Instruments Incorporated  
bq34210-Q1  
www.ti.com.cn  
ZHCSGI9 AUGUST 2017  
Digital Input and Output DC Characteristics (continued)  
TA = –40°C to 85°C, typical values at TA = 30°C and VREGIN = 3.6 V (unless otherwise noted)(Force Note1)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
pF  
(1)  
CIN  
Ilkg  
Input capacitance(2)(3)  
Input Leakage Current(2)(3)  
5
1
μA  
(3) TS  
6.7 LDO Regulator, Wake-up, and Auto-Shutdown DC Characteristics  
TA = –40°C to 85°C, typical values at TA = 30°C and VREGIN = 3.6 V (unless otherwise noted)(Force Note1)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VREGIN  
VREG18  
Battery and regulator input  
Regulator output voltage  
2.45  
4.5  
1.85  
2
V
VREGIN undervoltage lock-out  
LDO wake-up rising threshold  
UVLOIT+  
UVLOIT–  
V
V
VREGIN undervoltage lock-out  
LDO auto-shutdown falling threshold  
1.95  
ALERT (input) LDO Wake-up rising LDO Wake-up from SHUTDOWN  
(1)  
VWU+  
1.2  
V
edge threshold(2)  
mode  
Minimum ALERT high time after  
VWU+ to initiate Wake up  
tALERT  
1
ms  
(1) Specified by design. Not production tested.  
(2) If the device is commanded to SHUTDOWN via I2C with VREGIN > UVLOIT+, a wake-up rising edge trigger is required on ALERT.  
6.8 LDO Regulator, Wake-up, and Auto-Shutdown AC Characteristics  
TA = –40°C to 85°C, typical values at TA = 30°C and VREGIN = 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Time delay from SHUTDOWN  
command to LDO output disable.  
(1)  
(1)  
tSHDN  
tSHUP  
SHUTDOWN entry time  
250  
ms  
Minimum low time of ALERT (input)  
in SHUTDOWN before WAKEUP  
SHUTDOWN ALERT low time  
Initial REG18 output delay  
10  
μs  
(1)  
tREG18  
13  
8
ms  
Time delay from rising edge of  
ALERT (input) to nominal REG18  
output.  
(1)  
tWUREG18  
Wake-up REG18 output delay  
ms  
ms  
Time delay from rising edge of  
tPUCD  
Power-up communication delay(2) REGIN to NORMAL mode (includes  
firmware initialization time).  
250  
(1) Specified by design. Not production tested.  
(2) tPUCD indicates when communication can begin. Measurements are not valid for up to 1 second after any reset.  
6.9 ADC (Temperature and Cell Measurement) Characteristics  
TA = –40°C to 85°C; typical values at TA = 30°C and VREGIN = 3.6 V (unless otherwise noted) (Force Note1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN(REGIN) REGIN pin voltage measurement  
range  
2.45  
4.5  
V
tADC_CONV Conversion time  
Effective resolution  
125  
15  
ms  
bits  
6.10 Integrating ADC (Coulomb Counter) Characteristics  
TA = –40°C to 85°C; typical values at TA = 30°C and VREGIN = 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VSRCM  
Input voltage range of SRN, SRP  
pins  
VREGIN  
100 mV  
+
VSS  
V
Copyright © 2017, Texas Instruments Incorporated  
5
 
