BQ25898C [TI]

用于并联充电应用的 I2C 单节 3A 降压电池充电器;
BQ25898C
型号: BQ25898C
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于并联充电应用的 I2C 单节 3A 降压电池充电器

电池
文件: 总55页 (文件大小:1358K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
bq25898C I2C 控制单节 3A 充电器实现高输入电压采用紧凑型 DSBGA 封  
1 特性  
2 应用  
1
作为从充电器运行,在双充电器操作下提供快速充  
智能手机  
平板电脑  
配置简单,物料清单 (BOM) 极低  
便携式网络设备  
高效率 3A1.5MHz 开关模式降压充电器  
3 说明  
充电效率高达 92%3A 充电电流下)和  
94%2A 充电电流下)  
bq25898C 是一款适用于单节锂离子电池和锂聚合物电  
池的高度集成型开关模式电池充电管理和系统电源路径  
管理器件。该器件支持高输入电压充电。其低阻抗电源  
路径对开关模式运行效率进行了优化、缩短了电池充电  
时间并延长了放电阶段的电池使用寿命。具有充电和系  
统设置的 I2C 串行接口使得该器件成为真正具有灵活  
性的解决方案。bq25898C 采用 2.8mm x 2.5mm 42  
焊球 DSBGA 封装。  
针对高电压输入 (9V/12V) 进行了优化  
低功耗 PFM 模式,适用于轻负载操作  
单个输入,支持 USB 输入和可调高压适配器  
支持 3.9V 14V 输入电压范围  
输入电流限制(100mA 3.25A,分辨率为  
50mA),支持 USB2.0USB3.0 标准和高压  
适配器  
宽输入动态电源管理 (DPM) 范围  
器件信息(1)  
借助 5mΩ 电池放电金属氧化物半导体场效应晶体  
(MOSFET) 实现最高电池放电效率,放电电流高  
9A电池 MOSFET  
器件型号  
bq25898C  
封装  
封装尺寸(标称值)  
DSBGA (42)  
2.80mm x 2.50mm  
默认禁用充电  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
集成 ADC,用于系统监视  
(输入、系统和电池电压、温度和充电电流)  
灵活的自主和 I2C 模式,可实现最优系统性能  
简化电路原理图  
INPUT  
3.9Vœ14V  
远程电池感测  
USB  
高集成度,包括所有 MOSFET、电流感测和环路补  
高精度  
±0.5% 充电电压调节  
±5% 充电电流调节  
±7.5% 输入电流调节  
ICHG  
I2C BUS  
安全  
Host  
热调节和热关断  
Host Control  
输入 UVLO/过压保护  
电池 OVP  
安全定时器  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSCH6  
 
 
 
 
 
 
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
目录  
8.3 Device Functional Modes........................................ 23  
8.4 Register Map........................................................... 25  
Application and Implementation ........................ 42  
9.1 Application Information............................................ 42  
9.2 Typical Application Diagram ................................... 42  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 6  
7.6 Timing Requirements................................................ 9  
7.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 12  
8.1 Functional Block Diagram ....................................... 13  
8.2 Feature Description................................................. 14  
9
10 Power Supply Recommendations ..................... 46  
11 Layout................................................................... 46  
11.1 Layout Guidelines ................................................. 46  
11.2 Layout Example .................................................... 46  
12 器件和文档支持 ..................................................... 47  
12.1 器件支持 ............................................................... 47  
12.2 接收文档更新通知 ................................................. 47  
12.3 社区资源................................................................ 47  
12.4 ....................................................................... 47  
12.5 静电放电警告......................................................... 47  
12.6 Glossary................................................................ 47  
13 机械、封装和可订购信息....................................... 47  
8
4 修订历史记录  
Changes from Revision A (December 2016) to Revision B  
Page  
完整数据表已更新到产品文件夹 ............................................................................................................................................ 1  
Changes from Original (March 2016) to Revision A  
Page  
已添加 电池 MOSFET 更改为最高电池放电效率特性............................................................................................................. 1  
已更改 集成 ADC,用于系统监视特性 ................................................................................................................................... 1  
已更改 充电已禁用更改为快速充电和预充电均已禁用” ....................................................................................................... 3  
已更改 PG 已更改为 PG(在说明中) ................................................................................................................................ 3  
Changed anode to cathode in BTST ..................................................................................................................................... 5  
Changed cathode to anode in REGN .................................................................................................................................... 5  
Deleted I(BOOST) from Electrical Characteristics....................................................................................................................... 6  
Changed falling to rising in tACOV_RISING test conditions in Electrical Characteristics .............................................................. 6  
已更改 128 mA to 0 mA (precharge disabled) in 2 ......................................................................................................... 16  
已更改 128 mA to 0 mA (precharge disabled) in 3 ......................................................................................................... 17  
已更改 Fast Charge Current from 4032 mA to 3008 mA in 10........................................................................................ 18  
已更改 charge to both fast charge and precharge in 10 ................................................................................................. 29  
已更改 128mA (0001) to 0mA when REG04[5:0] = 000000 in 11 ................................................................................... 30  
已更改 REG09 bits 5 - 2 from R/W to R .............................................................................................................................. 34  
已更改 bit 5 in 15 ............................................................................................................................................................ 34  
已更改 REG0B bit1 from x to 1 ........................................................................................................................................... 36  
已添加 note to 40 ............................................................................................................................................................ 42  
2
版权 © 2016–2017, Texas Instruments Incorporated  
 