bq34210-Q1  
ZHCSGI9 AUGUST 2017  
www.ti.com.cn  
Integrating ADC (Coulomb Counter) Characteristics (continued)  
TA = –40°C to 85°C; typical values at TA = 30°C and VREGIN = 3.6 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VSRDM  
Input differential voltage range of  
VSRP–VSRN  
±80  
mV  
tSR_CONV  
Conversion time  
Single conversion  
Single conversion  
1
s
Effective Resolution  
16  
bits  
6.11 I2C-Compatible Interface Communication Timing  
TA = –40°C to 85°C; typical values at TA = 30°C and VREGIN = 3.6 V (unless otherwise noted) (Force Note1)(1)  
MIN  
NOM  
MAX  
UNIT  
Standard Mode (100 kHz)  
td(STA) Start to first falling edge of SCL  
tw(L)  
4
4.7  
4
μs  
μs  
SCL pulse duration (low)  
SCL pulse duration (high)  
Setup for repeated start  
Data setup time  
tw(H)  
μs  
tsu(STA)  
tsu(DAT)  
th(DAT)  
tsu(STOP)  
t(BUF)  
tf  
4.7  
250  
0
μs  
Host drives SDA  
Host drives SDA  
ns  
ns  
μs  
Data hold time  
Setup time for stop  
4
Bus free time between stop and start Includes Command Waiting Time  
SCL or SDA fall time(1)(2)  
66  
μs  
300  
300  
100  
ns  
ns  
kHz  
tr  
SCL or SDA rise time(1)(2)  
fSCL  
Clock frequency(3)  
Fast Mode (400 kHz)  
td(STA) Start to first falling edge of SCL  
tw(L)  
600  
1300  
600  
600  
100  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
SCL pulse duration (low)  
SCL pulse duration (high)  
Setup for repeated start  
Data setup time  
tw(H)  
tsu(STA)  
tsu(DAT)  
th(DAT)  
tsu(STOP)  
t(BUF)  
tf  
Host drives SDA  
Host drives SDA  
Data hold time  
Setup time for stop  
600  
66  
Bus free time between stop and start Includes Command Waiting Time  
SCL or SDA fall time(1)(2)  
300  
300  
400  
ns  
ns  
kHz  
tr  
SCL or SDA rise time(1)(2)  
fSCL  
Clock frequency(3)  
(1) Specified by design. Not production tested.  
(2) Bus capacitance and pull-up resistance impact rise and fall times. View the rise and fall times to assist with debugging.  
(3) If the clock frequency (fSCL) is > 100 kHz, use 1-byte write commands for proper operation. All other transactions types are supported at  
400 kHz. (See I2C Interface and I2C Command Waiting Time.)  
t
t
t
t
t
f
t
r
(BUF)  
SU(STA)  
w(H)  
w(L)  
SCL  
SDA  
t
t
t
d(STA)  
su(STOP)  
f
t
r
t
t
su(DAT)  
h(DAT)  
REPEATED  
START  
STOP  
START  
Figure 1. I2C-Compatible Interface Timing Diagrams  
6
Copyright © 2017, Texas Instruments Incorporated  
bq34210-Q1  
www.ti.com.cn  
ZHCSGI9 AUGUST 2017  
6.12 SHUTDOWN and WAKE-UP Timing  
tPUCD  
tSHUP  
tWUREG18  
tPUCD  
tREG18  
tSHDN  
REGIN  
REG18  
2
SHUTDOWN_  
ENABLE  
I C Bus  
SHUTDOWN  
*
ALERT  
Off  
WAKE-UP  
Active  
SHUTDOWN  
WAKE-UP  
Active  
State  
* ALERT is configured as an input for wake-up signaling.  
Figure 2. SHUTDOWN and WAKE-UP Timing Diagram  
6.13 Typical Characteristics  
1
0.5  
0
1.5  
1
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-1.5  
2000  
2500  
3000  
3500  
4000  
4500  
5000  
5500  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Applied Voltage (mV)  
Actual Temperature (èC)  
D001  
D002  
Figure 3. Impact of Applied (REGIN) Voltage on Voltage  
Measurement  
Figure 4. Internal Temperature Measurement Error  
Copyright © 2017, Texas Instruments Incorporated  
7
bq34210-Q1  
ZHCSGI9 AUGUST 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The bq34210-Q1 incorporates fuel gauging and an End-of-Service (EOS) Determination function for use in 1-  
series cell packs with support for multiple battery chemistries, including Lithium-Ion (Li-Ion), Lithium Iron  
Phosphate (LiFePO4), and Nickel Metal Hydride (NiMH). The gas gauging function uses Compensated End-of-  
Discharge Voltage (CEDV) technology to accurately predict the battery capacity and other operational  
characteristics of the battery, and can be interrogated by a host processor to provide cell information, such as  
remaining capacity, full charge capacity, and average current.  
See the bq34210-Q1 Technical Reference Manual (TRM, SLUUBE8) for further details.  
NOTE  
The following formatting conventions are used in this document:  
Commands: italics with parentheses() and no breaking spaces, for example, Control().  
Data Flash: italics, bold, and breaking spaces, for example, Design Capacity.  
Register bits and flags: italics with brackets [ ], for example, [TDA]  
Data flash bits: italics, bold, and brackets [ ], for example, [LED1]  
Modes and states: ALL CAPITALS, for example, UNSEALED mode.  
7.2 Functional Block Diagram  
REGIN  
SDA  
1.8-V LDO  
REG18  
SCL  
CPU  
ALERT  
Coulomb  
Counter  
SRP  
Instruction  
ROM  
Data ROM  
Factory  
Data OTP  
Sleep  
Comparator  
SRAM  
SRN  
Internal  
Temperature  
Sensor  
Temperature  
ADC  
TS  
VSS  
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
Information is accessed through a series of commands called Standard Commands. The Extended Commands  
set provides additional capabilities. Both sets of commands, indicated by the general format Command(), are  
used to read and write information in the control and status registers, as well as its data locations. Commands  
are sent from the system to the gauge via the I2C serial communications engine, and can be executed during  
application development, system manufacture, or end-equipment operation.  
8
Copyright © 2017, Texas Instruments Incorporated  
bq34210-Q1  
www.ti.com.cn  
ZHCSGI9 AUGUST 2017  
Feature Description (continued)  
The integrated End-of-Service (EOS) Determination function is specifically intended for applications where the  
battery is rarely discharged, such as in eCall systems, uninterruptible power supplies (UPS), enterprise server  
backup systems, and telecommunications backup modules. In such systems, the battery may remain in a fully (or  
near-fully) charged state for much of its lifetime, with it rarely or never undergoing a significant discharge. If the  
health of the battery in such a system is not monitored regularly, then it may degrade beyond the level required  
for a system backup/discharge event, and thus fail precisely at the time when it is needed most.  
The EOS Determination function monitors the health of the battery through the use of infrequent learning phases,  
which involve a controlled discharge of ~1% capacity, and provides an alert to the system when the battery is  
approaching the end of its usable service. By coordinating battery charging with the learning phases, the battery  
capacity available to the system can be maintained above a preselected level, which helps to avoid  
compromising the battery's ability to support a system discharge event.  
NOTE  
The following sections offer a brief overview of the content available in the bq34210-Q1  
Technical Reference Manual (TRM, SLUUBE8), and should be used only as references to  
the respective sections in the TRM for full details.  
7.3.1 Device Configuration  
The device must select the correct CEDV profile, interrupt functions (enables, levels), and more during its initial  
configuration setup. The bq34210-Q1 includes two CEDV profiles (XYZ and ABC), which are stored in ROM. If  
neither of these profiles matches the battery used, a new configuration must be stored in RAM using Texas  
Instruments tools (see Getting Started for more details). Changing batteries also requires a new initialization of  
the configuration settings. This enables the device to be reconfigured for different battery chemistries or  
capacities through the host. If another battery is chosen, the parameters must be generated using TI's web-  
based tool, Gauge Parameter Calculator for CEDV Gauges (GAUGEPARCAL). The TRM provides further  
details.  
7.3.2 ALERT Interrupt and SHUTDOWN Wake-up  
The interrupt function of the ALERT pin enables the bq34210-Q1 to communicate with the main system.  
Even if the host is not using the ALERT functionality, it is recommended that ALERT be connected to a GPIO of  
the host so that in cases where the device is in SHUTDOWN, toggling ALERT can wake up the gauge from the  
SHUTDOWN state.  
7.3.3 Voltage Measurement and Calibration  
Voltage measurements and calibration are done automatically. The Battery Management Studio bqStudio tool  