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
5 说明 (续)  
bq25898C 是一款适用于单节锂离子电池和锂聚合物电池的高度集成型 3A 开关模式电池充电管理器件。作为一款  
经济高效的微型器件,它还可以配置为从充电器,以在双充电器应用中提供快速 充电的输出电流传感电阻器和运算  
放大器而得以实现。  
该器件 支持 高输入电压快速充电,适用于各类智能手机、平板电脑和便携式设备。其低阻抗电源路径对开关模式  
运行效率进行了优化、缩短了电池充电时间并延长了放电阶段的电池使用寿命。该解决方案高度集成输入反向阻断  
场效应晶体管 (FET)RBFETQ1)、高侧开关 FETHSFETQ2)、低侧开关 FETLSFETQ3)以及充电  
电流感测电路。它还集成了自举二极管以进行高侧栅极驱动和电池监视,从而简化系统设计。具有充电和系统设置  
I2C 串行接口使得此器件成为一个真正地灵活解决方案。  
该器件支持多种输入源,包括标准 USB 主机端口、USB 充电端口以及兼容 USB 的可调节高电压适配器。为了设  
定默认输入电流限值,该器件获取系统检测电路(如 USB PHY 器件)中的结果。该器件符合 USB 2.0 USB  
3.0 电源规范,具有输入电流和电压调节功能。  
默认充电电流设置为 0mA(快速充电和预充电均已禁用)。启用充电后,器件可在软件控制下启动并完成一个充电  
周期。  
此充电器提供针对电池充电和系统运行的多种安全 特性 ,其中包括充电安全定时器和过压/过流保护。当结温超过  
120°C(可设定)时,热调节减少充电电流。STAT 输出报告充电状态和任何故障条件。PG 输出指示电源是否正  
常。当故障发生时,INT 会立即通知主机。  
该器件采用 2.80mm x 2.50mm 42 焊球 DSBGA 封装。  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
6 Pin Configuration and Functions  
YFF Package  
42-Pin DSBGA  
Top View  
1
2
3
4
5
6
A
SYS  
REGN  
BAT  
PGND  
CE  
SCL  
SDA  
BTST  
NC  
SYS  
BAT  
BAT  
B
C
NC  
PGND  
PSEL  
PG  
SYS  
SYS  
SW  
PGND  
PMID  
BAT  
D
E
F
SW  
SW  
PGND  
PGND  
PGND  
PGND  
BAT  
SYS  
INT  
VBUS  
VBUS  
VBUS  
PMID  
PMID  
PMID  
BATSEN  
SW  
SW  
G
STAT  
PGND  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
VBUS  
PSEL  
PG  
NO.  
E3-G3  
C3  
Charger Input Voltage. The internal n-channel reverse block MOSFET (RBFET) is connected between VBUS  
and PMID with VBUS on source. Place a 1-uF ceramic capacitor from VBUS to PGND and place it as close as  
possible to IC.  
P
DI  
Power source selection input. High indicates a USB host source and Low indicates an adapter source.  
Open drain active low power good indicator. Connect to the pull up rail via 10-kohm resistor. LOW indicates a  
good input source if the input voltage is within VVBUS_OP, above SLEEP mode threshold (VSLEEPZ), and  
current limit is above IBATSRC (30mA).  
D3  
DO  
Open-drain interrupt output. Connect to the INT to a logic rail via 10-kohm resistor. The INT pin sends active  
low, 256-us pulse to host to report charger device status and fault.  
STAT  
G1  
DO  
SCL  
SDA  
A3  
B3  
DI  
I2C Interface clock. Connect SCL to the logic rail through a 10-kΩ resistor.  
I2C Interface data. Connect SDA to the logic rail through a 10-kΩ resistor.  
DIO  
Open-drain Interrupt Output. Connect the INT to a logic rail via 10-kΩ resistor. The INT pin sends active low,  
256-μs pulse to host to report charger device status and fault.  
INT  
F2  
DO  
DI  
Active low charge enable pin. Battery charging is enabled when CHG_CONFIG = 1 and CE pin = Low. CE pin  
must be pulled High or Low.  
CE  
NC  
B4  
B5-B6  
A1-E1  
No connect. Float the pin.  
Battery connection point to the positive terminal of the battery pack. The internal current sensing circuitry is  
connected between SYS and BAT. Connect a 10uF closely to the BAT pin.  
BAT  
P
(1) DI (Digital Input), DO (Digital Output), DIO (Digital Input/Output), AI (Analog Input), AO (Analog Output), AIO (Analog Input/Output)  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Converter output connection point. The internal current sensing circuitry is connected between SYS and BAT.  
Connect a 20uF closely to the SYS pin.  
SYS  
A2-E2  
P
Power ground connection for high-current power converter node. Internally, PGND is connected to the source  
of the n-channel LSFET. On PCB layout, connect directly to ground connection of input and output capacitors  
of the charger. A single point connection is recommended between power PGND and the analog GND near the  
IC PGND pin.  
C4,C6-  
G6,A4,G2  
PGND  
P
Switching node connecting to output inductor. Internally SW is connected to the source of the n-channel  
HSFET and the drain of the n-channel LSFET. Connect the 0.047μF bootstrap capacitor from SW to BTST.  
SW  
C5-G5  
A6  
P
P
PWM high side driver positive supply. Internally, the BTST is connected to the cathode of the boost-strap  
diode. Connect the 0.047μF bootstrap capacitor from SW to BTST.  
BTST  
PWM low side driver positive supply output. Internally, REGN is connected to the anode of the boost-strap  
diode. Connect a 4.7μF (10 V rating) ceramic capacitor from REGN to analog GND. The capacitor should be  
placed close to the IC.  
REGN  
A5  
P
Connected to the drain of the reverse blocking MOSFET (RBFET) and the drain of HSFET. Given the total  
input capacitance, put 1μF on VBUS to PGND, and the rest capacitance on PMID to PGND.  
PMID  
D4-G4  
F1  
DO  
AI  
BATSEN  
Remote battery sense input. The typical pin resistance is 800 kΩ. Connect as close to battery as possible.  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–2  
MAX  
22  
22  
20  
7
VALUE  
VBUS (converter not switching)  
V
V
PMID (converter not switching)  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–3  
STAT  
PG  
V
V
PSEL  
7
V
BTST  
20  
16  
6
V
Voltage range (with respect to GND)  
SW  
V
BAT, SYS (converter not switching)  
SDA, SCL, INT, REGN, CE  
BTST TO SW  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
V
7
V
7
V
PGND to GND  
0.3  
7
V
BATSEN  
V
INT, STAT  
6
mA  
mA  
°C  
°C  
Output sink current  
PG  
6
Junction temperature  
–40  
–65  
150  
150  
Storage temperature range, Tstg  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage  
values are with respect to the network ground terminal unless otherwise noted.  
7.2 ESD Ratings  
VALUE  
UNIT  
(1)  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001  
±2000  
V
VESD  
Electrostatic discharge  
Charged device model (CDM), per JEDEC specification  
JESD22-C101(2)  
±250  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
MAX UNIT  
7.3 Recommended Operating Conditions  
MIN  
VIN  
Input voltage  
3.9  
14(1)  
V
A
A
V
A
A
IIN  
Input current (VBUS)  
Output current (SW)  
Battery voltage  
3.25  
ISYS  
VBAT  
3
4.608  
3
Fast charging current  
Up to 6 (continuos)  
IBAT  
Discharging current with internal MOSFET  
Operating free-air temperature range  
9 (peak)  
(Up to 1 sec duration)  
A
TA  
–40  
85  
°C  
(1) The inherent switching noise voltage spikes should not exceed the absolute maximum rating on either the BTST or SW pins. A tight  
layout minimizes switching noise.  
7.4 Thermal Information  
bq25898C  
THERMAL METRIC(1)  
YFF (DSBGA)  
UNIT  
42-BALL  
53.5  
0.2  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
8.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.9  
ψJB  
8.2  
RθJCbot  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
VVBUS_UVLOZ < VVBUS < VACOV and VVBUS > VBAT + VSLEEP, TJ = –40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
QUIESCENT CURRENTS  
VBAT = 4.2 V, V(VBUS) < V(UVLO), leakage  
between BAT and VBUS  
5
µA  
µA  
High-Z Mode, No VBUS, BATFET Disabled  
(REG09[5] = 1), Battery Monitor Disabled, TJ  
< 85°C  
12  
32  
23  
IBAT  
Battery discharge current (BAT, SW, SYS) in buck mode  
High-Z Mode, No VBUS, BATFET Enabled  
(REG09[5] = 0), Battery Monitor Disabled, TJ  
< 85°C  
60  
µA  
V(VBUS)= 5 V, High-Z Mode, No Battery,  
Battery Monitor Disabled  
15  
25  
1.5  
3
35  
50  
3
µA  
µA  
Input supply current (VBUS) in buck mode when High-Z mode  
is enabled  
I(VBUS_HIZ)  
V(VBUS)= 12 V, High-Z Mode, No Battery,  
Battery Monitor Disabled  
VBUS > V(UVLO), VBUS > VBAT, Converter not  
switching  
mA  
mA  
mA  
VBUS > V(UVLO), VBUS > VBAT, Converter  
switching, VBAT = 3.2V, ISYS = 0A  
I(VBUS)  
Input supply current (VBUS) in buck mode  
VBUS > V(UVLO), VBUS > VBAT, Converter  
switching, VBAT = 3.8 V, ISYS = 0 A  
3
VBUS/BAT POWER UP  
V(VBUS_OP)  
VBUS operating range  
3.9  
3.6  
14  
V
V
VBUS for active I2C, no battery  
Sleep mode falling threshold  
Sleep mode rising threshold  
VBUS over-voltage rising threshold  
VBUS over-voltage falling threshold  
ACOV rising deglitch  
V(VBUS_UVLOZ)  
V(SLEEP)  
25  
130  
65  
120  
370  
mV  
mV  
V
V(SLEEPZ)  
250  
13.9  
13.3  
14.6  
13.9  
V(ACOV)  
V
tACOV_RISING  
VVBUS rising  
1
µs  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VACOV and VVBUS > VBAT + VSLEEP, TJ = –40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tACOV_FALLING  
VBAT(UVLOZ)  
ACOV falling deglitch  
VVBUS falling  
1
ms  
Battery for active I2C, no VBUS  
Battery depletion falling threshold  
Battery depletion rising threshold  
Bad adapter detection threshold  
Bad adapter detection current source  
2.3  
V
VBAT(DPL)  
VBAT(DPLZ)  
V(VBUSMIN)  
I(BADSRC)  
2.15  
2.35  
2.5  
2.7  
V
V
3.8  
30  
V
mA  
POWER-PATH MANAGEMENT  
I(SYS) = 0 A, VBAT> VSYS(MIN), BATFET  
Disabled (REG09[5]=1)  
VBAT  
50 mV  
+
V
V
V
V
VSYS  
Typical system regulation voltage  
Isys = 0 A, VBAT< VSYS(MIN), BATFET  
Disabled (REG09[5]=1)  
VSYS(MIN)  
250 mV  
+
VBAT< VSYS(MIN), SYS_MIN = 3.5 V  
(REG03[3:1] = 101), ISYS= 0 A  
VSYS(MIN)  
VSYS(MAX)  
Minimum DC system voltage output  
Maximum DC system voltage output  
3.60  
3.75  
4.40  
VBAT = 4.35 V, SYS_MIN = 3.5 V  
(REG03[3:1] = 101), ISYS= 0 A  
4.42  
TJ = -40°C - 85°C  
28  
28  
24  
24  
12  
12  
30  
40  
47  
33  
40  
18  
21  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mV  
Top reverse blocking MOSFET(RBFET) on-resistance between  
VBUS and PMID  
RON(RBFET)  
RON(HSFET)  
RON(LSFET)  
TJ = -40°C - 125°C  
TJ = -40°C - 85°C  
Top switching MOSFET (HSFET) on-resistance between PMID  
and SW  
TJ = -40°C - 125°C  
TJ = -40°C - 85°C  
Bottom switching MOSFET (LSFET) on-resistance between  
SW and GND  
TJ = -40°C - 125°C  
BAT discharge current 10 mA  
V(FWD)  
BATFET forward voltage in supplement mode  
BATTERY CHARGER  
VBAT(REG_RANGE)  
VBAT(REG_STEP)  
Typical charge voltage range  
Typical charge voltage step  
3.840  
4.608  
V
16  
64  
mV  
VBAT = 4.208 V (REG06[7:2] = 010111) or  
VBAT = 4.352 V (REG06[7:2] = 100000)  
TJ = -40°C - 85°C  
VBAT(REG)  
Charge voltage resolution accuracy  
-0.5%  
0
0.5%  
3008  
I(CHG_REG_RANGE)  
I(CHG_REG_STEP)  
Typical fast charge current regulation range  
Typical fast charge current regulation step  
mA  
mA  
VBAT= 3.1 V or 3.8 V, ICHG = 256 mA  
TJ = -40°C - 85°C  
-20%  
-5%  
2.6  
20%  
5%  
I(CHG_REG_ACC)  
Fast charge current regulation accuracy  
VBAT= 3.1 V or 3.8 V, ICHG = 1792 mA  
TJ = -40°C - 85°C  
Fast charge to precharge, BATLOWV  
(REG06[1]) = 1  
Battery LOWV falling threshold  
Battery LOWV rising threshold  
Battery LOWV falling threshold  
Battery LOWV rising threshold  
2.8  
3.0  
2.6  
2.8  
2.9  
V
V
V
V
Precharge to fast charge, BATLOWV  
(REG06[1]) = 1  
(Typical 200-mV hysteresis)  
2.8  
2.5  
3.15  
2.7  
VBAT(LOWV)  
Fast charge to precharge, BATLOWV  
(REG06[1]) = 0  
Precharge to fast charge, BATLOWV  
(REG06[1]) = 0  
(Typical 200-mV hysteresis)  
2.7  
64  
2.9  
I(PRECHG_RANGE)  
I(PRECHG_STEP)  
I(PRECHG_ACC)  
I(TERM_RANGE)  
I(TERM_STEP)  
Precharge current range  
1024  
mA  
mA  
Typical precharge current step  
Precharge current accuracy  
Termination current range  
Typical termination current step  
64  
64  
VBAT = 2.6 V, IPRECHG = 256 mA  
–20%  
64  
20%  
1024  
mA  
mA  
ITERM = 256 mA, ICHG1344 mA  
TJ = -20°C - 85°C  
-20%  
-20%  
20%  
20%  
I(TERM_ACC)  
Termination current accuracy  
ITERM = 256 mA, ICHG> 1344 mA  
TJ = -20°C - 85°C  
V(SHORT)  
Battery short voltage  
VBAT falling  
2.0  
200  
110  
100  
200  
V
V(SHORT_HYST)  
I(SHORT)  
Battery short voltage hysteresis  
Battery short current  
VBAT rising  
mV  
mA  
mV  
mV  
VBAT < 2.2 V  
VBAT falling, VRECHG (REG06[0] = 0) = 0  
VBAT falling, VRECHG (REG06[0] = 0) = 1  
V(RECHG)  
Recharge threshold below VBATREG  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VACOV and VVBUS > VBAT + VSLEEP, TJ = –40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mΩ  
mΩ  
kΩ  
TJ = 25°C  
5
7
RON(BATFET)  
RBATSEN  
SYS-BAT MOSFET (BATFET) on-resistance  
BATSEN input resistance  
TJ = -40°C - 125°C  
5
10  
800  
INPUT VOLTAGE / CURRENT REGULATION  
VIN(DPM_RANGE)  
VIN(DPM_STEP)  
VIN(DPM_ACC)  
IIN(DPM_RANGE)  
IIN(DPM_STEP)  
Typical input voltage regulation range  
3.9  
15.3  
V
Typical input voltage regulation step  
Input voltage regulation accuracy  
Typical input current regulation range  
Typical input current regulation step  
100  
mV  
VINDPM = 4.4 V, 7.8 V, 10.8 V  
IINLIM (REG00[5:0]) = 100 mA  
-3%  
100  
3%  
3250  
mA  
mA  
50  
90  
Input current 100mA regulation accuracy  
VBAT = 5V, current pulled from SW  
IIN(DPM100_ACC)  
85  
100  
mA  
USB150, IINLIM (REG00[5:0]) = 150 mA  
USB500, IINLIM (REG00[5:0]) = 500 mA  
USB900, IINLIM (REG00[5:0]) = 900 mA  
125  
440  
750  
135  
470  
825  
150  
500  
900  
mA  
mA  
mA  
Input current regulation accuracy  
VBAT = 5V, current pulled from SW  
IIN(DPM_ACC)  
Adapter 1.5 A, IINLIM (REG00[5:0]) = 1500  
mA  
1300  
1400  
1500  
200  
mA  
mA  
IIN(START)  
Input current regulation during system start up  
VSYS = 2.2 V, IINLIM (REG00[5:0]) 200 mA  
BAT OVER-VOLTAGE/CURRENT PROTECTION  
VBAT(OVP)  
Battery over-voltage threshold  
Battery over-voltage hysteresis  
System over-current threshold  
VBAT rising, as percentage of VBAT(REG)  
VBAT falling, as percentage of VBAT(REG)  
104%  
2%  
VBAT(OVP_HYST)  
IBAT(FET_OCP)  
9
A
THERMAL REGULATION AND THERMAL SHUTDOWN  
TREG  
Junction temperature regulation accuracy  
Thermal shutdown rising temperature  
Thermal shutdown hysteresis  
REG08[1:0] = 11  
Temperature rising  
Temperature falling  
120  
160  
30  
°C  
°C  
°C  
TSHUT  
TSHUT(HYS)  
PWM  
FSW  
PWM switching frequency, and digital clock  
Maximum PWM duty cycle  
Oscillator frequency  
1.32  
1.68  
6.4  
MHz  
DMAX  
97%  
REGN LDO  
V(VBUS) = 9 V, I(REGN) = 40 mA  
V(VBUS) = 5 V, I(REGN) = 20 mA  
V(VBUS) = 9 V, V(REGN) = 3.8 V  
5.6  
4.7  
50  
6
V
V
V(REGN)  
REGN LDO output voltage  
REGN LDO current limit  
4.8  
I(REGN)  
mA  
ANALOG-TO-DIGITAL CONVERTER (ADC)  
RES  
Resolution  
Rising threshold  
7
bits  
V
V(VBUS) > VBAT + V(SLEEP)  
V(VBUS) < VBAT + V(SLEEP)  
2.304  
4.848  
4.848  
VBAT(RANGE)  
V(BAT_RES)  
V(SYS_RANGE)  
Typical battery voltage range  
Typical battery voltage resolution  
Typical system voltage range  
VSYS_MIN  
V
20  
mV  
V
V(VBUS) > VBAT + V(SLEEP)  
V(VBUS) < VBAT + V(SLEEP)  
2.304  
4.848  
4.848  
VSYS_MIN  
V
V(SYS_RES)  
Typical system voltage resolution  
Typical VVBUS voltage range  
20  
mV  
V
V(VBUS_RANGE)  
V(VBUS_RES)  
V(VBUS) > VBAT + V(SLEEP)  
2.6  
0
15.3  
Typical VVBUS voltage resolution  
100  
mV  
V(VBUS) > VBAT + V(SLEEP) and VBAT  
VBAT(SHORT)  
>
IBAT(RANGE)  
IBAT(RES)  
Typical battery charge current range  
3.008  
A
Typical battery charge current resolution  
50  
mA  
LOGIC I/O PIN (CE, PSEL)  
VIH  
Input high threshold level  
1.3  
V
V
VIL  
Input low threshold level  
High level leakage current  
0.4  
1
IIN(BIAS)  
Pull-up rail 1.8 V  
µA  
LOGIC I/O PIN (INT, STAT, PG)  
VOL  
Output low threshold level  
High level leakage current  
Sink Current = 5 mA, Sink current  
Pull-up rail 1.8 V  
0.4  
1
V
IOUT_BIAS  
µA  
I2C INTERFACE (SCL, SDA)  
VIH  
VIL  
Input high threshold level, SCL and SDA  
Input low threshold level  
Pull-up rail 1.8 V  
Pull-up rail 1.8 V  
1.3  
V
V
0.4  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VACOV and VVBUS > VBAT + VSLEEP, TJ = –40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
Output low threshold level  
High level leakage current  
TEST CONDITIONS  
Sink Current = 5 mA, Sink current  
Pull-up rail 1.8 V  
MIN  
TYP  
MAX  
0.4  
1
UNIT  
V
VOL  
IBIAS  
µA  
7.6 Timing Requirements  
MIN  
NOM  
MAX UNIT  
VBUS/BAT POWER UP  
tBADSRC  
Bad adapter detection duration  
30  
msec  
BAT OVER-VOLTAGE PROTECTION  
Battery over-voltage deglitch time to disable  
charge  
tBATOVP  
1
µs  
BATTERY CHARGER  
tRECHG  
Recharge deglitch time  
20  
8
msec  
BATTERY MONITOR  
tCONV  
Conversion time  
CONV_RATE(REG02[6]) = 0  
1000 msec  
I2C INTERFACE  
fSCL  
SCL clock frequency  
400  
KHz  
DIGITAL CLOCK and WATCHDOG TIMER  
fLPDIG  
fDIG  
Digital low power clock  
Digital clock  
REGN LDO disabled  
REGN LDO enabled  
18  
30  
45  
KHz  
KHz  
1320  
1500  
1680  
WATCHDOG  
(REG07[5:4])=11, REGN LDO  
disabled  
100  
136  
160  
160  
sec  
sec  
tWDT  
Watchdog reset time  
WATCHDOG  
(REG07[5:4])=11, REGN LDO  
enabled  
版权 © 2016–2017, Texas Instruments Incorporated  
9
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
7.7 Typical Characteristics  
96  
94  
92  
90  
88  
86  
84  
82  
80  
95  
93  
91  
89  
87  
85  
83  
81  
79  
77  
75  
VBUS = 5V  
VBUS = 9V  
VBUS = 12V  
VBUS = 5V  
VBUS = 9V  
VBUS = 12V  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
Charge Current (A)  
System Load Current (A)  
D001  
D001  
VBAT = 3.8 V  
DCR = 10 m  
1. Charge Efficiency vs Charge Current  
2. System Light Load Efficiency vs System Light Load  
Current  
8
6
3.82  
3.78  
3.74  
3.70  
3.66  
3.62  
3.58  
3.54  
3.50  
4
2
0
-2  
-4  
-6  
-8  
VBAT = 3.1V  
VBAT = 3.8V  
0.5  
1
1.5  
2
2.5  
3
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Charge Current (A)  
Load Current (A)  
D001  
D001  
VBUS = 5 V  
VBAT = 2.6 V  
VBUS = 5 V  
SYSMIN = 3.5 V  
3. Charge Current Accuracy vs Charge Current I2C  
4. SYS Voltage Regulation vs System Load Current  
Setting  
4.5  
4.45  
4.4  
4.30  
4.28  
4.26  
4.24  
4.22  
4.20  
4.18  
4.16  
4.14  
4.12  
4.10  
4.35  
4.3  
4.25  
4.2  
4.15  
4.1  
4.05  
4
0
0.5  
1
1.5  
2
2.5  
3
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
Load Current (A)  
D001  
D001  
VBAT = 4.2 V  
5. SYS Voltage Regulation vs System Load Current  
VBUS = 5 V  
6. BAT Voltage vs Temperature  
10  
版权 © 2016–2017, Texas Instruments Incorporated  
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
Typical Characteristics (接下页)  
1600  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
1400  
1200  
1000  
800  
600  
400  
200  
0
IINLIM = 500mA  
IINLIM = 900mA  
IINLIM = 1.5A  
VBUS = 5V  
VBUS = 9V  
VBUS = 12  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
3.8 3.85 3.9 3.95  
4
4.05 4.1 4.15 4.2 4.25  
Battery Charge Voltage (V)  
D001  
D001  
7. Input Current Limit vs Temperature  
8. Charge Voltage Accuracy  
版权 © 2016–2017, Texas Instruments Incorporated  
11  
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
8 Detailed Description  
The device is a highly integrated 3-A switch-mode battery charger for single cell Li-Ion and Li-polymer battery. It  
is highly integrated with the input reverse-blocking FET (RBFET, Q1), high-side switching FET (HSFET, Q2) ,  
low-side switching FET (LSFET, Q3), and battery FET (BATFET, Q4). The device also integrates the boostrap  
diode for the high-side gate drive.  
12  
版权 © 2016–2017, Texas Instruments Incorporated  
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
8.1 Functional Block Diagram  
VBUS  
RBFET  
PMID  
(Q1)  
VVBUS_UVLOZ  
UVLO  
Q1 Gate  
Control  
NC  
V
BATZ +80mV  
REGN  
LDO  
SLEEP  
ACOV  
REGN  
BTST  
EN_HIZ  
V
ACOV  
FBO  
BATSEN  
BATOVP  
104%xVBAT_REG  
VINDPM  
SW  
I LSFET_UCP  
IQ3  
UCP  
HSFET (Q2)  
REGN  
CONVERTER  
CONTROL  
IINDPM  
BATSEN  
V BAT_REG  
LSFET (Q3)  
PGND  
IQ2  
Q2_OCP  
SYS  
I HSFET_OCP  
VSYSMIN  
EN_HIZ  
EN_CHARGE  
V BTST -VSW  
ICHG_REG  
REFRESH  
VBTST_REFRESH  
SYS  
ICHG  
REF  
DAC  
V BAT_REG  
I CHG_REG  
Q4 Gate  
Control  
IBADSRC  
IDC  
BATFET  
(Q4)  
BAD_SRC  
Converter  
Control State  
Machine  
IC TJ  
BAT  
TSHUT  
TSHUT  
BATSEN  
BATSEN  
VBATGD  
BAT_GD  
Input  
Source  
Detection  
USB  
PSEL  
PG  
ICHG  
Adapter  
ADC Control  
VBUS  
-VRECHG  
VREG  
BATSEN  
SYS  
RECHRG  
ADC  
BATSEN  
ICHG  
TERMINATION  
BATLOWV  
CHARGE  
CONTROL  
STATE  
ITERM  
INT  
V BATLOWV  
BATSEN  
MACHINE  
V SHORT  
I2C  
Interface  
BATSHORT  
SUSPEND  
STAT  
BATSEN  
bq25898C  
SCL SDA  
CE  
Copyright © 2016, Texas Instruments Incorporated  
版权 © 2016–2017, Texas Instruments Incorporated  
13  
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
8.2 Feature Description  
8.2.1 Device Power-On-Reset (POR)  
The internal bias circuits are powered from the higher voltage of VBUS and BAT. When VBUS rises above  
VVBUS_UVLOZ or BAT rises above VBAT_UVLOZ , the sleep comparator, battery depletion comparator and BATFET  
driver are active. I2C interface is ready for communication and all the registers are reset to default value. The  
host can access all the registers after POR.  
8.2.2 Device Power Up from Battery without Input Source  
If only battery is present and the voltage is above depletion threshold (VBAT_DPLZ), the BATFET turns on and  
connects battery to system. The REGN LDO stays off to minimize the quiescent current. The low RDS(ON) of  
BATFET and the low quiescent current on BAT minimize the conduction loss and maximize the battery run time.  
The device always monitors the discharge current through BATFET. When the system is overloaded or shorted  
(IBAT > IBATFET_OCP), the device turns off BATFET immediately until the input source plugs in again to re-enable  
BATFET.  
8.2.3 Device Power Up from Input Source  
When an input source is plugged in, the device checks the input source voltage to turn on REGN LDO and all the  
bias circuits. It detects and sets the input current limit before the buck converter is started when  
AUTO_DPDM_EN bit is set. The power up sequence from input source is as listed:  
1. Power Up REGN LDO  
2. Poor Source Qualification  
3. Input Source Type Detection based on PSEL to set default Input Current Limit (IINLIM) register and input  
source type  
4. Input Voltage Limit Threshold Setting (VINDPM threshold)  
5. Converter Power-up  
8.2.3.1 Power Up REGN Regulation (LDO)  
The REGN LDO supplies internal bias circuits as well as the HSFET and LSFET gate drive. The LDO also  
provides bias rail to TS external resistors. The pull-up rail of STAT can be connected to REGN as well. The  
REGN is enabled when all the below conditions are valid.  
1. VBUS above VVBUS_UVLOZ  
2. VBUS above VBAT + VSLEEPZ in buck mode  
3. After 220 ms delay is completed  
If one of the above conditions is not valid, the device is in high impedance mode (HIZ) with REGN LDO off. The  
device draws less than IVBUS_HIZ from VBUS during HIZ state. The battery powers up the system when the device  
is in HIZ.  
8.2.3.2 Poor Source Qualification  
After REGN LDO powers up, the device checks the current capability of the input source. The input source has  
to meet the following requirements in order to start the buck converter.  
1. VBUS voltage below VACOV  
2. VBUS voltage above VVBUSMIN when pulling IBADSRC (typical 30mA)  
Once the input source passes all the conditions above, the status register bit VBUS_GD is set high and the INT  
pin is pulsed to signal to the host. If the device fails the poor source detection, it repeats poor source qualification  
every 2 seconds.  
8.2.3.3 Input Source Type Detection  
After the VBUS_GD bit is set and REGN LDO is powered, the charger device runs Input Source Type Detection  
when AUTO_DPDM_EN bit is set.  
After input source type detection, an INT pulse is asserted to the host. In addition, the following registers and pin  
are changed:  
14  
版权 © 2016–2017, Texas Instruments Incorporated  
 