aids in setting up this function to match system requirements.  
7.3.4 Temperature Measurement  
The device can be configured to use an external thermistor (103AT type) to measure temperature or use its  
internal temperature sensor.  
7.3.5 Charging and Termination  
The bq34210-Q1 monitors charging and detects termination. The termination works for Li-Ion, LiFePO4, and  
NiMH systems.  
7.3.6 Accumulated Charge Measurement  
The device measures the accumulated charge and reports the duration over which that charge was accumulated.  
The AccumulatedCharge() and AccumulatedChargeTime() registers can be used to send an alert to the host  
when a certain threshold is achieved.  
Copyright © 2017, Texas Instruments Incorporated  
9
bq34210-Q1  
ZHCSGI9 AUGUST 2017  
www.ti.com.cn  
Feature Description (continued)  
7.3.7 Gas Gauging  
The bq34210-Q1 device features the Compensated End-of-Discharge Voltage (CEDV) gauging algorithm. This  
algorithm uses the accumulated measured quantities for charge and discharge in addition to estimating self-  
discharge of the battery. Registers including Remaining Capacity, Design Capacity, Full Charge Capacity, and  
Discharge Count Register (DCR) are used in this algorithm.  
7.3.8 Battery Condition Warnings  
Battery status indications are stored in registers and are used by the device to take action and provide warnings.  
Examples of indicator parameters are state-of-charge low detection, overtemperature-in-charge, and battery  
voltage high/low.  
7.3.9 Configuration Update  
CONFIG UPDATE mode is used when updating the configuration data of the fuel gauge. Gauging is disabled  
during this mode. This is required when a new battery is inserted.  
7.3.10 End-Of-Service Determination  
The bq34210-Q1 device incorporates the End-of-Service (EOS) Determination function to calculate the end of  
useful service of the battery and to provide alerts based on this detection. Learning phases are used to gather  
information about the present state of the battery through its cell resistance.  
7.3.11 Battery Level Threshold  
The Battery Level Threshold (BLT) feature indicates when the SOC of a battery pack has depleted to a certain  
value stored in a register. The thresholds can be set for the charge and discharge conditions.  
7.3.12 Communications  
7.3.12.1 I2C Interface  
The slave-only fuel gauge supports the standard I2C read, incremental read, quick read, one-byte write, and  
incremental write functions. The 7-bit device address (ADDR) is the most significant 7 bits of the hex address  
and is fixed as 1010101. The first 8 bits of the I2C protocol are, therefore, 0xAA or 0xAB for write or read,  
respectively.  
7.3.12.2 I2C Time Out  
The I2C engine releases SDA and SCL if the I2C bus is held low for 2 seconds. If the fuel gauge is holding the  
lines, releasing them frees them for the master to drive the lines. If an external condition is holding either of the  
lines low, the I2C engine enters the low-power SLEEP mode.  
7.3.12.3 I2C Command Waiting Time  
To ensure proper operation at 400 kHz, a t(BUF) 66 μs bus-free waiting time must be inserted between all  
packets addressed to the fuel gauge. In addition, if the SCL clock frequency (fSCL) is > 100 kHz, use individual 1-  
byte write commands for proper data flow control.  
7.3.12.4 I2C Clock Stretching  
A clock stretch can occur during all modes of fuel gauge operation. In SLEEP mode, a short 100-µs clock  
stretch occurs on all I2C traffic as the device must wake up to process the packet. In the other modes  
(INITIALIZATION, NORMAL), a 4-ms clock stretching period may occur within packets addressed for the fuel  
gauge as the I2C interface performs normal data flow control.  
7.3.13 Additional Data Memory Parameter Descriptions  
The calibration method requires a correction due to offset errors, using a number of samples to get a statistical  
average for the golden image.  
10  
Copyright © 2017, Texas Instruments Incorporated  
bq34210-Q1  
www.ti.com.cn  
ZHCSGI9 AUGUST 2017  
7.4 Device Functional Modes  
To minimize power consumption, the fuel gauge has four power modes:  
INITIALIZATION  
NORMAL  
SLEEP  
SHUTDOWN  
The fuel gauge passes automatically between these modes, depending upon the occurrence of specific events,  
though a system processor can initiate some of these modes directly. The bq34210-Q1 Technical Reference  
Manual (SLUUBE8) provides more details.  
7.4.1 INITIALIZATION Mode  
The bq34210-Q1 enters INITIALIZATION mode at power up. This mode prepares the device to enter NORMAL  
mode through its internal power-on reset sequence. When the reset sequence is complete, the device  
automatically moves to NORMAL mode.  
7.4.2 NORMAL Mode  
The bq34210 NORMAL mode is entered from INITIALIZATION mode when the power-on reset is complete.  
When the charge and discharge currents are above the programmable level, the device will remain in NORMAL  
mode. If the measured currents are below the programmable level, SLEEP mode is entered. Once the currents  
increase above the threshold, the device will reenter NORMAL mode. The device will enter SHUTDOWN mode  
through a command sequence.  
7.4.3 SLEEP Mode  
SLEEP mode is entered from NORMAL mode if enabled and the current is below a programmable level. Once  
the current increases above that level, NORMAL mode is reentered.  
7.4.4 SHUTDOWN Mode  
The lowest power mode is SHUTDOWN mode. In this mode, the device is completely off. It is entered through an  
I2C command. Exiting from SHUTDOWN mode can be done by battery removal and replacement or through the  
ALERT pin. Pulling ALERT low for tSHUP and then above VIH(OD) enables the bq34210 device to go through its  
standard power-up sequence (into INITIALIZATION mode).  
Copyright © 2017, Texas Instruments Incorporated  
11  
bq34210-Q1  
ZHCSGI9 AUGUST 2017  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following application section is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The bq34210-Q1 fuel gauge is a microcontroller peripheral that provides system-side fuel gauging for 1-series  
cell batteries of a variety of chemistries. Battery fuel gauging with the fuel gauge requires connections only to  
PACK+ and PACK– for a removable battery pack or embedded battery circuit. To allow for optimal performance  
in the end application, special considerations must be taken to ensure minimization of measurement error  
through proper printed circuit board (PCB) board layout. Such requirements are detailed in Design Requirements.  
8.1.1 Getting Started  
To help configure and evaluate a bq34210-Q1 solution, Texas Instruments provides many supporting tools on  
the TI.com website, including the following:  
Battery Management Studio (bqStudio)  
Gauge Parameter Calculator for CEDV Gauges (GAUGEPARCAL)  
bqProduction to assist with the manufacturing process  
These tools work with a TI EVM and with a self-designed solution. The bq34210-Q1 Technical Reference Manual  
(SLUUBE8) provides details on programming the gauge.  
8.2 Typical Applications  
t!/Y+  
[earning [oad 9naꢄle from Iosꢂ  
[9b  
![9wÇ  
{ꢀ!  
{ꢀ!  
{/[  
ë{{  
b/  
1
2
3
4
5
6
7
![9wÇ 14  
{/[  
13  
12  
b/  
Ç{  
b/ 11  
10  
{wt  
{wb  
b/  
w9D18  
b/  
w{9b{9  
2.2 tC  
1 tC  
w9DLb  
8
+
ꢁaꢂꢂery  
_
t!/Y-  
Copyright © 2017, Texas Instruments Incorporated  
Figure 5. Typical Application  
8.2.1 Design Requirements  
This design, for example, is for an automotive eCall solution. Calculate the required battery capacity by taking  
into account the required talk and standby time while in battery backup. Assume 10 minutes for a call followed by  
a 60-minute idle time (while pinging still occurs), and finally an additional 10-minute call. Understand the typical  
aging characteristics of the battery to know when the remaining capacity still fulfills the required capacity  
calculated previously. If the calculations show the requirement for a 1-Ah battery, a reasonable capacity battery  
to use would be 20% larger, or 1.2 mAh.  
12  
Copyright © 2017, Texas Instruments Incorporated  
 