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
Feature Description (接下页)  
1. Input Current Limit (IINLIM) register is changed to set current limit  
2. PG_STAT bit is set  
The host can over-write IINLIM register to change the input current limit if needed. The charger input current is  
always limited by the lower of IINLIM register at all-time.  
When AUTO_DPDM_EN is disabled, the Input Source Type Detection is bypassed. The Input Current Limit  
(IINLIM) register, VBUS_STAT, and SPD_STAT bits are unchanged from previous values.  
8.2.3.3.1 PSEL Pin Sets Input Current Limit  
The bq25898C has PSEL interface for input current limit setting to interface with USB PHY. It directly takes the  
USB PHY device output to decide whether the input is USB host or charging port. To implement USB100 in the  
system, the host can enter HiZ mode by setting EN_HIZ bit after 2 min charging with 500 mA input current limit.  
1. bq25898C Result  
INPUT CURRENT LIMIT  
INPUT DETECTION  
BAT VOLTAGE  
PSEL PIN  
SDP_STAT  
VBUS_STAT  
(IINLIM)  
500 mA  
1.5 A  
USB SDP (USB500)  
Adapter  
X
X
High  
Low  
1
001  
010  
8.2.3.3.2 Force Input Current Limit Detection  
In host mode, the host can force the device to run by setting FORCE_DPDM bit. After the detection is completed,  
FORCE_DPDM bit returns to 0 by itself and Input Result is updated.  
8.2.3.4 Input Voltage Limit Threshold Setting (VINDPM Threshold)  
The device supports wide range of input voltage limit (3.9 V – 14 V) for high voltage charging and provides two  
methods to set Input Voltage Limit (VINDPM) threshold to facilitate autonomous detection.  
1. Absolute VINDPM (FORCE_VINDPM=1)  
By setting FORCE_VINDPM bit to 1, the VINDPM threshold setting algorithm is disabled. Register VINDPM  
is writable and allows host to set the absolute threshold of VINDPM function.  
2. Relative VINDPM based on VINDPM_OS registers (FORCE_VINDPM=0) (Default)  
When FORCE_VINDPM bit is 0 (default), the VINDPM threshold setting algorithm is enabled. The VINDPM  
register is read only and the charger controls the register by using VINDPM Threshold setting algorithm. The  
algorithm allows a wide range of adapter (VVBUS_OP) to be used with flexible VINDPM threshold.  
After Input Voltage Limit Threshold is set, an INT pulse is generated to signal to the host.  
8.2.3.5 Converter Power-Up  
After the input current limit is set, the converter is enabled and the HSFET and LSFET start switching. If battery  
charging is disabled, BATFET turns off. Otherwise, BATFET stays on to charge the battery.  
The device provides soft-start when system rail is ramped up. When the system rail is below 2.2 V, the input  
current limit is forced to the lower of 200 mA or IINLIM register setting. After the system rises above 2.2 V, the  
device limits input current to the IILIM register.  
As a battery charger, the device deploys a highly efficient 1.5 MHz step-down switching regulator. The fixed  
frequency oscillator keeps tight control of the switching frequency under all conditions of input voltage, battery  
voltage, charge current and temperature, simplifying output filter design.  
A type III compensation network allows using ceramic capacitors at the output of the converter. An internal saw-  
tooth ramp is compared to the internal error control signal to vary the duty cycle of the converter. The ramp  
height is proportional to the PMID voltage to cancel out any loop gain variation due to a change in input voltage.  
In order to improve light-load efficiency, the device switches to PFM control at light load when battery is below  
minimum system voltage setting or charging is disabled. During the PFM operation, the switching duty cycle is  
set by the ratio of SYS and VBUS.  
版权 © 2016–2017, Texas Instruments Incorporated  
15  
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
8.2.4 Power Path Management  
The device accommodates a wide range of input sources from USB, wall adapter, to car battery. The device  
provides automatic power path selection to supply the system (SYS) from input source (VBUS), battery (BAT), or  
both.  
8.2.4.1 Dynamic Power Management  
To meet maximum current limit in USB spec and avoid over loading the adapter, the device features Dynamic  
Power Management (DPM), which continuously monitors the input current and input voltage. When input source  
is over-loaded, either the current exceeds the input current limit (IINLIM or IDPM_LIM) or the voltage falls below  
the input voltage limit (VINDPM). The device then reduces the charge current until the input current falls below  
the input current limit and the input voltage rises above the input voltage limit.  
When the charge current is reduced to zero, but the input source is still overloaded, the system voltage starts to  
drop. Once the system voltage falls below the battery voltage, the device automatically enters the where the  
BATFET turns on and battery starts discharging so that the system is supported from both the input source and  
battery.  
During DPM mode, the status register bits VDPM_STAT (VINDPM) and/or IDPM_STAT (IINDPM) is/are set high.  
9 shows the DPM response with 9V/1.2A adapter, 3.2-V battery, 2.8-A charge current and 3.4-V minimum  
system voltage setting.  
ëoltage  
VBUS  
SYS  
BAT  
3.6V  
3.4V  
3.2V  
3.18V  
/urrent  
4A  
ICHG  
3.2A  
2.8A  
ISYS  
1.2A  
1.0A  
IIN  
0.5A  
-0.6A  
DPM  
DPM  
Supplement  
9. DPM Response  
8.2.5 Battery Charging Management  
The device charges 1-cell Li-Ion battery with up to 3-A charge current for high capacity battery. The 5-mΩ  
BATFET improves charging efficiency and minimize the voltage drop during discharging.  
8.2.5.1 Autonomous Charging Cycle  
With battery charging enabled (CHG_CONFIG bit = 1, CE pin is low, and REG04[6:0] is not set to 0 mA), the  
device autonomously completes a charging cycle without host involvement. The device default charging  
parameters are listed in . The host can always control the charging operations and optimize the charging  
parameters by writing to the corresponding registers through I2C.  
2. Charging Parameter Default Setting  
DEFAULT MODE  
Charging Voltage  
Charging Current  
Pre-charge Current  
Termination Current  
bq25898C  
4.208 V  
0 A (charge disable)  
0 mA (precharge disabled)  
256 mA  
16  
版权 © 2016–2017, Texas Instruments Incorporated  
 