bq34210-Q1  
www.ti.com.cn  
ZHCSGI9 AUGUST 2017  
Typical Applications (continued)  
8.2.2 Detailed Design Procedure  
8.2.2.1 REGIN Voltage Sense Input  
A ceramic capacitor at the input to the REGIN pin is used to bypass AC voltage ripple to ground, greatly reducing  
its influence on battery voltage measurements.  
8.2.2.2 Integrated LDO Capacitor  
The fuel gauge has an integrated LDO with an output on the REG18 pin of approximately 1.8 V. A capacitor of at  
least a 2.2-μF value should be connected between the REG18 pin and VSS. The capacitor must be placed close  
to the fuel gauge and have short traces to both the REG18 pin and VSS. This regulator must not be used to  
provide power for other devices in the system.  
8.2.2.3 Sense Resistor Selection  
Any variation encountered in the resistance present between the SRP and SRN pins of the fuel gauge will affect  
the resulting differential voltage and derived current it senses. As such, it is recommended to select a sense  
resistor with minimal tolerance and temperature coefficient of resistance (TCR) characteristics. The standard  
recommendation based on best compromise between performance and price is a 1% tolerance, 50-ppm drift  
sense resistor with a 1-W power rating. The power rating must be consistent with the maximum current and  
sense resistor value. The bq34210-Q1 device supports sense resistors from 5 mΩ to 20 mΩ.  
8.2.3 External Thermistor Support  
The fuel gauge temperature sensing circuitry is designed to work with a negative temperature coefficient-type  
(NTC) thermistor with a characteristic 10-kΩ resistance at room temperature (25°C). The default curve-fitting  
coefficients configured in the fuel gauge specifically assume a Semitec 103AT type thermistor profile and so that  
is the default recommendation for thermistor selection purposes. Moving to a separate thermistor resistance  
profile (for example, JT-2 or others) requires an update to the default thermistor coefficients, which can be  
modified in RAM to ensure highest accuracy temperature measurement performance. For more details, see the  
Temperature Measurement section of the bq34210-Q1 TRM (SLUUBE8).  
8.2.4 Learning Load Enable (LEN) from Host  
The learning load helps to determine the status of the battery (EOS). The host must control the load during the  
learning phase and put the bq34210-Q1 gauge into the learning phase. The resistance is set by selecting the  
learning current. With 220 mA and the charge voltage of 4.2 V, use Ohm's law to calculate the resistance  
(19.09 Ω).  
8.2.5 I2C  
If the external pullup resistors on the SCL and SDA lines will be disconnected from the host during low-power  
operation, it is recommended to use external 1-MΩ pulldown resistors to VSS to avoid floating inputs to the I2C  
engine.  
The value of the SCL and SDA pullup resistors should take into consideration the pullup voltage and the bus  
capacitance along with the communication speed. Many communication errors are a result of improper sizing of  
the resistors. Rounding of the clock and data signals indicated improper RC configurations. The maximum pullup  
resistance (RPUmax) can be estimated by this equation:  
RPUmax = tr / (0.4873 × CBUS  
)
Where tr is the rise time and CBUS is the total bus capacitance.  
Assuming a bus capacitance of 10 pF, Table 1 shows some recommended values.  
Table 1. Recommended Values for SCL and SDA Pullup Resistors  
VPU  
1.8 V  
3.3 V  
Range  
400 Ω RPU 37.6 kΩ  
Typical  
Range  
900 Ω RPU 29.2 kΩ  
Typical  
RPU  
10 kΩ  
5.1 kΩ  
Copyright © 2017, Texas Instruments Incorporated  
13  
 