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
2. Charging Parameter Default Setting (接下页)  
DEFAULT MODE  
bq25898C  
Safety Timer  
12 hour  
A new charge cycle starts when the following conditions are valid:  
Converter starts  
Battery charging is enabled by setting CHG_CONFIG bit, /CE pin is low and ICHG register is not 0 mA  
No safety timer fault  
BATFET is not forced to turn off (BATFET_DIS bit = 0)  
The charger device automatically terminates the charging cycle when the charging current is below termination  
threshold, charge voltage is above recharge threshold, and device not in DPM mode or thermal regulation. When  
a full battery voltage is discharged below recharge threshold (threshold selectable via VRECHG bit), the device  
automatically starts a new charging cycle. After the charge is done, either toggle CE pin or CHG_CONFIG bit  
can initiate a new charging cycle.  
The STAT output indicates the charging status of charging (LOW), charging complete or charge disable (HIGH)  
or charging fault (Blinking). The STAT output can be disabled by setting STAT_DIS bit. In addition, the status  
register (CHRG_STAT) indicates the different charging phases: 00-charging disable, 01-precharge, 10-fast  
charge (constant current) and constant voltage mode, 11-charging done. Once a charging cycle is completed, an  
INT is asserted to notify the host.  
8.2.5.2 Battery Charging Profile  
The device charges the battery in three phases: preconditioning, constant current and constant voltage. At the  
beginning of a charging cycle, the device checks the battery voltage and regulates current / voltage.  
3. Charging Current Setting  
VBAT  
< 2 V  
CHARGING CURRENT  
IBATSHORT  
REG DEFAULT SETTING  
CHRG_STAT  
01  
01  
00  
2 V – 3 V  
> 3 V  
IPRECHG  
0 mA (precharge disabled)  
0 (charge disabled)  
ICHG  
版权 © 2016–2017, Texas Instruments Incorporated  
17  
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
If the charger device is in DPM regulation or thermal regulation during charging, the charging current can be less  
than the programmed value. In this case, termination is temporarily disabled and the charging safety timer is  
counted at half the clock rate.  
wegulation ëoltage  
(3.84ë t 4.608ë)  
ꢀattery ëoltage  
Cast /harge /urrent  
(128m!-3008m!)  
/harge /urrent  
ë
ꢀ!Ç_[ꢁíë (2.8ëꢂ3ë  
or 2.6ëꢂ2.8ë)  
ë
ꢀ!Ç_{IꢁwÇ (2ë)  
L
ꢃw9/I!wD9 (64m!-1024m!)  
Ç9wꢄLb!ÇLꢁb (64m!-1024m!)  
ꢀ!Ç{IꢁwÇ (100m!)  
L
L
Cast /harge and ëoltage wegulation  
Çrickle /harge  
ꢃre-charge  
{afety Çimer  
9xpiration  
10. Battery Charging Profile  
8.2.5.3 Charging Termination  
The device terminates a charge cycle when the battery voltage is above recharge threshold, and the current is  
below termination current. After the charging cycle is completed, the BATFET turns off. The converter keeps  
running to power the system, and BATFET can turn on again to engage .  
When termination occurs, the status register CHRG_STAT is set to 11, and an INT pulse is asserted to the host.  
Termination is temporarily disabled when the charger device is in input current, voltage or thermal regulation.  
Termination can be disabled by writing 0 to EN_TERM bit prior to charge termination.  
8.2.5.4 Charging Safety Timer  
The device has built-in safety timer to prevent extended charging cycle due to abnormal battery conditions. The  
safety timer is 4 hours when the battery is below VBATLOWV threshold. The user can program fast charge safety  
timer through I2C (CHG_TIMER bits). When safety timer expires, the fault register CHRG_FAULT bits are set to  
11 and an INT is asserted to the host. The safety timer feature can be disabled via I2C by setting EN_TIMER bit.  
During input voltage, current or thermal regulation, the safety timer counts at half clock rate as the actual charge  
current is likely to be below the register setting. For example, if the charger is in input current regulation  
(IDPM_STAT = 1) throughout the whole charging cycle, and the safety time is set to 5 hours, the safety timer will  
expire in 10 hours. This half clock rate feature can be disabled by writing 0 to TMR2X_EN bit.  
8.2.6 Battery Monitor  
The device includes a battery monitor to provide measurements of VBUS voltage, battery voltage, system  
voltage, thermistor ratio, and charging current, and charging current based on the device’s modes of operation.  
The measurements are reported in Battery Monitor Registers (REG0E-REG12). The battery monitor can be  
configured as two conversion modes by using CONV_RATE bit: one-shot conversion (default) and 1 second  
continuous conversion.  
For one-shot conversion (CONV_RATE = 0), the CONV_START bit can be set to start the conversion. During the  
conversion, the CONV_START is set and it is cleared by the device when conversion is completed. The  
conversion result is ready after tCONV (maximum 1 second).  
18  
版权 © 2016–2017, Texas Instruments Incorporated  
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
For continuous conversion (CONV_RATE = 1), the CONV_RATE bit can be set to initiate the conversion. During  
active conversion, the CONV_START is set to indicate conversion is in progress. The battery monitor provides  
conversion result every 1 second automatically. The battery monitor exits continuous conversion mode when  
CONV_RATE is cleared.  
When battery monitor is active, the REGN power is enabled and can increase device quiescent current.  
4. Battery Monitor Modes of Operation  
MODES OF OPERATION  
PARAMETER  
REGISTER  
DISABLE CHARGE  
MODE  
CHARGE MODE  
BATTERY ONLY MODE  
Battery Voltage (VBAT  
)
REG0E  
REG0F  
REG11  
REG12  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
NA  
Yes  
Yes  
NA  
System Voltage (VSYS  
VBUS Voltage (VVBUS  
Charge Current (IBAT  
)
)
)
NA  
8.2.7 Status Outputs (PG, STAT, and INT)  
8.2.7.1 Power Good Indicator (PG)  
In bq25898C, the PG goes LOW to indicate a good input source when:  
1. VBUS above VVBUS_UVLO  
2. VBUS above battery (not in sleep)  
3. VBUS below VACOV threshold  
4. VBUS above VVBUSMIN (typical 3.8 V) when IBADSRC (typical 30 mA) current is applied (not a poor source)  
5. Completed Input Source Type Detection  
8.2.7.2 Charging Status Indicator (STAT)  
The device indicates charging state on the open drain STAT pin. The STAT pin can drive LED as shown in . The  
STAT pin function can be disable by setting STAT_DIS bit.  
5. STAT Pin State  
CHARGING STATE  
Charging in progress (including recharge)  
STAT INDICATOR  
LOW  
Charging complete  
HIGH  
Sleep mode, charge disable  
HIGH  
Charge suspend (Input overvoltage, timer fault, input or system overvoltage)  
blinking at 1 Hz  
8.2.7.3 Interrupt to Host (INT)  
In some applications, the host does not always monitor the charger operation. The INT notifies the system on the  
device operation. The following events will generate 256-µs INT pulse.  
USB/adapter source identified (through PSEL detection)  
Good input source detected  
VBUS above battery (not in sleep)  
VBUS below VACOV threshold  
VBUS above VVBUSMIN (typical 3.8 V) when IBADSRC (typical 30 mA) current is applied (not a poor source)  
Input removed  
Charge Complete  
Any FAULT event in REG0C  
When a fault occurs, the charger device sends out INT and keeps the fault state in REG0C until the host reads  
the fault register. Before the host reads REG0C and all the faults are cleared, the charger device would not send  
any INT upon new faults. To read the current fault status, the host has to read REG0C two times consecutively.  
The 1st read reports the pre-existing fault register status and the 2nd read reports the current fault register status.  
版权 © 2016–2017, Texas Instruments Incorporated  
19  
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
8.2.8 Thermal Regulation and Thermal Shutdown  
8.2.8.1 Thermal Protection in Buck Mode  
The device monitors the internal junction temperature TJ to avoid overheat the chip and limits the IC surface  
temperature in buck mode. When the internal junction temperature exceeds the preset thermal regulation limit  
(TREG bits), the device lowers down the charge current. The wide thermal regulation range from 60ºC to 120ºC  
allows the user to optimize the system thermal performance.  
During thermal regulation, the actual charging current is usually below the programmed battery charging current.  
Therefore, termination is disabled, the safety timer runs at half the clock rate, and the status register  
THERM_STAT bit goes high.  
Additionally, the device has thermal shutdown to turn off the converter and BATFET when IC surface  
temperature exceeds TSHUT. The fault register CHRG_FAULT is set to 10 and an INT is asserted to the host. The  
BATFET and converter is enabled to recover when IC temperature is below TSHUT_HYS  
.
8.2.9 Voltage and Current Monitoring in Buck  
8.2.9.1 Voltage and Current Monitoring in Buck Mode  
The device closely monitors the input and system voltage, as well as HSFET current for safe buck mode  
operations.  
8.2.9.1.1 Input Overvoltage (ACOV)  
The input voltage for buck mode operation is VVBUS_OP. If VBUS voltage exceeds VACOV, the device stops  
switching immediately. During input over voltage (ACOV), the fault register CHRG_FAULT bits sets to 01. An INT  
is asserted to the host.  
8.2.9.1.2 System Overvoltage Protection (SYSOVP)  
The charger device clamps the system voltage during load transient so that the components connect to system  
would not be damaged due to high voltage. When SYSOVP is detected, the converter stops immediately to  
clamp the overshoot.  
8.2.10 Battery Protection  
8.2.10.1 Battery Overvoltage Protection (BATOVP)  
The battery overvoltage limit is clamped at 4% above the battery regulation voltage. When battery over voltage  
occurs, the charger device immediately disables charge. The fault register BAT_FAULT bit goes high and an INT  
is asserted to the host.  
8.2.10.2 Battery Over-Discharge Protection  
When battery is discharged below VBAT_DPL, the BATFET is turned off to protect battery from over discharge. To  
recover from over-discharge, an input source is required at VBUS. When an input source is plugged in, the  
BATFET turns on. Thy is charged with IBATSHORT (typically 100 mA) current when the VBAT < VSHORT, or  
precharge current as set in IPRECHG register when the battery voltage is between VSHORT and VBATLOWV  
.
8.2.11 Serial Interface  
The device uses I2C compatible interface for flexible charging parameter programming and instantaneous device  
status reporting. I2C is a bi-directional 2-wire serial interface. Only two open-drain bus lines are required: a serial  
data line (SDA) and a serial clock line (SCL). Devices can be considered as masters or slaves when performing  
data transfers. A master is the device which initiates a data transfer on the bus and generates the clock signals  
to permit that transfer. At that time, any device addressed is considered a slave.  
The device operates as a slave device with address 6BH, receiving control inputs from the master device like  
micro controller or a digital signal processor through REG00-REG14. Register read beyond REG14 (0x14)  
returns 0xFF. The I2C interface supports both standard mode (up to 100 kbits), and fast mode (up to 400 kbits).  
When the bus is free, both lines are HIGH. The SDA and SCL pins are open drain and must be connected to the  
positive supply voltage via a current source or pull-up resistor.  
20  
版权 © 2016–2017, Texas Instruments Incorporated  
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
8.2.11.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the  
data line can only change when the clock signal on the SCL line is LOW. One clock pulse is generated for each  
data bit transferred.  
SDA  
SCL  
Change  
of data  
allowed  
Data line stable;  
Data valid  
11. Bit Transfer on the I2C Bus  
8.2.11.2 START and STOP Conditions  
All transactions begin with a START (S) and can be terminated by a STOP (P). A HIGH to LOW transition on the  
SDA line while SCl is HIGH defines a START condition. A LOW to HIGH transition on the SDA line when the  
SCL is HIGH defines a STOP condition.  
START and STOP conditions are always generated by the master. The bus is considered busy after the START  
condition, and free after the STOP condition.  
{5!  
{/[  
{5!  
{/[  
{Çht (t)  
{Ç!wÇ ({)  
12. START and STOP conditions  
8.2.11.3 Byte Format  
Every byte on the SDA line must be 8 bits long. The number of bytes to be transmitted per transfer is  
unrestricted. Each byte has to be followed by an Acknowledge bit. Data is transferred with the Most Significant  
Bit (MSB) first. If a slave cannot receive or transmit another complete byte of data until it has performed some  
other function, it can hold the clock line SCL low to force the master into a wait state (clock stretching). Data  
transfer then continues when the slave is ready for another byte of data and release the clock line SCL.  
版权 © 2016–2017, Texas Instruments Incorporated  
21  
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
!cknoꢁledgement  
signal from revceiver  
!cknoꢁledgement  
signal from slave  
ꢀ{.  
1
ꢂ or  
{r  
{ or {r  
2
7
8
9
!/Y  
1
2
8
9
!/Y  
{Ç!wÇ or  
wepeated  
{Ç!wÇ  
{Çhꢂ or  
wepeated  
{Ç!wÇ  
13. Data Transfer on the I2C Bus  
8.2.11.4 Acknowledge (ACK) and Not Acknowledge (NACK)  
The acknowledge takes place after every byte. The acknowledge bit allows the receiver to signal the transmitter  
that the byte was successfully received and another byte may be sent. All clock pulses, including the  
acknowledge 9th clock pulse, are generated by the master.  
The transmitter releases the SDA line during the acknowledge clock pulse so the receiver can pull the SDA line  
LOW and it remains stable LOW during the HIGH period of this clock pulse.  
When SDA remains HIGH during the 9th clock pulse, this is the Not Acknowledge signal. The master can then  
generate either a STOP to abort the transfer or a repeated START to start a new transfer.  
8.2.11.5 Slave Address and Data Direction Bit  
After the START, a slave address is sent. This address is 7 bits long followed by the eighth bit as a data direction  
bit (bit R/W). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ).  
{5!  
{
8
9
8
9
8
9
t
{/[  
1-7  
1-7  
1-7  
{Ç!wÇ  
!55wꢀ{{  
wꢁí !/Y  
5!Ç!  
!/Y  
5!Ç!  
!/Y  
{Çht  
14. Complete Data Transfer  
8.2.11.6 Single Read and Write  
1
8
1
1
7
1
0
1
1
8
Slave Address  
ACK  
Reg Addr  
ACK  
P
S
ACK  
Data Addr  
15. Single Write  
1
8
1
1
1
7
1
0
1
1
1
7
Slave Address  
ACK  
Reg Addr  
ACK  
S
S
ACK  
Slave Address  
1
1
8
P
Data  
NCK  
16. Single Read  
If the register address is not defined, the charger IC send back NACK and go back to the idle state.  
22  
版权 © 2016–2017, Texas Instruments Incorporated  
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
8.2.11.7 Multi-Read and Multi-Write  
The charger device supports multi-read and multi-write on REG00 through REG14 except REG0C.  
17. Multi-Write  
18. Multi-Read  
REG0C is a fault register. It keeps all the fault information from last read until the host issues a new read. For  
example, if Charge Safety Timer Expiration fault occurs but recovers later, the fault register REG0C reports the  
fault when it is read the first time, but returns to normal when it is read the second time. In order to get the fault  
information at present, the host has to read REG0C for the second time. The only exception is NTC_FAULT  
which always reports the actual condition on the TS pin. In addition, REG0C does not support multi-read and  
multi-write.  
8.3 Device Functional Modes  
8.3.1 Host Mode and Default Mode  
The device is a host controlled charger. The device cannot operate in default mode without host management  
because default charge current is set to 0 mA (charge disabled).  
All the device parameters can be programmed by the host. To keep the device in host mode, the host has to  
reset the watchdog timer by writing 1 to WD_RST bit before the watchdog timer expires (WATCHDOG_FAULT  
bit is set), or disable watchdog timer by setting WATCHDOG bits=00.  
When the watchdog timer (WATCHDOG_FAULT bit = 1) is expired, the device returns to default mode and all  
registers are reset to default values except IINLIM, VINDPM, VINDPM_OS bits.  
版权 © 2016–2017, Texas Instruments Incorporated  
23  
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
Device Functional Modes (接下页)  
thw  
ꢀaꢁcꢂdog ꢁimer expired  
weseꢁ regisꢁers  
L2/ inꢁerface enabled  
Iosꢁ ꢃode  
{ꢁarꢁ ꢀaꢁcꢂdog ꢁimer  
Iosꢁ programs regisꢁers  
ò
L2/ íriꢁe?  
5efaulꢁ ꢃode  
weseꢁ ꢀaꢁcꢂdog ꢁimer  
weseꢁ selecꢁive regisꢁers  
ò
í5_w{Ç biꢁ = 1?  
ò
L2/ íriꢁe?  
ò
íaꢁcꢂdog Çimer  
9xpired?  
19. Watchdog Timer Flow Chart  
24  
版权 © 2016–2017, Texas Instruments Incorporated  
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
8.4 Register Map  
I2C Slave Address: 6BH (1101011B + R/W)  
8.4.1 REG00  
20. REG00  
7
0
6
1
5
0
4
1
3
1
2
1
1
0
0
0
R/W  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
6. REG00  
Bit  
Field  
Type  
Reset  
Description  
Enable HIZ Mode  
0 – Disable (default)  
1 – Enable  
by REG_RST  
by Watchdog  
7
EN_HIZ  
R/W  
6
5
4
3
2
1
0
Reserved  
IINLIM[5]  
IINLIM[4]  
IINLIM[3]  
IINLIM[2]  
IINLIM[1]  
IINLIM[0]  
R
N/A  
Reserved Always reads 1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
by REG_RST  
by REG_RST  
by REG_RST  
by REG_RST  
by REG_RST  
by REG_RST  
1600mA  
Input Current Limit  
Offset: 100mA  
800mA  
400mA  
200mA  
100mA  
50mA  
Range: 100mA (000000) – 3.25A (111111)  
Default:011100 (1500mA)  
(Actual input current limit is the lower of I2C or ILIM pin)  
IINLIM bits are changed automatically after input source  
type detection is completed  
版权 © 2016–2017, Texas Instruments Incorporated  
25  
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
8.4.2 REG01  
21. REG01  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
1
R
R
R
R
R
R
R
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7. REG01  
Bit  
7
Field  
Type  
R
Reset  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved, Always read 0  
Reserved, Always read 0  
Reserved, Always read 0  
Reserved, Always read 0  
Reserved, Always read 0  
Reserved, Always read 0  
Reserved, Always read 0  
6
R
5
R
4
R
3
R
2
R
1
R
VINDPM offset threshold  
Default 600mV (1)  
0 - 400mA offset  
0
VDPM_OS  
R/W  
by REG_RST  
1 - 600mA offset  
26  
版权 © 2016–2017, Texas Instruments Incorporated  
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
8.4.3 REG02  
22. REG02  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
1
R/W  
R/W  
R
R
R
R
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8. REG02  
Bit  
Field  
Type  
Reset  
Description  
ADC Conversion Start Control  
0 – ADC conversion not active (default).  
1 – Start ADC Conversion  
This bit is read-only when CONV_RATE = 1. The bit stays high during  
ADC conversion and during input source detection.  
by REG_RST  
by Watchdog  
7
CONV_START  
R/W  
ADC Conversion Rate Selection  
0 – One shot ADC conversion (default)  
1 – Start 1s Continuous Conversion  
by REG_RST  
by Watchdog  
6
CONV_RATE  
R/W  
5
4
3
2
Reserved  
Reserved  
Reserved  
Reserved  
R
R
R
R
N/A  
N/A  
N/A  
N/A  
Reserved, Always read 0  
Reserved, Always read 0  
Reserved, Always read 0  
Reserved, Always read 0  
Force PSEL Detection  
0 – Not in PSEL detection (default)  
1 – Force PSEL detection  
by REG_RST  
by Watchdog  
1
0
FORCE_DPDM  
R/W  
R/W  
Automatic Detection Enable  
0 –Disable PSEL detection when VBUS is plugged-in  
1 –Enable PEL detection when VBUS is plugged-in (default)  
AUTO_DPDM_EN  
by REG_RST  
版权 © 2016–2017, Texas Instruments Incorporated  
27  
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
8.4.4 REG03  
23. REG03  
7
0
6
0
5
0
4
1
3
1
2
0
1
1
0
0
R
R/W  
R
R/W  
R/W  
R/W  
R/W  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9. REG03  
Bit  
Field  
Type  
Reset  
Description  
7
Reserved  
R
N/A  
Reserved Always read 0  
I2C Watchdog Timer Reset  
0 – Normal (default)  
1 – Reset (Back to 0 after timer reset)  
by REG_RST  
by Watchdog  
6
5
4
WD_RST  
R/W  
R
Reserved  
N/A  
Reserved Always read 0  
Charge Enable Configuration  
0 - Charge Disable  
1- Charge Enable (default)  
by REG_RST  
by Watchdog  
CHG_CONFIG  
R/W  
3
2
1
0
SYS_MIN[2]  
SYS_MIN[1]  
SYS_MIN[0]  
Reserved  
R/W  
R/W  
R/W  
R
by REG_RST  
by REG_RST  
by REG_RST  
N/A  
0.4V  
0.2V  
0.1V  
Minimum System Voltage Limit  
Offset: 3.0V  
Range 3.0V-3.7V  
Default: 3.5V (101)  
Reserved Always read 0  
28  
版权 © 2016–2017, Texas Instruments Incorporated  
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
8.4.5 REG04  
24. REG04  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
10. REG04  
Bit  
7
Field  
Type  
R
Reset  
N/A  
Description  
Reserved  
Reserved  
Reserved Always reads 0  
Reserved Always reads 0  
6
R
N/A  
by REG_RST  
by Watchdog  
5
4
3
2
1
0
ICHG[5]  
ICHG[4]  
ICHG[3]  
ICHG[2]  
ICHG[1]  
ICHG[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
2048mA  
by REG_RST  
by Watchdog  
Fast Charge Current Limit  
Offset: 0mA  
Range: 0mA (000000) – 3008mA (101111) Default: 0mA  
(000000)  
Note:  
ICHG=000000 (0mA) disables both fast charge and  
precharge  
ICHG > 101111 (3008mA) is clamped to register value  
101111 (3008mA)  
1024mA  
512mA  
256mA  
128mA  
64mA  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
版权 © 2016–2017, Texas Instruments Incorporated  
29  
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
8.4.6 REG05  
25. REG05  
7
0
6
0
5
0
4
1
3
0
2
0
1
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
11. REG05  
Bit  
Field  
Type  
Reset  
Description  
by REG_RST  
by Watchdog  
7
IPRECHG[3]  
R/W  
512mA  
by REG_RST  
by Watchdog  
Precharge Current Limit  
Offset: 64mA  
Range: 64mA – 1024mA  
6
5
4
3
2
1
0
IPRECHG[2]  
IPRECHG[1]  
IPRECHG[0]  
ITERM[3]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
256mA  
128mA  
64mA  
by REG_RST  
by Watchdog  
Default: 0mA when REG04[5:0] = 000000  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
512mA  
256mA  
128mA  
64mA  
by REG_RST  
by Watchdog  
Termination Current Limit  
Offset: 64mA  
Range: 64mA – 1024mA  
Default: 256mA (0011)  
ITERM[2]  
by REG_RST  
by Watchdog  
ITERM[1]  
by REG_RST  
by Watchdog  
ITERM[0]  
30  
版权 © 2016–2017, Texas Instruments Incorporated  
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
8.4.7 REG06  
26. REG06  
7
0
6
1
5
0
4
1
3
1
2
1
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
12. REG06  
Bit  
Field  
Type  
Reset  
Description  
by REG_RST  
by Watchdog  
7
VREG[5]  
R/W  
512mV  
by REG_RST  
by Watchdog  
6
5
4
3
2
VREG[4]  
VREG[3]  
VREG[2]  
VREG[1]  
VREG[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
256mV  
128mV  
64mV  
32mV  
16mV  
Charge Voltage Limit  
Offset: 3.840V  
Range: 3.840V – 4.608V (110000)  
Default: 4.208V (010111)  
Note:  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
VREG > 110000 (4.608V) is clamped to register value  
110000 (4.608V)  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
Battery Precharge to Fast Charge Threshold  
0 – 2.8V  
1 – 3.0V (default)  
by REG_RST  
by Watchdog  
1
0
BATLOWV  
VRECHG  
R/W  
R/W  
Battery Recharge Threshold Offset  
(below Charge Voltage Limit)  
0 – 100mV (VRECHG) below VREG (REG06[7:2]) (default)  
1 – 200mV (VRECHG) below VREG (REG06[7:2])  
by REG_RST  
by Watchdog  
版权 © 2016–2017, Texas Instruments Incorporated  
31  
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
8.4.8 REG07  
27. REG07  
7
1
6
0
5
0
4
1
3
1
2
1
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
13. REG07  
Bit  
Field  
Type  
Reset  
Description  
Charging Termination Enable  
0 – Disable  
1 – Enable (default)  
by REG_RST  
by Watchdog  
7
EN_TERM  
R/W  
STAT Pin Disable  
0 – Enable STAT pin function (default)  
1 – Disable STAT pin function  
by REG_RST  
by Watchdog  
6
STAT_DIS  
R/W  
by REG_RST  
by Watchdog  
I2C Watchdog Timer Setting  
00 – Disable watchdog timer  
01 – 40s (default)  
10 – 80s  
5
4
WATCHDOG[1]  
WATCHDOG[0]  
R/W  
R/W  
by REG_RST  
by Watchdog  
11 – 160s  
Charging Safety Timer Enable  
0 – Disable  
1 – Enable (default)  
by REG_RST  
by Watchdog  
3
2
EN_TIMER  
R/W  
R/W  
by REG_RST  
by Watchdog  
Fast Charge Timer Setting  
00 – 5 hrs  
CHG_TIMER[1]  
01 – 8 hrs  
10 – 12 hrs (default)  
11 – 20 hrs  
by REG_RST  
by Watchdog  
1
0
CHG_TIMER[0]  
Reserved  
R/W  
R
N/A  
Reserved always reads 1  
32  
版权 © 2016–2017, Texas Instruments Incorporated  
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
8.4.9 REG08  
28. REG08  
7
0
6
0
5
0
4
0
3
0
2
0
1
1
0
1
R
R
R
R
R
R
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
14. REG08  
Bit  
7
Field  
Type  
R
Reset  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6
R
Reserved Always reads 000  
Reserved Always reads 000  
5
R
4
R
3
R
2
R
by REG_RST  
by Watchdog  
Thermal Regulation Threshold  
00 – 60°C  
01 – 80°C  
10 – 100°C  
11 – 120°C (default)  
1
0
TREG[1]  
TREG[0]  
R/W  
R/W  
by REG_RST  
by Watchdog  
版权 © 2016–2017, Texas Instruments Incorporated  
33  
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
8.4.10 REG09  
29. REG09  
7
0
6
1
5
0
4
0
3
0
2
1
1
0
0
0
R
R/W  
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
15. REG09  
Bit  
Field  
Type  
Reset  
Description  
Reserved Always reads 0  
Safety Timer Setting during DPM or Thermal Regulation  
7
Reserved  
R
N/A  
0 – Safety timer not slowed by 2X during input DPM or thermal  
6
TMR2X_EN  
R/W  
by Watchdog  
regulation  
1 – Safety timer slowed by 2X during input DPM or thermal regulation  
(default)  
Force BATFET off to enable ship mode with tSM_DLY delay time  
0 – Allow BATFET turn on (default)  
5
BATFET_DIS  
R/W  
by REG_RST  
1 – Force BATFET off  
4
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
R
R
R
R
R
N/A  
N/A  
N/A  
N/A  
N/A  
Reserved Always reads 0  
Reserved Always reads 0  
Reserved Always reads 1  
Reserved Always reads 0  
Reserved Always reads 0  
34  
版权 © 2016–2017, Texas Instruments Incorporated  
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
8.4.11 REG0A  
30. REG0A  
7
0
6
1
5
1
4
1
3
0
2
1
1
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
16. REG0A  
Bit  
7
Field  
Type  
R
Reset  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved Always reads 0  
Reserved Always reads 1  
Reserved Always reads 1  
Reserved Always reads 1  
Reserved Always reads 0  
Reserved Always reads 1  
Reserved Always reads 0  
Reserved Always reads 0  
6
R
5
R
4
R
3
R
2
R
1
R
0
R
版权 © 2016–2017, Texas Instruments Incorporated  
35  
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
8.4.12 REG0B  
31. REG0B  
7
x
6
x
5
x
4
x
3
x
2
x
1
1
0
x
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
17. REG0B  
Bit  
7
Field  
Type  
R
Reset  
N/A  
Description  
VBUS_STAT[2]  
VBUS_STAT[1]  
VBUS Status register  
000: No Input  
001: USB Host SDP  
010: Adapter (3.25A)  
111: N/A  
6
R
N/A  
5
4
VBUS_STAT[0]  
CHRG_STAT[1]  
R
R
N/A  
N/A  
Note: Software current limit is reported in IINLIM register  
Charging Status  
00 – Not Charging  
01 – Pre-charge ( < VBATLOWV  
10 – Fast Charging  
)
3
CHRG_STAT[0]  
R
N/A  
11 – Charge Termination Done  
Power Good Status  
0 – Not Power Good  
1 – Power Good  
2
1
0
PG_STAT  
Reserved  
R
R
R
N/A  
N/A  
N/A  
Reserved  
VSYS Regulation Status  
0 – Not in VSYSMIN regulation (BAT > VSYSMIN)  
1 – In VSYSMIN regulation (BAT < VSYSMIN)  
VSYS_STAT  
36  
版权 © 2016–2017, Texas Instruments Incorporated  
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
8.4.13 REG0C  
32. REG0C  
7
x
6
x
5
x
4
x
3
x
2
x
1
x
0
x
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
18. REG0C  
Bit  
Field  
Type  
Reset  
Description  
Watchdog Fault Status  
Status 0 – Normal  
7
WATCHDOG_FAULT  
R
N/A  
1- Watchdog timer expiration  
6
5
Reserved  
R
R
N/A  
N/A  
Reserved  
CHRG_FAULT[1]  
Charge Fault Status  
00 – Normal  
01 – Input fault (VBUS > VACOV or VBAT < VBUS < VVBUSMIN(typical 3.8V)  
)
4
CHRG_FAULT[0]  
R
N/A  
10 - Thermal shutdown  
11 – Charge Safety Timer Expiration  
Battery Fault Status  
0 – Normal  
3
BAT_FAULT  
R
N/A  
1 – BATOVP (VBAT > VBATOVP  
)
2
1
0
Reserved  
Reserved  
Reserved  
R
R
R
N/A  
N/A  
N/A  
Reserved  
Reserved  
Reserved  
版权 © 2016–2017, Texas Instruments Incorporated  
37  
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
8.4.14 REG0D  
33. REG0D  
7
0
6
0
5
0
4
1
3
0
2
0
1
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
19. REG0D  
Bit  
Field  
Type  
Reset  
Description  
VINDPM Threshold Setting Method  
7
FORCE_VINDPM  
R/W  
by REG_RST  
0 – Run Relative VINDPM Threshold (default)  
1 – Run Absolute VINDPM Threshold  
6
5
4
3
2
1
0
VINDPM[6]  
VINDPM[5]  
VINDPM[4]  
VINDPM[3]  
VINDPM[2]  
VINDPM[1]  
VINDPM[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
by REG_RST  
by REG_RST  
by REG_RST  
by REG_RST  
by REG_RST  
by REG_RST  
by REG_RST  
6400mV  
3200mV  
1600mV  
800mV  
400mV  
200mV  
100mV  
Absolute VINDPM Threshold  
Offset: 2.6V  
Range: 3.9V (0001101) – 15.3V (1111111)  
Default: 4.4V (0010010)  
Note:  
Value < 0001101 is clamped to 3.9V (0001101)  
Register is read only when FORCE_VINDPM=0 and can  
be written by internal control based on relative VINDPM  
threshold setting  
Register can be read/write when FORCE_VINDPM = 1  
8.4.15 REG0E  
34. REG0E  
7
x
6
x
5
x
4
x
3
x
2
x
1
x
0
x
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
20. REG0E  
Bit  
Field  
Type  
Reset  
Description  
Thermal Regulation Status  
0 – Normal  
7
THERM_STAT  
R
N/A  
1 – In Thermal Regulation  
6
5
4
3
2
1
0
BATV[6]  
BATV[5]  
BATV[4]  
BATV[3]  
BATV[2]  
BATV[1]  
BATV[0]  
R
R
R
R
R
R
R
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1280mV  
640mV  
320mV  
160mV  
80mV  
40mV  
20mV  
ADC conversion of Battery Voltage (VBAT)  
38  
版权 © 2016–2017, Texas Instruments Incorporated  
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
8.4.16 REG0F  
35. REG0F  
7
0
6
x
5
x
4
x
3
x
2
x
1
x
0
x
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
21. REG0F  
Bit  
7
Field  
Type  
R
Reset  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Description  
Reserved  
SYSV[6]  
SYSV[5]  
SYSV[4]  
SYSV[3]  
SYSV[2]  
SYSV[1]  
SYSV[0]  
Reserved: Always reads 0  
6
R
1280mV  
640mV  
320mV  
5
R
4
R
3
R
160mV  
80mV  
40mV  
20mV  
ADC conversion of System Voltage (VSYS)  
2
R
1
R
0
R
版权 © 2016–2017, Texas Instruments Incorporated  
39  
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
8.4.17 REG11  
36. REG11  
7
x
6
x
5
x
4
x
3
x
2
x
1
x
0
x
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
22. REG11  
Bit  
Field  
Type  
Reset  
Description  
VBUS Good Status  
0 – Not VBUS attached  
1 – VBUS Attached  
7
VBUS_GD  
R
N/A  
6
5
4
3
2
1
0
VBUSV[6]  
VBUSV[5]  
VBUSV[4]  
VBUSV[3]  
VBUSV[2]  
VBUSV[1]  
VBUSV[0]  
R
R
R
R
R
R
R
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
6400mV  
3200mV  
1600mV  
800mV  
400mV  
200mV  
100mV  
ADC conversion of VBUS voltage (VBUS  
Offset: 2.6V  
Range 2.6V (0000000) – 15.3V (1111111)  
Default: 2.6V (0000000)  
)
8.4.18 REG12  
37. REG12  
7
0
6
x
5
x
4
x
3
x
2
x
1
x
0
x
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
23. REG12  
Bit  
7
Field  
Type  
R
Reset  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Description  
Always reads 0  
3200mA  
Reserved  
ICHGR[6]  
ICHGR[5]  
ICHGR[4]  
ICHGR[3]  
ICHGR[2]  
ICHGR[1]  
ICHGR[0]  
6
R
5
R
1600mA  
800mA  
400mA  
200mA  
100mA  
50mA  
ADC conversion of Charge Current (IBAT) when VBAT  
VBATSHORT  
Offset: 0mA  
Range 0mA (0000000) – 6350mA (1111111)  
Default: 0mA (0000000)  
>
4
R
3
R
2
R
Note:  
This register returns 0000000 for VBAT < VBATSHORT  
1
R
0
R
40  
版权 © 2016–2017, Texas Instruments Incorporated  
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
8.4.19 REG13  
38. REG13  
7
x
6
x
5
x
4
x
3
x
2
x
1
x
0
x
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
24. REG13  
Bit  
Field  
Type  
Reset  
Description  
VINDPM Status  
0 – Not in VINDPM  
1 – VINDPM  
7
VDPM_STAT  
R
N/A  
IINDPM Status  
0 – Not in IINDPM  
1 – IINDPM  
6
IDPM_STAT  
R
N/A  
5
4
3
2
1
0
IDPM_LIM[5]  
IDPM_LIM[4]  
IDPM_LIM[3]  
IDPM_LIM[2]  
IDPM_LIM[1]  
IDPM_LIM[0]  
R
R
R
R
R
R
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1600mA  
800mA  
400mA  
Input Current Limit in effect  
200mA  
100mA  
50mA  
8.4.20 REG14  
39. REG14  
7
0
6
x
5
0
4
0
3
1
2
1
1
0
0
1
R/W  
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
25. REG14  
Bit  
Field  
Type  
Reset  
Description  
Register Reset  
0 – Keep current register setting (default)  
7
REG_RST  
R/W  
N/A  
1 – Reset to default register value and reset safety timer  
Note:  
Reset to 0 after register reset is completed  
6
5
4
3
2
1
0
Reserved  
PN[2]  
R
R
R
R
R
R
R
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Reserved  
Device Configuration  
001: bq25898C  
PN[1]  
PN[0]  
Reserved  
DEV_REV[1]  
DEV_REV[0]  
Reserved Always reads 1  
Device Revision: 01  
版权 © 2016–2017, Texas Instruments Incorporated  
41  
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
A typical application consists of the device configured as an I2C controlled power path management device and a  
single cell battery charger for Li-Ion and Li-polymer batteries used in a wide range of smartphones and other  
portable devices. It integrates an input reverse-block FET (RBFET, Q1), high-side switching FET (HSFET, Q2),  
low-side switching FET (LSFET, Q3), and BATFET (Q4) between the system and battery. The device also  
integrates a bootstrap diode for the high-side gate drive.  
9.2 Typical Application Diagram  
Input  
3.9Vœ14V@3A  
1mH  
USB  
1mF  
8.2mF  
10mF  
10mF  
Ichg=3A  
VREF  
10mF  
Host  
Copyright © 2016, Texas Instruments Incorporated  
VREF is the pull up voltage of I2C communication interface  
40. bq25898C Application Diagram as Slave Charger  
9.2.1 Design Requirements  
For this design example, use the parameters shown in 26.  
26. Design Parameters  
PARAMETER  
Input voltage range  
Input current limit  
Fast charge current  
Output voltage  
VALUE  
3.9 V to 14 V  
1.5 A  
3000 mA  
4.208 V  
42  
版权 © 2016–2017, Texas Instruments Incorporated  
 
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
9.2.2 Detailed Design Procedure  
9.2.2.1 Inductor Selection  
The device has 1.5 MHz switching frequency to allow the use of small inductor and capacitor values. The  
Inductor saturation current should be higher than the charging current (ICHG) plus half the ripple current (IRIPPLE):  
I
³ I  
+ (1/2) I  
BAT  
CHG  
RIPPLE  
(1)  
The inductor ripple current depends on input voltage (VBUS), duty cycle (D = VBAT/VVBUS), switching frequency (fs)  
and inductance (L):  
V
x D x (1-D)  
BUS  
I
=
RIPPLE  
f s x L  
(2)  
The maximum inductor ripple current happens with D = 0.5 or close to 0.5. Usually inductor ripple is designed in  
the range of (20–40%) maximum charging current as a trade-off between inductor size and efficiency for a  
practical design.  
9.2.2.2 Buck Input Capacitor  
Input capacitor should have enough ripple current rating to absorb input switching ripple current. The worst case  
RMS ripple current is half of the charging current when duty cycle is 0.5. If the converter does not operate at  
50% duty cycle, then the worst case capacitor RMS current IPMID occurs where the duty cycle is closest to 50%  
and can be estimated by 公式 3:  
I
= I x D x (1 - D)  
CHG  
PMID  
(3)  
Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be  
placed to the drain of the high side MOSFET and source of the low side MOSFET as close as possible. Voltage  
rating of the capacitor must be higher than normal input voltage level. 25 V rating or higher capacitor is preferred  
for up to 14-V input voltage. 8.2-μF capacitance is suggested.  
9.2.2.3 System Output Capacitor  
Output capacitor also should have enough ripple current rating to absorb output switching ripple current. The  
output capacitor RMS current ICOUT is given:  
I
RIPPLE  
I
=
» 0.29 x I  
RIPPLE  
CSYS  
2 x  
3
(4)  
The output capacitor voltage ripple can be calculated as follows:  
æ
ö
÷
÷
÷
V
V
SYS  
SYS  
ç
DV  
=
ç1-  
O
ç
ç
è
2
÷
ø
V
BUS  
8 LC  
SYS  
f s  
(5)  
At certain input/output voltage and switching frequency, the voltage ripple can be reduced by increasing the  
output filter LC. The charger device has internal loop compensator. To get good loop stability, 1-µH and minimum  
of 20-µF output capacitor is recommended. The preferred ceramic capacitor is 6V or higher rating, X7R or X5R.  
版权 © 2016–2017, Texas Instruments Incorporated  
43  
 