bq34210-Q1  
ZHCSGI9 AUGUST 2017  
www.ti.com.cn  
8.2.6 Temperature Sense  
The TS pin is used to measure the system temperature.  
If the battery pack thermistor is not connected to the TS pin, the TS pin should be pulled down to VSS with a 10-  
kΩ resistor. The TS pin must not be shorted directly any other pin.  
8.2.7 Application Curves  
14  
12  
10  
8
15  
10  
5
1 A  
-1 A  
6
0
4
-5  
2
-10  
0
-2  
-15  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Actual Temperature (èC)  
Actual Temperature (èC)  
D003  
D004  
REGIN = 3.7 V  
Figure 6. Voltage Error vs Actual Temperature  
Figure 7. Current Measurement Error vs Actual  
Temperature  
9 Power Supply Recommendation  
9.1 Power Supply Decoupling  
The battery connection on the REGIN pin is used for two purposes:  
To supply power to the fuel gauge and  
To provide an input for voltage measurement of the battery.  
A capacitor of value of at least 1 µF should be connected between REGIN and VSS. Place the capacitor close to  
the fuel gauge and have short traces to the REGIN pin and VSS.  
The fuel gauge has an integrated LDO with an output on the REG18 pin of approximately 1.8 V. A capacitor of  
value at least 2.2 µF should be connected between the REG18 pin and VSS. Place the capacitor close to the  
fuel gauge and have short traces to both the REG18 pin and VSS. This regulator must not be used to provide  
power for other devices in the system.  
14  
Copyright © 2017, Texas Instruments Incorporated  
bq34210-Q1  
www.ti.com.cn  
ZHCSGI9 AUGUST 2017  
10 Layout  
10.1 Layout Guidelines  
A capacitor of a value of at least 2.2 µF is connected between the REG18 pin and VSS. The capacitor should  
be placed close to the fuel gauge and have short traces to both the REG18 pin and VSS as shown in  
bq34210-Q1 Capacitor Layout. This regulator must not be used to provide power for other devices in the  
system.  
If the connection between the battery pack and the gauge REGIN pin has the potential to pick up noise, it is  
required to have a capacitor of at least 1.0 µF connect between the REGIN pin and VSS. Place the capacitor  
close to the fuel gauge and have short traces to both the REGIN pin and VSS.  
The SRP and SRN pins should be Kelvin connected to the RSENSE terminals.  
For the low-side sense resistor:  
Connect SRP to the battery pack side of RSENSE and SRN to the system side of the RSENSE, as shown in  
bq34210-Q1 Sense Resistor Layout.  
Kelvin connect the REGIN pin to the battery PACK+ terminal.  
10.2 Layout Example  
SRN / SRP  
bq34210  
Common  
Mode Cap  
Noise  
Reduction  
Resistors  
RSENSE  
Figure 8. bq34210-Q1 Sense Resistor Layout  
Copyright © 2017, Texas Instruments Incorporated  
15  
 
bq34210-Q1  
ZHCSGI9 AUGUST 2017  
www.ti.com.cn  
Layout Example (continued)  
Current Limiting  
Resistor  
REGIN  
Capacitor  
bq34210  
REG18  
Capacitor  
Figure 9. bq34210-Q1 Capacitor Layout  
16  
版权 © 2017, Texas Instruments Incorporated  
bq34210-Q1  
www.ti.com.cn  
ZHCSGI9 AUGUST 2017  
11 器件和文档支持  
11.1 器件支持  
11.1.1 工具  
Battery Management Studio (bqStudio)  
用于 CEDV 监测计的电量监测参数计算器 (GAUGEPARCAL)  
用于辅助完成制造过程的 bqProduction  
11.2 文档支持  
11.2.1 相关文档  
bq34210-Q1 技术参考手册》(SLUUBE8)  
《单节电池电量监测计电路设计》(SLUA456)  
《手持式电池电子产品中的 ESD RF 迁移》(SLUA460)  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
I2C is a trademark of NXP Semiconductors N.V.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
版权 © 2017, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ34210IPWRQ1  
ACTIVE  
TSSOP  
PW  
14  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 85  
BQ34210I  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ34210IPWRQ1  
TSSOP  
PW  
14  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 14  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
BQ34210IPWRQ1  
2000  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