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
9.2.3 Application Curves  
VBAT = 3.2 V,  
VBUS = 5 V  
VBAT = 3.2 V,  
VBUS = 5 V  
41. Power Up with Charge Disabled  
42. Power Up with Charge Enabled  
VBUS = 5 V  
VBUS = 5 V  
43. Charge Enable  
44. Charge Disable  
VBUS = 12 V  
VBAT = 3.8 V  
ICHG = 3 A  
VBUS = 9V  
No Battery  
ISYS = 20 mA,  
Charge Disable  
45. PWM Switching Waveform  
46. PFM Switching Waveform  
44  
版权 © 2016–2017, Texas Instruments Incorporated  
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
VBAT = 3.2 V  
VBUS = 12 V  
VBUS = 12 V  
47. Power Up with Charge Disabled  
48. Charge Enable  
VBUS = 12 V  
VBUS = 12 V  
VBAT = 3.8 V  
ICHG = 3 A  
49. Charge Disable  
50. PWM Switching Waveform  
版权 © 2016–2017, Texas Instruments Incorporated  
45  
bq25898C  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
www.ti.com.cn  
10 Power Supply Recommendations  
In order to provide an output voltage on SYS, the device requires a power supply between 3.9 V and 14 V input  
with at least 100-mA current rating connected to VBUS or a single-cell Li-Ion battery with voltage > VBATUVLO  
connected to BAT. The source current rating needs to be at least 3 A in order for the buck converter of the  
charger to provide maximum output power to SYS.  
11 Layout  
11.1 Layout Guidelines  
The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the  
components to minimize high frequency current path loop (see 51) is important to prevent electrical and  
magnetic field radiation and high frequency resonant problems. Here is a PCB layout priority list for proper  
layout. Layout PCB according to this specific order is essential.  
1. Place input capacitor as close as possible to PMID pin and GND pin connections and use shortest copper  
trace connection or GND plane.  
2. Put output capacitor near to the inductor and the IC.  
3. Decoupling capacitors should be placed next to the IC pins and make trace connection as short as possible.  
4. Place inductor input terminal to SW pin as close as possible. Minimize the copper area of this trace to lower  
electrical and magnetic field radiation but make the trace wide enough to carry the charging current. Do not  
use multiple layers in parallel for this connection. Minimize parasitic capacitance from this area to any other  
trace or plane.  
5. Connect all grounds together to reduce PCB size and improve thermal dissipation.  
6. Avoid ground planes in parallel with high frequency traces in other layers.  
11.2 Layout Example  
51. High Frequency Current Path  
46  
版权 © 2016–2017, Texas Instruments Incorporated  
 