BQ34Z100

Wide Range Fuel Gauge with Impedance Track? Technology
TI

BQ34Z100-G1

多化合物 Impedance Track™ 独立电量监测计 | 电池电量监测计
TI

BQ34Z100-R2

多化合物 Impedance Track™ 独立式电量监测计
TI

BQ34Z100PW

Wide Range Fuel Gauge with Impedance Track? Technology
TI

BQ34Z100PW-G1

多化合物 Impedance Track™ 独立电量监测计 | 电池电量监测计 | PW | 14 | -40 to 85
TI

BQ34Z100PWR

Wide Range Fuel Gauge with Impedance Track? Technology
TI

BQ34Z100PWR-G1

多化合物 Impedance Track™ 独立电量监测计 | 电池电量监测计 | PW | 14 | -40 to 85
TI

BQ34Z100PWR-R2

多化合物 Impedance Track™ 独立式电量监测计 | PW | 14 | -40 to 85
TI

BQ34Z110

Wide Range Fuel Gauge with Impedance Track™ for Lead-Acid Batteries
TI

bq34z110PW

Wide Range Fuel Gauge with Impedance Track™ for Lead-Acid Batteries
TI

bq34z110PWR

Wide Range Fuel Gauge with Impedance Track™ for Lead-Acid Batteries
TI

BQ34Z651

SBS 1.1-Compliant Gas Gauge and Protection Enabled With Impedance Track™ and External Battery Heater Control
TI