bq25898C  
www.ti.com.cn  
ZHCSG51B MARCH 2016REVISED MARCH 2017  
12 器件和文档支持  
12.1 器件支持  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可收到任意产  
品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。  
版权 © 2016–2017, Texas Instruments Incorporated  
47  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25898CYFFR  
BQ25898CYFFT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFF  
YFF  
42  
42  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
BQ25898C  
BQ25898C  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25898CYFFR  
BQ25898CYFFR  
BQ25898CYFFT  
BQ25898CYFFT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
YFF  
YFF  
YFF  
42  
42  
42  
42  
3000  
3000  
250  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
2.66  
2.66  
2.66  
2.66  
2.95  
2.95  
2.95  
2.95  
0.81  
0.81  
0.81  
0.81  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ25898CYFFR  
BQ25898CYFFR  
BQ25898CYFFT  
BQ25898CYFFT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
YFF  
YFF  
YFF  
42  
42  
42  
42  
3000  
3000  
250  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
20.0  
20.0  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YFF0042  
DSBGA - 0.625 mm max height  
S
C
A
L
E
4
.
5
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BUMP A1  
CORNER  
D
C
0.625 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.30  
0.12  
2 TYP  
SYMM  
G
F
E
D
C
D: Max = 2.852 mm, Min =2.792 mm  
E: Max = 2.558 mm, Min =2.498 mm  
SYMM  
2.4  
TYP  
0.3  
0.2  
42X  
B
A
0.015  
C A  
B
0.4 TYP  
1
2
3
4
5
6
0.4 TYP  
4222067/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0042  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
42X ( 0.23)  
(0.4) TYP  
1
2
4
5
6
A
B
C
SYMM  
D
E
F
G
SYMM  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MAX  
0.05 MIN  
(
0.23)  
(
0.23)  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222067/A 05/2015  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0042  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
42X ( 0.25)  
(R0.05) TYP  
1
2
3
4
5
6
A
(0.4)  
TYP  
B
METAL  
TYP  
C
D
E
F
SYMM  
G
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4222067/A 05/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

BQ25898CYFFR

用于并联充电应用的 I2C 单节 3A 降压电池充电器 | YFF | 42 | -40 to 125
TI

BQ25898CYFFT

用于并联充电应用的 I2C 单节 3A 降压电池充电器 | YFF | 42 | -40 to 125
TI

BQ25898D

具有电源路径和 HVDCP 的 I2C 单节 4A 降压电池充电器
TI

BQ25898DYFFR

具有电源路径和 HVDCP 的 I2C 单节 4A 降压电池充电器 | YFF | 42 | -40 to 125
TI

BQ25898DYFFT

具有电源路径和 HVDCP 的 I2C 单节 4A 降压电池充电器 | YFF | 42 | -40 to 125
TI

BQ25898YFFR

具有电源路径、采用 MaxchargeTM 技术且适用于高输入的 I2C 单节 4A 降压电池充电器 | YFF | 42 | -40 to 125
TI

BQ25898YFFT

具有电源路径、采用 MaxchargeTM 技术且适用于高输入的 I2C 单节 4A 降压电池充电器 | YFF | 42 | -40 to 125
TI

BQ25910

用于并联充电应用的 I2C 单节 6A 三级降压电池充电器
TI

BQ25910YFFR

用于并联充电应用的 I2C 单节 6A 三级降压电池充电器 | YFF | 36 | -40 to 85
TI

BQ25910YFFT

用于并联充电应用的 I2C 单节 6A 三级降压电池充电器 | YFF | 36 | -40 to 85
TI

BQ25960

具有旁路模式和双输入选择器的 I2C 控制型单节 8A 开关电容并联电池充电器
TI

BQ25960YBGR

具有旁路模式和双输入选择器的 I2C 控制型单节 8A 开关电容并联电池充电器 | YBG | 36 | -40 to 85
TI